
CNT5505 Programming Assignment No. 4: Internet Packet Analyzer
(This is an individual assignment. It must be implemented in C++ or C)

.

PURPOSE

• Experience with packet analyzing and Internet packet formats.

DESCRIPTION

In this assignment, you will implement an Internet packet analyzer that processes the dump files pro-
duced by a home-made packet sniffer, ethernetdump.c (given in the class, but you do not need to
understand it to do the assignment). The analyzer reads packets from a dump file, parses packet head-
ers, accumulates packet statistics, and outputs the statistics and packet information. The dump file is
a binary file with the following format:

frame_size Ethernet_frame .... frame_size Ethernet_frame

The frame size is a 4-byte integer in the network order format (you need to use the ntohl() routine to
convert this number into the host format). Each Ethernet frame contains Ethernet header and Ethernet
payload (which may contain the entire packet in an upper layer protocol such as IP and ARP). Notice
that the dump file is a binary file that does not have any delimiter between data items.

The packet analyzer examines each packet in the dump file and identifies Ethernet, IP, ARP, TCP, UDP,
and ICMP packets (other packets are classified as unknown packets). Depending on the command line
options, different levels of statistics and the packet information will be printed. If the analyzer is
executed without any flags, it will print a summary of the packets in the dump file. The following is an
example.

<linprog3:947> ./a.out dumpfile.5000

Ethernet frames: 5000

Ethernet broadcast: 346

ARP packets: 335

IP packets: 4523

UDP packets: 27

TCP packets: 4486

ICMP packets: 10

other IP packets: 0

other packets: 142

<linprog3:948>

The analyzer should support the flags, “-c <numofpackets>”, “-v”, and “-V”.

-c <numofpackets>

The number of frames to be processed can be modified with a “-c” flag. For example “./a.out -c 200
dumpfile.5000” will process the first 200 frames in the file and print the summary.

-v

This option turns on the basic verbose mode, which will print one line for every packet. Your program
must be able to handle all cases handled by the sample executable. The following example shows the
cases you must handle.

unknown packet (01:80:c2:00:00:00, 00:04:9a:36:38:9c, 0:26)

1



192.168.16.1 -> (broadcast) (ARP) who is 192.168.16.190

192.168.10.151 -> 192.168.10.154 (ARP) who is 192.168.10.154

192.168.1.25 -> 192.168.1.1 (ARP) 192.168.1.25’s hardware address is 0:10:18:b:58:80

192.168.16.103 -> 192.168.23.10 (ICMP), Echo Reply (type=0)

128.186.120.2 -> 192.168.16.103 (TCP) sourceport = 22 destport = 42170

192.168.16.103 -> 128.186.120.179 (UDP) sourceport = 32790 destport = 53

-V

This option turns on the extended verbose mode. With this option, the program will print packet
headers in detail.

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 0

ETHER: Packet size = 60 bytes

ETHER: Destination = 1:80:c2:0:0:0

ETHER: Source = 0:6:28:f2:55:1

ETHER: Ethertype = 0026 (unknown)

ETHER:

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 400

ETHER: Packet size = 60 bytes

ETHER: Destination = ff:ff:ff:ff:ff:ff

ETHER: Source = 0:e0:b6:1:bd:33

ETHER: Ethertype = 0806 (ARP)

ETHER:

ARP: ----- ARP Frame -----

ARP:

ARP: Hardware type = 1 (Ethernet)

ARP: Protocol type = 0800 (IP)

ARP: Length of hardware address = 6 bytes

ARP: Length of protocol address = 4 bytes

ARP: Opcode 1 (ARP Request)

ARP: Sender’s hardware address = 0:e0:b6:1:bd:33

ARP: Sender’s protocol address = 192.168.16.1

ARP: Target hardware address = ?

ARP: Target protocol address = 192.168.16.174

ARP:

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 398

ETHER: Packet size = 60 bytes

ETHER: Destination = 0:b:db:a7:da:98

ETHER: Source = 0:e0:b6:1:bd:33

ETHER: Ethertype = 0800 (IP)

ETHER:

IP: ----- IP Header -----

IP:

IP: Version = 4

IP: Header length = 20 bytes

2



IP: Type of service = 0

IP: Total length = 28 bytes

IP: Identification = 0

IP: Flags

IP: .1.. .... = do not fragment

IP: ..0. .... = last fragment

IP: Fragment offset = 0 bytes

IP: Protocol = 1 (ICMP)

IP: Header checksum = 91ec

IP: Source address = 192.168.23.10

IP: Destination address = 192.168.16.154

IP: No options

IP:

ICMP: ----- ICMP Header -----

ICMP:

ICMP: Type = 8 (Echo Request)

ICMP: Code = 0

ICMP: Checksum = aa72

ICMP: Identifier = 19852

ICMP: Sequence number = 1

ICMP:

