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Motivation

� Number of cores per node keeps increasing

� So it becomes important for MPI to leverage shared memory for 
intranode communication.



Introduction

� The paper investigates:

• The design and optimizations of MPI collectives

• For cluster of NUMA nodes

� Keywords: MPI, Multithreading, MPI_Allreduce, 
Collective Communication, NUMA 



Some basic definitions

� MPI: a standardized and portable message passing system

� Collective Functions: functions involving communication among 
all processes within a process group. Example: MPI_Bcast call

� NUMA: Non Uniform Memory Access. A computer memory design 
used in multiprocessing where the memory access time depends on 
the memory location relative to the processor.



Contributions

� Developed performance model for collective communication using 
shared memory

� Developed several algorithm for various collectives.

� Conducted experiments on Xeon X5650 and Operton 6100 
Infiniband clusters

� Compared their shared-memory allreduce algorithm with several 
traditional MPI implementations: Open MPI, MPICH2, and 
MVAPICH2



Findings

� Different algorithms dominate for short vectors and long vectors

� On a 16-node Xeon cluster and 8-node Operton cluster, their 
implementation achieves on average 2.5X and 2.3X sppedup over 
MPICH2.



Background 

� Applications using MPI often run multiple MPI processes in each 
node.

� With increasing number or cores per node and non-uniform 
memory, performance of MPI collectives depend more and more on 
intranode communications.



Background

� Current implementations of MPI collectives take 
advantage of shared memory in two ways:

• Collectives are built using point-to-point message passing, which 
uses shared memory as a transport layer inside a node. (MPICH2)

• Collectives are implemented directly on top of shared memory. 
Data is copied from user space to shared memory space. (Open 
MPI and MVAPICH2).

� The second approach reduces the number of memory 
transfers but still requires extra data movement. Plus, 
shared memory is a limited system resource.



HMPI: Hybrid MPI

� Replacing the process-based rank design with a thread-based 
rank.

� All MPI ranks (threads) on a node are running within the 
same address space. 

� Utilizes existing MPI infrastructure for internode
communication

� A similar approach is to use a globally shared heap for all MPI 
processes on a node (XPMEM)



HMPI: Hybrid MPI



Contributions

� Designed NUMA-aware algorithms for thread-based 
HMPI_Allreduce on cluster of NUMA nodes

� Showed a set of motifs and techniques to optimize collective 
operations on multicore architecture

� Established performance models based on memory access latency 
and bandwidth to select the best algorithm for different vector sizes

� Performed a detailed benchmarking study to assess the benefits of 
using their algorithms over existing approaches



Contributions

� They specifically selected MPI_Allreduce to show the benefits of 
HMPI.



MPI_Allreduce

� A combination of MPI_Reduce and MPI_broadcast



Performance Model

� Ignored internode communication and focused on intranode
communication.

� Each algorithm is designed and implemented hierarchically between 
intramodule (for cores sharing L2 cache), intrasocket (for cores 
sharing L3 cache), intersocket, and internode.

� Assumptions:  

• Each core has a private L2 cache

• Each socket contains a shared L3 cache

� If there are s sockets and q threads running in each socket, then total 
thread per node is p = q * s



Algorithm 1: Reduce_Broadcast

� Uses a tree reduction,  followed by a tree broadcast

� In reduction, each thread performs a reduction after it has 
synchronized with n-1 children and finished its previous step. The 
first child acts as a parent in next step.



Algorithm 1: Reduce_Broadcast

� In broadcast, one thread writes the vector, and n threads read the 
vector simultaneously. 

� Communication involves cache, and no memory write back.

� Broadcast can be done in two ways:

• One stage, where all threads read the vector simultaneously

• Two-stage, where a "socket-master" at each socket reads the vector at first 
step, and then all threads within a socket, excluding the master, reads it 
simultaneously.



Algorithm 1: Reduce_Broadcast



Algorithm 2: Dissemination

� The dissemination algorithm achieves complete dissemination of 
information among p threads in log� � synchronized steps.

� The algorithm has fewer steps but more total communication than 
reduce-broadcast algorithm.



Algorithm 2: Dissemination



Algorithm 3: Tiled-Reduce Broadcast

� Since all threads can access all vectors, each thread compute a tile of 
final result and then broadcast it to all other threads.

� Works for long vectors and can be expected to have better 
performance than other algorithms for large vectors, because it can 
keep all the threads busy and make better use of bandwidth.

� Used only within sockets, tree reduction is better for intersocket
because of limited intersocket bandwidth.

� For broadcasting, one or two stage broadcasting is used.



Algorithm 3: Tiled-Reduce Broadcast



Evaluation

� Intel Xeon X5650 (Westmere), 2 sockets, 12 cores

� AMD Operton 6100 (Magny-Cours), 4 sockets, 32 cores

� Performance of HMPI's allreduce against MPICH2, MVAPICH2, 
Open MPI



Performance Analysis: Reduce Broadcast

� One stage broadcast (where 
all threads read from the root 
thread) works better for 12-
core Westmere.

� The reason is inclusive L3 
cache exhibits affordable 
contention with all the threads 
accessing it simultaneously.



Performance Analysis: Reduce Broadcast

� Two stage broadcast works 
better for 32-core Magny-
Cours. The reason is: more 
sockets and cores, so high 
contention overhead for one-
step broadcast.

� For large vector sizes, flatter 
broadcast trees becomes 
advantageous. Reason? Data 
size is bigger than L3 cache, so 
more memory access needed, 
so reducing the numberof
passes is important.



Performance Analysis: Tiled Reduce

� Naive tiled-reduce does the 
reduction in parallel, but 
without considering NUMA, 
so high contention.

� Cyclic tiled-reduce perform 
slightly better.

� Hierarchical tiled-reduce, that 
uses tile reduce inside nodes 
and tree reduction across 
sockets performs best



Performance Analysis: HMPI Allreduce vs. 

Traditional MPI

� HMPI outperforms traditional 
MPIs

� Reasons: 

• Direct memory access

• Low synchronization overhead

• Aggreesive NUMA 



Performance Analysis: HMPI Allreduce vs. 

Traditional MPI

� Dissimination is the worst algorithm in all platform, because of 
redundant computation. 

� MPICH2 shows the worst performance, bacause it uses shared 
memory only as a transport layer.

� Proposed implementations gets 3.6X lower latency than Open MPI, 
4.3X than MVAPICH2.

� Tree based algorithms gets the best performance if vector size < 16 
KB

� Tiled-reduce followed by broadcast has best performance if vector 
size > 16 KB



Comparison with OpenMP

� OpenMP is another shared-
memory programming 
environment. Its reductions 
have been optimized for direct 
shared-memory access.

� HMPI reduce achieves on 
average 1.5X speedup over 
OpenMP for all vector sizes.

� Probably due to hierarchy-
aware HMPI reduce 
implementations on NUMA 
machines.



Performance on Distributed Memory

� On a 16-node Xeon cluster

� Dissemination works worst 
because of high internode 
communication overhead

� HMPI_Bcast and 
HMPI_Reduce get on avergae
1.8X and 1.4X speedup over 
MVAPICH2



Conclusion

� Multithreading has several advantages over multiprocessing on 
shared memory for collectives

� Using this principle, they improved MPI performance

� Proposed new algorithms for MPI_Allreduce

� Performed experiments and analyzed results


