
Programming Assignment

MPI and CUDA implementations of the Jacobi method

OBJECTIVES

• Practice MPI and CUDA programming

DESCRIPTION

This project can be done by a group of two students. The Jacobi method is a commonly
used iterative method to solve partial differential equations. It begins with an initial estimate
for the solution and successively improves it until the solution is as accurate as desired. For
example, applying the Jacobi method to solve the Laplace equation on the unit square

∂2u

∂x2
+

∂2u

∂y2
= 0

with boundary conditions shown in the following figure, we get

u
(k+1)
i,j =

u
(k)
i−1,j + u

(k)
i,j−1 + u

(k)
i+1,j + u

(k)
i,j+1

4
.

������

������

������ ������

	�	
�
 ������

�
��� ������

������ ������

��������

��������

x

y

0

0

0

1

x

y

0

0

0

1

Figure 1: Boundary conditions (left) and mesh(right) for Laplace equation

In this project, you will be given a sequential program for a generalized Jacobi method, where

u
(k+1)
i,j = a1 ∗ u

(k)
i−1,j + a2 ∗ u

(k)
i,j−1 + a3 ∗ u

(k)
i+1,j + a4 ∗ u

(k)
i,j+1.

The parameters a1, a2, a3 and a4, as well as three other parameters, a5, a6 and a7, will
be given in a file proj3.input, whose format is ’N a1 a2 a3 a4 a5 a6 a7’. The parameters
a5 and a6 specify the boundary condition. Assuming that the problem domain is given by
Mesh[0..N+1][0..N+1], where Mesh[1..N][1..N] are the interior grid points. The boundary
condition will be specified as Mesh[i][0] = a5 ∗ i, Mesh[i][N + 1] = a6 ∗ i, Mesh[0][i] = 0,
Mesh[N +1][i] = 0. The interior grid points should be initialized to be 0 at the beginning. The
parameter a7 specifies the error that is allowed in the solution. The program should perform

1

the Jacobi computation iteratively until |u
(k+1)
i,j −u

(k)
i,j | < a7, for any i and j, in which case, the

program should stop and write the following two vectors Mesh[N/2, 0..N+1] and Mesh[0..N+1,
N/2] (as binary data) to file proj3.output. Proj3.output will contain Mesh[N/2, 0], Mesh[N/2,
1],, Mesh[N/2, N+1], Mesh[0, N/2], Mesh[1, N/2],, Mesh[N+1, N/2]. The data type for
all the variables we discussed should be float.

Your task is to convert the sequential program to MPI and CUDA. Your program should work
for any sized mesh and any number of processes in MPI.

DEADLINES AND MATERIALS TO BE HANDED IN

• Feb. 13, 2013. You should demonstrate this project and submit the whole project
directory as a tar file to me. You also need to write a checker program compares the
output files of the programs (or you can make sure that binary output files for different
implementations (different number of threads, processes, etc) are exactly the same). In
the directory, you should have a README file describing how to compile and run you
program and the known bugs in your program.

GRADING POLICY

You must make sure that your programs meet the following conditions.

1. Your program must produce correct result for all cases.

2. Your MPI and CUDA program must achieve a speedup of more than 2 on linprog
and GPU.

3. In the MPI implementation, each MPI process should only store a fraction of the mesh
(the array size should be roughly equal to N ×N/P , where P is the number of processes
(10 points for this feature).

4. You are also responsible for showing that your programs produce correct results (via the
checker program or the cmp utility).

The grading for each part of the project is as follows.

• Proper README file (10)

• Proper makefile (10)

• MPI implementation (35)

• CUDA implementation (35)

• demo, checker program, etc (10)

2

