
Pointers review
 Let a variable aa be defined as ‘int *aa;’, what is stored in aa?
 Let a variable aa be defined as ‘int ** aa;’ what is stored in aa?
 Why we should NOT return a pointer to a local variable?
 What is the pointer form of aa[100]?
 What does the NULL pointer mean?
 What is the relation between pointer and reference?
 What is the output of the following code?

int a = 5;
int *ptr = &a;
cout << ptr;
cout << *ptr;

More on operator overloading
Dynamic Memory Allocation

More on operator overloading
 All operator can be overloaded
Overloading an operator + can be achieved with either a

member function or a friend function.
Overloading an operator is basically realized with a function – a

function does not have to take two parameters of the same type
This allows operator to be overloaded in a more flexible manner by

operating on different data types.

 See the overloading of the ‘+’ operator in fraction_overload.

Memory Allocation
 There are essentially two types of memory allocation
Static – Done by the compiler automatically (implicitly).
Global variables or objects -- memory is allocated at the start of the

program, and freed when program exits; alive throughout program
execution
 Can be access anywhere in the program.

Local variables (inside a routine) – memory is allocated when the routine
starts and freed when the routine returns.
 A local variable cannot be accessed from another routine.

Allocation and free are done implicitly.
No need to explicitly manage memory is nice (easy to work with), but has

limitations!
Using static allocation, the array size must be fixed.
Consider the grade roster for the class? What is the number of

people in the class?

Memory Allocation
 There are essentially two types of memory allocation
Wouldn’t it be nice to be able to have an array whose size can be

adjusted depending on needs.
 Dynamic memory allocation deals with this situation.

Dynamic – Done explicitly by programmer.
Programmer explicitly requests the system to allocate memory and

return starting address of memory allocated (what is this?). This address
can be used by the programmer to access the allocated memory.

When done using memory, it must be explicitly freed.

Explicitly allocating memory in C++:
The ‘new’ Operator
 Used to dynamically allocate memory
 Can be used to allocate a single variable/object or an array of

variables/objects
 The new operator returns pointer to the type allocated
 Examples:
 char *my_char_ptr = new char;
 int *my_int_array =new int[20];
 Mixed *m1 = new Mixed(1,1,2);

 Before the assignment, the pointer may or may not point to a legitimate

memory
 After the assignment, the pointer points to a legitimate memory.

sample1.cpp
sample2.cpp

Explicitly freeing memory in C++:
the ‘delete’ Operator
 Used to free memory allocated with new operator
 The delete operator should be called on a pointer to dynamically

allocated memory when it is no longer needed
 Can delete a single variable/object or an array
delete PointerName;
delete [] ArrayName;

 After delete is called on a memory region, that region should no
longer be accessed by the program

 Convention is to set pointer to deleted memory to NULL
Any new must have a corresponding delete --- if not, the program

has memory leak.
New and delete may not be in the same routine.

sample3.cpp
(linprog and diablo)
sample4.cpp

The Heap
 Large area of memory controlled by the runtime system that

is used to grant dynamic memory requests.
 It is possible to allocate memory and “lose” the pointer to that

region without freeing it. This is called a memory leak.
 A memory leak can cause the heap to become full
 If an attempt is made to allocate memory from the heap and

there is not enough, an exception is generated (error)

sample5.cpp

Why use dynamic memory allocation?
 Allows data (especially arrays) to take on variable sizes (e.g.

ask the user how many numbers to store, then generate an
array of integers exactly that size).

 Allows locally created variables to live past end of routine.
 Allows us to create many structures used in Data Structures

and Algorithms

sample6.cpp
sample7_1.cpp
sample7.cpp

The . and -> operators
 The dot operator is used to access an object’s members
 M1.Simplify();
 M1.num = 5;

 But how do we access an objects members if we only have a
pointer to the object?

 If we have M1_ptr = &M1, Perhaps we would use
(*(M1_ptr)).Simplify()

 A shorthand for this is the arrow operator
 M1_ptr->Simplifly() is equivelant to(*(M1_ptr)).Simplify()

sample8.cpp

Explicit memroy allocation/free in C
(Works also in C++)
 The malloc and free routines
 Prototype defined in stdlib.h
 malloc is similar to new except that it specifies the exact

memory size
 Return a (void *) -- needs to convert to the right pointer type

 free is equivalent to delete (only one form for both single item
and many items).

Sample3_malloc.cpp

	Pointers review
	More on operator overloading�Dynamic Memory Allocation
	More on operator overloading
	Memory Allocation
	Memory Allocation
	Explicitly allocating memory in C++: The ‘new’ Operator
	Explicitly freeing memory in C++: the ‘delete’ Operator
	The Heap
	Why use dynamic memory allocation?
	The . and -> operators
	Explicit memroy allocation/free in C (Works also in C++)

