

Presented by Zach Yannes

Design and performance evaluation of NUMA-aware
RDMA-based end-to-end data transfer systems

Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas G. Robertazzi

Introduction

● Need to transfer large amounts of data long
distances (end-to-end high performance data
transfer)

● i.e. inter-data center transfer
● Goal: design a network to overcome three

common bottlenecks of large-haul end-to-end
transfer systems
– Achieve 100 Gbps data transfer throughput

Bottleneck I

• Problem: Processing bottlenecks of individual hosts
• Old solution: Multi-core hosts to provide ultra high-

speed data transfers
• Uniform memory access (UMA)
• All processors share memory uniformly
• Access time independent of where memory retrieved

from
• Best used for applications shared by multiple users
• However, as number of CPU sockets and cores

increases, latency across all CPU cores decreases

Bottleneck I, Cont'd

• New solution: Replace external memory controller hub
with a core memory controller on the CPU die
• Separate memory banks for each processor
• Non-uniform memory access (NUMA)
• CPU-to-bank latencies no longer independent

(exploits temporal locality)
• Reduces volume and power consumption
• Tuning an application for local memory improves

performance

Bottleneck II

• Problem: Applications do not utilize full network speed
• Solution: Employ advanced networking techniques and protocols

• Remote direct memory access (RDMA)

• Network adapters transfer large memory blocks; eliminates
data copies in protocol stacks

• Improves performance of high-speed networks
• Low latency and high bandwidth

• RDMA over Converged Ethernet (RoCE)

• RDMA extension for joining long-distance data centers
(thousands of miles)

Bottleneck III

• Problem: Low bandwidth magnetic disks or flash SSDs
in backend storage system
• Host's processing speed > memory access time
• Lowers throughput

• Solution: Build storage network with multiple storage
components
• Bandwidth equivalent to host's processing speed
• Requires iSCSI extension for RDMA (iSER)

• Enables RDMA networks use of SCSI commands
and objects

Experiment

● Hosts: Two IBM X3640 M4
● Connected by three pairs of 40 Gbps RoCE connections

– Each RoCE adapter installed in eight-lane PCI
Express 3.0

● Bi-directional network
● Possible 240 Gbps max bandwidth of system
● Measured memory bandwidth and TCP/IP stack

performance before and after tuning for NUMA locality

Experiment, Cont'd

1) Measuring maximum memory bandwidth of hosts
• Compiled STREAM (Memory bandwidth benchmark)
• OpenMP option for multi-threaded testing
• Peak memory bandwidth for Triad test for two NUMA

nodes is 400 Gbps
• Socket-based network applications require two

data copies per operation
• Max TCP/IP bandwidth is 200 Gbps

Experiment, Cont'd

2)Measure max bi-directional end-to-end bandwidth
• Test TCP/IP stack performance via iperf
• Only want to test accesses that require more than one

memory read, increase sender's buffer
• Cannot store entire buffer in cache, removes cache

effect from test
• Average aggregate bandwidth is 83.5 Gbps
• 35% of CPU usage from kernel and user space

memory copy routines (i.e. copy_user_generic_string)

Experiment Observations

• Experiment repeated after tuning iperf for NUMA locality
• Average aggregate bandwidth increased to 91.8 Gbps

• 10% higher than default Linux scheduler
• Two observations of end-to-end network data transfer:

• TCP/IP protocol stack has large processing overhead
• NUMA has greater hardware costs for same latency

• Requires additional CPU cores to handle
synchronization

End-to-End Data Transfer System
Design

● Back-End Storage Area Network Design
– Use iSER protocol to communicate between “initiator”

(client) and “target” (server)
● Initiator sends I/O requests to server who transfers

the data
● Initiator read = RDMA write from target
● Initiator write = RDMA read from target

End-to-End Data Transfer System
Design

● Back-End Storage Area Network Design, Cont'd
– Integrate NUMA into target

– Requires locations of PCI devices

– Two methods:

1) numactl – Binds target process to logical NUMA
node

• Explicit, static NUMA policy
2) libnuma – Integrate into target implementation

• Too complicated
• Scheduling algorithm for each I/O request

End-to-End Data Transfer System
Design

● Back-End Storage Area Network
Design, Cont'd
– File system = Linux tmpfs

– Map NUMA node memory to
specific location of memory file
using mpol and remount

– Each node handles local I/O
requests for a mapped target
process

● Each I/O request (from initiator)
handled by a separate link

● Low latency → best throughput

End-to-End Data Transfer System
Design

● RDMA Application Protocol
– Data loading

– Data transmission

– Data offloading

– Throughput and latency
depend on type of data
storage

End-to-End Data Transfer System
Design

● RDMA Application Protocol, Cont'd
– Uses RFTP, RDMA-based file transfer

protocol
– Supports pipelining and parallel

operations

Experiment Configuration

● Back-end
– Two Mellanox InfiniBand adapters

– Each with FDR, 56 Gbps

– Connected to Mellanox FDR
InfiniBand switch

– Maximum load/offload bandwidth:
112 Gbps

● Front-end: Three pairs of QDR 40
Gbps RoCE network cards connect
RFTP client and server
– Maximum aggregate bandwidth:

