
 Challenges in large-scale graph 
processing on HPC platforms and the 

Graph500 benchmark

by
Nkemdirim Dockery



High Performance Computing Workloads

Core-memory sized

Floating point intensive

Well-structured

def high performance computing
zone in on parallel/distributed nature and the amount of communication

describe conventional workload

High performance computing typically refers to the connection of a large amount of 
processing nodes over a high bandwidth, low latency network. 
The most common model of machine for high performance computing is the 
distributed memory model, where the processing nodes are fairly independent.
Programming for this model is typically done using MPI. These programs have 
processing nodes alternating between working independently on local data and
coordinating with other nodes for collective communication. Data is usually 
transmitted at pauses between computations, and while this shrinks overall latency 
costs, it does this at the expense of more fine grained control. This loss of algorithmic 
control is not usually a problem for a typical HPC problem such as a physics 
simulation, which are core-memory sized, floating point intensive, and well-structured, 
because programs can take advantage of the temporal and spatial locality inherent in 
these problems. 



Benchmarking and the Top 500

Portable

Large Scale

Rankings by Floating Point Operations per Second (FLOPS)

 Benchmarking in terms of high performance computing is essentially the process of taxing an 
untested system with workloads that are both general enough to apply across development 
environments and use cases, and large enough to give an indication of an untested system’s 
capabilities. The Top 500 project aims to provide a reliable basis for tracking and detecting 
trends in high-performance computing and bases rankings on HPL,[1] a portable 
implementation of the high-performance LINPACK benchmark written in Fortran for 

distributed-memory computers. HPL is a software package that solves a (random) dense 
linear system in double precision (64 bits) arithmetic on distributed-memory 
computers. The HPL package provides a testing and timing program to quantify the 
accuracy of the obtained solution as well as the time it took to compute it. The best 
performance achievable by this software on your system depends on a large variety 
of factors.but with some assumptions on the interconnection network, the HPL 
implementation is scalable in the sense that their parallel efficiency is maintained 
constant with respect to the per processor memory usage. This means that as the 
expected capabilities of untested machines rises, the benchmarking implementation 
can successfully scale up in order to provide an appropriate workload. 

http://en.wikipedia.org/wiki/Top_500#cite_note-1
http://en.wikipedia.org/wiki/LINPACK
http://en.wikipedia.org/wiki/Benchmark_(computing)


Graph-Like Data and its Workloads

Social networks

Load balancing

Protein to protein interactions

The connectivity of the Web

Other distribution networks.

describe emergence of graph like data
zone in on unstructured nature

Graph like data comes out of the analysis of real world phenomenon such as social 
networks, load balancing, protein to protein interactions, the connectivity of the Web, 
and other distribution networks.

Graphs are applicable in such diverse settings because they’re an abstract way of 
describing interactions between entities.
The data itself represents the interactions between discrete points. The purpose 
surrounding these emerging datasets is not typically to ask a “what if,” but to search 
through the dataset in order to discover hypotheses to be tested. While these graphs 
allow for a lot of insight into a large amount of data, they tend to be out of core, 
integer oriented, and unstructured.



Graph-Like Data and its Workloads

Unstructured

Possibly widely dispersed in physical memory

Lower peak performance

describe stress unstructured nature places on communication

In many emerging applications such as social and economic modeling, the graph has 
very little exploitable structure. In fact, in such settings, a vertex v’s neighbors
can be widely dispersed in global memory. This leads to data access patterns that 
make very poor use of memory hierarchies, which in turn can
result in idle processors. Because access patterns are data dependent, since they are 
a function of the graph’s edge structure, standard prefetching
techniques are often ineffective. In addition, graph algorithms typically have very little 
work to do when visiting a vertex, so there is little computation
for each memory access. For all these reasons, graph computations often achieve a 
low percentage of theoretical peak performance on
traditional processors.



