
Intel® C++
Intrinsics Reference

Document Number: 312482-002US

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Intel products are not intended for use in medical, life saving, life sustaining, critical control or
safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

The software described in this document may contain software defects which may cause the
product to deviate from published specifications. Current characterized software defects are
available on request.

This document as well as the software described in it is furnished under license and may only
be used or copied in accordance with the terms of the license. The information in this manual
is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility
or liability for any errors or inaccuracies that may appear in this document or any software
that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means without the express written
consent of Intel Corporation.

Developers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Improper use of reserved or undefined features or
instructions may cause unpredictable behavior or failure in developer’s software code when
running on an Intel processor. Intel reserves these features or instructions for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from their
unauthorized use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960,
InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel
StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey
Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and
other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 1996-2007, Intel Corporation.

Portions Copyright (C) 2001, Hewlett-Packard Development Company, L.P.

iii

Intel® C++ Intrinsics Reference

Table of Contents

Overview: Intrinsics Reference... 1

Availability of Intrinsics on Intel Processors ... 1

Details about Intrinsics ... 2

Registers ... 2

Data Types... 3

Naming and Usage Syntax .. 4

References.. 6

Overview: Intrinsics For All IA.. 6

Integer Arithmetic Intrinsics .. 6

Floating-point Intrinsics .. 7

String and Block Copy Intrinsics ..10

Miscellaneous Intrinsics ...11

Overview: MMX(TM) Technology Intrinsics..12

The EMMS Instruction: Why You Need It ..13

EMMS Usage Guidelines ...13

MMX(TM) Technology General Support Intrinsics ...14

MMX(TM) Technology Packed Arithmetic Intrinsics ...17

MMX(TM) Technology Shift Intrinsics..20

MMX(TM) Technology Logical Intrinsics ..22

MMX(TM) Technology Compare Intrinsics..23

MMX(TM) Technology Set Intrinsics ...25

MMX(TM) Technology Intrinsics on IA-64 Architecture ..27

Data Types..28

Overview: Streaming SIMD Extensions...28

iv

Table of Contents

Floating-point Intrinsics for Streaming SIMD Extensions29

Arithmetic Operations for Streaming SIMD Extensions..29

Logical Operations for Streaming SIMD Extensions...34

Comparisons for Streaming SIMD Extensions ..35

Conversion Operations for Streaming SIMD Extensions.......................................46

Load Operations for Streaming SIMD Extensions ...50

Set Operations for Streaming SIMD Extensions ...52

Store Operations for Streaming SIMD Extensions...54

Cacheability Support Using Streaming SIMD Extensions......................................56

Integer Intrinsics Using Streaming SIMD Extensions ..57

Intrinsics to Read and Write Registers for Streaming SIMD Extensions..................61

Miscellaneous Intrinsics Using Streaming SIMD Extensions..................................61

Using Streaming SIMD Extensions on IA-64 Architecture63

Macro Function for Shuffle Using Streaming SIMD Extensions65

Macro Functions to Read and Write the Control Registers65

Macro Function for Matrix Transposition..67

Overview: Streaming SIMD Extensions 2..68

Floating-point Arithmetic Operations for Streaming SIMD Extensions 269

Floating-point Logical Operations for Streaming SIMD Extensions 2......................73

Floating-point Comparison Operations for Streaming SIMD Extensions 275

Floating-point Conversion Operations for Streaming SIMD Extensions 284

Floating-point Load Operations for Streaming SIMD Extensions 2.........................88

Floating-point Set Operations for Streaming SIMD Extensions 2...........................90

Floating-point Store Operations for Streaming SIMD Extensions 292

Integer Arithmetic Operations for Streaming SIMD Extensions 294

v

Intel® C++ Intrinsics Reference

Integer Logical Operations for Streaming SIMD Extensions 2.............................103

Integer Shift Operations for Streaming SIMD Extensions 2................................104

Integer Comparison Operations for Streaming SIMD Extensions 2109

Integer Conversion Operations for Streaming SIMD Extensions 2112

Integer Move Operations for Streaming SIMD Extensions 2114

Integer Load Operations for Streaming SIMD Extensions 2................................115

Integer Set Operations for SSE2..116

Integer Store Operations for Streaming SIMD Extensions 2120

Cacheability Support Operations for Streaming SIMD Extensions 2.....................122

Miscellaneous Operations for Streaming SIMD Extensions 2123

Intrinsics for Casting Support..129

Pause Intrinsic for Streaming SIMD Extensions 2 ...129

Macro Function for Shuffle..131

Overview: Streaming SIMD Extensions 3..131

Integer Vector Intrinsics for Streaming SIMD Extensions 3................................132

Single-precision Floating-point Vector Intrinsics for Streaming SIMD Extensions 3 132

Double-precision Floating-point Vector Intrinsics for Streaming SIMD
Extensions 3 ..134

Macro Functions for Streaming SIMD Extensions 3 ...135

Miscellaneous Intrinsics for Streaming SIMD Extensions 3.................................135

Supplemental Streaming SIMD Extensions 3 ..136

Overview: Supplemental Streaming SIMD Extensions 3136

Addition Intrinsics ...136

Subtraction Intrinsics...138

Multiplication Intrinsics ..140

vi

Table of Contents

Absolute Value Intrinsics ..141

Absolute Value Intrinsics ..143

Concatenate Intrinsics ...144

Negation Intrinsics ..145

Overview ...148

Overview: Streaming SIMD Extensions 4 Vectorizing Compiler and Media
Accelerators ...149

Packed Blending Intrinsincs for Streaming SIMD Extensions 4149

Floating Point Dot Product Intrinsincs for Streaming SIMD Extensions 4150

Packed Format Conversion Intrinsics for Streaming SIMD Extensions 4151

Packed Integer Min/Max Intrinsics for Streaming SIMD Extensions 4152

Floating Point Rounding Intrinsics for Streaming SIMD Extensions 4154

DWORD Multiply Intrinsics for Streaming SIMD Extensions 4155

Register Insertion/Extraction Intrinsics for Streaming SIMD Extensions 4156

Test Intrinsics for Streaming SIMD Extensions 4..157

Packed DWORD to Unsigned WORD Intrinsic for Streaming SIMD Extensions 4158

Packed Compare for Equal for Streaming SIMD Extensions 4158

Overview: Streaming SIMD Extensions 4 Efficient Accelerated String and Text
Processing ...158

Packed Comparison Intrinsics for Streaming SIMD Extensions 4.........................159

Application Targeted Accelerators Intrinsics ..161

Overview: Intrinsics for IA-64 Instructions..163

Native Intrinsics for IA-64 Instructions...163

Lock and Atomic Operation Related Intrinsics ..166

Load and Store ...169

Operating System Related Intrinsics ..169

vii

Intel® C++ Intrinsics Reference

Conversion Intrinsics ...173

Register Names for getReg() and setReg()..173

Multimedia Additions ...176

Synchronization Primitives..184

Miscellaneous Intrinsics ...185

Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000 series......................185

Examples ..188

Microsoft-compatible Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000
series ..191

Overview: Data Alignment, Memory Allocation Intrinsics, and Inline Assembly194

Alignment Support ..194

Allocating and Freeing Aligned Memory Blocks...195

Inline Assembly ..196

Overview: Intrinsics Cross-processor Implementation197

Intrinsics For Implementation Across All IA ...198

MMX(TM) Technology Intrinsics Implementation ..200

Key to the table entries...200

Streaming SIMD Extensions Intrinsics Implementation203

Key to the table entries...203

Streaming SIMD Extensions 2 Intrinsics Implementation...................................207

Index ..209

viii

Intel® C++ Intrinsics Reference

Overview: Intrinsics Reference

Several Intel® processors enable development of optimized multimedia applications
through extensions to previously implemented instructions. Applications with media-
rich bit streams can significantly improve performance by using Single Instruction,
Multiple Data (SIMD) instructions to process data elements in parallel.

The most direct way to use these instructions is to inline the assembly language
instructions into your source code. However, this process can be time-consuming
and tedious. In addition, your compiler may not support inline assembly language
programming. The Intel® C++ Compiler enables easy implementation of these
instructions through the use of API extension sets built into the compiler. These
extension sets are referred to as intrinsic functions or intrinsics.

The Intel C++ Compiler supports both intrinsics that work on specific architectures
and intrinsics that work across all IA-32 and systems based on IA-64 architecture.

Intrinsics provide you with several benefits:

• The compiler optimizes intrinsic instruction scheduling so that executables run
faster.

• Intrinsics enable you to use the syntax of C function calls and C variables
instead of assembly language or hardware registers.

• Intrinsics provide access to instructions that cannot be generated using the
standard constructs of the C and C++ languages.

Availability of Intrinsics on Intel Processors

The following table shows which intrinsics are supported on each processor listed in
the left column.

On processors that do not support Streaming SIMD Extensions 2 (SSE2) instructions
but do support MMX Technology, you can use the sse2mmx.h emulation pack to
enable support for SSE2 instructions. You can use the sse2mmx.h header file for the
following processors:

• Intel® Itanium® Processor
• Pentium® III Processor
• Pentium® II Processor
• Pentium® with MMX™ Technology

Processors: MMX(TM)
Technology
Instructions

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Streaming
SIMD
Extensions
3

IA-64
Instructions

Itanium®
Processor

Supported Supported Not
Supported

 Supported

Pentium® 4
Processor

Supported Supported Supported Supported Not
Supported

1

Intel® C++ Intrinsics Reference

Processors: MMX(TM)
Technology
Instructions

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Streaming
SIMD
Extensions

IA-64
Instructions

3

Pentium® III
Processor

Supported Supported Not
Supported

Not
Supported

Not
Supported

Pentium® II
Processor

Supported Not
Supported

Not
Supported

Not
Supported

Not
Supported

Pentium® with
MMX Technology

Supported Not
Supported

Not
Supported

Not
Supported

Not
Supported

Pentium® Pro
Processor

Not
Supported

Not
Supported

Not
Supported

Not
Supported

Not
Supported

Pentium®
Processor

Not
Supported

Not
Supported

Not
Supported

Not
Supported

Not
Supported

All processors
based on Intel®
Core™
microarchitecture

Supported Supported Supported Supported Not
Supported

Details about Intrinsics

The MMX(TM) technology and Streaming SIMD Extension (SSE) instructions use the
following features:

• Registers--Enable packed data of up to 128 bits in length for optimal SIMD
processing

• Data Types--Enable packing of up to 16 elements of data in one register

Registers

Intel processors provide special register sets.

The MMX instructions use eight 64-bit registers (mm0 to mm7) which are aliased on the
floating-point stack registers.

The Streaming SIMD Extensions use eight 128-bit registers (xmm0 to xmm7).

Because each of these registers can hold more than one data element, the processor
can process more than one data element simultaneously. This processing capability
is also known as single-instruction multiple data processing (SIMD).

For each computational and data manipulation instruction in the new extension sets,
there is a corresponding C intrinsic that implements that instruction directly. This
frees you from managing registers and assembly programming. Further, the
compiler optimizes the instruction scheduling so that your executable runs faster.

2

Intel® C++ Intrinsics Reference

Note

The MM and XMM registers are the SIMD registers used by the IA-32 platforms to
implement MMX technology and SSE or SSE2 intrinsics. On the IA-64
architecture, the MMX and SSE intrinsics use the 64-bit general registers and the
64-bit significand of the 80-bit floating-point register.

Data Types

Intrinsic functions use four new C data types as operands, representing the new
registers that are used as the operands to these intrinsic functions.

New Data Types Available

The following table details for which instructions each of the new data types are
available.

New Data
Type

MMX(TM)
Technology

Streaming SIMD
Extensions

Streaming SIMD
Extensions 2

Streaming SIMD
Extensions 3

__m64 Available Available Available Available

__m128 Not available Available Available Available

__m128d Not available Not available Available Available

__m128i Not available Not available Available Available

__m64 Data Type

The __m64 data type is used to represent the contents of an MMX register, which is
the register that is used by the MMX technology intrinsics. The __m64 data type can
hold eight 8-bit values, four 16-bit values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __m128 data type is used to represent the contents of a Streaming SIMD
Extension register used by the Streaming SIMD Extension intrinsics. The __m128 data
type can hold four 32-bit floating-point values.

The __m128d data type can hold two 64-bit floating-point values.

The __m128i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit
integer values.

The compiler aligns __m128d and _m128i local and global data to 16-byte
boundaries on the stack. To align integer, float, or double arrays, you can use the
declspec align statement.

3

Intel® C++ Intrinsics Reference

Data Types Usage Guidelines

These data types are not basic ANSI C data types. You must observe the following
usage restrictions:

• Use data types only on either side of an assignment, as a return value, or as
a parameter. You cannot use it with other arithmetic expressions (+, -, etc).

• Use data types as objects in aggregates, such as unions, to access the byte
elements and structures.

• Use data types only with the respective intrinsics described in this
documentation.

Accessing __m128i Data

To access 8-bit data:

#define _mm_extract_epi8(x, imm) \

 ((((imm) & 0x1) == 0) ? \

 _mm_extract_epi16((x), (imm) >> 1) & 0xff : \

 _mm_extract_epi16(_mm_srli_epi16((x), 8), (imm) >> 1))

For 16-bit data, use the following intrinsic:

int _mm_extract_epi16(__m128i a, int imm)

To access 32-bit data:

#define _mm_extract_epi32(x, imm) \

 _mm_cvtsi128_si32(_mm_srli_si128((x), 4 * (imm)))

To access 64-bit data (Intel® 64 architecture only):

#define _mm_extract_epi64(x, imm) \

 _mm_cvtsi128_si64(_mm_srli_si128((x), 8 * (imm)))

Naming and Usage Syntax

Most intrinsic names use the following notational convention:

mm<intrin_op>_<suffix>

4

Intel® C++ Intrinsics Reference

The following table explains each item in the syntax.

<intrin_op> Indicates the basic operation of the intrinsic; for example, add for
addition and sub for subtraction.

<suffix> Denotes the type of data the instruction operates on. The first one or
two letters of each suffix denote whether the data is packed (p),
extended packed (ep), or scalar (s). The remaining letters and
numbers denote the type, with notation as follows:

• s single-precision floating point
• d double-precision floating point
• i128 signed 128-bit integer
• i64 signed 64-bit integer
• u64 unsigned 64-bit integer
• i32 signed 32-bit integer
• u32 unsigned 32-bit integer
• i16 signed 16-bit integer
• u16 unsigned 16-bit integer
• i8 signed 8-bit integer
• u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For
example, r0 is the lowest word of r. Some intrinsics are "composites" because they
require more than one instruction to implement them.

The packed values are represented in right-to-left order, with the lowest value being
used for scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0};

__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);

__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t appears as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics
require their arguments to be immediates (constant integer literals).

5

Intel® C++ Intrinsics Reference

References

See the following publications and internet locations for more information about
intrinsics and the Intel architectures that support them. You can find all publications
on the Intel website.

Internet Location or Publication Description

developer.intel.com Technical resource center for hardware
designers and developers; contains links to
product pages and documentation.

Intel® Itanium® Architecture
Software Developer's Manuals, Volume
3: Instruction Set Reference

Contains information and details about
Itanium instructions.

IA-32 Intel® Architecture Software
Developer's Manual, Volume 2A:
Instruction Set Reference, A-M

Describes the format of the instruction set
of IA-32 Intel Architecture and covers the
reference pages of instructions from A to M

IA-32 Intel® Architecture Software
Developer's Manual, Volume 2B:
Instruction Set Reference, N-Z

Describes the format of the instruction set
of IA-32 Intel Architecture and covers the
reference pages of instructions from N to Z

Intel® Itanium® 2 processor website Intel website for the Itanium 2 processor;
select the "Documentation" tab for
documentation.

Overview: Intrinsics For All IA

The intrinsics in this section function across all IA-32 and IA-64-based platforms.
They are offered as a convenience to the programmer. They are grouped as follows:

• Integer Arithmetic Intrinsics
• Floating-Point Intrinsics
• String and Block Copy Intrinsics
• Miscellaneous Intrinsics

Integer Arithmetic Intrinsics

The following table lists and describes integer arithmetic intrinsics that you can use
across all Intel architectures.

Intrinsic Description

int abs(int) Returns the absolute value of an
integer.

long labs(long) Returns the absolute value of a long
integer.

unsigned long _lrotl(unsigned long
value, int shift)

Implements 64-bit left rotate of value

6

Intel® C++ Intrinsics Reference

Intrinsic Description

by shift positions.

unsigned long _lrotr(unsigned long
value, int shift)

Implements 64-bit right rotate of
value by shift positions.

unsigned int _rotl(unsigned int
value, int shift)

Implements 32-bit left rotate of value
by shift positions.

unsigned int _rotr(unsigned int
value, int shift)

Implements 32-bit right rotate of
value by shift positions.

unsigned short _rotwl(unsigned short val,
int shift)

Implements 16-bit left rotate of value
by shift positions.

