Recursion

Problem decomposition

- Problem decomposition is a common technique for problem solving in programming – to reduce a large problem to smaller and more manageable problems, and solving the large problem by combining the solutions of a set of smaller problems.
- Example 0:
 - Problem: Sort an array of A[0..N]
 - Decompose to:
 - Subproblem1: Sort the array of A[1..N], why is it a smaller problem?
 - Subproblem2: insert A[0] to the sorted A[1..N]. *this is easier than sorting*.

Problem decomposition

- Example 1:
 - Problem (size = N): Compute $\sum_{i=1}^{N} i^3$
 - Decompose to:
 - Subproblem (size = N-1): Compute $X = \sum_{i=1}^{N-1} i^3$
 - Solution is X + N*N*N.
- Example 2:
 - Problem: find the sum of A[1..N]
 - Decompose to:
 - X = sum of A[2..N] (sum of an array of one element less)
 - Solution is X+A[1];

Problem decomposition and recursion

• When a large problem can be solved by solving smaller problems of the same nature -- recursion is the nature way of implementing such a solution.

• Example:

- Problem: find the sum of A[1..N]
- Depose to:
 - X = sum of A[2..N] (sum of an array of one element less)
 - Solution is X+A[1];

- Key step number 1: understand how a problem can be decomposed into a set of smaller problems of the same nature; and how the solutions to the small problems can be used to form the solution of the original problem.
- Example:
 - Problem: find the sum of A[1..N]
 - Decompose to:
 - X = sum of A[2..N] (sum of an array of one element less)
 - Solution is X+A[1];

- Key step number 2: formulate the solution of the problem into a routine with proper parameters. The key is to make sure that both the original problem and the smaller subproblems can both be formulated with the routine prototype.
- Example:
 - Problem: find the sum of A[1..N]
 - Generalize the problem to be finding the sum of A[beg..end]
 - Decompose to:
 - X = sum of A[beg+1..end]
 - Solution is X+A[beg];
- Formulate the problem with a routine
 - sum(A, beg, end) be the sum of A[beg..end] (original problem)
 - sum(A, beg+1, end) is the sum of A[beg+1..end] (subproblem)

- Key step number 2: formulate the solution of the problem into a routine with proper parameters (routine prototype). The key to the make sure that both the original problem and the smaller subproblems can both be formulated.
- Formulate the problem with a routine
 - sum(A, beg, end) be the sum of A[beg..end] (original problem)
 - sum(A, beg+1, end) is the sum of A[beg+1..end] (subproblem)
- Recursive function prototype:
 - int sum(int A[], int beg, int end);

- Key step number 3: define the base case. This is often the easy cases when the problem size is 0 or 1.
- int sum(int A[], int beg, int end)
 - Base case can either be when the sum of one element or the sum of 0 element.
 - Sum of 0 element (beg > end), the sum is 0.
 - Write it in C++:
 - If (beg > end) return 0; \leftarrow this is the base case for the recursion.

- Key step number 4: define the recursive case this is logic to combine the solutions for smaller subproblems to form solution for the original problem.
 - Decompose to:
 - X = sum of A[beg+1..end]
 - Solution is X+A[beg];
 - Recursive case:
 - X = sum(A, beg+1, end);
 - Return X + A[beg];
 - Or just return A[beg] + sum(A, beg+1, end);

• Put the routine prototype, base case, and recursive case together to form a recursive routine (sample1.cpp)

```
int sum(int A[], int beg, int end)
{
    if (beg > end) return 0;
    return A[beg] + sum(A, beg+1, end);
}
```

Trace the recursive routine

```
int sum(int A[], int beg, int end)
{
    if (beg > end) return 0;
    return A[beg] + sum(A, beg+1, end);
}
Let A = {1,2, 3,4,5};
```

```
sum(A, 0, 4)
A[0] + Sum(A, 1, 4)
A[1] + Sum(A, 2, 4)
A[2] + sum(A, 3, 4)
A[3] + sum(A, 4, 4)
A[4] + sum(A, 5, 4) \leftarrow sum(A, 5, 4) returns 0
A[4] + 0 = 5 \leftarrow sum(A, 4, 4) returns 5
A[3] + 5 = 9 \leftarrow sum(A, 3, 4) returns 9
A[2] + 9 = 12 \leftarrow sum(A, 2, 4) returns 12
A[1] + 12 = 14 \leftarrow sum(A, 1, 4) returns 14
A[0] + 14 = 15 \leftarrow sum(A, 0, 4) returns 15
```

