
Recursion 



Problem decomposition 
 Problem decomposition is a common technique for problem 

solving in programming – to reduce a large problem to 
smaller and more manageable problems, and solving the large 
problem by combining the solutions of  a set of smaller 
problems. 

 
 Example 0:  
 Problem: Sort an array of A[0..N] 
 Decompose to:  
 Subproblem1: Sort the array of A[1..N], why is it a smaller problem? 
 Subproblem2: insert A[0] to the sorted A[1..N]. this is easier than sorting. 

 



Problem decomposition 
 Example 1:  
 Problem (size = N): Compute  
 Decompose to:  
 Subproblem (size = N-1): Compute X =  

 
 Solution is X + N*N*N. 

 Example 2:  
 Problem: find the sum of A[1..N] 
 Decompose to: 
 X = sum of A[2..N] (sum of an array of one element less) 
 Solution is X+A[1]; 
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Problem decomposition and 
recursion 
 When a large problem can be solved by solving smaller 

problems of the same nature  -- recursion is the nature way 
of implementing such a solution. 
 

 Example:  
 Problem: find the sum of A[1..N] 
 Depose to: 
 X = sum of A[2..N] (sum of an array of one element less) 
 Solution is X+A[1]; 

 
 

 



Writing recursive routines 
 Key step number 1: understand how a  problem can be 

decomposed into a set of smaller problems of the same 
nature; and how the solutions to the small problems can be 
used to form the solution of the original problem. 
 

 Example:  
 Problem: find the sum of A[1..N] 
 Decompose to: 
 X = sum of A[2..N] (sum of an array of one element less) 
 Solution is X+A[1]; 

 
 

 



Writing recursive routines 
 Key step number 2: formulate the solution of the problem into a 

routine with proper parameters. The key is to make sure that both 
the original problem and the smaller subproblems can both be 
formulated with the routine prototype. 

 Example:  
 Problem: find the sum of A[1..N] 
 Generalize the problem to be finding the sum of A[beg..end] 
 Decompose to: 
 X = sum of A[beg+1..end]  
 Solution is X+A[beg]; 

 Formulate the problem with a routine 
 sum(A, beg, end) be the sum of A[beg..end] (original problem) 
 sum(A, beg+1, end) is the sum of A[beg+1..end] (subproblem) 

 

 



Writing recursive routines 
 Key step number 2: formulate the solution of the problem 

into a routine with proper parameters (routine prototype). 
The key to the make sure that both the original problem and 
the smaller subproblems can both be formulated. 
 

 Formulate the problem with a routine 
 sum(A, beg, end) be the sum of A[beg..end] (original problem) 
 sum(A, beg+1, end) is the sum of A[beg+1..end] (subproblem) 

 Recursive function prototype: 
 
 int sum(int A[], int beg, int end); 

 

 



Writing recursive routines 
 Key step number 3: define the base case. This is often the 

easy cases when the problem size is 0 or 1. 
 

 int sum(int A[], int beg, int end) 
 Base case can either be when the sum of one element or the 

sum of 0 element. 
 Sum of 0 element (beg > end), the sum is 0. 

 
 Write it in C++: 
 If (beg > end) return 0;   this is the base case for the recursion. 

 
 
 

 

 



Writing recursive routines 
 Key step number 4: define the recursive case – this is logic to 

combine the solutions for smaller subproblems to form 
solution for the original problem. 
 
 Decompose to: 
 X = sum of A[beg+1..end]  
 Solution is X+A[beg]; 

 
 Recursive case: 
 X= sum(A, beg+1, end); 
 Return X + A[beg]; 

 
 Or just return A[beg] + sum(A, beg+1, end); 

 
 
 

 



Writing recursive routines 
 Put the routine prototype, base case, and recursive case 

together to form a recursive routine (sample1.cpp) 
 
int sum(int A[], int beg, int end) 
{ 
    if (beg > end) return 0; 
    return A[beg] + sum(A, beg+1, end); 
} 

 
 

 

 



Trace the recursive routine 
int sum(int A[], int beg, int end) 
{ 
    if (beg > end) return 0; 
    return A[beg] + sum(A, beg+1, end); 
} 
 Let A = {1,2, 3,4,5}; 

 
sum(A, 0, 4) 

A[0] + Sum(A, 1, 4) 
            A[1] + Sum(A, 2, 4) 
                        A[2] + sum (A, 3, 4) 
                                    A[3] + sum(A, 4, 4) 
                                                A[4] + sum(A, 5, 4)  sum(A, 5, 4) returns 0 
                                                A[4] + 0 = 5  sum(A, 4, 4) returns 5 
                                    A[3] + 5 = 9  sum(A, 3, 4) returns 9 
                        A[2] + 9 = 12  sum(A, 2, 4) returns 12 
             A[1]+12 = 14   sum(A, 1, 4) returns 14 
A[0] + 14 = 15         sum(A, 0, 4)  returns 15 
 

