
A Comparative Study of High

Performance Computing on the Cloud

Lots of authors, including Xin Yuan

Presentation by: Carlos Sanchez

What is “The Cloud”?

 The cloud is just a bunch of computers connected over a
network (usually Ethernet with internet protocols) which
provides a service.

 Cloud networks usually have a layer of virtualization.
When you connect to a cloud network, you’re connecting
to a virtual machine, which could have been dynamically
allocated on any of the cloud’s machines.

 Virtualization allows cloud networks to be more flexible
in terms of location, size, etc. because the virtual
hardware is abstracted from the physical hardware. The
physical hardware can be changed/upgraded on the fly, but
the virtual hardware (which users “connect” to) stays the
same.

High Performance Computing Clusters

 Computational problems such as simulations which

require a great amount of computation time and which

are highly parallelizable are usually run on High

Performance Computing (HPC) clusters.

 HPC clusters are dedicated networks of computers with

specialized hardware whose main purpose is to compute

as much as possible in the shortest amount of time.

 These clusters are generally used for research and paid

for with research funding, so users can access these

resources for free

HPC Clusters VS. Cloud Computing

 HPC clusters are focused on maximum performance for a

very specific service (complex computations)

 Cloud networks are focused on maximum utilization of

resources for a wide variety of services (and profit)

 HPC clusters for research are generally free thanks to

funding, but your jobs are placed in a queue to be

scheduled at the next available time

 Cloud networks provide a service for a fee, but that

service is available “on-demand”

Some Issues Addressed in the Paper

 HPC users believe that dedicated clusters are better than

cloud platforms due to the communication overhead.

 Authors believe the difference is smaller than perceived

and that total turnaround time and cost are better

determining factors than a program’s start and finish

times.

 As research HPC clusters are free, a pricing model has

been created in order to compare the prices of the on-

demand cloud VS. the HPC cluster.

 Performance between the cloud and HPC clusters are

also compared

Which Cloud?

 Amazon’s Elastic Compute Cloud (EC2) is used, as it is a

highly successful and popular platform.

 However, in terms of high performance computing,

successes are mixed.

 Most successful high performance computing applications

that were run on EC2 were “embarrassingly parallel”

programs

 Embarrassingly parallel programs are programs which require

little or no effort to parallelize.

Why The Cloud “Doesn’t Work” For HPC

 Because cloud platforms use Ethernet for inter-

connectivity, latency and bandwidth are an issue

 Dedicated HPC clusters use Infiniband

 Virtualization causes computation overhead, and the

relative location of virtual machines could be an issue

 If the machines are virtual and can be anywhere, their physical

proximity isn’t necessarily close or within a small number of

hops, which could cause even more communication issues.

Why The Cloud Could Work

 It isn’t fair to compare a paid on-demand service which is

available 24/7 to the traditional HPC cluster based only

on execution time.

 Traditional HPC clusters can have a significant queue wait

time, especially during peak usage and for jobs which

require many nodes. The cloud is available on-demand.

 When comparing HPC clusters with the cloud, looking at

total turnaround time and projected cost (should

traditional HPC clusters stop being free) may show that

the cloud is the way to go for tasks with certain

computational, cost, and time requirements.

What The Paper Gives Us

 Evaluate Amazon’s EC2 and 5 HPC clusters from the

Lawrence Livermore National Laboratory (LLNL) along

the traditional axis of execution time using over 1000

cores.

 Develop a pricing model to evaluate (free) HPC clusters

in node-hour prices based on system performance,

resource availability, and user bias.

 Evaluate EC2 and HPC clusters along the axis of total

turnaround time and total cost.

EC2 Basics

 There are several EC2 instances with different
computation and network capabilities. The paper chose
the highest-end instance: “cluster compute eight extra
large”, as it is intended for HPC applications

 There are also several ways of purchasing time. The paper
chose “on-demand” pricing, where the purchaser receives
access to the machine immediately.

 Default EC2 does not guarantee node proximity, but you
can request it through a placement group. This was not
used for the experiment.

 HPC systems that use batch scheduling can’t guarantee physical
proximity either.

Quick Physical Specs

 Note: all clusters other than EC2 are machines at LLNL

 uDawn is a BlueGene/P system, and is one of the slowest

machines.

 Cab and Sierra are newer machines, and are usually the

highest performers.

Program Setup

 Core 0 is avoided due to EC2 interrupt system

 Only half of the cores (or closest power of two) on a

particular machine are used to reduce the overhead of

uneven communication.

 No hyperthreading on Sandy-Bridge processors

 Strong scaling (all benchmark sizes are identical across

different task counts)

 Wide variety of benchmarks; some are communication

intensive, others are computation intensive.

Tested Network Latency

 Cab and Sierra have the best stats thanks to Infiniband

QDR

 EC2 has comparable throughput with uDawn, but the

latency is far worse.

 Couldn’t characterize the virtualization overhead, since

there was no access to physical hardware which was

identical to the virtual machines.

 Values for EC2 are consistent with other reported results

Tested Overall Performance

 Normalized to uDawn (1 MPI task, computation only)

 Normalized to EC2 (1024 MPI tasks, execution time only)

Overall Performance Cont.

 Results show that communication intensive benchmarks

such as SMG2000 run quite a bit slower on EC2 than

other machines (except uDawn).

 However, benchmarks such Sweep3D run better on EC2

than any other system.

 Not only that, but benchmarks such as LAMMPS have

some machines performing better and some performing

worse than EC2.

 On the grounds of only program execution time, the

choice of whether to use the cloud or not is dependent

on the qualities of the applications.

