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Introduction

● Need to transfer large amounts of data long 
distances (end-to-end high performance data 
transfer)

● i.e. inter-data center transfer
● Goal: design a network to overcome three 

common bottlenecks of large-haul end-to-end 
transfer systems
– Achieve 100 Gbps data transfer throughput



  

Bottleneck I

• Problem: Processing bottlenecks of individual hosts
• Old solution: Multi-core hosts to provide ultra high-

speed data transfers
• Uniform memory access (UMA)
• All processors share memory uniformly
• Access time independent of where memory retrieved 

from
• Best used for applications shared by multiple users
• However, as number of CPU sockets and cores 

increases, latency across all CPU cores decreases



  

Bottleneck I, Cont'd

• New solution: Replace external memory controller hub 
with a core memory controller on the CPU die
• Separate memory banks for each processor
• Non-uniform memory access (NUMA)
• CPU-to-bank latencies no longer independent 

(exploits temporal locality)
• Reduces volume and power consumption
• Tuning an application for local memory improves 

performance



  

Bottleneck II

• Problem: Applications do not utilize full network speed
• Solution: Employ advanced networking techniques and protocols

• Remote direct memory access (RDMA)

• Network adapters transfer large memory blocks; eliminates 
data copies in protocol stacks

• Improves performance of high-speed networks
• Low latency and high bandwidth

• RDMA over Converged Ethernet (RoCE)

• RDMA extension for joining long-distance data centers 
(thousands of miles)



  

Bottleneck III

• Problem: Low bandwidth magnetic disks or flash SSDs 
in backend storage system
• Host's processing speed > memory access time
• Lowers throughput

• Solution: Build storage network with multiple storage 
components
• Bandwidth equivalent to host's processing speed
• Requires iSCSI extension for RDMA (iSER)

• Enables RDMA networks use of SCSI commands 
and objects 



  

Experiment

● Hosts: Two IBM X3640 M4 
● Connected by three pairs of 40 Gbps RoCE connections

– Each RoCE adapter installed in eight-lane PCI 
Express 3.0 

● Bi-directional network
● Possible 240 Gbps max bandwidth of system
● Measured memory bandwidth and TCP/IP stack 

performance before and after tuning for NUMA locality



  

Experiment, Cont'd

1) Measuring maximum memory bandwidth of hosts
• Compiled STREAM (Memory bandwidth benchmark)
• OpenMP option for multi-threaded testing
• Peak memory bandwidth for Triad test for two NUMA 

nodes is 400 Gbps
• Socket-based network applications require two 

data copies per operation
• Max TCP/IP bandwidth is 200 Gbps



  

Experiment, Cont'd

2)Measure max bi-directional end-to-end bandwidth 
• Test TCP/IP stack performance via iperf
• Only want to test accesses that require more than one 

memory read, increase sender's buffer
• Cannot store entire buffer in cache, removes cache 

effect from test
• Average aggregate bandwidth is 83.5 Gbps
• 35% of CPU usage from kernel and user space 

memory copy routines (i.e. copy_user_generic_string)



  

Experiment Observations

• Experiment repeated after tuning iperf for NUMA locality
• Average aggregate bandwidth increased to 91.8 Gbps

• 10% higher than default Linux scheduler
• Two observations of end-to-end network data transfer:

• TCP/IP protocol stack has large processing overhead
• NUMA has greater hardware costs for same latency

• Requires additional CPU cores to handle 
synchronization



  

End-to-End Data Transfer System 
Design

● Back-End Storage Area Network Design
– Use iSER protocol to communicate between “initiator” 

(client) and “target” (server)
● Initiator sends I/O requests to server who transfers 

the data
● Initiator read = RDMA write from target
● Initiator write = RDMA read from target



  

End-to-End Data Transfer System 
Design

● Back-End Storage Area Network Design, Cont'd
– Integrate NUMA into target

– Requires locations of PCI devices

– Two methods:

1) numactl – Binds target process to logical NUMA 
node

• Explicit, static NUMA policy
2) libnuma – Integrate into target implementation

• Too complicated
• Scheduling algorithm for each I/O request



  

End-to-End Data Transfer System 
Design

● Back-End Storage Area Network 
Design, Cont'd
– File system = Linux tmpfs

– Map NUMA node memory to 
specific location of memory file 
using mpol and remount

– Each node handles local I/O 
requests for a mapped target 
process

● Each I/O request (from initiator) 
handled by a separate link

● Low latency → best throughput



  

End-to-End Data Transfer System 
Design

● RDMA Application Protocol
– Data loading

– Data transmission

– Data offloading

– Throughput and latency 
depend on type of data 
storage



  

End-to-End Data Transfer System 
Design

● RDMA Application Protocol, Cont'd
– Uses RFTP, RDMA-based file transfer 

protocol
– Supports pipelining and parallel 

operations



  