 

 



Trace the recursive routine 
 

sum(A, 0, 4) 
A[0] + Sum(A, 1, 4) 
            A[1] + Sum(A, 2, 4) 
                        A[2] + sum (A, 3, 4) 
                                    A[3] + sum(A, 4, 4) 
                                                A[4] + sum(A, 5, 4)  sum(A, 5, 4) returns 0 
                                                A[4] + 0 = 5  sum(A, 4, 4) returns 5 
                                    A[3] + 5 = 9  sum(A, 3, 4) returns 9 
                        A[2] + 9 = 12  sum(A, 2, 4) returns 12 
             A[1]+12 = 14   sum(A, 1, 4) returns 14 
A[0] + 14 = 15         sum(A, 0, 4)  returns 15 
 
Every recursive step, the program is one step closer to the base case it will 
eventually reach the base case, and the build on that solutions for larger 
problems are formed. 
 

 
 



Recursion example 2 
 Problem: Sort an array of A[beg..end] 
 Decompose to:  
 Subproblem1: Sort the array of A[beg+1..end] 
 Subproblem2: insert A[beg] to the sorted A[beg+1..end] 

 
 Function prototype:  

 void sort(A, beg, end);  // sort the array from index beg to end 
 How to solve a subproblem: sort(A, beg+1, end) 

 
 int sort(int A[], int beg, int end); 



Recursion example 2 
 int sort(int A[], int beg, int end); 
 When the array has no items it is sorted (beg > end); 
 When the array has one item, it is sorted (beg==end); 

 
 Base case: if (beg>= end) return; 
 Recursive case, array has more than one item (beg < end) 
 Subproblem1: Sort the array of A[beg+1..end], how? 

sort(A, beg+1, end) 
 Subproblem2: insert A[beg] to the sorted A[beg+1..end] 

tmp = A[beg]; 
for (i=beg+1; i<=end; i++) if (tmp > A[i]) A[i-1] = A[i]; 
A[i-1] = tmp; 

 



Recursion example 2, put it all 
together (sample2.cpp) 
 void sort(int A[], int beg, int end) { 

if (beg>= end) return; 
sort(A, beg+1, end) 
tmp = A[beg]; 
for (i=beg+1; i<=end; i++)  
    if (tmp > A[i]) A[i-1] = A[i]; 
    else break; 
A[i-1] = tmp; 

} 



Recursion example 3 
 Example 1:  
 Problem (size = N): Compute  
 Depose to:  
 Subproblem (size = N-1): Compute X =  
 Solution is X + N*N*N. 

 Function prototype: 
int sumofcube(int N); 
Base case: if (N=1) return 1; 
Recursive case: return N*N*N + sumofcube(N-1); 
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Recursion example 3 put it 
together 
 Example 1:  
 Problem (size = N): Compute  
 Depose to:  
 Subproblem (size = N-1): Compute X =  
 Solution is X + N*N*N. 

 
int sumofcube(int N) { 
   if (N=1) return 1; 
   return N*N*N + sumofcube(N-1); 
} 
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Thinking in recursion 
 
 Establish the base case (degenerated case) it usually trivial. 

 
 The focus:  if we can solve the problem of  size N-1, can we use 

that to solve the problem of a size N? 
 This is basically the recursive case. 

 
 If yes: 

 Find the right routine prototype 
 Base case 
 Recursive case 



Recursion and mathematic 
induction 
 Mathematic induction (useful tool for theorem proofing) 
 First prove a base case (N=1) 
 Show the theorem is true for some small degenerate values 

 Next assume an inductive hypothesis 
 Assume the theorem is true for all cases up to some limit (N=k) 

 Then prove that the theorem holds for the next value (N=k+1) 
 E.g.  

 
 Recursion 
 Base case: we know how to solve the problem for the base case (N=0 

or 1). 
 Recursive case: Assume that we can solve the problem for N=k-1, we 

can solve the problem for N=k. 
 Recursion is basically applying induction in problem solving!! 
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Recursion – more examples 
 void strcpy(char *dst, char *src) 
 Copy a string src to dst. 

 
 Base case: if (*src == ‘\0’) *dst = *src;  // and we are done 
 Recursive case:  
 If we know how to copy a string of one less character, can we use that to 

copy the whole string? 
 
 Copy one character (*dst = *src) 
 Copy the rest of the string  a strcpy subproblem? How to do it? 

 



Recursion – more examples 
(sample3.cpp) 
void strcpy(char *dst, char *src) { 
  if (*src == ‘\0’) {*dst = *src; return;} 
  else { 
     *dst = *src; 
     strcpy(dst+1, src+1); 
  } 
}  



Recursion – more examples 
void strlen(char *str) 
 
If we know how to count the length of the string with one less 
character, can we use that the count the length of the whole 
string? 



