
Recursion

Problem decomposition
 Problem decomposition is a common technique for problem

solving in programming – to reduce a large problem to
smaller and more manageable problems, and solving the large
problem by combining the solutions of a set of smaller
problems.

 Example 0:
 Problem: Sort an array of A[0..N]
 Decompose to:
 Subproblem1: Sort the array of A[1..N], why is it a smaller problem?
 Subproblem2: insert A[0] to the sorted A[1..N]. this is easier than sorting.

Problem decomposition
 Example 1:
 Problem (size = N): Compute
 Decompose to:
 Subproblem (size = N-1): Compute X =

 Solution is X + N*N*N.

 Example 2:
 Problem: find the sum of A[1..N]
 Decompose to:
 X = sum of A[2..N] (sum of an array of one element less)
 Solution is X+A[1];

∑
=

N

i
i

1

3

∑
−

=

1

1

3
N

i
i

Problem decomposition and
recursion
 When a large problem can be solved by solving smaller

problems of the same nature -- recursion is the nature way
of implementing such a solution.

 Example:
 Problem: find the sum of A[1..N]
 Depose to:
 X = sum of A[2..N] (sum of an array of one element less)
 Solution is X+A[1];

Writing recursive routines
 Key step number 1: understand how a problem can be

decomposed into a set of smaller problems of the same
nature; and how the solutions to the small problems can be
used to form the solution of the original problem.

 Example:
 Problem: find the sum of A[1..N]
 Decompose to:
 X = sum of A[2..N] (sum of an array of one element less)
 Solution is X+A[1];

Writing recursive routines
 Key step number 2: formulate the solution of the problem into a

routine with proper parameters. The key is to make sure that both
the original problem and the smaller subproblems can both be
formulated with the routine prototype.

 Example:
 Problem: find the sum of A[1..N]
 Generalize the problem to be finding the sum of A[beg..end]
 Decompose to:
 X = sum of A[beg+1..end]
 Solution is X+A[beg];

 Formulate the problem with a routine
 sum(A, beg, end) be the sum of A[beg..end] (original problem)
 sum(A, beg+1, end) is the sum of A[beg+1..end] (subproblem)

Writing recursive routines
 Key step number 2: formulate the solution of the problem

into a routine with proper parameters (routine prototype).
The key to the make sure that both the original problem and
the smaller subproblems can both be formulated.

 Formulate the problem with a routine
 sum(A, beg, end) be the sum of A[beg..end] (original problem)
 sum(A, beg+1, end) is the sum of A[beg+1..end] (subproblem)

 Recursive function prototype:

 int sum(int A[], int beg, int end);

Writing recursive routines
 Key step number 3: define the base case. This is often the

easy cases when the problem size is 0 or 1.

 int sum(int A[], int beg, int end)
 Base case can either be when the sum of one element or the

sum of 0 element.
 Sum of 0 element (beg > end), the sum is 0.

 Write it in C++:
 If (beg > end) return 0;  this is the base case for the recursion.

Writing recursive routines
 Key step number 4: define the recursive case – this is logic to

combine the solutions for smaller subproblems to form
solution for the original problem.

 Decompose to:
 X = sum of A[beg+1..end]
 Solution is X+A[beg];

 Recursive case:
 X= sum(A, beg+1, end);
 Return X + A[beg];

 Or just return A[beg] + sum(A, beg+1, end);

Writing recursive routines
 Put the routine prototype, base case, and recursive case

together to form a recursive routine (sample1.cpp)

int sum(int A[], int beg, int end)
{
 if (beg > end) return 0;
 return A[beg] + sum(A, beg+1, end);
}

Trace the recursive routine
int sum(int A[], int beg, int end)
{
 if (beg > end) return 0;
 return A[beg] + sum(A, beg+1, end);
}
 Let A = {1,2, 3,4,5};

sum(A, 0, 4)

A[0] + Sum(A, 1, 4)
 A[1] + Sum(A, 2, 4)
 A[2] + sum (A, 3, 4)
 A[3] + sum(A, 4, 4)
 A[4] + sum(A, 5, 4)  sum(A, 5, 4) returns 0
 A[4] + 0 = 5  sum(A, 4, 4) returns 5
 A[3] + 5 = 9  sum(A, 3, 4) returns 9
 A[2] + 9 = 12  sum(A, 2, 4) returns 12
 A[1]+12 = 14  sum(A, 1, 4) returns 14
A[0] + 14 = 15  sum(A, 0, 4) returns 15

Trace the recursive routine

sum(A, 0, 4)
A[0] + Sum(A, 1, 4)
 A[1] + Sum(A, 2, 4)
 A[2] + sum (A, 3, 4)
 A[3] + sum(A, 4, 4)
 A[4] + sum(A, 5, 4)  sum(A, 5, 4) returns 0
 A[4] + 0 = 5  sum(A, 4, 4) returns 5
 A[3] + 5 = 9  sum(A, 3, 4) returns 9
 A[2] + 9 = 12  sum(A, 2, 4) returns 12
 A[1]+12 = 14  sum(A, 1, 4) returns 14
A[0] + 14 = 15  sum(A, 0, 4) returns 15

Every recursive step, the program is one step closer to the base case it will
eventually reach the base case, and the build on that solutions for larger
problems are formed.