These intrinsics are not supported on
IA-64 platforms.

unsigned short _rotwr(unsigned short val,
int shift)

Implements 16-bit right rotate of
value by shift positions.

These intrinsics are not supported on
IA-64 platforms.

Note

Passing a constant shift value in the rotate intrinsics results in higher
performance.

Floating-point Intrinsics

The following table lists and describes floating point intrinsics that you can use
across all Intel architectures.

Intrinsic Description

double fabs(double) Returns the absolute value of a floating-point
value.

double log(double) Returns the natural logarithm ln(x), x>0, with
double precision.

float logf(float) Returns the natural logarithm ln(x), x>0, with
single precision.

double log10(double) Returns the base 10 logarithm log10(x), x>0, with
double precision.

float log10f(float) Returns the base 10 logarithm log10(x), x>0, with
single precision.

double exp(double) Returns the exponential function with double

7

Intel® C++ Intrinsics Reference

Intrinsic Description

precision.

float expf(float) Returns the exponential function with single
precision.

double pow(double, double) Returns the value of x to the power y with double
precision.

float powf(float, float) Returns the value of x to the power y with single
precision.

double sin(double) Returns the sine of x with double precision.

float sinf(float) Returns the sine of x with single precision.

double cos(double) Returns the cosine of x with double precision.

float cosf(float) Returns the cosine of x with single precision.

double tan(double) Returns the tangent of x with double precision.

float tanf(float) Returns the tangent of x with single precision.

double acos(double) Returns the inverse cosine of x with double
precision

float acosf(float) Returns the inverse cosine of x with single
precision

double acosh(double) Compute the inverse hyperbolic cosine of the
argument with double precision.

float acoshf(float) Compute the inverse hyperbolic cosine of the
argument with single precision.

double asin(double) Compute inverse sine of the argument with double
precision.

float asinf(float) Compute inverse sine of the argument with single
precision.

double asinh(double) Compute inverse hyperbolic sine of the argument
with double precision.

float asinhf(float) Compute inverse hyperbolic sine of the argument
with single precision.

double atan(double) Compute inverse tangent of the argument with
double precision.

float atanf(float) Compute inverse tangent of the argument with
single precision.

double atanh(double) Compute inverse hyperbolic tangent of the
argument with double precision.

float atanhf(float) Compute inverse hyperbolic tangent of the
argument with single precision.

8

Intel® C++ Intrinsics Reference

Intrinsic Description

double
cabs(struct_complex)

Computes absolute value of complex number. The
intrinsic argument is a complex number made
up of two double precision elements, one real and
one imaginary part.

double ceil(double) Computes smallest integral value of double
precision argument not less than the argument.

float ceilf(float) Computes smallest integral value of single
precision argument not less than the argument.

double cosh(double) Computes the hyperbolic cosine of double precison
argument.

float coshf(float) Computes the hyperbolic cosine of single precison
argument.

float fabsf(float) Computes absolute value of single precision
argument.

double floor(double) Computes the largest integral value of the double
precision argument not greater than the argument.

float floorf(float) Computes the largest integral value of the single
precision argument not greater than the argument.

double fmod(double) Computes the floating-point remainder of the
division of the first argument by the second
argument with double precison.

float fmodf(float) Computes the floating-point remainder of the
division of the first argument by the second
argument with single precison.

double hypot(double,
double)

Computes the length of the hypotenuse of a right
angled triangle with double precision.

float hypotf(float, float) Computes the length of the hypotenuse of a right
angled triangle with single precision.

double rint(double) Computes the integral value represented as double
using the IEEE rounding mode.

float rintf(float) Computes the integral value represented with
single precision using the IEEE rounding mode.

double sinh(double) Computes the hyperbolic sine of the double
precision argument.

float sinhf(float) Computes the hyperbolic sine of the single
precision argument.

float sqrtf(float) Computes the square root of the single precision
argument.

9

Intel® C++ Intrinsics Reference

Intrinsic Description

double tanh(double) Computes the hyperbolic tangent of the double
precision argument.

float tanhf(float) Computes the hyperbolic tangent of the single
precision argument.

String and Block Copy Intrinsics

The following table lists and describes string and block copy intrinsics that you can
use across all Intel architectures.

The string and block copy intrinsics are not implemented as intrinsics on IA-64
architecture.

Intrinsic Description

char *_strset(char *, _int32) Sets all characters in
a string to a fixed
value.

int memcmp(const void *cs, const void *ct, size_t n) Compares two
regions of memory.
Return <0 if cs<ct,
0 if cs=ct, or >0 if
cs>ct.

void *memcpy(void *s, const void *ct, size_t n) Copies from
memory. Returns s.

void *memset(void * s, int c, size_t n) Sets memory to a
fixed value. Returns
s.

char *strcat(char * s, const char * ct) Appends to a string.
Returns s.

int strcmp(const char *, const char *) Compares two
strings. Return <0 if
cs<ct, 0 if cs=ct,
or >0 if cs>ct.

char *strcpy(char * s, const char * ct) Copies a string.
Returns s.

size_t strlen(const char * cs) Returns the length
of string cs.

int strncmp(char *, char *, int) Compare two
strings, but only
specified number of
characters.

int strncpy(char *, char *, int) Copies a string, but

10

Intel® C++ Intrinsics Reference

Intrinsic Description

only specified
number of
characters.

Miscellaneous Intrinsics

The following table lists and describes intrinsics that you can use across all Intel
architectures, except where noted.

Intrinsic Description

_abnormal_termination(void) Can be invoked only by termination handlers.
Returns TRUE if the termination handler is
invoked as a result of a premature exit of the
corresponding try-finally region.

__cpuid Queries the processor for information about
processor type and supported features. The
Intel® C++ Compiler supports the Microsoft*
implementation of this intrinsic. See the
Microsoft documentation for details.

void *_alloca(int) Allocates memory in the local stack frame. The
memory is automatically freed upon return from
the function.

int _bit_scan_forward(int x) Returns the bit index of the least significant set
bit of x. If x is 0, the result is undefined.

int _bit_scan_reverse(int) Returns the bit index of the most significant set
bit of x. If x is 0, the result is undefined.

int _bswap(int) Reverses the byte order of x. Bits 0-7 are
swapped with bits 24-31, and bits 8-15 are
swapped with bits 16-23.

_exception_code(void) Returns the exception code.

_exception_info(void) Returns the exception information.

void _enable(void) Enables the interrupt.

void _disable(void) Disables the interrupt.

int _in_byte(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer data byte from port specified by
argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction IN.
Transfer double word from port specified by
argument.

int _in_word(int) Intrinsic that maps to the IA-32 instruction IN.

11

Intel® C++ Intrinsics Reference

Intrinsic Description

Transfer word from port specified by argument.

int _inp(int) Same as _in_byte

int _inpd(int) Same as _in_dword

int _inpw(int) Same as _in_word

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer data byte in second argument to port
specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer double word in second argument to port
specified by first argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction OUT.
Transfer word in second argument to port
specified by first argument.

int _outp(int, int) Same as _out_byte

int _outpd(int, int) Same as _out_dword

int _outpw(int, int) Same as _out_word

int _popcnt32(int x) Returns the number of set bits in x.

__int64 _rdtsc(void) Returns the current value of the processor's 64-
bit time stamp counter.
This intrinsic is not implemented on systems
based on IA-64 architecture. See Time Stamp for
an example of using this intrinsic.

__int64 _rdpmc(int p) Returns the current value of the 40-bit
performance monitoring counter specified by p.

int _setjmp(jmp_buf) A fast version of setjmp(), which bypasses the
termination handling. Saves the callee-save
registers, stack pointer and return address. This
intrinsic is not implemented on systems based on
IA-64 architecture.

Overview: MMX(TM) Technology Intrinsics

MMX™ technology is an extension to the Intel architecture (IA) instruction set. The
MMX instruction set adds 57 opcodes and a 64-bit quadword data type, and eight 64-
bit registers. Each of the eight registers can be directly addressed using the register
names mm0 to mm7.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

12

Intel® C++ Intrinsics Reference

The EMMS Instruction: Why You Need It

Using EMMS is like emptying a container to accommodate new content. The EMMS
instruction clears the MMX™ registers and sets the value of the floating-point tag
word to empty. Because floating-point convention specifies that the floating-point
stack be cleared after use, you should clear the MMX registers before issuing a
floating-point instruction. You should insert the EMMS instruction at the end of all
MMX code segments to avoid a floating-point overflow exception.

Why You Need EMMS to Reset After an MMX(TM) Instruction

Caution

Failure to empty the multimedia state after using an MMX instruction and before
using a floating-point instruction can result in unexpected execution or poor
performance.

EMMS Usage Guidelines

Here are guidelines for when to use the EMMS instruction:

• Use _mm_empty() after an MMX™ instruction if the next instruction is a
floating-point (FP) instruction. For example, you should use the EMMS
instruction before performing calculations on float, double or long double.
You must be aware of all situations in which your code generates an MMX
inst cru tion:

• when using an MMX technology intrinsic

13

Intel® C++ Intrinsics Reference

• when using Streaming SIMD Extension integer intrinsics that use the
__m64 data type

• when referencing an __m64 data type variable
• when using an MMX instruction through inline assembly

• Use different functions for operations that use floating point instructions and
those that use MMX instructions. This action eliminates the need to empty the
multimedia state within the body of a critical loop.

• Use _mm_empty() during runtime initialization of __m64 and FP data types.
This ensures resetting the register between data type transitions.

• Do not use _mm_empty() before an MMX instruction, since using _mm_empty()
before an MMX instruction incurs an operation with no benefit (no-op).

• Do not use on systems based on IA-64 architecture. There are no special
registers (or overlay) for the MMX(TM) instructions or Streaming SIMD
Extensions on systems based on IA-64 architecture even though the intrinsics
are supported.

• See the Correct Usage and Incorrect Usage coding examples in the following
table.

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z);
float f = init();

__m64 x = _m_paddd(y, z);
float f = (_mm_empty(), init());

MMX(TM) Technology General Support Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

To see detailed information about an intrinsic, click on that intrinsic in the following
table.

Intrinsic Name Operation Corresponding MMX Instruction

_mm_empty Empty MM state EMMS

_mm_cvtsi32_si64 Convert from int MOVD

_mm_cvtsi64_si32 Convert to int MOVD

_mm_cvtsi64_m64 Convert from __int64 MOVQ

_mm_cvtm64_si64 Convert to __int64 MOVQ

_mm_packs_pi16 Pack PACKSSWB

_mm_packs_pi32 Pack PACKSSDW

_mm_packs_pu16 Pack PACKUSWB

_mm_unpackhi_pi8 Interleave PUNPCKHBW

_mm_unpackhi_pi16 Interleave PUNPCKHWD

_mm_unpackhi_pi32 Interleave PUNPCKHDQ

_mm_unpacklo_pi8 Interleave PUNPCKLBW

14

Intel® C++ Intrinsics Reference

Intrinsic Name Operation Corresponding MMX Instruction

_mm_unpacklo_pi16 Interleave PUNPCKLWD

_mm_unpacklo_pi32 Interleave PUNPCKLDQ

void _mm_empty(void)

Empty the multimedia state.

__m64 _mm_cvtsi32_si64(int i)

Convert the integer object i to a 64-bit __m64 object. The integer value is zero-
extended to 64 bits.

int _mm_cvtsi64_si32(__m64 m)

Convert the lower 32 bits of the __m64 object m to an integer.

__m64 _mm_cvtsi64_m64(__int64 i)

Move the 64-bit integer object i to a __mm64 object

__int64 _mm_cvtm64_si64(__m64 m)

Move the __m64 object m to a 64-bit integer

__m64 _mm_packs_pi16(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with
signed saturation, and pack the four 16-bit values from m2 into the upper four 8-bit
values of the result with signed saturation.

__m64 _mm_packs_pi32(__m64 m1, __m64 m2)

Pack the two 32-bit values from m1 into the lower two 16-bit values of the result with
signed saturation, and pack the two 32-bit values from m2 into the upper two 16-bit
values of the result with signed saturation.

15

Intel® C++ Intrinsics Reference

__m64 _mm_packs_pu16(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with
unsigned saturation, and pack the four 16-bit values from m2 into the upper four 8-
bit values of the result with unsigned saturation.

__m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the high half of m1 with the four values from the
high half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpackhi_pi16(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the high half of m1 with the two values from
the high half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

Interleave the 32-bit value from the high half of m1 with the 32-bit value from the
high half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi8(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the low half of m1 with the four values from the
low half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the low half of m1 with the two values from the
low half of m2. The interleaving begins with the data from m1.

__m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

Interleave the 32-bit value from the low half of m1 with the 32-bit value from the low
half of m2. The interleaving begins with the data from m1.

16

Intel® C++ Intrinsics Reference

MMX(TM) Technology Packed Arithmetic Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

For detailed information about an intrinsic, click on the name of the intrinsic in the
following table.

Intrinsic Name Operation Corresponding MMX Instruction

_mm_add_pi8 Addition PADDB

_mm_add_pi16 Addition PADDW

_mm_add_pi32 Addition PADDD

_mm_adds_pi8 Addition PADDSB

_mm_adds_pi16 Addition PADDSW

_mm_adds_pu8 Addition PADDUSB

_mm_adds_pu16 Addition PADDUSW

_mm_sub_pi8 Subtraction PSUBB

_mm_sub_pi16 Subtraction PSUBW

_mm_sub_pi32 Subtraction PSUBD

_mm_subs_pi8 Subtraction PSUBSB

_mm_subs_pi16 Subtraction PSUBSW

_mm_subs_pu8 Subtraction PSUBUSB

_mm_subs_pu16 Subtraction PSUBUSW

_mm_madd_pi16 Multiply and add PMADDWD

_mm_mulhi_pi16 Multiplication PMULHW

_mm_mullo_pi16 Multiplication PMULLW

__m64 _mm_add_pi8(__m64 m1, __m64 m2)

Add the eight 8-bit values in m1 to the eight 8-bit values in m2.

__m64 _mm_add_pi16(__m64 m1, __m64 m2)

Add the four 16-bit values in m1 to the four 16-bit values in m2.

17

Intel® C++ Intrinsics Reference

__m64 _mm_add_pi32(__m64 m1, __m64 m2)

Add the two 32-bit values in m1 to the two 32-bit values in m2.

__m64 _mm_adds_pi8(__m64 m1, __m64 m2)

Add the eight signed 8-bit values in m1 to the eight signed 8-bit values in m2 using
saturating arithmetic.

__m64 _mm_adds_pi16(__m64 m1, __m64 m2)

Add the four signed 16-bit values in m1 to the four signed 16-bit values in m2 using
saturating arithmetic.

__m64 _mm_adds_pu8(__m64 m1, __m64 m2)

Add the eight unsigned 8-bit values in m1 to the eight unsigned 8-bit values in m2 and
using saturating arithmetic.

__m64 _mm_adds_pu16(__m64 m1, __m64 m2)

Add the four unsigned 16-bit values in m1 to the four unsigned 16-bit values in m2
using saturating arithmetic.

__m64 _mm_sub_pi8(__m64 m1, __m64 m2)

Subtract the eight 8-bit values in m2 from the eight 8-bit values in m1.

__m64 _mm_sub_pi16(__m64 m1, __m64 m2)

Subtract the four 16-bit values in m2 from the four 16-bit values in m1.

__m64 _mm_sub_pi32(__m64 m1, __m64 m2)

Subtract the two 32-bit values in m2 from the two 32-bit values in m1.

18

Intel® C++ Intrinsics Reference

__m64 _mm_subs_pi8(__m64 m1, __m64 m2)

Subtract the eight signed 8-bit values in m2 from the eight signed 8-bit values in m1
using saturating arithmetic.

__m64 _mm_subs_pi16(__m64 m1, __m64 m2)

Subtract the four signed 16-bit values in m2 from the four signed 16-bit values in m1
using saturating arithmetic.

__m64 _mm_subs_pu8(__m64 m1, __m64 m2)

Subtract the eight unsigned 8-bit values in m2 from the eight unsigned 8-bit values in
m1 using saturating arithmetic.

__m64 _mm_subs_pu16(__m64 m1, __m64 m2)

Subtract the four unsigned 16-bit values in m2 from the four unsigned 16-bit values
in m1 using saturating arithmetic.

__m64 _mm_madd_pi16(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 producing four 32-bit
intermediate results, which are then summed by pairs to produce two 32-bit results.

__m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

Multiply four signed 16-bit values in m1 by four signed 16-bit values in m2 and
produce the high 16 bits of the four results.

__m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 and produce the low 16
bits of the four results.

19

Intel® C++ Intrinsics Reference

MMX(TM) Technology Shift Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

For detailed information about an intrinsic, click on the name of the intrinsic in the
following table.