Benchmarking Graph-Like Data

Consumes 6900 times more unique data

2.6% spatial reuse relative to Top 500

55% temporal reuse relative to Top 500

pose problem of benchmarking, highlighting shortcomings of the top500, which 
benchmarks against FLOPS, with regards to communicationn
introduce graph500

So given that complex graph applications exhibit very low spatial and temporal 
locality,  meaning low reuse of data near data already
used and low reuse of data over time respectively respectively, how do we evaluate 
an HPC system’s capability to handle the processing of graph-like data? The top500 
benchmarks mimic more traditional workloads where these localities are present, but 
these applications also exhibit significantly larger datasets than is typical for real-
world physics applications or industry benchmarks. Compared to the LINPACK 
benchmark that defines the Top 500 list, an example graph problem consumes 6,900 
times the unique data, and exhibits 2.6% of the temporal reuse and 55% of the 
temporal reuse.

The Graph 500 benchmarking list aims to bridge this gap by producing scalable 
benchmarks that are in line with the characteristics of graph-like data analysis. 



Graph 500 Key Benchmarking Requirements

Fundamental Kernel with Broad Application Reach

Map to Real World Problems

Reflect Real Data Sets

Rankings by Traversed Edges per Second (TEPS)

Here are some key requirements identified for any benchmark of graph-like data:

1. There should be a Fundamental Kernel with Broad Application Reach: rather than a 
single transitory point application, the benchmark must reflect a class of algorithms 
that impact many applications.graph-like 
2. It should Map to Real World Problems: results from the benchmark should map 
back to actual problems, rather than exhibiting a theoretical or “pure computer 
science” result.
3. It should Reflect Real Data Sets (that are important!): similar to mapping to real 
problems, the data sets should exhibit real-world patterns. Application performance 
for many real-world problems
is highly input dependent.



Graph 500 Example Datasets

Some datasets include && table 1



Graph 500 Kernel Types

Search

Optimization

Edge Oriented

Here are the types of kernels chosen to satisfy the identified benchmarking 
requirements of a broad application reach, and a real world mapping

1. Search: Concurrent Search, requiring traversal of the graph and labeling or 
identification of a result. 
2. Optimization: Single Source Shortest Path is a core example optimization problem 
proposed by the Graph 500 committee
3. Edge Oriented: Things like identifying Maximally independent sets -  independent 
set in a graph that is not a subset of any other independent
set.



Graph 500 Implementation Classes

Distributed Memory

Cloud/Map Reduce

Multithreaded Shared Memory

The Graph500 has reference implementations of the benchmarks for multiple High 
performance computing scenarios:
Distributed Memory: This is the dominant model for high performance computing

Cloud/MapReduce: More reflective of industry trends, and represents a key 
programming model for loosely coupled architectures.

Multithreaded Shared Memory: This reference implementation will support large-scale 
shared memory machines, like SMPs or the Cray XMT. Currently,
this is the preferred programming model for many graph applications.

The benchmark will also allow for implementations for more customized platforms as 
well as optimizations to the reference implementations



Optimizations in Concurrent Search 
Benchmarks

Level-Synchronized Breadth First Search
Graph Sizes Scale
Toy  26
Mini 29
Small 32
Medium 36
Large 39
Huge 42

One set of the Graph500’s reference search-type benchmarks performs breadth-first 
searches in large undirected  graphs generated by a scalable data generator. There 
are six problem sizes: toy, mini, small, medium, large, and huge. Each problem solves 
a different size graph defined by a Scale parameter, which is the base 2 logarithm of 
the number of vertices. For example, the level Scale 26 for toy means 2^26 and 
corresponds to 10^10 bytes occupying 17 GB of memory. The six Scale values are 
26, 29, 32, 36, 39, and 42 for the six classes. The largest problem, huge (Scale 42), 
needs to handle around 1.1 PB of memory. Scale 38 is the largest that has been 
solved by a top-ranked supercomputer.



Level-Synchronized BFS

As far as the searching kernels are concerned, the reference implementations for the 
different platforms are all based on the level-synchronized breadth first search. ‘Level-
synchronized’ means that even though work is being done in parallel, all the nodes of 
a level are processed before any child nodes are processed. 
 