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 404

ETHER: Packet size = 92 bytes

ETHER: Destination = ff:ff:ff:ff:ff:ff

ETHER: Source = 0:b:db:a7:da:7d

ETHER: Ethertype = 0800 (IP)

ETHER:

IP: ----- IP Header -----

IP:

IP: Version = 4

IP: Header length = 20 bytes

IP: Type of service = 0

IP: Total length = 78 bytes

IP: Identification = 54795

IP: Flags

IP: .0.. .... = allow fragment

IP: ..0. .... = last fragment

IP: Fragment offset = 0 bytes

IP: Protocol = 17 (UDP)

IP: Header checksum = c1aa

IP: Source address = 192.168.16.153

IP: Destination address = 192.168.16.255

IP: No options

IP:

UDP: ----- UDP Header -----

UDP:

UDP: Source port = 137

UDP: Destination port = 137

UDP: Message length = 58

3



UDP: Checksum = 53df

UDP:

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 468

ETHER: Packet size = 66 bytes

ETHER: Destination = 0:13:72:1e:46:7c

ETHER: Source = 0:e0:b6:1:bd:33

ETHER: Ethertype = 0800 (IP)

ETHER:

IP: ----- IP Header -----

IP:

IP: Version = 4

IP: Header length = 20 bytes

IP: Type of service = 10

IP: Total length = 52 bytes

IP: Identification = 61271

IP: Flags

IP: .1.. .... = do not fragment

IP: ..0. .... = last fragment

IP: Fragment offset = 0 bytes

IP: Protocol = 6 (TCP)

IP: Header checksum = 8190

IP: Source address = 128.186.120.2

IP: Destination address = 192.168.16.103

IP: No options

IP:

TCP: ----- TCP Header -----

TCP:

TCP: Source port = 22

TCP: Destination port = 42170

TCP: Sequence number = 4124809487

TCP: Acknowledgement number = 888630597

TCP: Data offset = 32 bytes

TCP: Flags

TCP: ..0. .... = No urgent pointer

TCP: ...1 .... = Acknowledgement

TCP: .... 0... = No push

TCP: .... .0.. = No reset

TCP: .... ..0. = No Syn

TCP: .... ...0 = No Fin

TCP: Window = 8672

TCP: Checksum = 1d2e

TCP: Urgent pointer = 0

TCP: Options ignored

TCP:

Your progrm should print exactly the same as the sample executable. To ensure that your program
produces the same output as the sample program, the following output format should be followed.

• An Ethernet address should be printed as 6 hex numbers (for the six bytes) separated by ’:’.

• Ethernet type (Ethertype) should be printed as a 4-digit hex number (fill with 0’s if necessary).

4



The program should identify IP packets (Ethertype=0x0800) and ARP packets (Ethertype =
0x0806).

• IP identification should be printed as a decimal number. IP header checksum should be printed
as a hex number. The program should identify TCP packets (protocol = 6) and UDP packets
(protocol = 17). If the header length is 20 bytes, there is no IP option in the header (IP: No
options). Otherwise the program should ignore the options (IP: Options ignored).

• UDP checksum should be printed as a hex number and UDP message length should be printed as
a decimal number.

• TCP sequence number and acknowledgement number should be printed as unsigned decimal num-
bers. TCP window should be printed as a decimal number and TCP checksum should be printed
as a hex number. If TCP header length is 20 bytes, there is no TCP option in the header (TCP:
No options). Otherwise the program should ignore the options (TCP: Options ignored).

• ICMP checksum should be printed as a hex number, identifier and sequence number should be
printed as decimal numbers.

DEADLINE AND MATERIALS TO BE HANDED IN

Deadline: December 6.

You should clean and tar your assignment directory before you submit the project. In the directory,
you should have all the needed files to create the executable of the program. You program should work
on linprog. You should also have a README file describing how to compile your program and the
known bugs in your program.

GRADING POLICY

You program will be graded by comparing (with the diff command) the output from your program
with that from the sample executable for different input dumpfiles. Any difference will result in the
deduction of 20% of the points before further deductions are considered based on functionality.

1. Correct execution with no flags (40)

2. Correct implementation of the “-v” flag (25)

3. Correct implementation of the “-V” flag (25)

4. Correct implementation of the “-c” flag (10)

5. Extra 5 points for being the first to report a bug in the sample executable.

5



Misc.

To do this assignment, you will know in detail different packet formats including some values and the
meanings of the values in header fields. The needed information is much more detailed than what was
taught in the class: CNT5505 should have taught enough for you to find the necessary information; and
finding necessary information on your own is a part of this project.

Your can find the packet for Ethernet, ARP, IP, TCP, UDP, and ICMP from the book and from Internet
resources.

TCP/IP protocol standards are published in a series of documents known as Request for Comments

(RFCs), which are available from the Internet Engineering Task Force (IETF) at:
http://www.ietf.org/rfc.html

The protocol standard for IP is in RFC 791; TCP is specified in RFC 793; UDP is specified in RFC
768. IP and TCP protocols are updated in RFC 1122.

6