Intrinsic
Name

Operation Corresponding MMX
Instruction

_mm_sll_pi16 Logical shift left PSLLW

_mm_slli_pi16 Logical shift left PSLLWI

_mm_sll_pi32 Logical shift left PSLLD

_mm_slli_pi32 Logical shift left PSLLDI

_mm_sll_pi64 Logical shift left PSLLQ

_mm_slli_pi64 Logical shift left PSLLQI

_mm_sra_pi16 Arithmetic shift right PSRAW

_mm_srai_pi16 Arithmetic shift right PSRAWI

_mm_sra_pi32 Arithmetic shift right PSRAD

_mm_srai_pi32 Arithmetic shift right PSRADI

_mm_srl_pi16 Logical shift right PSRLW

_mm_srli_pi16 Logical shift right PSRLWI

_mm_srl_pi32 Logical shift right PSRLD

_mm_srli_pi32 Logical shift right PSRLDI

_mm_srl_pi64 Logical shift right PSRLQ

_mm_srli_pi64 Logical shift right PSRLQI

__m64 _mm_sll_pi16(__m64 m, __m64 count)

Shift four 16-bit values in m left the amount specified by count while shifting in
zeros.

__m64 _mm_slli_pi16(__m64 m, int count)

Shift four 16-bit values in m left the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

20

Intel® C++ Intrinsics Reference

__m64 _mm_sll_pi32(__m64 m, __m64 count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_pi32(__m64 m, int count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros.
For the best performance, count should be a constant.

__m64 _mm_sll_pi64(__m64 m, __m64 count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros.

__m64 _mm_slli_pi64(__m64 m, int count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros.
For the best performance, count should be a constant.

__m64 _mm_sra_pi16(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in the
sign bit.

__m64 _mm_srai_pi16(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in the
sign bit. For the best performance, count should be a constant.

__m64 _mm_sra_pi32(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in the
sign bit.

__m64 _mm_srai_pi32(__m64 m, int count)

21

Intel® C++ Intrinsics Reference

Shift two 32-bit values in m right the amount specified by count while shifting in the
sign bit. For the best performance, count should be a constant.

__m64 _mm_srl_pi16(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in
zeros.

__m64 _mm_srli_pi16(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

__m64 _mm_srl_pi32(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in
zeros.

__m64 _mm_srli_pi32(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in
zeros. For the best performance, count should be a constant.

__m64 _mm_srl_pi64(__m64 m, __m64 count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros.

__m64 _mm_srli_pi64(__m64 m, int count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros.
For the best performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

For detailed information about an intrinsic, click on that intrinsic in the following
table.

22

Intel® C++ Intrinsics Reference

Intrinsic
Name

Operation Corresponding MMX
Instruction

_mm_and_si64 Bitwise AND PAND

_mm_andnot_si64 Bitwise ANDNOT PANDN

_mm_or_si64 Bitwise OR POR

_mm_xor_si64 Bitwise Exclusive OR PXOR

__m64 _mm_and_si64(__m64 m1, __m64 m2)

Perform a bitwise AND of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _mm_andnot_si64(__m64 m1, __m64 m2)

Perform a bitwise NOT on the 64-bit value in m1 and use the result in a bitwise AND
with the 64-bit value in m2.

__m64 _mm_or_si64(__m64 m1, __m64 m2)

Perform a bitwise OR of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _mm_xor_si64(__m64 m1, __m64 m2)

Perform a bitwise XOR of the 64-bit value in m1 with the 64-bit value in m2.

MMX(TM) Technology Compare Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

The intrinsics in the following table perform compare operations. For a more detailed
description of an intrinsic, click on that intrinsic in the table.

Intrinsic
Name

Operation Corresponding MMX
Instruction

_mm_cmpeq_pi8 Equal PCMPEQB

_mm_cmpeq_pi16 Equal PCMPEQW

_mm_cmpeq_pi32 Equal PCMPEQD

23

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding MMX
Name Instruction

_mm_cmpgt_pi8 Greater Than PCMPGTB

_mm_cmpgt_pi16 Greater Than PCMPGTW

_mm_cmpgt_pi32 Greater Than PCMPGTD

__m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are equal to the respective 8-bit values in m2 set
the respective 8-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpeq_pi16(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are equal to the respective 16-bit values in m2
set the respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are equal to the respective 32-bit values in m2
set the respective 32-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mm_cmpgt_pi8(__m64 m1, __m64 m2)

If the respective 8-bit signed values in m1 are greater than the respective 8-bit
signed values in m2 set the respective 8-bit resulting values to all ones, otherwise set
them to all zeros.

__m64 _mm_cmpgt_pi16(__m64 m1, __m64 m2)

If the respective 16-bit signed values in m1 are greater than the respective 16-bit
signed values in m2 set the respective 16-bit resulting values to all ones, otherwise
set them to all zeros.

24

Intel® C++ Intrinsics Reference

__m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)

If the respective 32-bit signed values in m1 are greater than the respective 32-bit
signed values in m2 set the respective 32-bit resulting values to all ones, otherwise
set them all to zeros.

MMX(TM) Technology Set Intrinsics

The prototypes for MMX™ technology intrinsics are in the mmintrin.h header file.

For detailed information about an intrinsic, click on that intrinsic in the following
table.

Note

In the descriptions regarding the bits of the MMX register, bit 0 is the least
significant and bit 63 is the most significant.

Intrinsic
Name

Operation Corresponding MMX Instruction

_mm_setzero_si64 set to zero PXOR

_mm_set_pi32 set integer values Composite

_mm_set_pi16 set integer values Composite

_mm_set_pi8 set integer values Composite

_mm_set1_pi32 set integer values

_mm_set1_pi16 set integer values Composite

_mm_set1_pi8 set integer values Composite

_mm_setr_pi32 set integer values Composite

_mm_setr_pi16 set integer values Composite

_mm_setr_pi8 set integer values Composite

__m64 _mm_setzero_si64()
Sets the 64-bit value to zero.

R

0x0

25

Intel® C++ Intrinsics Reference

__m64 _mm_set_pi32(int i1, int i0)

Sets the 2 signed 32-bit integer values.

R0 R1

i0 i1

__m64 _mm_set_pi16(short s3, short s2, short s1, short s0)

Sets the 4 signed 16-bit integer values.

R0 R1 R2 R3

w0 w1 w2 w3

__m64 _mm_set_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Sets the 8 signed 8-bit integer values.

R0 R1 ... R7

b0 b1 ... b7

__m64 _mm_set1_pi32(int i)

Sets the 2 signed 32-bit integer values to i.

R0 R1

i i

__m64 _mm_set1_pi16(short s)

Sets the 4 signed 16-bit integer values to w.

R0 R1 R2 R3

w w w w

26

Intel® C++ Intrinsics Reference

__m64 _mm_set1_pi8(char b)

Sets the 8 signed 8-bit integer values to b

R0 R1 ... R7

b b ... b

__m64 _mm_setr_pi32(int i1, int i0)

Sets the 2 signed 32-bit integer values in reverse order.

R0 R1

i1 i0

__m64 _mm_setr_pi16(short s3, short s2, short s1, short s0)

Sets the 4 signed 16-bit integer values in reverse order.

R0 R1 R2 R3

w3 w2 w1 w0

__m64 _mm_setr_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Sets the 8 signed 8-bit integer values in reverse order.

R0 R1 ... R7

b7 b6 ... b0

MMX(TM) Technology Intrinsics on IA-64 Architecture

MMX™ technology intrinsics provide access to the MMX technology instruction set on
systems based on IA-64 architecture. To provide source compatibility with the IA-32
architecture, these intrinsics are equivalent both in name and functionality to the set
of IA-32-based MMX intrinsics.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

27

Intel® C++ Intrinsics Reference

Data Types

The C data type __m64 is used when using MMX technology intrinsics. It can hold
eight 8-bit values, four 16-bit values, two 32-bit values, or one 64-bit value.

The __m64 data type is not a basic ANSI C data type. Therefore, observe the
following usage restrictions:

• Use the new data type only on the left-hand side of an assignment, as a
return value, or as a parameter. You cannot use it with other arithmetic
expressions (" + ", " - ", and so on).

• Use the new data type as objects in aggregates, such as unions, to access the
byte elements and structures; the address of an __m64 object may be taken.

• Use new data types only with the respective intrinsics described in this
documentation.

For complete details of the hardware instructions, see the Intel® Architecture MMX™
Technology Programmer's Reference Manual. For descriptions of data types, see the
Intel® Architecture Software Developer's Manual, Volume 2.

Overview: Streaming SIMD Extensions

This section describes the C++ language-level features supporting the Streaming
SIMD Extensions (SSE) in the Intel® C++ Compiler. These topics explain the
following features of the intrinsics:

• Floating Point Intrinsics
• Arithmetic Operation Intrinsics
• Logical Operation Intrinsics
• Comparison Intrinsics
• Conversion Intrinsics
• Load Operations
• Set Operations
• Store Operations
• Cacheability Support
• Integer Intrinsics
• Intrinsics to Read and Write Registers
• Miscellaneous Intrinsics
• Using Streaming SIMD Extensions on Itanium® Architecture

The prototypes for SSE intrinsics are in the xmmintrin.h header file.

Note

You can also use the single ia32intrin.h header file for any IA-32 Intrinsics.

28

Intel® C++ Intrinsics Reference

Floating-point Intrinsics for Streaming SIMD Extensions

You should be familiar with the hardware features provided by the Streaming SIMD
Extensions (SSE) when writing programs with the intrinsics. The following are four
important issues to keep in mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful that they may consist of more than one
machine-language instruction.

• Floating-point data loaded or stored as __m128 objects must be generally 16-
byte-aligned.

• Some intrinsics require that their argument be immediates, that is, constant
integers (literals), due to the nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number)
arguments is undefined. Therefore, FP operations using NaN arguments will
not match the expected behavior of the corresponding assembly instructions.

Arithmetic Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0-R3. R0, R1, R2 and R3 each represent one of the
4 32-bit pieces of the result register.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

Intrinsic Operation Corresponding SSE Instruction

_mm_add_ss Addition ADDSS

_mm_add_ps Addition ADDPS

_mm_sub_ss Subtraction SUBSS

_mm_sub_ps Subtraction SUBPS

_mm_mul_ss Multiplication MULSS

_mm_mul_ps Multiplication MULPS

_mm_div_ss Division DIVSS

_mm_div_ps Division DIVPS

_mm_sqrt_ss Squared Root SQRTSS

_mm_sqrt_ps Squared Root SQRTPS

_mm_rcp_ss Reciprocal RCPSS

29

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding SSE Instruction

_mm_rcp_ps Reciprocal RCPPS

_mm_rsqrt_ss Reciprocal Squared Root RSQRTSS

_mm_rsqrt_ps Reciprocal Squared Root RSQRTPS

_mm_min_ss Computes Minimum MINSS

_mm_min_ps Computes Minimum MINPS

_mm_max_ss Computes Maximum MAXSS

_mm_max_ps Computes Maximum MAXPS

__m128 _mm_add_ss(__m128 a, __m128 b)

Adds the lower single-precision, floating-point (SP FP) values of a and b; the upper 3
SP FP values are passed through from a.

R0 R1 R2 R3

a0 + b0 a1 a2 a3

__m128 _mm_add_ps(__m128 a, __m128 b)

Adds the four SP FP values of a and b.

R0 R1 R2 R3

a0 +b0 a1 + b1 a2 + b2 a3 + b3

__m128 _mm_sub_ss(__m128 a, __m128 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed
through from a.

R0 R1 R2 R3

a0 - b0 a1 a2 a3

__m128 _mm_sub_ps(__m128 a, __m128 b)

Subtracts the four SP FP values of a and b.

30

Intel® C++ Intrinsics Reference

R0 R1 R2 R3

a0 - b0 a1 - b1 a2 - b2 a3 - b3

__m128 _mm_mul_ss(__m128 a, __m128 b)

Multiplies the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.

R0 R1 R2 R3

a0 * b0 a1 a2 a3

__m128 _mm_mul_ps(__m128 a, __m128 b)

Multiplies the four SP FP values of a and b.

R0 R1 R2 R3

a0 * b0 a1 * b1 a2 * b2 a3 * b3

__m128 _mm_div_ss(__m128 a, __m128 b)

Divides the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.

R0 R1 R2 R3

a0 / b0 a1 a2 a3

__m128 _mm_div_ps(__m128 a, __m128 b)

Divides the four SP FP values of a and b.

R0 R1 R2 R3

a0 / b0 a1 / b1 a2 / b2 a3 / b3

31

Intel® C++ Intrinsics Reference

__m128 _mm_sqrt_ss(__m128 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values
are passed through.

R0 R1 R2 R3

sqrt(a0) a1 a2 a3

__m128 _mm_sqrt_ps(__m128 a)

Computes the square roots of the four SP FP values of a.

R0 R1 R2 R3

sqrt(a0) sqrt(a1) sqrt(a2) sqrt(a3)

__m128 _mm_rcp_ss(__m128 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the
upper 3 SP FP values are passed through.

R0 R1 R2 R3

recip(a0) a1 a2 a3

__m128 _mm_rcp_ps(__m128 a)

Computes the approximations of reciprocals of the four SP FP values of a.

R0 R1 R2 R3

recip(a0) recip(a1) recip(a2) recip(a3)

__m128 _mm_rsqrt_ss(__m128 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP
value of a; the upper 3 SP FP values are passed through.

R0 R1 R2 R3

recip(sqrt(a0)) a1 a2 a3

32

Intel® C++ Intrinsics Reference

__m128 _mm_rsqrt_ps(__m128 a)

Computes the approximations of the reciprocals of the square roots of the four SP FP
values of a.

R0 R1 R2 R3

recip(sqrt(a0)) recip(sqrt(a1)) recip(sqrt(a2)) recip(sqrt(a3))

__m128 _mm_min_ss(__m128 a, __m128 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP
values are passed through from a.

R0 R1 R2 R3

min(a0, b0) a1 a2 a3

__m128 _mm_min_ps(__m128 a, __m128 b)

Computes the minimum of the four SP FP values of a and b.

R0 R1 R2 R3

min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

__m128 _mm_max_ss(__m128 a, __m128 b)

Computes the maximum of the lower SP FP values of a and b; the upper 3 SP FP
values are passed through from a.

R0 R1 R2 R3

max(a0, b0) a1 a2 a3

__m128 _mm_max_ps(__m128 a, __m128 b)

Computes the maximum of the four SP FP values of a and b.

R0 R1 R2 R3

max(a0, b0) max(a1, b1) max(a2, b2) max(a3, b3)

33

Intel® C++ Intrinsics Reference

Logical Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0-R3. R0, R1, R2 and R3 each represent one of the
4 32-bit pieces of the result register.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

Intrinsic
Name

Operation Corresponding
SSE
Instruction

_mm_and_ps Bitwise AND ANDPS

_mm_andnot_ps Bitwise ANDNOT ANDNPS

_mm_or_ps Bitwise OR ORPS

_mm_xor_ps Bitwise Exclusive
OR

XORPS

__m128 _mm_and_ps(__m128 a, __m128 b)

Computes the bitwise AND of the four SP FP values of a and b.

R0 R1 R2 R3

a0 & b0 a1 & b1 a2 & b2 a3 & b3

__m128 _mm_andnot_ps(__m128 a, __m128 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.

R0 R1 R2 R3

~a0 & b0 ~a1 & b1 ~a2 & b2 ~a3 & b3

__m128 _mm_or_ps(__m128 a, __m128 b)

Computes the bitwise OR of the four SP FP values of a and b.