Queue Wait Times

 Average queue wait times must be known in order to

measure turnaround time.

 However, wait times vary depending on the cluster, job

size, and maximum run time

 Estimating queue wait times isn’t easy

 The scheduling implementation isn’t known

 The wait time isn’t necessarily linear with respect to the

number of nodes or time requested.

 Cluster utilization fluctuates depending on current jobs

Queue Wait Times Cont.

 Wait times are thus simulated by a simulator which is

configured to work like the clusters

 Simulator used job logs from a different cluster taken in

2009 to simulate a proper workload. This workload has

characteristics similar to the test clusters.

 To test the validity of the simulator, real queue wait times

were collected for a few test jobs over a two-month

period.

Queue Wait Times Cont.

 The simulated times follow the same trend as the real

wait times.

 Note that EC2 wait times were orders of magnitude

smaller, with the highest being 244 seconds for 64 nodes.

Total Turnaround Time

 Now that the simulation gives a reliable distribution of

queue wait times, it can be used to determine the total

turnaround time relative to EC2.

 Remember, EC2 wait times are considerably lower than the

HPC clusters because of the cluster’s queuing.

 Tested using an MPI task set to run on 5 hours on EC2.

Results are scaled relative to EC2’s run time.

 Tested with 256, 512, and 1024 tasks.

Total Turnaround Time Trends

 EC2 execution time is generally better at lower scales.

 However, as the number of tasks increases, EC2 is

outstripped by the better-scaling high end LLNL clusters.

This makes sense, as EC2 has weaker communication.

 Turnaround time for the LLNL clusters is highly

dependent on the queue wait time, as a higher task count

causes longer turnaround times.

 This dependency can be seen by the fact that 1st quartile

(best case) queue wait times make LLNL clusters have

the better turnaround time, but 4th quartile (worst case)

queue times give EC2 the advantage.

Graphical Turnaround Time 256 Tasks

 Notice that EC2 beats many of the dedicated clusters for

low task counts

Graphical Turnaround Time 512 Tasks

 Here, we see that machines like Cab and Sierra are

sometimes right on the line with EC2, which means that

the queue wait time will decide which is better.

Graphical Turnaround Time 1024 Tasks

 Here, we see that in many cases, the better turnaround

time all depends on the queue wait time, however Cab

and Sierra outright beat EC2 for LU and SMG2000, while

EC2 still beats them all in Sweep3D

Expected Amount of Time LLNL is Better

 Using QBETS (a time series estimation method), it can be

determined how often LLNL beats EC2 in terms of total

turnaround time.

 Only done for 1024 tasks

 The 0% instances mean EC2 is always better.

 Even with the fastest machine, the expectation ranges

from 25-40%. This is further proof that the queue wait

times play a significant factor in total turnaround time.

Cost Calculation

 The price of EC2 is known, but the LLNL clusters need a

price assigned to them.

 Calculated prices are based off of EC2 ($2.40/node-hour)

 Can’t view computation as a utility, because operating

cost data for clusters isn’t publicly available.

 Assume LLNL clusters are competitors in the same

market as EC2

 Do not incorporate queue wait times in the cost.

 Users in this market make “optimal” choices for profit

maximization.

Cost Calculation Cont.

 User takes into account:

 P = price in node-hours

 N = nodes to allocate

 User wants to minimize the combined implicit and

explicit costs:

 C = (p * n * t(n)) + (a * t(n))

 The first term is the explicit cost; it is the actual

monetary value to be spent on calculation.

 The second term is the implicit cost; this can be the cost

of waiting longer for something slow to finish, etc.

Cost Calculation Cont.

 Using this model of user choice, cluster operators can

choose a price which can maximize profit.

 Lots of math later, and we get the following prices:

 Notice that the slowest machine, uDawn, has a very low

price, while the best machine, Cab, has a fairly high price.

 Note that EC2 uses hourly pricing, but in order to gather

data more effectively for the short jobs that were run, the

prices were prorated by the second for the following

data.

What Do These Results Show?

 Different applications have their total cost minimized on
different clusters. In other words, a single cluster (such as
the “cheap” uDawn) doesn’t always have the lowest cost.

 For instance, it is cheapest to run computationally intensive but
communication-lacking programs on EC2, as EC2’s price is
optimized for computation.

 Alternatively, it is cheapest to run communication-intense
programs on Cab since Cab’s price is optimized for
communication.

 As we saw before, different applications have their
shortest running time on different clusters

 It all depends on the qualities of the application: is it cache
heavy? Communication-intense? Computationally-intense?

More Results

 If a program must be completed within a certain time, it

can yet again change the machine which provides the

lowest cost.

 Similarly, if a price bound exists, the machine which

provides the fastest time may change

 Basically: many factors affect the choice of machine:

 Queue wait times

 The application itself

 Whether turnaround time or cost is more important

 Time/cost bounds

Well, Which One To Choose?

 The choice between HPC platforms isn’t clear; users

cannot exhaustively test their application on a multitude

of clusters/cloud providers to determine which one is

best for their needs.

 Authors propose software that can choose a cluster

automatically.

 This would require that systems provide wait queue data,

which could be a security concern.

Bottom Line

 The cloud isn’t entirely useless for HPC problems. It

outperforms dedicated HPC hardware in some cases.

 When measured in total turnaround time, the cloud can

outperform dedicated HPC hardware in many cases due

to significant queue wait time on HPC clusters.

 Should current HPC cluster providers start charging for

computation in a manner similar to cloud providers, a

multitude of factors can affect a user’s machine choice.

The choice is not clear in this case, and the responsibility

of navigating these factors shouldn’t be placed on the

user.