Trace the recursive routine

$$sum(A, 0, 4)$$

$$A[0] + Sum(A, 1, 4)$$

$$A[1] + Sum(A, 2, 4)$$

$$A[2] + sum(A, 3, 4)$$

$$A[3] + sum(A, 4, 4)$$

$$A[4] + sum(A, 5, 4) \leftarrow sum(A, 5, 4) returns 0$$

$$A[4] + 0 = 5 \leftarrow sum(A, 4, 4) returns 5$$

$$A[3] + 5 = 9 \leftarrow sum(A, 3, 4) returns 9$$

$$A[2] + 9 = 12 \leftarrow sum(A, 2, 4) returns 12$$

$$A[1] + 12 = 14 \leftarrow sum(A, 1, 4) returns 14$$

$$A[0] + 14 = 15 \leftarrow sum(A, 0, 4) returns 15$$

Every recursive step, the program is one step closer to the base case \rightarrow it will eventually reach the base case, and the build on that solutions for larger problems are formed.

Recursion example 2

- Problem: Sort an array of A[beg..end]
- Decompose to:
 - Subproblem1: Sort the array of A[beg+1..end]
 - Subproblem2: insert A[beg] to the sorted A[beg+1..end]
- Function prototype:
 - void sort(A, beg, end); // sort the array from index beg to end
 - How to solve a subproblem: sort(A, beg+1, end)
 - int sort(int A[], int beg, int end);

Recursion example 2

- int sort(int A[], int beg, int end);
 - When the array has no items it is sorted (beg > end);
 - When the array has one item, it is sorted (beg==end);
 - Base case: if (beg>= end) return;
 - Recursive case, array has more than one item (beg < end)
 - Subproblem1: Sort the array of A[beg+1..end], how? sort(A, beg+1, end)
 - Subproblem2: insert A[beg] to the sorted A[beg+1..end] tmp = A[beg]; for (i=beg+1; i<=end; i++) if (tmp > A[i]) A[i-1] = A[i]; A[i-1] = tmp;

Recursion example 2, put it all together (sample2.cpp)

• void sort(int A[], int beg, int end) {

Recursion example 3

- Example 1:
 - Problem (size = N): Compute $\sum_{i=1}^{N} i^3$
 - Depose to:
 - Subproblem (size = N-1): Compute $X = \sum_{i=1}^{N-1} i^3$
 - Solution is X + N*N*N.
- Function prototype:
 - int sumofcube(int N);

Base case: if (N=1) return 1;

Recursive case: return N*N*N + sumofcube(N-1);

Recursion example 3 put it together

- Example 1:
 - Problem (size = N): Compute $\sum_{i=1}^{n} i^3$
 - Depose to:
 - Subproblem (size = N-1): Compute $X = \sum_{i=1}^{N-1} i^3$
 - Solution is X + N*N*N.

```
int sumofcube(int N) {
    if (N=1) return 1;
    return N*N*N + sumofcube(N-1);
}
```

Thinking in recursion

- Establish the base case (degenerated case) it usually trivial.
- The focus: if we can solve the problem of size N-1, can we use that to solve the problem of a size N?
 - This is basically the recursive case.
 - If yes:
 - Find the right routine prototype
 - Base case
 - Recursive case

Recursion and mathematic induction

- Mathematic induction (useful tool for theorem proofing)
 - First prove a *base case (N=1)*
 - Show the theorem is true for some small degenerate values
 - Next assume an inductive hypothesis
 - Assume the theorem is true for all cases up to some limit (N=k)
 - Then prove that the theorem holds for the next value (N=k+1)

• *E.g.*
$$\sum_{i=1}^{N} i = N(N+1)/2$$

- Recursion
 - Base case: we know how to solve the problem for the base case (N=0 or 1).
 - Recursive case: Assume that we can solve the problem for N=k-1, we can solve the problem for N=k.
- Recursion is basically applying induction in problem solving!!

Recursion – more examples

- void strcpy(char *dst, char *src)
 - Copy a string src to dst.
 - Base case: if $(*src == '\setminus 0') *dst = *src; // and we are done$
 - Recursive case:
 - If we know how to copy a string of one less character, can we use that to copy the whole string?
 - Copy one character (*dst = *src)
 - Copy the rest of the string \leftarrow a strcpy subproblem? How to do it?

Recursion – more examples (sample3.cpp)

```
void strcpy(char *dst, char *src) {
    if (*src == '\0') {*dst = *src; return;}
    else {
      *dst = *src;
      strcpy(dst+1, src+1);
    }
```

Recursion – more examples

void strlen(char *str)

If we know how to count the length of the string with one less character, can we use that the count the length of the whole string?