R0 R1 R2 R3

a0 | b0 a1 | b1 a2 | b2 a3 | b3

34

Intel® C++ Intrinsics Reference

__m128 _mm_xor_ps(__m128 a, __m128 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

R0 R1 R2 R3

a0 ^ b0 a1 ^ b1 a2 ^ b2 a3 ^ b3

Comparisons for Streaming SIMD Extensions

Each comparison intrinsic performs a comparison of a and b. For the packed form,
the four SP FP values of a and b are compared, and a 128-bit mask is returned. For
the scalar form, the lower SP FP values of a and b are compared, and a 32-bit mask
is returned; the upper three SP FP values are passed through from a. The mask is
set to 0xffffffff for each element where the comparison is true and 0x0 where the
comparison is false.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R or R0-R3. R0, R1, R2 and R3 each represent one
of the 4 32-bit pieces of the result register.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_cmpeq_ss Equal CMPEQSS

_mm_cmpeq_ps Equal CMPEQPS

_mm_cmplt_ss Less Than CMPLTSS

_mm_cmplt_ps Less Than CMPLTPS

_mm_cmple_ss Less Than or Equal CMPLESS

35

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding SSE
Name Instruction

_mm_cmple_ps Less Than or Equal CMPLEPS

_mm_cmpgt_ss Greater Than CMPLTSS

_mm_cmpgt_ps Greater Than CMPLTPS

_mm_cmpge_ss Greater Than or Equal CMPLESS

_mm_cmpge_ps Greater Than or Equal CMPLEPS

_mm_cmpneq_ss Not Equal CMPNEQSS

_mm_cmpneq_ps Not Equal CMPNEQPS

_mm_cmpnlt_ss Not Less Than CMPNLTSS

_mm_cmpnlt_ps Not Less Than CMPNLTPS

_mm_cmpnle_ss Not Less Than or Equal CMPNLESS

_mm_cmpnle_ps Not Less Than or Equal CMPNLEPS

_mm_cmpngt_ss Not Greater Than CMPNLTSS

_mm_cmpngt_ps Not Greater Than CMPNLTPS

_mm_cmpnge_ss Not Greater Than or Equal CMPNLESS

_mm_cmpnge_ps Not Greater Than or Equal CMPNLEPS

_mm_cmpord_ss Ordered CMPORDSS

36

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding SSE
Name Instruction

_mm_cmpord_ps Ordered CMPORDPS

_mm_cmpunord_ss Unordered CMPUNORDSS

_mm_cmpunord_ps Unordered CMPUNORDPS

_mm_comieq_ss Equal COMISS

_mm_comilt_ss Less Than COMISS

_mm_comile_ss Less Than or Equal COMISS

_mm_comigt_ss Greater Than COMISS

_mm_comige_ss Greater Than or Equal COMISS

_mm_comineq_ss Not Equal COMISS

_mm_ucomieq_ss Equal UCOMISS

_mm_ucomilt_ss Less Than UCOMISS

_mm_ucomile_ss Less Than or Equal UCOMISS

_mm_ucomigt_ss Greater Than UCOMISS

_mm_ucomige_ss Greater Than or Equal UCOMISS

_mm_ucomineq_ss Not Equal UCOMISS

37

Intel® C++ Intrinsics Reference

__m128 _mm_cmpeq_ss(__m128 a, __m128 b)

Compare for equality.

R0 R1 R2 R3

(a0 == b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpeq_ps(__m128 a, __m128 b)

Compare for equality.

R0 R1 R2 R3

(a0 == b0) ?
0xffffffff : 0x0

(a1 == b1) ?
0xffffffff : 0x0

(a2 == b2) ?
0xffffffff : 0x0

(a3 == b3) ?
0xffffffff : 0x0

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

Compare for less-than.

R0 R1 R2 R3

(a0 < b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

Compare for less-than.

R0 R1 R2 R3

(a0 < b0) ?
0xffffffff : 0x0

(a1 < b1) ?
0xffffffff : 0x0

(a2 < b2) ?
0xffffffff : 0x0

(a3 < b3) ?
0xffffffff : 0x0

__m128 _mm_cmple_ss(__m128 a, __m128 b)

Compare for less-than-or-equal.

R0 R1 R2 R3

(a0 <= b0) ? 0xffffffff : 0x0 a1 a2 a3

38

Intel® C++ Intrinsics Reference

__m128 _mm_cmple_ps(__m128 a, __m128 b)

Compare for less-than-or-equal.

R0 R1 R2 R3

(a0 <= b0) ?
0xffffffff : 0x0

(a1 <= b1) ?
0xffffffff : 0x0

(a2 <= b2) ?
0xffffffff : 0x0

(a3 <= b3) ?
0xffffffff : 0x0

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

Compare for greater-than.

R0 R1 R2 R3

(a0 > b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

Compare for greater-than.

R0 R1 R2 R3

(a0 > b0) ?
0xffffffff : 0x0

(a1 > b1) ?
0xffffffff : 0x0

(a2 > b2) ?
0xffffffff : 0x0

(a3 > b3) ?
0xffffffff : 0x0

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

Compare for greater-than-or-equal.

R0 R1 R2 R3

(a0 >= b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

Compare for greater-than-or-equal.

R0 R1 R2 R3

(a0 >= b0) ?
0xffffffff : 0x0

(a1 >= b1) ?
0xffffffff : 0x0

(a2 >= b2) ?
0xffffffff : 0x0

(a3 >= b3) ?
0xffffffff : 0x0

39

Intel® C++ Intrinsics Reference

40

Intel® C++ Intrinsics Reference

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

Compare for inequality.

R0 R1 R2 R3

(a0 != b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

Compare for inequality.

R0 R1 R2 R3

(a0 != b0) ?
0xffffffff : 0x0

(a1 != b1) ?
0xffffffff : 0x0

(a2 != b2) ?
0xffffffff : 0x0

(a3 != b3) ?
0xffffffff : 0x0

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

Compare for not-less-than.

R0 R1 R2 R3

!(a0 < b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

Compare for not-less-than.

R0 R1 R2 R3

!(a0 < b0) ?
0xffffffff : 0x0

!(a1 < b1) ?
0xffffffff : 0x0

!(a2 < b2) ?
0xffffffff : 0x0

!(a3 < b3) ?
0xffffffff : 0x0

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

R0 R1 R2 R3

!(a0 <= b0) ? 0xffffffff : 0x0 a1 a2 a3

41

Intel® C++ Intrinsics Reference

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

R0 R1 R2 R3

!(a0 <= b0) ?
0xffffffff : 0x0

!(a1 <= b1) ?
0xffffffff : 0x0

!(a2 <= b2) ?
0xffffffff : 0x0

!(a3 <= b3) ?
0xffffffff : 0x0

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

Compare for not-greater-than.

R0 R1 R2 R3

!(a0 > b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

Compare for not-greater-than.

R0 R1 R2 R3

!(a0 > b0) ?
0xffffffff : 0x0

!(a1 > b1) ?
0xffffffff : 0x0

!(a2 > b2) ?
0xffffffff : 0x0

!(a3 > b3) ?
0xffffffff : 0x0

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.

R0 R1 R2 R3

!(a0 >= b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.

R0 R1 R2 R3

!(a0 >= b0) ?
0xffffffff : 0x0

!(a1 >= b1) ?
0xffffffff : 0x0

!(a2 >= b2) ?
0xffffffff : 0x0

!(a3 >= b3) ?
0xffffffff : 0x0

42

Intel® C++ Intrinsics Reference

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

Compare for ordered.

R0 R1 R2 R3

(a0 ord? b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

Compare for ordered.

R0 R1 R2 R3

(a0 ord? b0) ?
0xffffffff : 0x0

(a1 ord? b1) ?
0xffffffff : 0x0

(a2 ord? b2) ?
0xffffffff : 0x0

(a3 ord? b3) ?
0xffffffff : 0x0

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

Compare for unordered.

R0 R1 R2 R3

(a0 unord? b0) ? 0xffffffff : 0x0 a1 a2 a3

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

Compare for unordered.

R0 R1 R2 R3

(a0 unord? b0) ?
0xffffffff : 0x0

(a1 unord? b1) ?
0xffffffff : 0x0

(a2 unord? b2) ?
0xffffffff : 0x0

(a3 unord? b3) ?
0xffffffff : 0x0

int _mm_comieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is
returned. Otherwise 0 is returned.

R

(a0 == b0) ? 0x1 : 0x0

43

Intel® C++ Intrinsics Reference

int _mm_comilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is
returned. Otherwise 0 is returned.

R

(a0 < b0) ? 0x1 : 0x0

int _mm_comile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less
than or equal to b, 1 is returned. Otherwise 0 is returned.

R

(a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b
are equal, 1 is returned. Otherwise 0 is returned.

R

(a0 > b0) ? 0x1 : 0x0

int _mm_comige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is
greater than or equal to b, 1 is returned. Otherwise 0 is returned.

R

(a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not
equal, 1 is returned. Otherwise 0 is returned.

R

44

Intel® C++ Intrinsics Reference

(a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is
returned. Otherwise 0 is returned.

R

(a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is
returned. Otherwise 0 is returned.

R

(a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less
than or equal to b, 1 is returned. Otherwise 0 is returned.

R

(a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than
or equal to b, 1 is returned. Otherwise 0 is returned.

R

(a0 > b0) ? 0x1 : 0x0

45

Intel® C++ Intrinsics Reference

int _mm_ucomige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is
greater than or equal to b, 1 is returned. Otherwise 0 is returned.

R

(a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not
equal, 1 is returned. Otherwise 0 is returned.

R

r := (a0 != b0) ? 0x1 : 0x0

Conversion Operations for Streaming SIMD Extensions

To see the details about an intrinsic, click on that intrinsic name in the following
table.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R or R0-R3. R0, R1, R2 and R3 each represent one
of the 4 32-bit pieces of the result register.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_cvtss_si32 Convert to 32-bit integer CVTSS2SI

_mm_cvtss_si64 Convert to 64-bit integer CVTSS2SI

_mm_cvtps_pi32 Convert to two 32-bit integers CVTPS2PI

_mm_cvttss_si32 Convert to 32-bit integer CVTTSS2SI

_mm_cvttss_si64 Convert to 64-bit integer CVTTSS2SI

_mm_cvttps_pi32 Convert to two 32-bit integers CVTTPS2PI

_mm_cvtsi32_ss Convert from 32-bit integer CVTSI2SS

_mm_cvtsi64_ss Convert from 64-bit integer CVTSI2SS

46

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding SSE
Name Instruction

_mm_cvtpi32_ps Convert from two 32-bit integers CVTTPI2PS

_mm_cvtpi16_ps Convert from four 16-bit integers composite

_mm_cvtpu16_ps Convert from four 16-bit integers composite

_mm_cvtpi8_ps Convert from four 8-bit integers composite

_mm_cvtpu8_ps Convert from four 8-bit integers composite

_mm_cvtpi32x2_ps Convert from four 32-bit integers composite

_mm_cvtps_pi16 Convert to four 16-bit integers composite

_mm_cvtps_pi8 Convert to four 8-bit integers composite

_mm_cvtss_f32 Extract composite

int _mm_cvtss_si32(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current
rounding mode.

R

(int)a0

__int64 _mm_cvtss_si64(__m128 a)
Convert the lower SP FP value of a to a 64-bit signed integer according to the current
rounding mode.

R

(__int64)a0

__m64 _mm_cvtps_pi32(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the
current rounding mode, returning the integers in packed form.

R0 R1

(int)a0 (int)a1

47

Intel® C++ Intrinsics Reference

 int _mm_cvttss_si32(__m128 a)
Convert the lower SP FP value of a to a 32-bit integer with truncation.

R

(int)a0

__int64 _mm_cvttss_si64(__m128 a)
Convert the lower SP FP value of a to a 64-bit signed integer with truncation.

R

(__int64)a0

__m64 _mm_cvttps_pi32(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation,
returning the integers in packed form.

R0 R1

(int)a0 (int)a1

__m128 _mm_cvtsi32_ss(__m128 a, int b)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values
are passed through from a.

R0 R1 R2 R3

(float)b a1 a2 a3

__m128 _mm_cvtsi64_ss(__m128 a, __int64 b)

Convert the signed 64-bit integer value b to an SP FP value; the upper three SP FP
values are passed through from a.

R0 R1 R2 R3

(float)b a1 a2 a3

48

Intel® C++ Intrinsics Reference

__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the
upper two SP FP values are passed through from a.

R0 R1 R2 R3

(float)b0 (float)b1 a2 a3

__m128 _mm_cvtpi16_ps(__m64 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpu16_ps(__m64 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP
values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpi8_ps(__m64 a)

Convert the lower four 8-bit signed integer values in a to four single precision FP
values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpu8_ps(__m64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP
values.

R0 R1 R2 R3

49

Intel® C++ Intrinsics Reference

(float)a0 (float)a1 (float)a2 (float)a3

__m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer
values in b to four single precision FP values.

R0 R1 R2 R3

(float)a0 (float)a1 (float)b0 (float)b1

__m64 _mm_cvtps_pi16(__m128 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.

R0 R1 R2 R3

(short)a0 (short)a1 (short)a2 (short)a3

__m64 _mm_cvtps_pi8(__m128 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer
values of the result.

R0 R1 R2 R3

(char)a0 (char)a1 (char)a2 (char)a3

float _mm_cvtss_f32(__m128 a)

This intrinsic extracts a single precision floating point value from the first vector
element of an __m128. It does so in the most effecient manner possible in the
context used.

Load Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

50

Intel® C++ Intrinsics Reference

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0-R3. R0, R1, R2 and R3 each represent one of the
4 32-bit pieces of the result register.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_loadh_pi Load high MOVHPS reg, mem

_mm_loadl_pi Load low MOVLPS reg, mem

_mm_load_ss Load the low value and clear the three high
values

MOVSS

_mm_load1_ps Load one value into all four words MOVSS + Shuffling

_mm_load_ps Load four values, address aligned MOVAPS

_mm_loadu_ps Load four values, address unaligned MOVUPS

_mm_loadr_ps Load four values in reverse MOVAPS +
Shuffling

__m128 _mm_loadh_pi(__m128 a, __m64 const *p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p.

R0 R1 R2 R3

a0 a1 *p0 *p1

__m128 _mm_loadl_pi(__m128 a, __m64 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the
upper two values are passed through from a.

R0 R1 R2 R3

*p0 *p1 a2 a3

__m128 _mm_load_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.

R0 R1 R2 R3

*p 0.0 0.0 0.0

51

Intel® C++ Intrinsics Reference

__m128 _mm_load1_ps(float * p)

Loads a single SP FP value, copying it into all four words.

R0 R1 R2 R3

*p *p *p *p

__m128 _mm_load_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.

R0 R1 R2 R3

p[0] p[1] p[2] p[3]

__m128 _mm_loadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.

R0 R1 R2 R3

p[0] p[1] p[2] p[3]

__m128 _mm_loadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

R0 R1 R2 R3

p[3] p[2] p[1] p[0]

Set Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed

52

Intel® C++ Intrinsics Reference

explanation of each intrinsic. R0, R1, R2 and R3 represent the registers in which
results are placed.

Intrinsic
Name

Operation Corresponding
SSE
Instruction

_mm_set_ss Set the low value and clear the three high
values

Composite

_mm_set1_ps Set all four words with the same value Composite

_mm_set_ps Set four values, address aligned Composite

_mm_setr_ps Set four values, in reverse order Composite

_mm_setzero_ps Clear all four values Composite

__m128 _mm_set_ss(float w)

Sets the low word of an SP FP value to w and clears the upper three words.

R0 R1 R2 R3

w 0.0 0.0 0.0

__m128 _mm_set1_ps(float w)

Sets the four SP FP values to w.

R0 R1 R2 R3

w w w w

__m128 _mm_set_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.

R0 R1 R2 R3

w x y z

53

Intel® C++ Intrinsics Reference

__m128 _mm_setr_ps (float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.

R0 R1 R2 R3

z y x w

__m128 _mm_setzero_ps (void)

Clears the four SP FP values.

R0 R1 R2 R3

0.0 0.0 0.0 0.0

Store Operations for Streaming SIMD Extensions

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The detailed description of each intrinsic contains a table detailing the returns. In
these tables, p[n] is an access to the n element of the result.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
SSE
Instruction

_mm_storeh_pi Store high MOVHPS mem, reg

_mm_storel_pi Store low MOVLPS mem, reg

_mm_store_ss Store the low value MOVSS

_mm_store1_ps Store the low value across all four words,
address aligned

Shuffling +
MOVSS

_mm_store_ps Store four values, address aligned MOVAPS

_mm_storeu_ps Store four values, address unaligned MOVUPS

_mm_storer_ps Store four values, in reverse order MOVAPS +
Shuffling

void _mm_storeh_pi(__m64 *p, __m128 a)

54

Intel® C++ Intrinsics Reference

Stores the upper two SP FP values to the address p.

*p0*p1

a2 a3

void _mm_storel_pi(__m64 *p, __m128 a)

Stores the lower two SP FP values of a to the address p.

*p0*p1

a0 a1

void _mm_store_ss(float * p, __m128 a)

Stores the lower SP FP value.

*p

a0

void _mm_store1_ps(float * p, __m128 a)

Stores the lower SP FP value across four words.

p[0]p[1]p[2]p[3]

a0 a0 a0 a0

void _mm_store_ps(float *p, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[0]p[1]p[2]p[3]

a0 a1 a2 a3

void _mm_storeu_ps(float *p, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

55

Intel® C++ Intrinsics Reference

p[0]p[1]p[2]p[3]

a0 a1 a2 a3

void _mm_storer_ps(float * p, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

p[0]p[1]p[2]p[3]

a3 a2 a1 a0

Cacheability Support Using Streaming SIMD Extensions

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_prefetch Load PREFETCH

_mm_stream_pi Store MOVNTQ

_mm_stream_ps Store MOVNTPS

_mm_sfence Store fence SFENCE

void _mm_prefetch(char const*a, int sel)

Loads one cache line of data from address a to a location "closer" to the processor.
The value sel specifies the type of prefetch operation: the constants _MM_HINT_T0,
_MM_HINT_T1, _MM_HINT_T2, and _MM_HINT_NTA should be used for IA-32,
corresponding to the type of prefetch instruction. The constants _MM_HINT_T1,
_MM_HINT_NT1, _MM_HINT_NT2, and _MM_HINT_NTA should be used for systems based
on IA-64 architecture.

void _mm_stream_pi(__m64 *p, __m64 a)

56

Intel® C++ Intrinsics Reference

Stores the data in a to the address p without polluting the caches. This intrinsic
requires you to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It.

void _mm_stream_ps(float *p, __m128 a)

Stores the data in a to the address p without polluting the caches. The address must
be 16-byte-aligned.

void _mm_sfence(void)

Guarantees that every preceding store is globally visible before any subsequent
store.

