Design and performance evaluation of NUMA-aware RDMA-based end-to-end data transfer systems

Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, Thomas G. Robertazzi

Presented by Zach Yannes

Introduction

- Need to transfer large amounts of data long distances (end-to-end high performance data transfer)
- i.e. inter-data center transfer
- Goal: design a network to overcome three common bottlenecks of large-haul end-to-end transfer systems
 - Achieve 100 Gbps data transfer throughput

Bottleneck I

•

•

- **Problem**: Processing bottlenecks of individual hosts **Old solution**: Multi-core hosts to provide ultra highspeed data transfers
 - Uniform memory access (UMA)
 - All processors share memory uniformly
 - Access time independent of where memory retrieved from
 - · Best used for applications shared by multiple users
 - However, as number of CPU sockets and cores increases, latency across all CPU cores decreases

Bottleneck I, Cont'd

•

New solution: Replace external memory controller hub with a core memory controller on the CPU die

- Separate memory banks for each processor
- Non-uniform memory access (NUMA)
- CPU-to-bank latencies no longer independent (exploits temporal locality)
- Reduces volume and power consumption
- Tuning an application for local memory improves performance

Bottleneck II

٠

- **Problem**: Applications do not utilize full network speed
- Solution: Employ advanced networking techniques and protocols
 - Remote direct memory access (RDMA)
 - Network adapters transfer large memory blocks; eliminates data copies in protocol stacks
 - Improves performance of high-speed networks
 - Low latency and high bandwidth
 - RDMA over Converged Ethernet (RoCE)
 - RDMA extension for joining long-distance data centers (thousands of miles)

Bottleneck III

•

- **Problem**: Low bandwidth magnetic disks or flash SSDs in backend storage system
 - Host's processing speed > memory access time
 - Lowers throughput
- Solution: Build storage network with multiple storage components
 - Bandwidth equivalent to host's processing speed
 - Requires iSCSI extension for RDMA (iSER)
 - Enables RDMA networks use of SCSI commands and objects

- Hosts: Two IBM X3640 M4
- Connected by three pairs of 40 Gbps RoCE connections
 - Each RoCE adapter installed in eight-lane PCI Express 3.0
- Bi-directional network
- Possible 240 Gbps max bandwidth of system
- Measured memory bandwidth and TCP/IP stack performance before and after tuning for NUMA locality

Experiment, Cont'd

1) Measuring maximum memory bandwidth of hosts

- Compiled STREAM (Memory bandwidth benchmark)
- OpenMP option for multi-threaded testing
- Peak memory bandwidth for *Triad test* for two NUMA nodes is 400 Gbps
 - Socket-based network applications require two data copies per operation
 - Max TCP/IP bandwidth is 200 Gbps

Experiment, Cont'd

2) Measure max bi-directional end-to-end bandwidth

- Test TCP/IP stack performance via *iperf*
- Only want to test accesses that require more than one memory read, increase sender's buffer
 - Cannot store entire buffer in cache, removes cache effect from test
- Average aggregate bandwidth is 83.5 Gbps
- 35% of CPU usage from kernel and user space memory copy routines (i.e. copy_user_generic_string)

Experiment Observations

•

•

- · Experiment repeated after tuning *iperf* for NUMA locality
 - Average aggregate bandwidth increased to 91.8 Gbps
 - 10% higher than default Linux scheduler
 - Two observations of end-to-end network data transfer:
 - TCP/IP protocol stack has large processing overhead
 - NUMA has greater hardware costs for same latency
 - Requires additional CPU cores to handle synchronization

- Back-End Storage Area Network Design
 - Use iSER protocol to communicate between "initiator" (client) and "target" (server)
 - Initiator sends I/O requests to server who transfers the data
 - Initiator read = RDMA write from target
 - Initiator write = RDMA read from target

- Back-End Storage Area Network Design, Cont'd
 - Integrate NUMA into target
 - Requires locations of PCI devices
 - Two methods:
 - numactl Binds target process to logical NUMA node
 - Explicit, static NUMA policy
 - 2) *libnuma* Integrate into target implementation
 - \cdot Too complicated
 - Scheduling algorithm for each I/O request

