
•Review
 Copy constructor and assignment
 What is the prototype for the copy constructor?
 What is the difference between shallow copy and deep copy?
 Which copy does the default do?
 Prototype of the assignment operator
 What is the main difference between assignment operator and

copy constructor?

 In Assignment No. 6, in overloading the + operator, what is
wrong with the prototype:
 PlayList operator+(PlayList & p, const song & s);

String and the [] and & operators

C-strings
Recall that a C-string is implemented as a NULL
terminated array of type char

char buffer[5];
strcpy(buffer,“hi!\n”);
cout<< buffer;

When we use “” the compiler makes a NULL terminated
const char array and fills it with the characters the
programmer chose
NOT every char array is a c-string, only those that are NULL
terminated

 Link to c-string review:
 http://www.cs.fsu.edu/~myers/c++/notes/strings.html

buffer '
h
'
'
i
'
'
!
'
'
\
n
'

'
\
0
'

http://www.cs.fsu.edu/~myers/c++/notes/strings.html�

C-string and c++
We have some features in the standard C++ libraries
available to help us work more easily with C-style
strings

 The <cstring> library
 Contains functions for common string operations, such as copy, compare,

concatenate, length, search, tokenization, and more
 strlen(), strcpy(), strncpy(), strcat(), strncat(), strcmp(), strncmp(), strstr(), strtok()

 Special features in <iostream>:
 Special built-in functions for I/O handling of C-style strings, like the

insertion and extraction operators, get(), getline(), etc
 char str1[40];
 cout << str1; // insertion operator for strings
 cin >> str1; // extraction, reads up to white space
 cin.get(str1, 40, ','); // reads to delimiter (comma)
 cin.getline(sr1, 40); // reads to delimiter (default delimiter is newline), discards

// delimiter

The Downside of C-strings
Fixed length (when declared as static array)
String name acts like a pointer
 Array bounds are not automatically enforced
 Must use cumbersome functions instead of intuitive

operators
 strcpy(str1, str2); instead of str1 = str2;
 (strcmp(str1, str2)) instead of (str1 == str2)
 strcat(str1, str2) instead of str1 += str2;

 The NULL char can be tricky
 See sample2.cpp, sample3.cpp, sample4.cpp

String Wish List
We would like a more intuitive string interface
 str1 + str2 //concatenation
 str1 == str2 //compare str1 and str2
 str1 = “Hello!\n” //store “hello!\n” in str1

 We would like to keep some of the legacy functionality
 str1[4] // returns 4th char in str1
 str1[4] = 'a' //sets 4th char in str1 to 'a'
 &str1 returns the c-string (starting address) for str1

 The next programming assignment to be
discussed in a while.

Overloading based on L-value and R-
value
An expression such as an array element may happens
in the left hand side (lhs) or right hand side (rhs) of an
assignment statement.
E.g. x= a[2]; a[2] = x;

 When the expression in the right hand side (x=a[2];): what

does the computer needs to know about the expression in
order to do the assignment? --- The value

 When the expression in the right hand side (a[2] = x;), the
computer needs to know the memory location of a[2] (not the
value of a[2])

 L-value of a) is the reference of the variablevariable (or

expression
 R-value of a variable is the value of the variable.

Overloading based on L-value and R-
value
Since L-value and R-value are different, C++ allows for
overloading operators based on L-value and R-value
different functions are invoked depending on whether the
operator happens in the left hand side or right hand side of
an assignment.

Class Someclass {
 public:
 int & operatorX(); // invocated in l-value invocation
 const int & operatorX(); // used in r-value invocation.
 …
};

Overloading operator[]
Usually done with two MEMBER functions
 Format: returntype operator[] (indextype index) const
 returntype& operator[](indextype index)
 The const member function allows us to read the

element from a const object
 The non-const member function returns a reference to

the element that can be modified
 See sample5.cpp

Overloading the address operator
 The address operator can be overloaded just like any

other operator (sample6.cpp)

	Review
	String and the [] and & operators
	C-strings
	C-string and c++
	The Downside of C-strings
	String Wish List
	Overloading based on L-value and R-value
	Overloading based on L-value and R-value
	Overloading operator[]
	Overloading the address operator