Integer Intrinsics Using Streaming SIMD Extensions

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R7 represent the registers in which results
are placed.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.The prototypes for Streaming SIMD Extensions (SSE)
intrinsics are in the xmmintrin.h header file.

Before using these intrinsics, you must empty the multimedia state for the MMX(TM)
technology register. See The EMMS Instruction: Why You Need It for more details.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_extract_pi16 Extract one of four words PEXTRW

_mm_insert_pi16 Insert word PINSRW

_mm_max_pi16 Compute maximum PMAXSW

_mm_max_pu8 Compute maximum, unsigned PMAXUB

_mm_min_pi16 Compute minimum PMINSW

_mm_min_pu8 Compute minimum, unsigned PMINUB

57

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding SSE
Name Instruction

_mm_movemask_pi8 Create eight-bit mask PMOVMSKB

_mm_mulhi_pu16 Multiply, return high bits PMULHUW

_mm_shuffle_pi16 Return a combination of four words PSHUFW

_mm_maskmove_si64 Conditional Store MASKMOVQ

_mm_avg_pu8 Compute rounded average PAVGB

_mm_avg_pu16 Compute rounded average PAVGW

_mm_sad_pu8 Compute sum of absolute differences PSADBW

int _mm_extract_pi16(__m64 a, int n)

Extracts one of the four words of a. The selector n must be an immediate.

R

(n==0) ? a0 : ((n==1) ? a1 : ((n==2) ? a2 : a3))

__m64 _mm_insert_pi16(__m64 a, int d, int n)

Inserts word d into one of four words of a. The selector n must be an immediate.

R0 R1 R2 R3

(n==0) ? d : a0; (n==1) ? d : a1; (n==2) ? d : a2; (n==3) ? d : a3;

__m64 _mm_max_pi16(__m64 a, __m64 b)

Computes the element-wise maximum of the words in a and b.

R0 R1 R2 R3

min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

__m64 _mm_max_pu8(__m64 a, __m64 b)

Computes the element-wise maximum of the unsigned bytes in a and b.

R0 R1 ... R7

58

Intel® C++ Intrinsics Reference

min(a0, b0) min(a1, b1) ... min(a7, b7)

__m64 _mm_min_pi16(__m64 a, __m64 b)

Computes the element-wise minimum of the words in a and b.

R0 R1 R2 R3

min(a0, b0) min(a1, b1) min(a2, b2) min(a3, b3)

__m64 _mm_min_pu8(__m64 a, __m64 b)

Computes the element-wise minimum of the unsigned bytes in a and b.

R0 R1 ... R7

min(a0, b0) min(a1, b1) ... min(a7, b7)

__m64 _mm_movemask_pi8(__m64 b)

Creates an 8-bit mask from the most significant bits of the bytes in a.

R

sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

__m64 _mm_mulhi_pu16(__m64 a, __m64 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit
intermediate results.

R0 R1 R2 R3

hiword(a0 * b0) hiword(a1 * b1) hiword(a2 * b2) hiword(a3 * b3)

__m64 _mm_shuffle_pi16(__m64 a, int n)

Returns a combination of the four words of a. The selector n must be an immediate.

R0 R1 R2 R3

59

Intel® C++ Intrinsics Reference

word (n&0x3)
of a

word ((n>>2)&0x3)
of a

word ((n>>4)&0x3)
of a

word ((n>>6)&0x3)
of a

void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the
selector n determines whether the corresponding byte in d will be stored.

if (sign(n0))if (sign(n1)) ... if (sign(n7))

p[0] := d0 p[1] := d1 ... p[7] := d7

__m64 _mm_avg_pu8(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned bytes in a and b.

R0 R1 ... R7

(t >> 1) | (t &
0x01), where t =
(unsigned char)a0 +
(unsigned char)b0

(t >> 1) | (t &
0x01), where t =
(unsigned char)a1 +
(unsigned char)b1

... ((t >> 1) | (t &
0x01)), where t =
(unsigned char)a7 +
(unsigned char)b7

__m64 _mm_avg_pu16(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned short in a and b.

R0 R1 ... R7

(t >> 1) | (t & 0x01),
where t = (unsigned
int)a0 + (unsigned int)b0

(t >> 1) | (t & 0x01),
where t = (unsigned
int)a1 + (unsigned int)b1

... (t >> 1) | (t & 0x01),
where t = (unsigned
int)a7 + (unsigned int)b7

__m64 _mm_sad_pu8(__m64 a, __m64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b,
returning the value in the lower word. The upper three words are cleared.

R0 R1 R2 R3

abs(a0-b0) +... + abs(a7-b7) 0 0 0

60

Intel® C++ Intrinsics Reference

Intrinsics to Read and Write Registers for Streaming
SIMD Extensions

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_getcsr Return control register STMXCSR

_mm_setcsr Set control register LDMXCSR

unsigned int _mm_getcsr(void)

Returns the contents of the control register.

void _mm_setcsr(unsigned int i)

Sets the control register to the value specified.

Miscellaneous Intrinsics Using Streaming SIMD
Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

Intrinsic
Name

Operation Corresponding SSE
Instruction

_mm_shuffle_ps Shuffle SHUFPS

61

Intel® C++ Intrinsics Reference

_mm_unpackhi_ps Unpack High UNPCKHPS

_mm_unpacklo_ps Unpack Low UNPCKLPS

_mm_move_ss Set low word, pass in three high values MOVSS

_mm_movehl_ps Move High to Low MOVHLPS

_mm_movelh_ps Move Low to High MOVLHPS

_mm_movemask_ps Create four-bit mask MOVMSKPS

__m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

Selects four specific SP FP values from a and b, based on the mask imm8. The mask
must be an immediate. See Macro Function for Shuffle Using Streaming SIMD
Extensions for a description of the shuffle semantics.

__m128 _mm_unpackhi_ps(__m128 a, __m128 b)

Selects and interleaves the upper two SP FP values from a and b.

R0 R1 R2 R3

a2 b2 a3 b3

__m128 _mm_unpacklo_ps(__m128 a, __m128 b)

Selects and interleaves the lower two SP FP values from a and b.

R0 R1 R2 R3

a0 b0 a1 b1

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are
passed through from a.

R0 R1 R2 R3

b0 a1 a2 a3

__m128 _mm_movehl_ps(__m128 a, __m128 b)

62

Intel® C++ Intrinsics Reference

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The
upper 2 SP FP values of a are passed through to the result.

R0 R1 R2 R3

b2 b3 a2 a3

__m128 _mm_movelh_ps(__m128 a, __m128 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The
lower 2 SP FP values of a are passed through to the result.

R0 R1 R2 R3

a0 a1 b0 b1

int _mm_movemask_ps(__m128 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.

R

sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)

Using Streaming SIMD Extensions on IA-64 Architecture

The Streaming SIMD Extensions (SSE) intrinsics provide access to IA-64 instructions
for Streaming SIMD Extensions. To provide source compatibility with the IA-32
architecture, these intrinsics are equivalent both in name and functionality to the set
of IA-32-based SSE intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware
features provided by SSE. Keep the following issues in mind:

• Certain intrinsics are provided only for compatibility with previously-defined
IA-32 intrinsics. Using them on systems based on IA-64 architecture probably
leads to performance degradation.

• Floating-point (FP) data loaded stored as __m128 objects must be 16-byte-
aligned.

• Some intrinsics require that their arguments be immediates -- that is,
constant integers (literals), due to the nature of the instruction.

63

Intel® C++ Intrinsics Reference

Data Types

The new data type __m128 is used with the SSE intrinsics. It represents a 128-bit
quantity composed of four single-precision FP values. This corresponds to the 128-bit
IA-32 Streaming SIMD Extensions register.

The compiler aligns __m128 local data to 16-byte boundaries on the stack. Global
data of these types is also 16 byte-aligned. To align integer, float, or double
arrays, you can use the declspec alignment.

Because IA-64 instructions treat the SSE registers in the same way whether you are
using packed or scalar data, there is no __m32 data type to represent scalar data.
For scalar operations, use the __m128 objects and the "scalar" forms of the intrinsics;
the compiler and the processor implement these operations with 32-bit memory
references. But, for better performance the packed form should be substituting for
the scalar form whenever possible.

The address of a __m128 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2:
Instruction Set Reference Manual, Intel Corporation, doc. number 243191.

Implementation on systems based on IA-64 architecture

SSE intrinsics are defined for the __m128 data type, a 128-bit quantity consisting of
four single-precision FP values. SIMD instructions for systems based on IA-64
architecture operate on 64-bit FP register quantities containing two single-precision
floating-point values. Thus, each __m128 operand is actually a pair of FP registers
and therefore each intrinsic corresponds to at least one pair of IA-64 instructions
operating on the pair of FP register operands.

Many of the SSE intrinsics for systems based on IA-64 architecture were created for
compatibility with existing IA-32 intrinsics and not for performance. In some
situations, intrinsic usage that improved performance on IA-32 architecture will not
do so on systems based on IA-64 architecture. One reason for this is that some
intrinsics map nicely into the IA-32 instruction set but not into the IA-64 instruction
set. Thus, it is important to differentiate between intrinsics which were implemented
for a performance advantage on systems based on IA-64 architecture, and those
implemented simply to provide compatibility with existing IA-32 code.

The following intrinsics are likely to reduce performance and should only be used to
initially port legacy code or in non-critical code sections:

• Any SSE scalar intrinsic (_ss variety) - use packed (_ps) version if possible
• comi and ucomi SSE comparisons - these correspond to IA-32 COMISS and

UCOMISS instructions only. A sequence of IA-64 instructions are required to
implement these.

Compatibility versus Performance

64

Intel® C++ Intrinsics Reference

• Conversions in general are multi-instruction operations. These are particularly
expensive: _mm_cvtpi16_ps, _mm_cvtpu16_ps, _mm_cvtpi8_ps,
_mm_cvtpu8_ps, _mm_cvtpi32x2_ps, _mm_cvtps_pi16, _mm_cvtps_pi8

• SSE utility intrinsic _mm_movemask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root
approximation intrinsics (rcp and rsqrt) are much faster than the true div and sqrt
intrinsics.

Macro Function for Shuffle Using Streaming SIMD
Extensions

The Streaming SIMD Extensions (SSE) provide a macro function to help create
constants that describe shuffle operations. The macro takes four small integers (in
the range of 0 to 3) and combines them into an 8-bit immediate value used by the
SHUFPS instruction.

Shuffle Function Macro

View of Original and Result Words with Shuffle Function Macro

You can view the four integers as selectors for choosing which two words from the
first input operand and which two words from the second are to be put into the result
word.

Macro Functions to Read and Write the Control Registers

The following macro functions enable you to read and write bits to and from the
control register. For details, see Intrinsics to Read and Write Registers. For
Itanium®-based systems, these macros do not allow you to access all of the bits of
the FPSR. See the descriptions for the getfpsr() and setfpsr() intrinsics in the
Native Intrinsics for IA-64 Instructions topic.

65

Intel® C++ Intrinsics Reference

Exception State Macros Macro Arguments

_MM_SET_EXCEPTION_STATE(x) _MM_EXCEPT_INVALID

_MM_GET_EXCEPTION_STATE() _MM_EXCEPT_DIV_ZERO

 _MM_EXCEPT_DENORM

Macro Definitions
Write to and read from the six least significant control
register bits, respectively.

_MM_EXCEPT_OVERFLOW

 _MM_EXCEPT_UNDERFLOW

 _MM_EXCEPT_INEXACT

The following example tests for a divide-by-zero exception.

_MM_EXCEPT_DIV_ZERO Exception State Macros with

Exception Mask Macros Macro Arguments

_MM_SET_EXCEPTION_MASK(x) _MM_MASK_INVALID

_MM_GET_EXCEPTION_MASK () _MM_MASK_DIV_ZERO

 _MM_MASK_DENORM

Macro Definitions
Write to and read from the seventh through twelfth
control register bits, respectively.
Note: All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_OVERFLOW

 _MM_MASK_UNDERFLOW

 _MM_MASK_INEXACT

The following example masks the overflow and underflow exceptions and unmasks all
other exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTION_MASK(MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW)

Rounding Mode Macro Arguments

_MM_SET_ROUNDING_MODE(x) _MM_ROUND_NEAREST

_MM_GET_ROUNDING_MODE() _MM_ROUND_DOWN

Macro Definition _MM_ROUND_UP

66

Intel® C++ Intrinsics Reference

Write to and read from bits thirteen and fourteen of the
control register.

 _MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

 if (_MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO) {
/* Rounding mode is round toward zero */
}

Flush-to-Zero Mode Macro Arguments

_MM_SET_FLUSH_ZERO_MODE(x) _MM_FLUSH_ZERO_ON

_MM_GET_FLUSH_ZERO_MODE() _MM_FLUSH_ZERO_OFF

Macro Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF)

Macro Function for Matrix Transposition

The Streaming SIMD Extensions (SSE) provide the following macro function to
transpose a 4 by 4 matrix of single precision floating point values.

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)

The arguments row0, row1, row2, and row3 are __m128 values whose elements form
the corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in
arguments row0, row1, row2, and row3 where row0 now holds column 0 of the
original matrix, row1 now holds column 1 of the original matrix, and so on.

atrix Transposition
Using the _MM_TRANSPOSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

The transposition function of this macro is illustrated in the "M

67

Intel® C++ Intrinsics Reference

Overview: Streaming SIMD Extensions 2

This section describes the C++ language-level features supporting the Intel®
Pentium® 4 processor Streaming SIMD Extensions 2 (SSE2) in the Intel® C++
Compiler, which are divided into two categories:

• Floating-Point Intrinsics -- describes the arithmetic, logical, compare,
conversion, memory, and initialization intrinsics for the double-precision
floating-point data type (__m128d).

• Integer Intrinsics -- describes the arithmetic, logical, compare, conversion,
memory, and initialization intrinsics for the extended-precision integer data
type (__m128i).

Note

• There are no intrinsics for floating-point move operations. To move data from
one register to another, a simple assignment, A = B, suffices, where A and B
are the source and target registers for the move operation.

• On processors that do not support SSE2 instructions but do support MMX
Technology, you can use the sse2mmx.h emulation pack to enable support
for SSE2 instructions. You can use the sse2mmx.h header file for the
following processors:

• Itanium® Processor
• Pentium® III Processor
• Pentium® II Processor
• Pentium® with MMX™ Technology

You should be familiar with the hardware features provided by the SSE2 when
writing programs with the intrinsics. The following are three important issues to keep
in mind:

• Certain intrinsics, such as _mm_loadr_pd and _mm_cmpgt_sd, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.

• Data loaded or stored as __m128d objects must be generally 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant

integers (literals), due to the nature of the instruction.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

68

Intel® C++ Intrinsics Reference

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

Floating-point Arithmetic Operations for Streaming SIMD
Extensions 2

The arithmetic operations for the Streaming SIMD Extensions 2 (SSE2) are listed in
the following table. The prototypes for SSE2 intrinsics are in the emmintrin.h header
file.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R0 and R1. R0 and R1 each represent one piece of
the result register.

The Double Complex code sample contains examples of how to use several of these
intrinsics.

Intrinsic Operation Corresponding SSE2
Name Instruction

_mm_add_sd Addition ADDSD

_mm_add_pd Addition ADDPD

_mm_sub_sd Subtraction SUBSD

_mm_sub_pd Subtraction SUBPD

_mm_mul_sd Multiplication MULSD

_mm_mul_pd Multiplication MULPD

_mm_div_sd Division DIVSD

_mm_div_pd Division DIVPD

_mm_sqrt_sd Computes Square Root SQRTSD

_mm_sqrt_pd Computes Square Root SQRTPD

_mm_min_sd Computes Minimum MINSD

_mm_min_pd Computes Minimum MINPD

_mm_max_sd Computes Maximum MAXSD

_mm_max_pd Computes Maximum MAXPD

__m128d _mm_add_sd(__m128d a, __m128d b)

69

Intel® C++ Intrinsics Reference

Adds the lower DP FP (double-precision, floating-point) values of a and b; the upper
DP FP value is passed through from a.

R0 R1

a0 + b0 a1

__m128d _mm_add_pd(__m128d a, __m128d b)

Adds the two DP FP values of a and b.

R0 R1

a0 + b0 a1 + b1

70

Intel® C++ Intrinsics Reference

__m128d _mm_sub_sd(__m128d a, __m128d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed
through from a.

R0 R1

a0 - b0 a1

__m128d _mm_sub_pd(__m128d a, __m128d b)

Subtracts the two DP FP values of b from a.

