
Review

 What does the friend keyword in a class do?

 Is a friended function a public or private member?

 What is the difference between these two calls:

f3 = f1.Add(f2)

f3 = Add(f1, f2)

 Define conversion constructor.

 What does it do?

 How do we suppress what is does?

Protection Levels and Constructors
The ‘const’ keyword

Review: const keyword

● Generally, the keyword const is applied to an identifier (variable) by a programmer to express an
intent that the identifier should not be used to alter data it refers to in some context (scope).

● The compiler enforces this intent, for example (t1.cpp):

● In the above example, x is an identifier that refers to integer data in memory and the compiler
enforces that x should not be used in a way that could result in a change to that data.

● Another example (t2.cpp):

● In this example, the compiler does not allow the 'int *' x_ptr to point to the address of x (which is of
type 'const int *'). This is because x_ptr could then be used to change the data stored for x.

Review: const parameters

 There are two methods of passing arguments to functions in c++:

 Pass-by-value – A copy of the argument is made and the function acts upon the
copy

 Pass-by-reference – No copy of the argument is made, the function parameter is
an identifier that refers to the same data as the argument (like an alias for the
argument).

 The method used to pass arguments is indicated by the function's
parameters:

void foo(int x); //x is passed by value

void foo(int &x); //x is passed by reference

 What is the main different between these two parameter passing
mechanism (see t3.cpp)?

Review: const parameters

 One can add the ‘const’ key word to both parameter passing

mechanisms

void foo(const int x); //x is an input parameter (read only), cannot be modified inside foo

void foo(const int &x); //x is an input parameter (read only), cannot be modified inside foo

 See t4.cpp

 What is the difference between these two parameter passing schemes?

 Pass by value needs to make a copy

 Pass by reference does not make a copy (just pass the reference of the actual
parameter to the subroutine)

— The reference of a variable is just the pointer to the variable (4 bytes mostly).

— Pass by const reference is very useful when the parameter is a large data structure
for reducing the overhead to make a copy.

Passing objects by const reference

 Objects can also be passed by const reference to avoid copy overhead:

 friend Fraction Add(const Fraction& f1, const Fraction& f2);

 Just like with other types, the compiler will enforce that an object

passed by const reference will not be used in a way that may change

it's member data.

Const member function

● Any call to a member function has a

“calling object”

Fraction f1; /* a fraction object */

f1.evaluate(); /* f1 is the calling object */

● Since a member function has access to the

calling objects data, we may want to make

sure the calling object is never altered by

a member function.

● We call this a const member function,

and it is indicated by using the const

keyword after the member function

declaration AND definition.

● See t5.cpp on the right.

const objects

 Const variables are the ones that only have one value (initialized).

const int SIZE = 10;

const double PI = 3.1415;

 Objects can be declared as const in a similar fashion. The constructor will always run

to intialize the object, but after that, the object's member data cannot be changed

const Fraction ZERO; // this fraction is fixed at 0/1

const Fraction FIXED(3,4); // this fraction is fixed at 3/4

 To ensure that a const object cannot be changed, the compiler enforces that a const

object may only call const member functions.

 See const_fraction example

const member data

● Member data of a class can also be declared const. This is a little tricky, because of
certain syntax rules.

● Remember, when a variable is declared with const in a normal block of code, it must be
initialized on the same line:

● const int SIZE = 10;

● However, it is NOT legal to initialize the member data variables on their declaration lines
in a class declaration block:

● But a const declaration cannot be split up into a regular code block. This attempt at a
constructor definition would also not work, if Z were const example

Initialization list

● We can use a special area of a constructor called an initialization list

to overcome the problem of initializing const object members.

● Initialization lists have the following format:

● The initialization list above will set member_var1 to 10 and

member_var2 to the value passed as p1 to the constructor.

● See init_list.cpp example.

const Summary

Class abc {

 public:

 abc();

 void show() const; // const 1

 void what();

 private:

 void print(const abc & x); // const 2

 int c;

 const int d; // const 3

};

void abc:: show() const {

…

}

void abc::abc() : c(0), d(10) {}

Main()

{

 const int I = 10; // const 4

 ……

 const abc xx;

 xx.show();

 xx.what();

}