Recursion example 2
 Problem: Sort an array of A[beg..end]
 Decompose to:
 Subproblem1: Sort the array of A[beg+1..end]
 Subproblem2: insert A[beg] to the sorted A[beg+1..end]

 Function prototype:

 void sort(A, beg, end); // sort the array from index beg to end
 How to solve a subproblem: sort(A, beg+1, end)

 int sort(int A[], int beg, int end);

Recursion example 2
 int sort(int A[], int beg, int end);
 When the array has no items it is sorted (beg > end);
 When the array has one item, it is sorted (beg==end);

 Base case: if (beg>= end) return;
 Recursive case, array has more than one item (beg < end)
 Subproblem1: Sort the array of A[beg+1..end], how?

sort(A, beg+1, end)
 Subproblem2: insert A[beg] to the sorted A[beg+1..end]

tmp = A[beg];
for (i=beg+1; i<=end; i++) if (tmp > A[i]) A[i-1] = A[i];
A[i-1] = tmp;

Recursion example 2, put it all
together (sample2.cpp)
 void sort(int A[], int beg, int end) {

if (beg>= end) return;
sort(A, beg+1, end)
tmp = A[beg];
for (i=beg+1; i<=end; i++)
 if (tmp > A[i]) A[i-1] = A[i];
 else break;
A[i-1] = tmp;

}

Recursion example 3
 Example 1:
 Problem (size = N): Compute
 Depose to:
 Subproblem (size = N-1): Compute X =
 Solution is X + N*N*N.

 Function prototype:
int sumofcube(int N);
Base case: if (N=1) return 1;
Recursive case: return N*N*N + sumofcube(N-1);

∑
=

N

i
i

1

3

∑
−

=

1

1

3
N

i
i

Recursion example 3 put it
together
 Example 1:
 Problem (size = N): Compute
 Depose to:
 Subproblem (size = N-1): Compute X =
 Solution is X + N*N*N.

int sumofcube(int N) {
 if (N=1) return 1;
 return N*N*N + sumofcube(N-1);
}

∑
=

N

i
i

1

3

∑
−

=

1

1

3
N

i
i

Thinking in recursion

 Establish the base case (degenerated case) it usually trivial.

 The focus: if we can solve the problem of size N-1, can we use

that to solve the problem of a size N?
 This is basically the recursive case.

 If yes:

 Find the right routine prototype
 Base case
 Recursive case

Recursion and mathematic
induction
 Mathematic induction (useful tool for theorem proofing)
 First prove a base case (N=1)
 Show the theorem is true for some small degenerate values

 Next assume an inductive hypothesis
 Assume the theorem is true for all cases up to some limit (N=k)

 Then prove that the theorem holds for the next value (N=k+1)
 E.g.

 Recursion
 Base case: we know how to solve the problem for the base case (N=0

or 1).
 Recursive case: Assume that we can solve the problem for N=k-1, we

can solve the problem for N=k.
 Recursion is basically applying induction in problem solving!!

∑
=

+=
N

i
NNi

1
2/)1(

Recursion – more examples
 void strcpy(char *dst, char *src)
 Copy a string src to dst.

 Base case: if (*src == ‘\0’) *dst = *src; // and we are done
 Recursive case:
 If we know how to copy a string of one less character, can we use that to

copy the whole string?

 Copy one character (*dst = *src)
 Copy the rest of the string  a strcpy subproblem? How to do it?

Recursion – more examples
(sample3.cpp)
void strcpy(char *dst, char *src) {
 if (*src == ‘\0’) {*dst = *src; return;}
 else {
 *dst = *src;
 strcpy(dst+1, src+1);
 }
}

Recursion – more examples
void strlen(char *str)

If we know how to count the length of the string with one less
character, can we use that the count the length of the whole
string?

Recursion – more examples
(sample4.cpp)
void strlen(char *str) {
 if (*str == ‘\0’) return 0;
 return 1+ strlen(str+1);
}

Replace all ‘X’ in a string with ‘Y’?

The treasure island problem
(Assignment 6)
 N items, each has a weight and a value.
 Items cannot be splitted – you either take an item or not.
 Given the total weight that you can carry, how to maximize the

total value that you take?
 Example
 6 items, 10 pounds at most to carry, what is the value?
 Item 0: Weight=3 lbs, value = $9
 Item 1: weight= 2lbs, value = $5
 Item 2: weight = 2lbs, value = $5
 Item 3: weight = 10 lbs, value = $20
 Item 4: weight = 8 lbs, value = $16
 Item 5: weight = 7 lbs, value = $11

The treasure island problem
 Thinking recursion:
 If we know how to find the maximum value for any given

weight for N-1 items, can we use the solution to get the
solution for N items?