Recursion – more examples (sample4.cpp)

```
void strlen(char *str) {
  if (*str == '\0') return 0;
  return 1+ strlen(str+1);
}
```

```
Replace all 'X' in a string with 'Y'?
```

The treasure island problem (Assignment 6)

- N items, each has a weight and a value.
- Items cannot be splitted you either take an item or not.
- Given the total weight that you can carry, how to maximize the total value that you take?
- Example
 - 6 items, 10 pounds at most to carry, what is the value?
 - Item 0: Weight=3 lbs, value = \$9
 - Item 1: weight= 2lbs, value = \$5
 - Item 2: weight = 2lbs, value = \$5
 - Item 3: weight = 10 lbs, value = \$20
 - Item 4: weight = 8 lbs, value = \$16
 - Item 5: weight = 7 lbs, value = \$11

- Thinking recursion:
 - If we know how to find the maximum value for any given weight for N-1 items, can we use the solution to get the solution for N items?

- Thinking recursion:
 - If we know how to find the maximum value for any given weight for N-1 items, can we use the solution to get the solution for N items?
 - We can look at the first item, there are two choices: take it or not take it.
 - If we take it, we can determine the maximum value that we can get by solving the N-1 item subproblem (we will use totalweight-item1's weight for the N-1 items)
 - o item1.value + maxvalue(N-1, weight-item1.weight)
 - If we don't take it, we can determine the maximum value that we can get by solving the N-1 item subproblem (we will use totalweight on the N-1 items).
 - o maxvalue(N-1, weight)
 - Compare the two results and decide which gives more value.

- If we know how to find the maximum value for any given weight for N-1 items, can we use the solution to get the solution for N items?
- Routine prototype:
 - int maxvalue(int W[], int V[], int totalweight, int beg, int end)
- Base case: beg > end, no item, return 0;
- Recursive case:
 - Two situations: totalweight < item1.weight, can't take the first item
 - Otherwise, two cases (take first item or not take first item), make a choice.

- How to record which item is taken in the best solution?
 - Use a flag array to record choices this array needs to be local to make it easy to keep track.
 - Using global array would be very difficult, because of the number of recursions.
- Routine prototype:
- int maxvalue(int W[], int V[], int totalweight, int beg, int end, int flag[])
- int flag[] is set in the subroutine,
- Inside this routine, you needs to declare two flag arrays for the two choices
- You should then copy and return the right flag array and set the right flag value for the choice your make for the first item.

int maxvalue(int W[], int V[], int totalweight, int beg, int end, int flag[]) {
 int flag_for_choice1[42];
 int flag_for_choice2[42];

.... maxvalue(W,V, totalweight-W[beg], beg+1, end, flag_for_choice1)

```
// copy one of flag_for_choice to flag
```

. . . .

}

The number puzzle problem

- You are given N numbers, you want to find whether these N numbers can form an expression using +, -, *, / operators that evaluates to result.
- Thinking recursion:
 - Base case, when N=1, it is easy.
 - Recursive case: If given N-1 numbers, we know how to decide whether these N-1 numbers can form the expression that evaluates to result, can we solve the problem for N number?
 - We can reduce the N numbers problem to N-1numbers problem by picking two numbers and applying +, -, *, / on the two numbers (to make one number) and keep the rest N-2 numbers.

The number puzzle problem

- Recursive case: If given N-1 numbers, we know how to decide whether these N-1 numbers can form the expression that evaluates to result, Can we solve the problem for N number?
 - We can reduce the N numbers problem to N-1numbers problem by picking two numbers and applying +, -, *, / on the two numbers (to make one number) and keep the rest N-2 numbers.

```
for(i=0; i<N; i++)
```

```
for (j=0; j<N; j++) {
```

if (i==j) continue;

// you pick num[i] and num[j] out

// if (N-1 numbers) num[i]+num[j], and all num[x], x!=i, j can form the solution, done
 (return true)

// if num[i]-num[j], and all num[x], x!=i, j can form the solution, done
// if num[i]*num[j], and all num[x], x!=i, j can form the solution, done
// if num[i]/num[j], and all num[x], x!=i, j can form the solution, done
}
return false.

The number puzzle problem

- To print out the expression
- You can associate an expression (string type) with each number (the expression evalutes to the number). You can print the expression in the base case, when the solution is found.
- The expression is in the parameter to the recursive function.
- Potential function prototype

bool computeexp(int n, int v[], string e[], int res)