R0 R1

a0 - b0 a1 - b1

__m128d _mm_mul_sd(__m128d a, __m128d b)

Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from
a.

R0 R1

a0 * b0 a1

__m128d _mm_mul_pd(__m128d a, __m128d b)

Multiplies the two DP FP values of a and b.

R0 R1

a0 * b0 a1 * b1

71

Intel® C++ Intrinsics Reference

__m128d _mm_div_sd(__m128d a, __m128d b)

Divides the lower DP FP values of a and b. The upper DP FP value is passed through
from a.

R0 R1

a0 / b0 a1

__m128d _mm_div_pd(__m128d a, __m128d b)

Divides the two DP FP values of a and b.

R0 R1

a0 / b0 a1 / b1

__m128d _mm_sqrt_sd(__m128d a, __m128d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is
passed through from a.

R0 R1

sqrt(b0) a1

__m128d _mm_sqrt_pd(__m128d a)

Computes the square roots of the two DP FP values of a.

R0 R1

sqrt(a0) sqrt(a1)

72

Intel® C++ Intrinsics Reference

__m128d _mm_min_sd(__m128d a, __m128d b)

 FP value

Computes the minimum of the lower DP FP values of a and b. The upper DP
is passed through from a.

R0 R1

min (a0, b0) a1

__m128d _mm_min_pd(__m128d a, __m128d b)

Computes the minima of the two DP FP values of a and b.

R0 R1

min (a0, b0) min(a1, b1)

__m128d _mm_max_sd(__m128d a, __m128d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP FP value
is passed through from a.

R0 R1

max (a0, b0) a1

__m128d _mm_max_pd(__m128d a, __m128d b)

Computes the maxima of the two DP FP values of a and b.

R0 R1

max (a0, b0) max (a1, b1)

Floating-point Logical Operations for Streaming SIMD
Extensions 2

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the
emmintrin.h header file.

73

Intel® C++ Intrinsics Reference

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R0 and R1 represent the registers in which results are
placed.

Intrinsic Operation Corresponding SSE2
Name Instruction

_mm_and_pd Computes AND ANDPD

_mm_andnot_pd Computes AND and NOT ANDNPD

_mm_or_pd Computes OR ORPD

_mm_xor_pd Computes XOR XORPD

__m128d _mm_and_pd(__m128d a, __m128d b)

Computes the bitwise AND of the two DP FP values of a and b.

R0 R1

a0 & b0 a1 & b1

__m128d _mm_andnot_pd(__m128d a, __m128d b)

Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit
value in a.

R0 R1

(~a0) & b0 (~a1) & b1

__m128d _mm_or_pd(__m128d a, __m128d b)

Computes the bitwise OR of the two DP FP values of a and b.

R0 R1

a0 | b0 a1 | b1

__m128d _mm_xor_pd(__m128d a, __m128d b)

74

Intel® C++ Intrinsics Reference

Computes the bitwise XOR of the two DP FP values of a and b.

R0 R1

a0 ^ b0 a1 ^ b1

Floating-point Comparison Operations for Streaming
SIMD Extensions 2

Each comparison intrinsic performs a comparison of a and b. For the packed form,
the two DP FP values of a and b are compared, and a 128-bit mask is returned. For
the scalar form, the lower DP FP values of a and b are compared, and a 64-bit mask
is returned; the upper DP FP value is passed through from a. The mask is set to
0xffffffffffffffff for each element where the comparison is true and 0x0 where
the comparison is false. The r following the instruction name indicates that the
operands to the instruction are reversed in the actual implementation. The
comparison intrinsics for the Streaming SIMD Extensions 2 (SSE2) are listed in the
following table followed by detailed descriptions.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R, R0 and R1. R, R0 and R1 each represent one
piece of the result register.

 The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Operation Corresponding SSE2
Name Instruction

_mm_cmpeq_pd Equality CMPEQPD

_mm_cmplt_pd Less Than CMPLTPD

_mm_cmple_pd Less Than or Equal CMPLEPD

_mm_cmpgt_pd Greater Than CMPLTPDr

_mm_cmpge_pd Greater Than or Equal CMPLEPDr

_mm_cmpord_pd Ordered CMPORDPD

_mm_cmpunord_pd Unordered CMPUNORDPD

_mm_cmpneq_pd Inequality CMPNEQPD

_mm_cmpnlt_pd Not Less Than CMPNLTPD

_mm_cmpnle_pd Not Less Than or Equal CMPNLEPD

75

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding SSE2
Name Instruction

_mm_cmpngt_pd Not Greater Than CMPNLTPDr

_mm_cmpnge_pd Not Greater Than or Equal CMPNLEPDr

_mm_cmpeq_sd Equality CMPEQSD

_mm_cmplt_sd Less Than CMPLTSD

_mm_cmple_sd Less Than or Equal CMPLESD

_mm_cmpgt_sd Greater Than CMPLTSDr

_mm_cmpge_sd Greater Than or Equal CMPLESDr

_mm_cmpord_sd Ordered CMPORDSD

_mm_cmpunord_sd Unordered CMPUNORDSD

_mm_cmpneq_sd Inequality CMPNEQSD

_mm_cmpnlt_sd Not Less Than CMPNLTSD

_mm_cmpnle_sd Not Less Than or Equal CMPNLESD

_mm_cmpngt_sd Not Greater Than CMPNLTSDr

_mm_cmpnge_sd Not Greater Than or Equal CMPNLESDr

_mm_comieq_sd Equality COMISD

_mm_comilt_sd Less Than COMISD

_mm_comile_sd Less Than or Equal COMISD

_mm_comigt_sd Greater Than COMISD

_mm_comige_sd Greater Than or Equal COMISD

_mm_comineq_sd Not Equal COMISD

_mm_ucomieq_sd Equality UCOMISD

_mm_ucomilt_sd Less Than UCOMISD

_mm_ucomile_sd Less Than or Equal UCOMISD

_mm_ucomigt_sd Greater Than UCOMISD

_mm_ucomige_sd Greater Than or Equal UCOMISD

_mm_ucomineq_sd Not Equal UCOMISD

__m128d _mm_cmpeq_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for equality.

76

Intel® C++ Intrinsics Reference

R0 R1

(a0 == b0) ? 0xffffffffffffffff :
0x0

(a1 == b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than b.

R0 R1

(a0 < b0) ? 0xffffffffffffffff :
0x0

(a1 < b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmple_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than or equal to b.

R0 R1

(a0 <= b0) ? 0xffffffffffffffff :
0x0

(a1 <= b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than b.

R0 R1

(a0 > b0) ? 0xffffffffffffffff :
0x0

(a1 > b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than or equal to b.

R0 R1

(a0 >= b0) ? 0xffffffffffffffff :
0x0

(a1 >= b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

77

Intel® C++ Intrinsics Reference

Compares the two DP FP values of a and b for ordered.

R0 R1

(a0 ord b0) ? 0xffffffffffffffff :
0x0

(a1 ord b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for unordered.

R0 R1

(a0 unord b0) ? 0xffffffffffffffff
: 0x0

(a1 unord b1) ? 0xffffffffffffffff
: 0x0

__m128d _mm_cmpneq_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for inequality.

R0 R1

(a0 != b0) ? 0xffffffffffffffff :
0x0

(a1 != b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than b.

R0 R1

!(a0 < b0) ? 0xffffffffffffffff :
0x0

!(a1 < b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than or equal to b.

R0 R1

!(a0 <= b0) ? 0xffffffffffffffff :
0x0

!(a1 <= b1) ? 0xffffffffffffffff :
0x0

78

Intel® C++ Intrinsics Reference

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than b.

R0 R1

!(a0 > b0) ? 0xffffffffffffffff :
0x0

!(a1 > b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.

R0 R1

!(a0 >= b0) ? 0xffffffffffffffff :
0x0

!(a1 >= b1) ? 0xffffffffffffffff :
0x0

__m128d _mm_cmpeq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP value is
passed through from a.

R0 R1

(a0 == b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP value
is passed through from a.

R0 R1

(a0 < b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmple_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper
DP FP value is passed through from a.

R0 R1

79

Intel® C++ Intrinsics Reference

(a0 <= b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP
value is passed through from a.

R0 R1

(a0 > b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The
upper DP FP value is passed through from a.

R0 R1

(a0 >= b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is
passed through from a.

R0 R1

(a0 ord b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for unordered. The upper DP FP value is
passed through from a.

R0 R1

(a0 unord b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpneq_sd(__m128d a, __m128d b)

80

Intel® C++ Intrinsics Reference

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is
passed through from a.

R0 R1

(a0 != b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP
value is passed through from a.

R0 R1

!(a0 < b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The
upper DP FP value is passed through from a.

R0 R1

!(a0 <= b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

 Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP
value is passed through from a.

R0 R1

!(a0 > b0) ? 0xffffffffffffffff : 0x0 a1

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than or
equal to b. The upper DP FP value is passed through from a.

R0 R1

!(a0 >= b0) ? 0xffffffffffffffff : 0x0 a1

81

Intel® C++ Intrinsics Reference

int _mm_comieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b
are equal, 1 is returned. Otherwise 0 is returned.

R

(a0 == b0) ? 0x1 : 0x0

int _mm_comilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is
less than b, 1 is returned. Otherwise 0 is returned.

R

(a0 < b0) ? 0x1 : 0x0

int _mm_comile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b.
If a is less than or equal to b, 1 is returned. Otherwise 0 is returned.

R

(a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is
greater than b are equal, 1 is returned. Otherwise 0 is returned.

R

(a0 > b0) ? 0x1 : 0x0

int _mm_comige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to
b. If a is greater than or equal to b, 1 is returned. Otherwise 0 is
returned.

R

82

Intel® C++ Intrinsics Reference

(a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and
b are not equal, 1 is returned. Otherwise 0 is returned.

R

(a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b
are equal, 1 is returned. Otherwise 0 is returned.

R

(a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is
less than b, 1 is returned. Otherwise 0 is returned.

R

(a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b.
If a is less than or equal to b, 1 is returned. Otherwise 0 is returned.

R

(a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is
greater than b are equal, 1 is returned. Otherwise 0 is returned.

83

Intel® C++ Intrinsics Reference

R

(a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to
b. If a is greater than or equal to b, 1 is returned. Otherwise 0 is
returned.

R

(a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and
b are not equal, 1 is returned. Otherwise 0 is returned.

R

(a0 != b0) ? 0x1 : 0x0

Floating-point Conversion Operations for Streaming
SIMD Extensions 2

Each conversion intrinsic takes one data type and performs a conversion to a
different type. Some conversions such as _mm_cvtpd_ps result in a loss of precision.
The rounding mode used in such cases is determined by the value in the MXCSR
register. The default rounding mode is round-to-nearest. Note that the rounding
mode used by the C and C++ languages when performing a type conversion is to
truncate. The _mm_cvttpd_epi32 and _mm_cvttsd_si32 intrinsics use the truncate
rounding mode regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) are
listed in the following table followed by detailed descriptions.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

84

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding
Name SSE2

Instruction

_mm_cvtpd_ps Convert DP FP to SP FP CVTPD2PS

_mm_cvtps_pd Convert from SP FP to DP FP CVTPS2PD

_mm_cvtepi32_pd Convert lower integer values to DP FP CVTDQ2PD

_mm_cvtpd_epi32 Convert DP FP values to integer values CVTPD2DQ

_mm_cvtsd_si32 Convert lower DP FP value to integer value CVTSD2SI

_mm_cvtsd_ss Convert lower DP FP value to SP FP CVTSD2SS

_mm_cvtsi32_sd Convert signed integer value to DP FP CVTSI2SD

_mm_cvtss_sd Convert lower SP FP value to DP FP CVTSS2SD

_mm_cvttpd_epi32 Convert DP FP values to signed integers CVTTPD2DQ

_mm_cvttsd_si32 Convert lower DP FP to signed integer CVTTSD2SI

_mm_cvtpd_pi32 Convert two DP FP values to signed
integer values

CVTPD2PI

_mm_cvttpd_pi32 Convert two DP FP values to signed
integer values using truncate

CVTTPD2PI

_mm_cvtpi32_pd Convert two signed integer values to DP
FP

CVTPI2PD

_mm_cvtsd_f64 Extract DP FP value from first vector
element

None

__m128 _mm_cvtpd_ps(__m128d a)

Converts the two DP FP values of a to SP FP values.

R0 R1 R2 R3

 (float) a0 (float) a1 0.0 0.0

__m128d _mm_cvtps_pd(__m128 a)

Converts the lower two SP FP values of a to DP FP values.

R0 R1

(double) a0 (double) a1

85

Intel® C++ Intrinsics Reference

__m128d _mm_cvtepi32_pd(__m128i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.

R0 R1

(double) a0 (double) a1

__m128i _mm_cvtpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

R0 R1 R2 R3

 (int) a0 (int) a1 0x0 0x0

int _mm_cvtsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.

R

(int) a0

__m128 _mm_cvtsd_ss(__m128 a, __m128d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a
are passed through.

R0 R1 R2 R3

(float) b0 a1 a2 a3

__m128d _mm_cvtsi32_sd(__m128d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a
is passed through.

R0 R1

(double) b a1

86

Intel® C++ Intrinsics Reference

__m128d _mm_cvtss_sd(__m128d a, __m128 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in
a is passed through.

R0 R1

(double) b0 a1

__m128i _mm_cvttpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.

R0 R1 R2 R3

(int) a0 (int) a1 0x0 0x0

int _mm_cvttsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer using truncate.

R

(int) a0

__m64 _mm_cvtpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

R0 R1

(int)a0 (int) a1

__m64 _mm_cvttpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values using truncate.

R0 R1

87

Intel® C++ Intrinsics Reference

(int)a0 (int) a1

__m128d _mm_cvtpi32_pd(__m64 a)

Converts the two 32-bit signed integer values of a to DP FP values.

R0 R1

(double)a0 (double)a1

_mm_cvtsd_f64(__m128d a)

This intrinsic extracts a double precision floating point value from the first vector
element of an __m128d. It does so in the most efficient manner possible in the
context used. This intrinsic does not map to any specific SSE2 instruction.

Floating-point Load Operations for Streaming SIMD
Extensions 2

The following load operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

The load and set operations are similar in that both initialize __m128d data.
However, the set operations take a double argument and are intended for
initialization with constants, while the load operations take a double pointer
argument and are intended to mimic the instructions for loading data from memory.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R0 and R1 represent the registers in which results are
placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

The Double Complex code sample contains examples of how to use several of these
intrinsics.

Intrinsic Operation Corresponding
Name SSE2

Instruction

88

Intel® C++ Intrinsics Reference

_mm_load_pd Loads two DP FP values MOVAPD

_mm_load1_pd Loads a single DP FP value, copying to both
elements

MOVSD + shuffling

_mm_loadr_pd Loads two DP FP values in reverse order MOVAPD + shuffling

_mm_loadu_pd Loads two DP FP values MOVUPD

_mm_load_sd Loads a DP FP value, sets upper DP FP to zero MOVSD

_mm_loadh_pd Loads a DP FP value as the upper DP FP value
of the result

MOVHPD

_mm_loadl_pd Loads a DP FP value as the lower DP FP value
of the result

MOVLPD

__m128d _mm_load_pd(double const*dp)

Loads two DP FP values. The address p must be 16-byte aligned.

R0 R1

p[0] p[1]

__m128d _mm_load1_pd(double const*dp)

 Loads a single DP FP value, copying to both elements. The address p need not be
16-byte aligned.

R0 R1

*p *p

__m128d _mm_loadr_pd(double const*dp)

Loads two DP FP values in reverse order. The address p must be 16-byte aligned.

R0 R1

p[1] p[0]

__m128d _mm_loadu_pd(double const*dp)

89

Intel® C++ Intrinsics Reference

Loads two DP FP values. The address p need not be 16-byte aligned.

R0 R1

p[0] p[1]

__m128d _mm_load_sd(double const*dp)

Loads a DP FP value. The upper DP FP is set to zero. The address p need not be 16-
byte aligned.

R0 R1

*p 0.0

__m128d _mm_loadh_pd(__m128d a, double const*dp)

Loads a DP FP value as the upper DP FP value of the result. The lower DP FP value is
passed through from a. The address p need not be 16-byte aligned.

R0 R1

a0 *p

__m128d _mm_loadl_pd(__m128d a, double const*dp)

Loads a DP FP value as the lower DP FP value of the result. The upper DP FP value is
passed through from a. The address p need not be 16-byte aligned.

R0 R1

*p a1

Floating-point Set Operations for Streaming SIMD
Extensions 2

The following set operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

The load and set operations are similar in that both initialize __m128d data.
However, the set operations take a double argument and are intended for
initialization with constants, while the load operations take a double pointer
argument and are intended to mimic the instructions for loading data from memory.

90

Intel® C++ Intrinsics Reference

iled information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R0 and R1 represent the registers in which results are
placed.