Here is the pseudocode for the algorithm that implements level-synchronized BFS. 
Each processor has two queues, Current Queue and Next Queue, and two arrays, 
PRED for a predecessor array and VISITED to track whether or not each vertex has 
been visited. At the end of the Breadth First Search, the Predecessor array will 
contain the breadth first search tree.



Using Matrix Multiplication to Calculate 
Neighbors

However, instead of an iterative loop, one can use Matrix multiplication in order to 
calculate the neighbors of a given set of vertices

Will demonstrate

This offers some advantages in that adjacency matrices are fairly sparse, enabling 
the use of compressed representations for the multiplication. The matrix 
representation also allows us to partition the adjacency matrix, and distribute the work 
amongst multiple processors. 



1D Partitioning

Highlight scalability issues with 1D partitioning
The reference implementation of the breadth first search comes in three versions. The 
R-CSR (replicated-(Compressed Sparse Row)), and the R-CSC (replicated-
(Compressed Sparse Column)) partition vertically, while the SIM (simple) method 
partitions horizontally

For the R-CSR and R-CSC methods that divide an adjacency matrix vertically, the 
Current Queue is duplicated to all of the processes. Then 
each processor independently computes NQ for its own portion. Copying CQ to all of 
the processors means each processor sends its own portion of NQ to all of the other 
processors. CQ (and NQ) is represented as a relatively small bitmap. For relatively 
small problems with limited amounts of distribution, the amounts of communication 
data are reasonable and this method is effective. 
However, since the size of CQ is proportional to the number of vertices in the entire 
graph, this copying operation still leads to a large amount of communication for large 
problems with large distribution.

For the simple method that partitions horizontally, there is still a large amount of 
communication that doesn’t scale. Each process has to send off the borders of its 
neighborhood to the processes that need it. This results in an all-to-all communication 
that falls apart at higher scales.  



2D Partitioning

With 2D partitioning, however, each processor only communicates with the 
processors in the processor-row and the processor-column. 

Ueno and Suzumura’s optimized breadth first search benchmark uses 2D partitioning 
as its base, along with a small compression scheme for larger 
transfers of vertex information, parallelization of communication and processing by 
the use of per processor buffers, and cache hit optimizations by visiting row indexes 
in a sorted ordering local to each 2D partition 



Performance Evaluation

Performance evaluation

There is a definite increase in speed and capability, as you all can see. In terms of 
capability, you can see where the reference implementations meet their limits. In 
terms of speed, you’ve got a pretty straightforward comparison, where for the 
graph500 benchmark, speed is measured in the number of traversed edges per 
second rather than floating point operations per second. 



Recap

Top 500 vs Graph 500
FLOPS workload vs TEPS workload
FLOPS Benchmarking vs TEPS benchmarking

Characteristics of Graph 500 benchmark
Optimizations for the Graph 500 benchmark

So we have contrasted the workloads of typical high performance computing and 
emerging graph-like data problems. We’ve learned that there is a huge loss of locality 
and structure, meaning that the strategies that usually take advantage of those 
qualities are no longer effective. There is also a huge increase in the amount of data 
as well as the amount of potential communication. Since the top 500 benchmarks are 
geared towards typical high performance computing workload, they don’t test a 
machine’s  capability to  handle these newer types of applications. This is why the 
graph 500 came about. The graph 500’s kernels are general enough to cut across 
many graphical applications and targets multiple platforms. It also scales well into the 
larger problem sizes. For the largest graphs, however, the reference implementations 
became unreliable. This is where the optimizations are supposed to start playing a 
larger role. We took a look at Ueno and Suzumiya’s 2D partitioning based level-
synchronized breadth first search. It uses 2D partitioning along with further 
compression of data transmissions, and local sorted ordering in order to extend the 
reach of the reference implementations breadth first search. 



Top 500 
November 2013



Graph 500 
November 2013

Here is a look at the graph 500 for November in 2013