The treasure island problem
 Thinking recursion:
 If we know how to find the maximum value for any given

weight for N-1 items, can we use the solution to get the
solution for N items?
 We can look at the first item, there are two choices: take it or not take it.

 If we take it, we can determine the maximum value that we can get by
solving the N-1 item subproblem (we will use totalweight-item1’s
weight for the N-1 items)
o item1.value + maxvalue(N-1, weight-item1.weight)

 If we don’t take it, we can determine the maximum value that we can
get by solving the N-1 item subproblem (we will use totalweight on
the N-1 items).
o maxvalue(N-1, weight)

 Compare the two results and decide which gives more value.

The treasure island problem
 If we know how to find the maximum value for any given

weight for N-1 items, can we use the solution to get the
solution for N items?

 Routine prototype:

 int maxvalue(int W[], int V[], int totalweight, int beg, int end)

 Base case: beg > end, no item, return 0;
 Recursive case:

 Two situations: totalweight < item1.weight, can’t take the first item

 Otherwise, two cases (take first item or not take first item), make a choice.

The treasure island problem
 How to record which item is taken in the best solution?
 Use a flag array to record choices – this array needs to be local to make it

easy to keep track.
 Using global array would be very difficult, because of the number of

recursions.

 Routine prototype:

 int maxvalue(int W[], int V[], int totalweight, int beg, int end, int flag[])
 int flag[] is set in the subroutine,
 Inside this routine, you needs to declare two flag arrays for the two choices
 You should then copy and return the right flag array and set the right flag

value for the choice your make for the first item.

The treasure island problem

 int maxvalue(int W[], int V[], int totalweight, int beg, int end, int flag[]) {
int flag_for_choice1[42];

int flag_for_choice2[42];

….

…. maxvalue(W, V, totalweight-W[beg], beg+1, end, flag_for_choice1)

….

// copy one of flag_for_choice to flag

}

The number puzzle problem
 You are given N numbers, you want to find whether these N numbers

can form an expression using +, -, *, / operators that evaluates to
result.

 Thinking recursion:
 Base case, when N=1, it is easy.
 Recursive case: If given N-1 numbers, we know how to decide whether

these N-1 numbers can form the expression that evaluates to result, can we
solve the problem for N number?

 We can reduce the N numbers problem to N-1numbers problem by picking two numbers

and applying +, -, *, / on the two numbers (to make one number) and keep the rest N-2
numbers.

The number puzzle problem
 Recursive case: If given N-1 numbers, we know how to decide whether these N-

1 numbers can form the expression that evaluates to result, Can we solve the
problem for N number?
 We can reduce the N numbers problem to N-1numbers problem by picking two numbers and

applying +, -, *, / on the two numbers (to make one number) and keep the rest N-2 numbers.

for(i=0; i<N; i++)
 for (j=0; j<N; j++) {
 if (i==j) continue;
 // you pick num[i] and num[j] out
 // if (N-1 numbers) num[i]+num[j], and all num[x], x!=i, j can form the solution, done
 (return true)
 // if num[i]-num[j], and all num[x], x!=i, j can form the solution, done
 // if num[i]*num[j], and all num[x], x!=i, j can form the solution, done
 // if num[i]/num[j], and all num[x], x!=i, j can form the solution, done
 }
 return false.

The number puzzle problem
 To print out the expression
 You can associate an expression (string type) with each number

(the expression evalutes to the number). You can print the
expression in the base case, when the solution is found.

 The expression is in the parameter to the recursive function.

 Potential function prototype
bool computeexp(int n, int v[], string e[], int res)

	Recursion
	Problem decomposition
	Problem decomposition
	Problem decomposition and recursion
	Writing recursive routines
	Writing recursive routines
	Writing recursive routines
	Writing recursive routines
	Writing recursive routines
	Writing recursive routines
	Trace the recursive routine
	Trace the recursive routine
	Recursion example 2
	Recursion example 2
	Recursion example 2, put it all together (sample2.cpp)
	Recursion example 3
	Recursion example 3 put it together
	Thinking in recursion
	Recursion and mathematic induction
	Recursion – more examples
	Recursion – more examples (sample3.cpp)
	Recursion – more examples
	Recursion – more examples (sample4.cpp)
	The treasure island problem (Assignment 6)
	The treasure island problem
	The treasure island problem
	The treasure island problem
	The treasure island problem
	The treasure island problem
	The number puzzle problem
	The number puzzle problem
	The number puzzle problem

