
CNT5505 Programming Assignment No. 1: CRC checksum
(This is an individual programming assignment. Due October 11)

Purpose

 Implement a routine to compute CRC checksum
 Practice processing frames

Description

In this project, you will be given a dump file containing an unknown number of
frames. The framing is done using a byte-oriented framing scheme with FLAG bytes
and byte stuffing. Each frame starts and ends with a FLAG byte. To perform byte
stuffing, an ESC byte is defined. When an ESC or FLAG byte occurs in the user data or
checksum, an ESC is inserted before the special character for the escape. Each flame
contains at least one byte of user data and 2 bytes of checksum. FLAG is the ASCII
character 'a' and ESC is the ASCII character 'b' in our system. The format of the
frame is as follows with user_data and CRC_checksum being byte-stuffed

FLAG user_data CRC_checksum FLAG

The dump file contains a sequence of such frames, which may or may or be valid.
Your job is to identify valid frames, remove invalid frames, and re-assemble the
original data in the valid frames. The CRC checksum is computed with the following
generator polynomial

x16+x14+x13+x8+x4+x+1
You should implement your routine to allow flexible generator polynomial. The
channel supports two bit stream. So the CRC checksum is not computed in the
conventional way in that the bit order are different. In particular, for each byte that
has 8 bits from the most to the least significant bit: b7, b6, b5, b4, b3, b2, b1, b0, our
channel sees the bits in the following order when computing the checksum: b7, b3, b6,

b2, b5, b1, b4, b0. This order affects how the CRC checksum is calculated.

Grading Policy

You can write the program in any language that is available on linprog, where your
program will be graded. You must supply a README file describing how to run your
program.

 Program compiles with no compiler error (10 points) -- programs with
compiling error, get 0 points.

 README file, make file, etc (10 points)
 Program can correctly handle all cases with 1-byte user data in a small file

(40 points)
 Program can correctly handle all cases with 1-byte and 2-byte user data in a

small file(10 points)

 Program can correctly handle all cases with no more than 3 bytes user data
in a small file (10 points)

 Program can correctly handle files of any size and any random size frames
(20 points)

 Being the first one to report a bug in the sample code and/or the dump file (5
extra points per bug).

Deadline and materials to be submitted

 Submit all files including readme and makefile through campus.fsu.edu. Mr.
Mehran (our TA) may contact you to setup a demo.

Miscellaneous

All programs submitted will be checked by a plagiarism detection software. Honor
code policy will be strictly enforced. Write the code by yourself and protect your
code.

The assignment is small, but you must be comfortable with manipulating bits and
bytes, and dealing with non-ASCII files.

Some sample testing files will be provided to you for your convenience. But
thorough testing will be made in grading the assignment -- so you should do more
testing beyond the files given.

