
NUMA-Aware Shared-Memory

Collective Communication for MPI

Shigang Li

Torsten Hoefler

Marc Snir

Presented By: Shafayat Rahman

Motivation

� Number of cores per node keeps increasing

� So it becomes important for MPI to leverage shared memory for
intranode communication.

Introduction

� The paper investigates:

• The design and optimizations of MPI collectives

• For cluster of NUMA nodes

� Keywords: MPI, Multithreading, MPI_Allreduce,
Collective Communication, NUMA

Some basic definitions

� MPI: a standardized and portable message passing system

� Collective Functions: functions involving communication among
all processes within a process group. Example: MPI_Bcast call

� NUMA: Non Uniform Memory Access. A computer memory design
used in multiprocessing where the memory access time depends on
the memory location relative to the processor.

Contributions

� Developed performance model for collective communication using
shared memory

� Developed several algorithm for various collectives.

� Conducted experiments on Xeon X5650 and Operton 6100
Infiniband clusters

� Compared their shared-memory allreduce algorithm with several
traditional MPI implementations: Open MPI, MPICH2, and
MVAPICH2

Findings

� Different algorithms dominate for short vectors and long vectors

� On a 16-node Xeon cluster and 8-node Operton cluster, their
implementation achieves on average 2.5X and 2.3X sppedup over
MPICH2.

Background

� Applications using MPI often run multiple MPI processes in each
node.

� With increasing number or cores per node and non-uniform
memory, performance of MPI collectives depend more and more on
intranode communications.

Background

� Current implementations of MPI collectives take
advantage of shared memory in two ways:

• Collectives are built using point-to-point message passing, which
uses shared memory as a transport layer inside a node. (MPICH2)

• Collectives are implemented directly on top of shared memory.
Data is copied from user space to shared memory space. (Open
MPI and MVAPICH2).

� The second approach reduces the number of memory
transfers but still requires extra data movement. Plus,
shared memory is a limited system resource.

HMPI: Hybrid MPI

� Replacing the process-based rank design with a thread-based
rank.

� All MPI ranks (threads) on a node are running within the
same address space.

� Utilizes existing MPI infrastructure for internode
communication

� A similar approach is to use a globally shared heap for all MPI
processes on a node (XPMEM)

HMPI: Hybrid MPI

Contributions

� Designed NUMA-aware algorithms for thread-based
HMPI_Allreduce on cluster of NUMA nodes

� Showed a set of motifs and techniques to optimize collective
operations on multicore architecture

� Established performance models based on memory access latency
and bandwidth to select the best algorithm for different vector sizes

� Performed a detailed benchmarking study to assess the benefits of
using their algorithms over existing approaches

Contributions

� They specifically selected MPI_Allreduce to show the benefits of
HMPI.

MPI_Allreduce

� A combination of MPI_Reduce and MPI_broadcast

Performance Model

� Ignored internode communication and focused on intranode
communication.

� Each algorithm is designed and implemented hierarchically between
intramodule (for cores sharing L2 cache), intrasocket (for cores
sharing L3 cache), intersocket, and internode.

� Assumptions:

• Each core has a private L2 cache

• Each socket contains a shared L3 cache

� If there are s sockets and q threads running in each socket, then total
thread per node is p = q * s

Algorithm 1: Reduce_Broadcast

� Uses a tree reduction, followed by a tree broadcast

� In reduction, each thread performs a reduction after it has
synchronized with n-1 children and finished its previous step. The
first child acts as a parent in next step.

Algorithm 1: Reduce_Broadcast

� In broadcast, one thread writes the vector, and n threads read the
vector simultaneously.

� Communication involves cache, and no memory write back.

� Broadcast can be done in two ways:

• One stage, where all threads read the vector simultaneously

• Two-stage, where a "socket-master" at each socket reads the vector at first
step, and then all threads within a socket, excluding the master, reads it
simultaneously.

Algorithm 1: Reduce_Broadcast

Algorithm 2: Dissemination

� The dissemination algorithm achieves complete dissemination of
information among p threads in log� � synchronized steps.

� The algorithm has fewer steps but more total communication than
reduce-broadcast algorithm.

Algorithm 2: Dissemination

Algorithm 3: Tiled-Reduce Broadcast

� Since all threads can access all vectors, each thread compute a tile of
final result and then broadcast it to all other threads.

� Works for long vectors and can be expected to have better
performance than other algorithms for large vectors, because it can
keep all the threads busy and make better use of bandwidth.

� Used only within sockets, tree reduction is better for intersocket
because of limited intersocket bandwidth.

� For broadcasting, one or two stage broadcasting is used.

Algorithm 3: Tiled-Reduce Broadcast

Evaluation

� Intel Xeon X5650 (Westmere), 2 sockets, 12 cores

� AMD Operton 6100 (Magny-Cours), 4 sockets, 32 cores

� Performance of HMPI's allreduce against MPICH2, MVAPICH2,
Open MPI

Performance Analysis: Reduce Broadcast

� One stage broadcast (where
all threads read from the root
thread) works better for 12-
core Westmere.

� The reason is inclusive L3
cache exhibits affordable
contention with all the threads
accessing it simultaneously.

Performance Analysis: Reduce Broadcast

� Two stage broadcast works
better for 32-core Magny-
Cours. The reason is: more
sockets and cores, so high
contention overhead for one-
step broadcast.

� For large vector sizes, flatter
broadcast trees becomes
advantageous. Reason? Data
size is bigger than L3 cache, so
more memory access needed,
so reducing the numberof
passes is important.

Performance Analysis: Tiled Reduce

� Naive tiled-reduce does the
reduction in parallel, but
without considering NUMA,
so high contention.

� Cyclic tiled-reduce perform
slightly better.

� Hierarchical tiled-reduce, that
uses tile reduce inside nodes
and tree reduction across
sockets performs best

Performance Analysis: HMPI Allreduce vs.

Traditional MPI

� HMPI outperforms traditional
MPIs

� Reasons:

• Direct memory access

• Low synchronization overhead

• Aggreesive NUMA

Performance Analysis: HMPI Allreduce vs.

Traditional MPI

� Dissimination is the worst algorithm in all platform, because of
redundant computation.

� MPICH2 shows the worst performance, bacause it uses shared
memory only as a transport layer.

� Proposed implementations gets 3.6X lower latency than Open MPI,
4.3X than MVAPICH2.

� Tree based algorithms gets the best performance if vector size < 16
KB

� Tiled-reduce followed by broadcast has best performance if vector
size > 16 KB

Comparison with OpenMP

� OpenMP is another shared-
memory programming
environment. Its reductions
have been optimized for direct
shared-memory access.

� HMPI reduce achieves on
average 1.5X speedup over
OpenMP for all vector sizes.

� Probably due to hierarchy-
aware HMPI reduce
implementations on NUMA
machines.

Performance on Distributed Memory

� On a 16-node Xeon cluster

� Dissemination works worst
because of high internode
communication overhead

� HMPI_Bcast and
HMPI_Reduce get on avergae
1.8X and 1.4X speedup over
MVAPICH2

Conclusion

� Multithreading has several advantages over multiprocessing on
shared memory for collectives

� Using this principle, they improved MPI performance

� Proposed new algorithms for MPI_Allreduce

� Performed experiments and analyzed results

