
•Review
 Copy constructor and assignment
 What is the prototype for the copy constructor?
 What is the difference between shallow copy and deep copy?
 Which copy does the default do?
 Prototype of the assignment operator
 What is the main difference between assignment operator and

copy constructor?

 In Assignment No. 6, in overloading the + operator, what is
wrong with the prototype:
 PlayList operator+(PlayList & p, const song & s);

String and the [] and & operators

C-strings
Recall that a C-string is implemented as a NULL
terminated array of type char

char buffer[5];
strcpy(buffer,“hi!\n”);
cout<< buffer;

When we use “” the compiler makes a NULL terminated
const char array and fills it with the characters the
programmer chose
NOT every char array is a c-string, only those that are NULL
terminated

 Link to c-string review:
 http://www.cs.fsu.edu/~myers/c++/notes/strings.html

buffer '
h
'
'
i
'
'
!
'
'
\
n
'

'
\
0
'

http://www.cs.fsu.edu/~myers/c++/notes/strings.html�

C-string and c++
We have some features in the standard C++ libraries
available to help us work more easily with C-style
strings

 The <cstring> library
 Contains functions for common string operations, such as copy, compare,

concatenate, length, search, tokenization, and more
 strlen(), strcpy(), strncpy(), strcat(), strncat(), strcmp(), strncmp(), strstr(), strtok()

 Special features in <iostream>:
 Special built-in functions for I/O handling of C-style strings, like the

insertion and extraction operators, get(), getline(), etc
 char str1[40];
 cout << str1; // insertion operator for strings
 cin >> str1; // extraction, reads up to white space
 cin.get(str1, 40, ','); // reads to delimiter (comma)
 cin.getline(sr1, 40); // reads to delimiter (default delimiter is newline), discards

// delimiter

The Downside of C-strings
Fixed length (when declared as static array)
String name acts like a pointer
 Array bounds are not automatically enforced
 Must use cumbersome functions instead of intuitive

operators
 strcpy(str1, str2); instead of str1 = str2;
 (strcmp(str1, str2)) instead of (str1 == str2)
 strcat(str1, str2) instead of str1 += str2;

 The NULL char can be tricky
 See sample2.cpp, sample3.cpp, sample4.cpp

String Wish List
We would like a more intuitive string interface
 str1 + str2 //concatenation
 str1 == str2 //compare str1 and str2
 str1 = “Hello!\n” //store “hello!\n” in str1

 We would like to keep some of the legacy functionality
 str1[4] // returns 4th char in str1
 str1[4] = 'a' //sets 4th char in str1 to 'a'
 &str1 returns the c-string (starting address) for str1

 The next programming assignment to be
discussed in a while.

Overloading based on L-value and R-
value
An expression such as an array element may happens
in the left hand side (lhs) or right hand side (rhs) of an
assignment statement.
E.g. x= a[2]; a[2] = x;

 When the expression in the right hand side (x=a[2];): what

does the computer needs to know about the expression in
order to do the assignment? --- The value

 When the expression in the right hand side (a[2] = x;), the
computer needs to know the memory location of a[2] (not the
value of a[2])

 L-value of a) is the reference of the variablevariable (or

expression
 R-value of a variable is the value of the variable.

Overloading based on L-value and R-
value
Since L-value and R-value are different, C++ allows for
overloading operators based on L-value and R-value
different functions are invoked depending on whether the
operator happens in the left hand side or right hand side of
an assignment.

Class Someclass {
 public:
 int & operatorX(); // invocated in l-value invocation
 const int & operatorX(); // used in r-value invocation.
 …
};

Overloading operator[]
Usually done with two MEMBER functions
 Format: returntype operator[] (indextype index) const
 returntype& operator[](indextype index)
 The const member function allows us to read the

element from a const object
 The non-const member function returns a reference to

the element that can be modified
 See sample5.cpp

Overloading the address operator
 The address operator can be overloaded just like any

other operator (sample6.cpp)

	Review
	String and the [] and & operators
	C-strings
	C-string and c++
	The Downside of C-strings
	String Wish List
	Overloading based on L-value and R-value
	Overloading based on L-value and R-value
	Overloading operator[]
	Overloading the address operator