- Back-End Storage Area Network Design, Cont'd
 - File system = Linux *tmpfs*
 - Map NUMA node memory to specific location of memory file using *mpol* and *remount*
 - Each node handles local I/O requests for a mapped target process
 - Each I/O request (from initiator) handled by a separate link
 - Low latency → best throughput

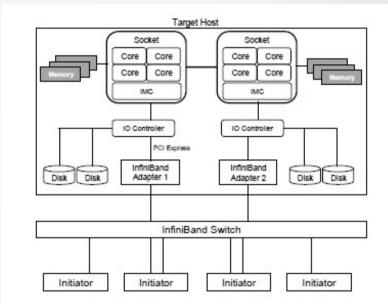
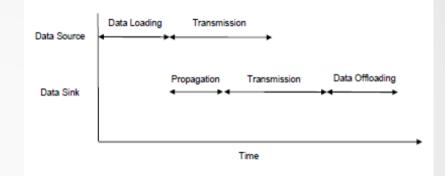
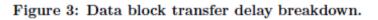




Figure 2: iSER tuning in NUMA architecture with multiple adapters.

- RDMA Application Protocol
 - Data loading
 - Data transmission
 - Data offloading
 - Throughput and latency depend on type of data storage

- RDMA Application Protocol, Cont'd
 - Uses RFTP, RDMA-based file transfer protocol
 - Supports pipelining and parallel operations

Experiment Configuration

• Back-end

- Two Mellanox InfiniBand adapters
- Each with FDR, 56 Gbps
- Connected to Mellanox FDR InfiniBand switch
- Maximum load/offload bandwidth: 112 Gbps
- Front-end: Three pairs of QDR 40 Gbps RoCE network cards connect RFTP client and server
 - Maximum aggregate bandwidth: 120 Gbps

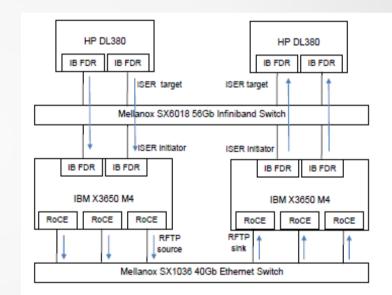


Figure 5: RDMA-based end-to-end system connectivity in LAN.

Experiment Configuration, Cont'd

- Wide area network (WAN)
 - Provided by DOE's Advanced Networking Initiative (ANI)
 - 40 Gbps RoCE wide-area network
 - 4000-mile link in loopback network
 - WANs connected by 100
 Gbps router

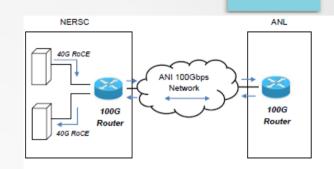


Figure 6: The DOE'S ANI 40 Gbps RoCE WAN between NERSC and ANL. This 4000-mile link is a loopback network from NERSC to ANL and then back to NERSC. The RTT of the link is about 95 milliseconds.

Table	1:	Testbed	Configuration
-------	----	---------	---------------

. resubcu co.	ingulation	
Front-end	Back-end	Front-end
LAN	LAN	WAN
Intel Xeon	Intel Xeon	Intel Xeon
E5-2660	E5-2650	E5-2670
2.20 GHz	2.00 GHz	2.90GHz
16 Cores	16 Cores	12 Cores
2	2	2
128	384	64
40 Gbps	56 Gbps	40 Gbps
RoCE QDR	IB FDR	RoCE QDR
CentOS 6.3	CentOS 6.3	Fedora
		release 17
2.6.32 - 279	2.6.32 - 279	3.4.3-1
MLNX OFED	MLNX OFED	OFED 1.5.4
1.5.3 - 3.1.0	1.5.3 - 3.1.0	
cubic	cubic	cubic
(RoCE link)	(IB link)	
0.166	0.144	95
	Front-end LAN Intel Xeon E5-2660 2.20GHz 16 Cores 2 128 40 Gbps RoCE QDR CentOS 6.3 2.6.32-279 MLNX OFED 1.5.3-3.1.0 cubic 9000 (RoCE link)	LAN LAN Intel Xeon Intel Xeon E5-2660 E5-2650 2.20GHz 2.00GHz 16 Cores 16 Cores 2 2 128 384 40 Gbps 56 Gbps RoCE QDR IB FDR CentOS 6.3 CentOS 6.3 2.6.32-279 2.6.32-279 MLNX OFED MLNX OFED 1.5.3-3.1.0 1.5.3-3.1.0 cubic cubic 9000 65520 (RoCE link) (IB link)