Experiment Configuration

● Back-end 
– Two Mellanox InfiniBand adapters

– Each with FDR, 56 Gbps

– Connected to Mellanox FDR 
InfiniBand switch

– Maximum load/offload bandwidth: 
112 Gbps

● Front-end: Three pairs of QDR 40 
Gbps RoCE network cards connect 
RFTP client and server
– Maximum aggregate bandwidth: 

120 Gbps



  

Experiment Configuration, Cont'd

● Wide area network (WAN)
– Provided by DOE's Advanced 

Networking Initiative (ANI)

– 40 Gbps RoCE wide-area 
network

– 4000-mile link in loopback 
network

– WANs connected by 100 
Gbps router



  

Experiment Scenarios

● Evaluated under three scenarios:
1)Back-end system performance with NUMA-aware 

tuning

2)Application performance in end-to-end LAN

3)Network performance over a 40 Gbps RoCE long 
distance path in wide-area networks



  

Experiment 1

1) Back-end system performance with 
NUMA-aware tuning
• Performance gains plateau after a 

number of threads (threshold=4)
• Too many I/O threads increases 

contention
• Benchmark: Flexible I/O tester 

(fio)
• Read bandwidth: 7.8% increase 

from NUMA binding
• Write bandwidth: Up to 19% 

increase for >4MB block sizes



  

Experiment 1

1) Back-end system performance with 
NUMA-aware tuning
• Read CPU utilization

• insignificant decrease
• Write CPU utilization

• NUMA-aware tuning utilizes 
CPU up to three times less 
than default Linux scheduling



  

Experiment 1

1) Back-end system performance with NUMA-aware tuning
• Read operation performance does not improve

• Already has little overhead
• On tmpfs, regardless of NUMA-aware tuning, the data copies are 

not set to “modified”, only “cached” or “shared”
• On tmpfs, a write invalidates all data copies in other NUMA nodes 

without NUMA tuning, or only invalidates data copies on local 
NUMA node when tuned

• Read requests have 7.5% higher bandwidth than write requests

• Hypothesized to result from RDMA write implementation
• RDMA write writes data directly to initiator's memory for transfer



  

Experiment 2

2) Application performance in end-to-end LAN
• Issue: How to adapt application to real-world scenarios?

• Solution: Application interacts with file system through POSIX 
interfaces

• More portable, simple
• Comparable throughput differences via different protocols

• iSER protocol
• Linux universal ext4 FS
• XFS over exported block devices ← selected FS



  

Experiment 2

2)  Application performance in end-to-end LAN
• Evaluated end-to-end performance between RFTP and 

GridFTP

• Bound processes to a specified NUMA node (numactl)

• RFTP has 96% effective bandwidth

• GridFTP has 30% effective bandwidth (max is 94.8 Gbps)

• Overhead from kernel-user data copy and interrupt 
handling

• Single-threaded, waits on I/O request

• Requires higher CPU consumption to offset I/O delays

• Front-end send/recv hosts suffer cache effect  



  

Experiment 2

2)  Application performance in end-to-end LAN 
(Bi-directional)

• Evaluated bi-directional end-to-end performance between 
RFTP and GridFTP

• Same configuration, but each end sends simultaneous 
messages

• Full bi-directional bandwidth not achieved

• RFTP = 83% improvement from unidirectional

• GridFTP = 33% improvement from unidirectional

• resource contention

• Intense parallel I/O requests (back-end hosts)

• Memory copies

• Higher protocol processing overhead (front-end hosts) 



  

Experiment 3

3)  Network performance over a 40 Gbps RoCE 
long distance path in wide-area networks

• Issue: How to achieve 100+ Gbps on RoCE links

• Solution: Replace traditional network protocols with 
RFTP

• Assumption: If RFTP performs well over RoCE links, 
full end-to-end transfer system will perform equally 
well (exclude protocol overhead)

•  RFTP utilizes 97% raw bandwidth

• Control message processing overhead ~ 1 / (Message 
block size)



  

Experiment 3

3)  Network performance over a 40 Gbps RoCE long distance 
path in wide-area networks

• Control message processing overhead ~ 1 / (Message block size)

• Therefore, increased bandwidth and lower CPU consumption as 
message block size increases

• Network data transfer performance not affected by long latency (due to 
RFTP)

● Can scale to 1000+ servers and long-haul (inter-data center) 
network links

● Used for DOE's National Laboratories and cloud data centers



  

Conclusion

● Need to transfer large amounts of data long distances (end-to-end high performance data 
transfer)

● Tested using LANs and WANs, evaluating:
1) Back-end system performance with NUMA-aware tuning

● Improve write operation bandwidth by ~20%

● Utilizes CPU up to three times less

2) Application performance in end-to-end LAN

● RFTP (parallelized) has lower I/O-request overhead than GridFTP (single-threaded)

● Full bi-directional bandwidth impossible due to resource contention

3) Network performance over a 40 Gbps RoCE long distance path in wide-area networks

● Message block size inversely proportional to bandwidth,CPU utiliz.

● RFTP can be scaled to more servers and longer distance
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