For deta

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Operation Corresponding
Name SSE2

Instruction

_mm_set_sd Sets lower DP FP value to w and upper to
zero

Composite

_mm_set1_pd Sets two DP FP valus to w Composite

_mm_set_pd Sets lower DP FP to x and upper to w Composite

_mm_setr_pd Sets lower DP FP to w and upper to x Composite

mm ero_pd Sets two DP FP values to zero XORPDsetz

_mm_move_sd Sets lower DP FP value to the lower DP FP
value of b

MOVSD

__m128d _mm_set_sd(double w)

Sets the lower DP FP value to w and sets the upper DP FP value to zero.

R0 R1

w 0.0

__m128d _mm_set1_pd(double w)

Sets the 2 DP FP values to w.

R0 R1

w w

__m128d _mm_set_pd(double w, double x)

91

Intel® C++ Intrinsics Reference

Sets the lower DP FP value to x and sets the upper DP FP value to w.

R0 R1

x w

mm_setr_pd(double w, double x)

e lower DP FP value to w and sets the upper DP FP value to x.
r0 := w
r1 := x

__m128d _

Sets th

R0 R1

w x

__m128d _mm_setzero_pd(void)

Sets the 2 DP FP values to zero.

R0 R1

0.0 0.0

__m128d _mm_move_sd(__m128d a, __m128d b)

Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is
passed through from a.

R0 R1

b0 a1

Floating-point Store Operations for Streaming SIMD
Extensions 2

The following store operation intrinsics and their respective instructions are
functional in the Streaming SIMD Extensions 2 (SSE2).

The store operations assign the initialized data to the address.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

92

Intel® C++ Intrinsics Reference

description of each intrinsic contains a table detailing the returns. In
these tables, dp[n] is an access to the n element of the result.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

The Double Complex code sample contains an example of how to use the
_mm_store_pd intrinsic.

The detailed

Intrinsic Operation Corresponding
Name SSE2

Instruction

_mm_stream_pd Store MOVNTPD

_mm_store_sd Stores lower DP FP value of a MOVSD

_mm_store1_pd Stores lower DP FP value of a twice MOVAPD + shuffling

_mm_store_pd Stores two DP FP values MOVAPD

_mm_storeu_pd Stores two DP FP values MOVUPD

_mm_storer_pd Stores two DP FP values in reverse
order

MOVAPD + shuffling

_mm_storeh_pd Stores upper DP FP value of a MOVHPD

_mm_storel_pd Stores lower DP FP value of a MOVLPD

void _mm_store_sd(double *dp, __m128d a)

Stores the lower DP FP value of a. The address dp need not be 16-byte aligned.

*dp

a0

void _mm_store1_pd(double *dp, __m128d a)

Stores the lower DP FP value of a twice. The address dp must be 16-byte aligned.

dp[0]dp[1]

a0 a0

void _mm_store_pd(double *dp, __m128d a)

93

Intel® C++ Intrinsics Reference

Stores two DP FP values. The address dp must be 16-byte aligned.

dp[0]dp[1]

a0 a1

void _mm_storeu_pd(double *dp, __m128d a)

Stores two DP FP values. The address dp need not be 16-byte aligned.

dp[0]dp[1]

a0 a1

void _mm_storer_pd(double *dp, __m128d a)

Stores two DP FP values in reverse order. The address dp must be 16-byte aligned.

dp[0]dp[1]

a1 a0

void _mm_storeh_pd(double *dp, __m128d a)

Stores the upper DP FP value of a.

*dp

a1

void _mm_storel_pd(double *dp, __m128d a)

Stores the lower DP FP value of a.

*dp

a0

94

Intel® C++ Intrinsics Reference

The integer arithmetic operations for Streaming SIMD Extensions 2 (SSE2) are listed
in the following table followed by their descriptions. The floating point packed
arithmetic intrinsics for SSE2 are listed in the Floating-point Arithmetic Operations
topic.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R15 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Operation Instruction

_mm_add_epi8 Addition PADDB

_mm_add_epi16 Addition PADDW

_mm_add_epi32 Addition PADDD

_mm_add_si64 Addition PADDQ

_mm_add_epi64 Addition PADDQ

_mm_adds_epi8 Addition PADDSB

_mm_adds_epi16 Addition PADDSW

_mm_adds_epu8 Addition PADDUSB

_mm_adds_epu16 Addition PADDUSW

_mm_avg_epu8 Computes Average PAVGB

_mm_avg_epu16 Computes Average PAVGW

_mm_madd_epi16 Multiplication and Addition PMADDWD

_mm_max_epi16 Computes Maxima PMAXSW

_mm_max_epu8 Computes Maxima PMAXUB

_mm_min_epi16 Computes Minima PMINSW

_mm_min_epu8 Computes Minima PMINUB

_mm_mulhi_epi16 Multiplication PMULHW

_mm_mulhi_epu16 Multiplication PMULHUW

_mm_mullo_epi16 Multiplication PMULLW

_mm_mul_su32 Multiplication PMULUDQ

95

Integer Arithmetic Operations for Streaming SIMD
Extensions 2

Intel® C++ Intrinsics Reference

_mm_mul_epu32 Multiplication PMULUDQ

_mm_sad_epu8 Computes Difference/Adds PSADBW

_mm_sub_epi8 Subtraction PSUBB

_mm_sub_epi16 Subtraction PSUBW

_mm_sub_epi32 Subtraction PSUBD

_mm_sub_si64 Subtraction PSUBQ

_mm_sub_epi64 Subtraction PSUBQ

_mm_subs_epi8 Subtraction PSUBSB

_mm_subs_epi16 Subtraction PSUBSW

_mm_subs_epu8 Subtraction PSUBUSB

_mm_subs_epu16 Subtraction PSUBUSW

__mm128i _mm_add_epi8(__m128i a, __m128i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit
integers in b.

R0 R1 ... R15

a0 + b0 a1 + b1; ... a15 + b15

__mm128i _mm_add_epi16(__m128i a, __m128i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit
integers in b.

R0 R1 ... R7

a0 + b0 a1 + b1 ... a7 + b7

__m128i _mm_add_epi32(__m128i a, __m128i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit
integers in b.

R0 R1 R2 R3

a0 + b0 a1 + b1 a2 + b2 a3 + b3

96

Intel® C++ Intrinsics Reference

__m64 _mm_add_si64(__m64 a, __m64 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer
b.

R0

a + b

__m128i _mm_add_epi64(__m128i a, __m128i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit
integers in b.

R0 R1

a0 + b0 a1 + b1

__m128i _mm_adds_epi8(__m128i a, __m128i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using
saturating arithmetic.

R0 R1 ... R15

SignedSaturate (a0 +
b0)

SignedSaturate (a1 +
b1)

... SignedSaturate (a15 +
b15)

__m128i _mm_adds_epi16(__m128i a, __m128i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using
saturating arithmetic.

R0 R1 ... R7

SignedSaturate (a0 +
b0)

SignedSaturate (a1 +
b1)

... SignedSaturate (a7 +
b7)

__m128i _mm_adds_epu8(__m128i a, __m128i b)

97

Intel® C++ Intrinsics Reference

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using
saturating arithmetic.

R0 R1 ... R15

UnsignedSaturate (a0
+ b0)

UnsignedSaturate (a1
+ b1)

... UnsignedSaturate (a15
+ b15)

__m128i _mm_adds_epu16(__m128i a, __m128i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using
saturating arithmetic.

R0 R1 ... R7

UnsignedSaturate (a0
+ b0)

UnsignedSaturate (a1
+ b1)

... UnsignedSaturate (a7
+ b7)

__m128i _mm_avg_epu8(__m128i a, __m128i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-
bit integers in b and rounds.

R0 R1 ... R15

(a0 + b0) / 2 (a1 + b1) / 2 ... (a15 + b15) / 2

__m128i _mm_avg_epu16(__m128i a, __m128i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-
bit integers in b and rounds.

R0 R1 ... R7

(a0 + b0) / 2 (a1 + b1) / 2 ... (a7 + b7) / 2

__m128i _mm_madd_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b.
Adds the signed 32-bit integer results pairwise and packs the 4 signed 32-bit integer
results.

R0 R1 R2 R3

98

Intel® C++ Intrinsics Reference

(a0 * b0) + (a1
* b1)

(a2 * b2) + (a3
* b3)

(a4 * b4) + (a5
* b5)

(a6 * b6) + (a7
* b7)

__m128i _mm_max_epi16(__m128i a, __m128i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.

R0 R1 ... R7

max(a0, b0) max(a1, b1) ... max(a7, b7)

__m128i _mm_max_epu8(__m128i a, __m128i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16
unsigned 8-bit integers from b.

R0 R1 ... R15

max(a0, b0) max(a1, b1) ... max(a15, b15)

__m128i _mm_min_epi16(__m128i a, __m128i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
signed 16-bit integers from b.

R0 R1 ... R7

min(a0, b0) min(a1, b1) ... min(a7, b7)

__m128i _mm_min_epu8(__m128i a, __m128i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16
unsigned 8-bit integers from b.

R0 R1 ... R15

min(a0, b0) min(a1, b1) ... min(a15, b15)

__m128i _mm_mulhi_epi16(__m128i a, __m128i b)

99

Intel® C++ Intrinsics Reference

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b.
Packs the upper 16-bits of the 8 signed 32-bit results.

R0 R1 ... R7

(a0 * b0)[31:16] (a1 * b1)[31:16] ... (a7 * b7)[31:16]

__m128i _mm_mulhi_epu16(__m128i a, __m128i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers
from b. Packs the upper 16-bits of the 8 unsigned 32-bit results.

R0 R1 ... R7

(a0 * b0)[31:16] (a1 * b1)[31:16] ... (a7 * b7)[31:16]

__m128i_mm_mullo_epi16(__m128i a, __m128i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
unsigned 16-bit integers from b. Packs the lower 16-bits of the 8 signed or unsigned
32-bit results.

R0 R1 ... R7

(a0 * b0)[15:0] (a1 * b1)[15:0] ... (a7 * b7)[15:0]

__m64 _mm_mul_su32(__m64 a, __m64 b)

ultiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and
t integer result.

M
returns the 64-bi

R0

a0 * b0

__m128i _mm_mul_epu32(__m128i a, __m128i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b.
Packs the 2 unsigned 64-bit integer results.

R0 R1

a0 * b0 a2 * b2

100

Intel® C++ Intrinsics Reference

__m128i _mm_sad_epu8(__m128i a, __m128i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the
16 unsigned 8-bit integers from b. Sums the upper 8 differences and lower 8
differences, and packs the resulting 2 unsigned 16-bit integers into the upper and
lower 64-bit elements.

R0 R1 R2 R3 R4 R5 R6 R7

abs(a0 - b0) + abs(a1
- b1) +...+ abs(a7 -
b7)

0x0 0x0 0x0 abs(a8 - b8) + abs(a9
- b9) +...+ abs(a15 -
b15)

0x0 0x0 0x0

__m128i _mm_sub_epi8(__m128i a, __m128i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or
unsigned 8-bit integers of a.

R0 R1 ... R15

a0 - b0 a1 - b1 ... a15 - b15

__m128i_mm_sub_epi16(__m128i a, __m128i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or
unsigned 16-bit integers of a.

R0 R1 ... R7

a0 - b0 a1 - b1 ... a7 - b7

__m128i _mm_sub_epi32(__m128i a, __m128i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
unsigned 32-bit integers of a.

R0 R1 R2 R3

a0 - b0 a1 - b1 a2 - b2 a3 - b3

__m64 _mm_sub_si64 (__m64 a, __m64 b)

101

Intel® C++ Intrinsics Reference

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit
integer a.

R

a - b

__m128i _mm_sub_epi64(__m128i a, __m128i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or
unsigned 64-bit integers in a.

R0 R1

a0 - b0 a1 - b1

__m128i _mm_subs_epi8(__m128i a, __m128i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a
using saturating arithmetic.

R0 R1 ... R15

SignedSaturate (a0 -
b0)

SignedSaturate (a1 -
b1)

... SignedSaturate (a15 -
b15)

__m128i _mm_subs_epi16(__m128i a, __m128i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a
using saturating arithmetic.

R0 R1 ... R15

SignedSaturate (a0 -
b0)

SignedSaturate (a1 -
b1)

... SignedSaturate (a7 -
b7)

__m128i _mm_subs_epu8 (__m128i a, __m128i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of
a using saturating arithmetic.

R0 R1 ... R15

UnsignedSaturate (a0
- b0)

UnsignedSaturate (a1
- b1)

... UnsignedSaturate (a15
- b15)

102

Intel® C++ Intrinsics Reference

__m128i _mm_subs_epu16 (__m128i a, __m128i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of
a using saturating arithmetic.

R0 R1 ... R7

UnsignedSaturate (a0
- b0)

UnsignedSaturate (a1
- b1)

... UnsignedSaturate (a7
- b7)

Integer Logical Operations for Streaming SIMD
Extensions 2

The following four logical-operation intrinsics and their respective instructions are
functional as part of Streaming SIMD Extensions 2 (SSE2).

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in register R. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Operation Corresponding SSE2
Name Instruction

_mm_and_si128 Computes AND PAND

_mm_andnot_si128 Computes AND and NOT PANDN

_mm_or_si128 Computes OR POR

_mm_xor_si128 Computes XOR PXOR

__m128i _mm_and_si128(__m128i a, __m128i b)

Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.

R0

a & b

103

Intel® C++ Intrinsics Reference

__m128i _mm_andnot_si128(__m128i a, __m128i b)

Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-
bit value in a.

R0

(~a) & b

__m128i _mm_or_si128(__m128i a, __m128i b)

Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.

R0

a | b

__m128i _mm_xor_si128(__m128i a, __m128i b)

Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.

R0

a ^ b

Integer Shift Operations for Streaming SIMD Extensions
2

The shift-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) and the
description for each are listed in the following table.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in a register. This register is
illustrated for each intrinsic with R and R0-R7. R and R0 R7 each represent one of
the pieces of the result register.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

104

Intel® C++ Intrinsics Reference

The count argument is one shift count that applies to all elements of the operand
being shifted. It is not a vector shift count that shifts each element by a different
amount.

Intrinsic Operation Shift Corresponding
Type Instruction

_mm_slli_si128 Shift left Logical PSLLDQ

_mm_slli_epi16 Shift left Logical PSLLW

_mm_sll_epi16 Shift left Logical PSLLW

_mm_slli_epi32 Shift left Logical PSLLD

_mm_sll_epi32 Shift left Logical PSLLD

_mm_slli_epi64 Shift left Logical PSLLQ

_mm_sll_epi64 Shift left Logical PSLLQ

_mm_srai_epi16 Shift right Arithmetic PSRAW

_mm_sra_epi16 Shift right Arithmetic PSRAW

_mm_srai_epi32 Shift right Arithmetic PSRAD

_mm_sra_epi32 Shift right Arithmetic PSRAD

_mm_srli_si128 Shift right Logical PSRLDQ

_mm_srli_epi16 Shift right Logical PSRLW

_mm_srl_epi16 Shift right Logical PSRLW

_mm_srli_epi32 Shift right Logical PSRLD

_mm_srl_epi32 Shift right Logical PSRLD

_mm_srli_epi64 Shift right Logical PSRLQ

_mm_srl_epi64 Shift right Logical PSRLQ

__m128i _mm_slli_si128(__m128i a, int imm)

Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an
immediate.

R

a << (imm * 8)

105

Note

Intel® C++ Intrinsics Reference

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits
while shifting in zeros.

R0 R1 ... R7

a0 << count a1 << count ... a7 << count

__m128i _mm_sll_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits
while shifting in zeros.

R0 R1 ... R7

a0 << count a1 << count ... a7 << count

__m128i _mm_slli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits
while shifting in zeros.

R0 R1 R2 R3

a0 << count a1 << count a2 << count a3 << count

__m128i _mm_sll_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits
while shifting in zeros.

R0 R1 R2 R3

a0 << count a1 << count a2 << count a3 << count

__m128i _mm_slli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits
while shifting in zeros.

R0 R1

a0 << count a1 << count

106

__m128i _mm_slli_epi16(__m128i a, int count)

Intel® C++ Intrinsics Reference

__m128i _mm_sll_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits
while shifting in zeros.

R0 R1

a0 << count a1 << count

__m128i _mm_srai_epi16(__m128i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 ... R7

a0 >> count a1 >> count ... a7 >> count

__m128i _mm_sra_epi16(__m128i a, __m128i count)

Shifts the 8 signed 16-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 ... R7

a0 >> count a1 >> count ... a7 >> count

__m128i _mm_srai_epi32(__m128i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 R2 R3

a0 >> count a1 >> count a2 >> count a3 >> count

__m128i _mm_sra_epi32(__m128i a, __m128i count)

Shifts the 4 signed 32-bit integers in a right by count bits while
shifting in the sign bit.

R0 R1 R2 R3

a0 >> count a1 >> count a2 >> count a3 >> count

107

Intel® C++ Intrinsics Reference

__m128i _mm_srli_si128(__m128i a, int imm)

Shifts the 128-bit value in a right by imm bytes while shifting in
zeros. imm must be an immediate.