Recursion – more examples 
(sample4.cpp) 
void strlen(char *str) { 
  if (*str == ‘\0’) return 0; 
  return 1+ strlen(str+1); 
} 
 
Replace all ‘X’ in a string with ‘Y’?  



The treasure island problem 
(Assignment 6) 
 N items, each has a weight and  a value. 
 Items cannot be splitted – you either take an item or not. 
 Given the total weight that you can carry, how to maximize the 

total value that you take? 
 Example 
 6 items, 10 pounds at most to carry, what is the value? 
 Item 0: Weight=3 lbs, value = $9 
 Item 1: weight= 2lbs, value = $5 
 Item 2: weight = 2lbs, value = $5 
 Item 3: weight = 10 lbs, value = $20 
 Item 4: weight = 8 lbs, value = $16 
 Item 5: weight = 7 lbs, value = $11 



The treasure island problem 
 Thinking recursion: 
 If we know how to find the maximum value for any given 

weight for N-1 items, can we use the solution to get the 
solution for N items? 



The treasure island problem 
 Thinking recursion: 
 If we know how to find the maximum value for any given 

weight for N-1 items, can we use the solution to get the 
solution for N items? 
 We can look at the first item, there are two choices: take it or not take it. 

 If we take it, we can determine the maximum value that we can get by 
solving the N-1 item subproblem (we will use totalweight-item1’s 
weight for the N-1 items) 
o item1.value + maxvalue(N-1, weight-item1.weight) 

 If we don’t take it,  we can determine the maximum value that we can 
get by solving the N-1 item subproblem (we will use totalweight on 
the N-1 items). 
o maxvalue(N-1, weight) 

 Compare the two results and decide which gives more value. 



The treasure island problem 
 If we know how to find the maximum value for any given 

weight for N-1 items, can we use the solution to get the 
solution for N items? 
 

 Routine prototype: 
 
 int maxvalue(int W[], int V[], int totalweight, int beg, int end) 

 Base case: beg > end, no item, return 0; 
 Recursive case:  

 Two situations: totalweight < item1.weight, can’t take the first item  

 Otherwise, two cases (take first item or not take first item), make a choice. 

 



The treasure island problem 
 How to record which item is taken in the best solution? 
 Use a flag array to record choices – this array needs to be local to make it 

easy to keep track. 
 Using global array would be very difficult, because of the number of 

recursions. 
 

 Routine prototype: 
 
 int maxvalue(int W[], int V[], int totalweight, int beg, int end, int flag[]) 
 int flag[] is set in the subroutine, 
 Inside this routine, you needs to declare two flag arrays for the two choices 
 You should then copy and return the right flag array and set the right flag 

value for the choice your make for the first item. 



The treasure island problem 
 

 int maxvalue(int W[], int V[], int totalweight, int beg, int end, int flag[]) { 
int flag_for_choice1[42]; 

int flag_for_choice2[42]; 

…. 

….   maxvalue(W, V, totalweight-W[beg], beg+1, end, flag_for_choice1)  

…. 

// copy one of flag_for_choice to flag  

} 



The number puzzle problem 
 You are given N numbers, you want to find whether these N numbers 

can form an expression using +, -, *, / operators that evaluates to 
result.  

 

 Thinking recursion: 
 Base case, when N=1, it is easy. 
 Recursive case: If given N-1 numbers, we know how to decide whether 

these N-1 numbers can form the expression that evaluates to result, can we 
solve the problem for N number? 
 
 We can reduce the N numbers problem to N-1numbers problem by picking two numbers 

and applying +, -, *, / on the two numbers (to make one number) and keep the rest N-2 
numbers.  



The number puzzle problem 
 Recursive case: If given N-1 numbers, we know how to decide whether these N-

1 numbers can form the expression that evaluates to result, Can we solve the 
problem for N number? 
 We can reduce the N numbers problem to N-1numbers problem by picking two numbers and 

applying +, -, *, / on the two numbers (to make one number) and keep the rest N-2 numbers.  
 

for(i=0; i<N; i++) 
   for (j=0; j<N; j++) { 
      if (i==j) continue; 
      // you pick num[i] and num[j] out 
      // if (N-1 numbers) num[i]+num[j], and all num[x], x!=i, j can form the solution, done   
                (return true) 
      // if num[i]-num[j], and all num[x], x!=i, j can form the solution, done 
     // if num[i]*num[j], and all num[x], x!=i, j can form the solution, done 
      // if num[i]/num[j], and all num[x], x!=i, j can form the solution, done 
  } 
  return false. 

 



The number puzzle problem 
 To print out the expression 
 You can associate an expression (string type) with each number 

(the expression evalutes to the number). You can print the 
expression in the base case, when the solution is found. 

 The expression is in the parameter to the recursive function.  
 

 Potential function prototype 
bool computeexp(int n, int v[], string e[], int res) 
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