120 Gbps

Experiment Configuration, Cont'd

● Wide area network (WAN)
– Provided by DOE's Advanced

Networking Initiative (ANI)

– 40 Gbps RoCE wide-area
network

– 4000-mile link in loopback
network

– WANs connected by 100
Gbps router

Experiment Scenarios

● Evaluated under three scenarios:
1)Back-end system performance with NUMA-aware

tuning

2)Application performance in end-to-end LAN

3)Network performance over a 40 Gbps RoCE long
distance path in wide-area networks

Experiment 1

1) Back-end system performance with
NUMA-aware tuning
• Performance gains plateau after a

number of threads (threshold=4)
• Too many I/O threads increases

contention
• Benchmark: Flexible I/O tester

(fio)
• Read bandwidth: 7.8% increase

from NUMA binding
• Write bandwidth: Up to 19%

increase for >4MB block sizes

Experiment 1

1) Back-end system performance with
NUMA-aware tuning
• Read CPU utilization

• insignificant decrease
• Write CPU utilization

• NUMA-aware tuning utilizes
CPU up to three times less
than default Linux scheduling

Experiment 1

1) Back-end system performance with NUMA-aware tuning
• Read operation performance does not improve

• Already has little overhead
• On tmpfs, regardless of NUMA-aware tuning, the data copies are

not set to “modified”, only “cached” or “shared”
• On tmpfs, a write invalidates all data copies in other NUMA nodes

without NUMA tuning, or only invalidates data copies on local
NUMA node when tuned

• Read requests have 7.5% higher bandwidth than write requests

• Hypothesized to result from RDMA write implementation
• RDMA write writes data directly to initiator's memory for transfer

Experiment 2

2) Application performance in end-to-end LAN
• Issue: How to adapt application to real-world scenarios?

• Solution: Application interacts with file system through POSIX
interfaces

• More portable, simple
• Comparable throughput differences via different protocols

• iSER protocol
• Linux universal ext4 FS
• XFS over exported block devices ← selected FS

Experiment 2

2) Application performance in end-to-end LAN
• Evaluated end-to-end performance between RFTP and

GridFTP

• Bound processes to a specified NUMA node (numactl)

• RFTP has 96% effective bandwidth

• GridFTP has 30% effective bandwidth (max is 94.8 Gbps)

• Overhead from kernel-user data copy and interrupt
handling

• Single-threaded, waits on I/O request

• Requires higher CPU consumption to offset I/O delays

• Front-end send/recv hosts suffer cache effect

Experiment 2

2) Application performance in end-to-end LAN
(Bi-directional)

• Evaluated bi-directional end-to-end performance between
RFTP and GridFTP

• Same configuration, but each end sends simultaneous
messages

• Full bi-directional bandwidth not achieved

• RFTP = 83% improvement from unidirectional

• GridFTP = 33% improvement from unidirectional

• resource contention

• Intense parallel I/O requests (back-end hosts)

• Memory copies

• Higher protocol processing overhead (front-end hosts)

Experiment 3

3) Network performance over a 40 Gbps RoCE
long distance path in wide-area networks

• Issue: How to achieve 100+ Gbps on RoCE links

• Solution: Replace traditional network protocols with
RFTP

• Assumption: If RFTP performs well over RoCE links,
full end-to-end transfer system will perform equally
well (exclude protocol overhead)

• RFTP utilizes 97% raw bandwidth

• Control message processing overhead ~ 1 / (Message
block size)

Experiment 3

3) Network performance over a 40 Gbps RoCE long distance
path in wide-area networks

• Control message processing overhead ~ 1 / (Message block size)

• Therefore, increased bandwidth and lower CPU consumption as
message block size increases

• Network data transfer performance not affected by long latency (due to
RFTP)

● Can scale to 1000+ servers and long-haul (inter-data center)
network links

● Used for DOE's National Laboratories and cloud data centers

Conclusion

● Need to transfer large amounts of data long distances (end-to-end high performance data
transfer)

● Tested using LANs and WANs, evaluating:
1) Back-end system performance with NUMA-aware tuning

● Improve write operation bandwidth by ~20%

● Utilizes CPU up to three times less

2) Application performance in end-to-end LAN

● RFTP (parallelized) has lower I/O-request overhead than GridFTP (single-threaded)

● Full bi-directional bandwidth impossible due to resource contention

3) Network performance over a 40 Gbps RoCE long distance path in wide-area networks

● Message block size inversely proportional to bandwidth,CPU utiliz.

● RFTP can be scaled to more servers and longer distance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