Experiment Scenarios

- Evaluated under three scenarios: 1)Back-end system performance with NUMA-aware
 - tuning
 - 2) Application performance in end-to-end LAN
 - 3)Network performance over a 40 Gbps RoCE long distance path in wide-area networks

- 1) Back-end system performance with NUMA-aware tuning
 - Performance gains plateau after a number of threads (threshold=4)
 - Too many I/O threads increases contention
 - Benchmark: Flexible I/O tester (fio)
 - Read bandwidth: 7.8% increase from NUMA binding
 - Write bandwidth: Up to 19% increase for >4MB block sizes

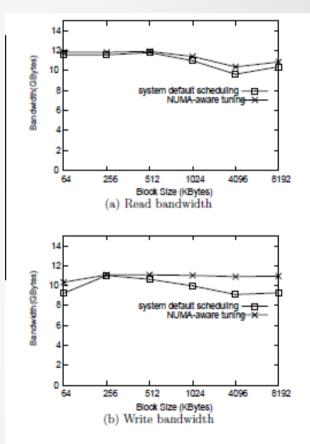


Figure 7: iSER bandwidth comparison between default scheduling and NUMA-tuning.

- 1) Back-end system performance with NUMA-aware tuning
 - Read CPU utilization
 - insignificant decrease
 - Write CPU utilization
 - NUMA-aware tuning utilizes CPU up to three times less than default Linux scheduling

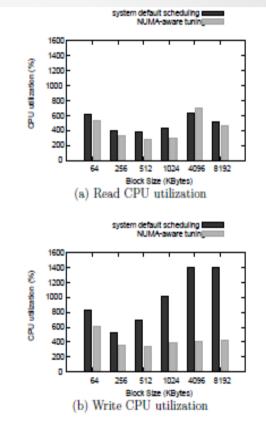
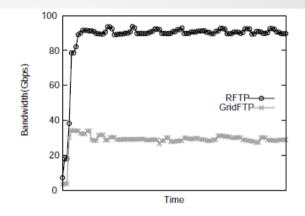
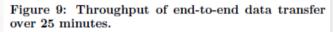


Figure 8: iSER CPU utilization comparison between default scheduling and NUMA-tuning.

1) Back-end system performance with NUMA-aware tuning


- Read operation performance does not improve
 - · Already has little overhead
 - On *tmpfs,* regardless of NUMA-aware tuning, the data copies are not set to "modified", only "cached" or "shared"
 - On *tmpfs, a* write invalidates all data copies in other NUMA nodes without NUMA tuning, or only invalidates data copies on local NUMA node when tuned
- Read requests have 7.5% higher bandwidth than write requests
 - Hypothesized to result from RDMA write implementation
 - · RDMA write writes data directly to initiator's memory for transfer


2) Application performance in end-to-end LAN

- Issue: How to adapt application to real-world scenarios?
- Solution: Application interacts with file system through POSIX interfaces
 - More portable, simple
 - Comparable throughput differences via different protocols
 - · iSER protocol
 - · Linux universal ext4 FS

2) Application performance in end-to-end LAN

- Evaluated end-to-end performance between RFTP and GridFTP
- · Bound processes to a specified NUMA node (*numactl*)
- · RFTP has 96% effective bandwidth
- · GridFTP has 30% effective bandwidth (max is 94.8 Gbps)
 - Overhead from kernel-user data copy and interrupt handling
 - · Single-threaded, waits on I/O request
 - Requires higher CPU consumption to offset I/O delays
 - Front-end send/recv hosts suffer cache effect

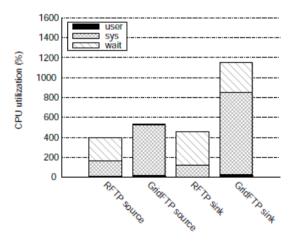


Figure 10: CPU utilization breakdown for RFTP and GridFTP.

