
Review

● What are the protection levels in a class we talked about last time?
● Why do we use protection levels?
● Which part of program can access private data members? Which part of

program cannot access private data? What happens when the program
accesses private data illegally?

● Which part of program can access private functions? Which part of program
cannot access private functions? What happens when the program accesses
private functions illegally?

● What is a constructor?
● How can you tell if a function is a constructor in a class?
● What is a default constructor?
● How to pass arguments to a constructor?

Protection Levels and Constructors More about classes: friend, conversion
constructor, destructor

A Motivating Example

Suppose we want to write a function equals that compares 2 fraction
objects and use it as follows

A possible definition for the function might be:

A Motivating Example (continue)

What if we want to write the equals function as follows:

Such functions are not member functions: can’t directly access the
private functions.

Such functions (e.g. comparing two objects) needs to access private
members frequently: we would like C++ to allow such access.
C++ solution: the ‘friend’ keyword.

The ‘friend’ keyword

 The friend keyword allows a class to grant full access to an outside entity

 By "full access", we mean access to all the class' members, including the private section.

 An outside entity can be a function, or even another class (we'll focus on functions for now).

 To grant friend status, declaration of the "friend" is made inside the class definition
block, with the keyword friend in front of it.

 A friend is neither public nor private, because by definition it is not a member of the class. Just
a friend. So it does not matter where in the block it is placed.

 A friend function to a class will have full access to the private members of the class. So, for
example, the second definition of Equals() would be legal.

 Look at the friend_fraction example.

 This example contains the Equals() function given above.

 This example also defines an Add() function, as a friend, for adding two Fractions together and
returning a result.

 Includes a sample driver program that makes test calls to Equals() and Add().

Member function instead of a friend function

 When a function works on two objects, it's often convenient to pass
both as parameters and make it a friend
 Another option is to use a member function -- but one of the objects must be the

calling object

 Example: The Equals() function could have been set up as a member function,
which would mean this kind of call:

 In the above example, f1 is the calling object (ie. The object calling a member
function) and f2 is passed into f1's Equals function as an argument.

 Look at member_fraction example.

Member vs. Friend functions

 Whether to make a function a friend or member of a class is usually a
stylistic decision.

 Different programmers may have different preferences. Here's a comparison
of the calls, side-by-side:

 One thing to notice are that the member and friend versions above are not
always equivalent
 In the friend version of equals received copies of f1 and f2 (function cannot change

original fractions).

 What about the member version?

Conversion Constructors

 Some built-in types can perform automatic type conversion as such:

 We can also add this functionality to classes with a conversion
constructor.

Conversion constructors continue

 A conversion constructor is a constructor with one parameter
 Since a constructor creates/initializes a new object, we can use a conversion

constructor to convert a variable of that parameter's type to a new object.

 An example of a conversion constructor:

 The above constructor could be used to perform automatic type
conversions as such:

Conversion constructors continue

 A constructor with multiple parameters may be a conversion
constructor if all but one parameter is optional:

Fraction(int n, int d = 1);

 Automatic type conversion for constructors can be suppressed by
using the keyword explicit in front of the declaration:

explicit Fraction(int n);

 The above constructor will not auto-convert integers to Fractions.

 See convert_fraction example.

Destructors

 In addition to the special constructor function, classes also have a special function
called a destructor.

 The destructor looks like the default constructor (constructor with no parameters),
but with a ~ in front.

 Destructors cannot have parameters, so there can only be one destructor for a class.
Example: The destructor for the Fraction class would be: ~Fraction();

 Like the constructor, this function is called automatically (not explicitly)

 A destructor is called automatically right before an object is deallocated by the
system, usually when it goes out of scope (is no longer accessible by the
programmer).

 The destructor's typical job is to do any clean-up tasks (usually involving memory
allocation) that are needed, before an object is deallocated.

 See destructor.cpp example.

	Review
	Slide Number 2
	A Motivating Example
	A Motivating Example (continue)
	The ‘friend’ keyword
	Member function instead of a friend function
	Member vs. Friend functions
	Conversion Constructors
	Conversion constructors continue
	Conversion constructors continue
	Destructors