- 2) Application performance in end-to-end LAN (Bi-directional)
 - Evaluated bi-directional end-to-end performance between RFTP and GridFTP
 - Same configuration, but each end sends simultaneous messages
 - Full bi-directional bandwidth not achieved
 - RFTP = 83% improvement from unidirectional
 - GridFTP = 33% improvement from unidirectional
 - resource contention
 - Intense parallel I/O requests (back-end hosts)
 - Memory copies
 - Higher protocol processing overhead (front-end hosts)

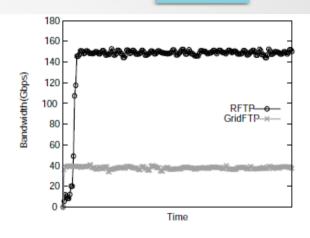


Figure 11: Throughput of bi-directional end-to-end data transfer over 50 minutes.

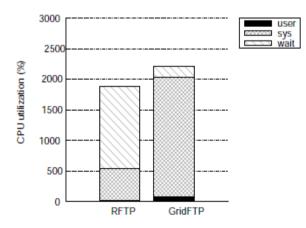


Figure 12: CPU utilization breakdown for RFTP and GridFTP bi-directional test.

- 3) Network performance over a 40 Gbps RoCE long distance path in wide-area networks
 - Issue: How to achieve 100+ Gbps on RoCE links
 - Solution: Replace traditional network protocols with RFTP
 - Assumption: If RFTP performs well over RoCE links, full end-to-end transfer system will perform equally well (exclude protocol overhead)
 - RFTP utilizes 97% raw bandwidth
 - Control message processing overhead ~ 1 / (Message block size)

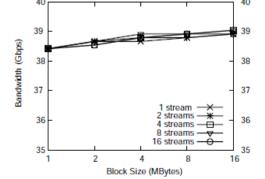


Figure 13: RFTP bandwidth with various block sizes and numbers of streams.

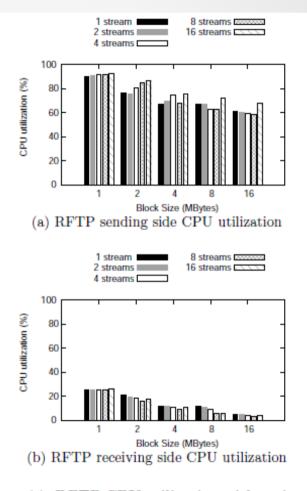


Figure 14: RFTP CPU utilization with various block sizes and numbers of streams.

- 3) Network performance over a 40 Gbps RoCE long distance path in wide-area networks
 - Control message processing overhead ~ 1 / (Message block size)
 - Therefore, increased bandwidth and lower CPU consumption as message block size increases
 - Network data transfer performance not affected by long latency (due to RFTP)
 - Can scale to 1000+ servers and long-haul (inter-data center)
 network links
 - Used for DOE's National Laboratories and cloud data centers

Conclusion

- Need to transfer large amounts of data long distances (end-to-end high performance data transfer)
- Tested using LANs and WANs, evaluating:
 - 1) Back-end system performance with NUMA-aware tuning
 - Improve write operation bandwidth by ~20%
 - Utilizes CPU up to three times less
 - 2) Application performance in end-to-end LAN
 - RFTP (parallelized) has lower I/O-request overhead than GridFTP (single-threaded)
 - Full bi-directional bandwidth impossible due to resource contention
 - 3) Network performance over a 40 Gbps RoCE long distance path in wide-area networks
 - Message block size inversely proportional to bandwidth, CPU utiliz.
 - RFTP can be scaled to more servers and longer distance