R

srl(a, imm*8)

__m128i _mm_srli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
while shifting in zeros.

R0 R1 ... R7

srl(a0, count) srl(a1, count) ... srl(a7, count)

__m128i _mm_srl_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
while shifting in zeros.

R0 R1 ... R7

srl(a0, count) srl(a1, count) ... srl(a7, count)

__m128i _mm_srli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
while shifting in zeros.

R0 R1 R2 R3

srl(a0, count) srl(a1, count) srl(a2, count) srl(a3, count)

__m128i _mm_srl_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
while shifting in zeros.

R0 R1 R2 R3

108

Intel® C++ Intrinsics Reference

srl(a0, count) srl(a1, count) srl(a2, count) srl(a3, count)

__m128i _mm_srli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
while shifting in zeros.

R0 R1

srl(a0, count) srl(a1, count)

__m128i _mm_srl_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
while shifting in zeros.

R0 R1

srl(a0, count) srl(a1, count)

Integer Comparison Operations for Streaming SIMD
Extensions 2

The comparison intrinsics for Streaming SIMD Extensions 2 (SSE2) and descriptions
for each are listed in the following table.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R15 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction

_mm_cmpeq_epi8 Equality PCMPEQB

_mm_cmpeq_epi16 Equality PCMPEQW

_mm_cmpeq_epi32 Equality PCMPEQD

109

Intel® C++ Intrinsics Reference

_mm_cmpgt_epi8 Greater Than PCMPGTB

_mm_cmpgt_epi16 Greater Than PCMPGTW

_mm_cmpgt_epi32 Greater Than PCMPGTD

_mm_cmplt_epi8 Less Than PCMPGTBr

_mm_cmplt_epi16 Less Than PCMPGTWr

_mm_cmplt_epi32 Less Than PCMPGTDr

__m128i _mm_cmpeq_epi8(__m128i a, __m128i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
unsigned 8-bit integers in b for equality.

R0 R1 ... R15

(a0 == b0) ? 0xff :
0x0

(a1 == b1) ? 0xff :
0x0

... (a15 == b15) ? 0xff :
0x0

__m128i _mm_cmpeq_epi16(__m128i a, __m128i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned
16-bit integers in b for equality.

R0 R1 ... R7

(a0 == b0) ? 0xffff :
0x0

(a1 == b1) ? 0xffff :
0x0

... (a7 == b7) ? 0xffff :
0x0

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned
32-bit integers in b for equality.

R0 R1 R2 R3

(a0 == b0) ?
0xffffffff : 0x0

(a1 == b1) ?
0xffffffff : 0x0

(a2 == b2) ?
0xffffffff : 0x0

(a3 == b3) ?
0xffffffff : 0x0

__m128i _mm_cmpgt_epi8(__m128i a, __m128i b)

110

Intel® C++ Intrinsics Reference

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for
greater than.

R0 R1 ... R15

(a0 > b0) ? 0xff :
0x0

(a1 > b1) ? 0xff :
0x0

... (a15 > b15) ? 0xff :
0x0

__m128i _mm_cmpgt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for
greater than.

R0 R1 ... R7

(a0 > b0) ? 0xffff :
0x0

(a1 > b1) ? 0xffff :
0x0

... (a7 > b7) ? 0xffff :
0x0

__m128i _mm_cmpgt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for
greater than.

R0 R1 R2 R3

(a0 > b0) ?
0xffffffff : 0x0

(a1 > b1) ?
0xffffffff : 0x0

(a2 > b2) ?
0xffffffff : 0x0

(a3 > b3) ?
0xffffffff : 0x0

__m128i _mm_cmplt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for
less than.

R0 R1 ... R15

(a0 < b0) ? 0xff :
0x0

(a1 < b1) ? 0xff :
0x0

... (a15 < b15) ? 0xff :
0x0

__m128i _mm_cmplt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for
less than.

111

Intel® C++ Intrinsics Reference

R0 R1 ... R7

(a0 < b0) ? 0xffff :
0x0

(a1 < b1) ? 0xffff :
0x0

... (a7 < b7) ? 0xffff :
0x0

__m128i _mm_cmplt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for
less than.

R0 R1 R2 R3

(a0 < b0) ?
0xffffffff : 0x0

(a1 < b1) ?
0xffffffff : 0x0

(a2 < b2) ?
0xffffffff : 0x0

(a3 < b3) ?
0xffffffff : 0x0

Integer Conversion Operations for Streaming SIMD
Extensions 2

The following conversion intrinsics and their respective instructions are functional in
the Streaming SIMD Extensions 2 (SSE2).

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction

_mm_cvtsi64_sd Convert and pass through CVTSI2SD

_mm_cvtsd_si64 Convert according to rounding CVTSD2SI

_mm_cvttsd_si64 Convert using truncation CVTTSD2SI

_mm_cvtepi32_ps Convert to SP FP None

_mm_cvtps_epi32 Convert from SP FP None

_mm_cvttps_epi32 Convert from SP FP using truncate None

112

Intel® C++ Intrinsics Reference

Converts the signed 64-bit integer value in b to a DP FP value. The upper DP FP
value in a is passed through.

R0 R1

(double)b a1

__int64 _mm_cvtsd_si64(__m128d a)

Converts the lower DP FP value of a to a 64-bit signed integer value according to the
current rounding mode.

R

(__int64) a0

__int64 _mm_cvttsd_si64(__m128d a)

Converts the lower DP FP value of a to a 64-bit signed integer value using truncation.

R

(__int64) a0

__m128 _mm_cvtepi32_ps(__m128i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.

R0 R1 R2 R3

(float) a0 (float) a1 (float) a2 (float) a3

__m128i _mm_cvtps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.

R0 R1 R2 R3

(int) a0 (int) a1 (int) a2 (int) a3

113

__m128d _mm_cvtsi64_sd(__m128d a, __int64 b)

Intel® C++ Intrinsics Reference

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

R0 R1 R2 R3

(int) a0 (int) a1 (int) a2 (int) a3

Integer Move Operations for Streaming SIMD Extensions
2

The following conversion intrinsics and their respective instructions are functional in
the Streaming SIMD Extensions 2 (SSE2).

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1, R2 and R3 represent the registers in which
results are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction

_mm_cvtsi32_si128 Move and zero MOVD

_mm_cvtsi64_si128 Move and zero MOVQ

_mm_cvtsi128_si32 Move lowest 32 bits MOVD

_mm_cvtsi128_si64 Move lowest 64 bits MOVQ

__m128i _mm_cvtsi32_si128(int a)

Moves 32-bit integer a to the least significant 32 bits of an __m128i object. Zeroes
the upper 96 bits of the __m128i object.

R0 R1 R2 R3

a 0x0 0x0 0x0

__m128i _mm_cvtsi64_si128(__int64 a)

Moves 64-bit integer a to the lower 64 bits of an __m128i object, zeroing the upper
bits.

114

__m128i _mm_cvttps_epi32(__m128 a)

Intel® C++ Intrinsics Reference

R0 R1

a 0x0

int _mm_cvtsi128_si32(__m128i a)

Moves the least significant 32 bits of a to a 32-bit integer.

R

a0

__int64 _mm_cvtsi128_si64(__m128i a)

Moves the lower 64 bits of a to a 64-bit integer.

R

a0

Integer Load Operations for Streaming SIMD Extensions
2

The following load operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0 and R1 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Instruction

mm_load_si128 Load MOVDQA

_mm_loadu_si128 Load MOVDQU

_mm_loadl_epi64 Load and zero MOVQ

115

Intel® C++ Intrinsics Reference

__m128i _mm_load_si128(__m128i const*p)

Loads 128-bit value. Address p must be 16-byte aligned.

R

*p

__m128i _mm_loadu_si128(__m128i const*p)

Loads 128-bit value. Address p not need be 16-byte aligned.

R

*p

__m128i _mm_loadl_epi64(__m128i const*p)

Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the
result, zeroing the upper 64 bits of the result.

R0 R1

*p[63:0] 0x0

Integer Set Operations for SSE2

The following set operation intrinsics and their respective instructions are functional
in the Streaming SIMD Extensions 2 (SSE2).

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

The results of each intrinsic operation are placed in registers. The information about
what is placed in each register appears in the tables below, in the detailed
explanation of each intrinsic. R, R0, R1...R15 represent the registers in which results
are placed.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Corresponding SSE2
Instruction

116

Intel® C++ Intrinsics Reference

_mm_set_epi64 Set two integer values

_mm_set_epi32 Set four integer values

_mm_set_epi16 Set eight integer values

_mm_set_epi8 Set sixteen integer values

_mm_set1_epi64 Set two integer values

_mm_set1_epi32 Set four integer values

_mm_set1_epi16 Set eight integer values

_mm_set1_epi8 Set sixteen integer values

_mm_setr_epi64 Set two integer values in
reverse order

_mm_setr_epi32 Set four integer values in
reverse order

_mm_setr_epi16 Set eight integer values in
reverse order

_mm_setr_epi8 Set sixteen integer values in
reverse order

_mm_setzero_si128 Set to zero

__m128i _mm_set_epi64(__m64 q1, __m64 q0)

Sets the 2 64-bit integer values.

R0 R1

q0 q1

__m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.

R0 R1 R2 R3

i0 i1 i2 i3

__m128i _mm_set_epi16(short w7, short w6, short w5, short w4, short w3,
short w2, short w1, short w0)

117

Intel® C++ Intrinsics Reference

Sets the 8 signed 16-bit integer values.

R0 R1 ... R7

w0 w1 ... w7

__m128i _mm_set_epi8(char b15, char b14, char b13, char b12, char b11,
char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values.

R0 R1 ... R15

b0 b1 ... b15

__m128i _mm_set1_epi64(__m64 q)

Sets the 2 64-bit integer values to q.

R0 R1

q q

__m128i _mm_set1_epi32(int i)

Sets the 4 signed 32-bit integer values to i.

R0 R1 R2 R3

i i i i

__m128i _mm_set1_epi16(short w)

Sets the 8 signed 16-bit integer values to w.

R0 R1 ... R7

w w w w

__m128i _mm_set1_epi8(char b)

118

Intel® C++ Intrinsics Reference

Sets the 16 signed 8-bit integer values to b.

R0 R1 ... R15

b b b b

__m128i _mm_setr_epi64(__m64 q0, __m64 q1)

Sets the 2 64-bit integer values in reverse order.

R0 R1

q0 q1

__m128i _mm_setr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.

R0 R1 R2 R3

i0 i1 i2 i3

__m128i _mm_setr_epi16(short w0, short w1, short w2, short w3, short w4,
short w5, short w6, short w7)

Sets the 8 signed 16-bit integer values in reverse order.

R0 R1 ... R7

w0 w1 ... w7

__m128i _mm_setr_epi8(char b15, char b14, char b13, char b12, char b11,
char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values in reverse order.

R0 R1 ... R15

b0 b1 ... b15

119

Intel® C++ Intrinsics Reference

__m128i _mm_setzero_si128()

Sets the 128-bit value to zero.

R

0x0

Integer Store Operations for Streaming SIMD Extensions
2

The following store operation intrinsics and their respective instructions are
functional in the Streaming SIMD Extensions 2 (SSE2).

The detailed description of each intrinsic contains a table detailing the returns. In
these tables, p is an access to the result.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Operation Corresponding SSE2 Instruction

_mm_stream_si128 Store MOVNTDQ

_mm_stream_si32 Store MOVNTI

_mm_store_si128 Store MOVDQA

_mm_storeu_si128 Store MOVDQU

_mm_maskmoveu_si128 Conditional store MASKMOVDQU

_mm_storel_epi64 Store lowest MOVQ

void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated. Address p
must be 16 byte aligned.

*p

a

void _mm_stream_si32(int *p, int a)

120

Intel® C++ Intrinsics Reference

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated.

*p

a

void _mm_store_si128(__m128i *p, __m128i b)

Stores 128-bit value. Address p must be 16 byte aligned.

*p

a

void _mm_storeu_si128(__m128i *p, __m128i b)

Stores 128-bit value. Address p need not be 16-byte aligned.

*p

a

void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the
selector n determines whether the corresponding byte in d will be stored. Address p
need not be 16-byte aligned.

if (n0[7]) if (n1[7] ...if (n15[7])

p[0] := d0 p[1] := d1 ... p[15] := d15

void _mm_storel_epi64(__m128i *p, __m128i a)

Stores the lower 64 bits of the value pointed to by p.

*p[63:0]

a0

121

Intel® C++ Intrinsics Reference

Cacheability Support Operations for Streaming SIMD
Extensions 2

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the
emmintrin.h header file.

Intrinsic Name Operation Corresponding SSE2 Instruction

_mm_stream_pd Store MOVNTPD

_mm_stream_si128 Store MOVNTDQ

_mm_stream_si32 Store MOVNTI

_mm_clflush Flush CLFLUSH

_mm_lfence Guarantee visibility LFENCE

_mm_mfence Guarantee visibility MFENCE

void _mm_stream_pd(double *p, __m128d a)

Stores the data in a to the address p without polluting caches. The address p must
be 16-byte aligned. If the cache line containing address p is already in the cache, the
cache will be updated.
p[0] := a0
p[1] := a1

p[0]p[1]

a0 a1

void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated. Address p
must be 16-byte aligned.

*p

a

void _mm_stream_si32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line
containing address p is already in the cache, the cache will be updated.

122

Intel® C++ Intrinsics Reference

*p

a

void _mm_clflush(void const*p)

Cache line containing p is flushed and invalidated from all caches in the coherency
domain.

void _mm_lfence(void)

Guarantees that every load instruction that precedes, in program order, the load
fence instruction is globally visible before any load instruction which follows the fence
in program order.

 void _mm_mfence(void)

Guarantees that every memory access that precedes, in program order, the memory
fence instruction is globally visible before any memory instruction which follows the
fence in program order.

Miscellaneous Operations for Streaming SIMD
Extensions 2

The miscellaneous intrinsics for Streaming SIMD Extensions 2 (SSE2) are listed in
the following table followed by their descriptions.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Operation Corresponding
Instruction

_mm_packs_epi16 Packed Saturation PACKSSWB

_mm_packs_epi32 Packed Saturation PACKSSDW

_mm_packus_epi16 Packed Saturation PACKUSWB

_mm_extract_epi16 Extraction PEXTRW

_mm_insert_epi16 Insertion PINSRW

_mm_movemask_epi8 Mask Creation PMOVMSKB

123

Intel® C++ Intrinsics Reference

_mm_shuffle_epi32 Shuffle PSHUFD

_mm_shufflehi_epi16 Shuffle PSHUFHW

_mm_shufflelo_ep uffle HUFLWi16 Sh PS

_mm_unpackhi_epi8 Interleave PUNPCKHBW

_mm_unpackhi_epi16 Interleave PUNPCKHWD

_mm_unpackhi_epi32 Interleave PUNPCKHDQ

_mm_unpackhi_epi64 Interleave PUNPCKHQDQ

_mm_unpacklo_epi8 Interleave PUNPCKLBW

_mm_unpacklo_epi16 Interleave PUNPCKLWD

_mm_unpacklo_epi32 Interleave PUNPCKLDQ

_mm_unpacklo_epi64 Interleave PUNPCKLQDQ

_mm_movepi64_pi64 Move MOVDQ2Q

_mm_movpi64_epi64 Move MOVDQ2Q

_mm_move_epi64 Move MOVQ

_mm_unpackhi_pd Interleave UNPCKHPD

_mm_unpacklo_pd Interleave UNPCKLPD

_mm_movemask_pd Create mask MOVMSKPD

_mm_shuffle_pd Select values SHUFPD

__m128i _mm_packs_epi16(__m128i a, __m128i b)

 into 8-bit integers and saturates. Packs the 16 signed 16-bit integers from a and b

R0 ... R7 R8 ... R15

Signed
Saturate(a0)

... Signed
Saturate(a7)

Signed
Saturate(b0)

... Signed
Saturate(b7)

__m128i _mm_packs_epi32(__m128i a, __m128i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and
saturates.

R0 ... R3 R4 ... R7

Signed
Saturate(a0)

... Signed
Saturate(a3)

Signed
Saturate(b0)

... Signed
Saturate(b3)

124

Intel® C++ Intrinsics Reference

128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and
saturates.

__m128i _mm_packus_epi16(__m

R0 ... R7 R8 ... R15

Unsigned
Saturate(a0)

... Unsigned
Saturate(a7)

Unsigned
Saturate(b0)

... Unsigned
Saturate(b15)

int _mm_extract_epi16(__m128i a, int imm)

. The Extracts the selected signed or unsigned 16-bit integer from a and zero extends
selector imm must be an immediate.

R0

(imm = 0) a0: ((imm == 1) ? a1: ... (imm==7) ? a7) = ?

__m128i _mm_insert_epi16(__m128i a, int b, int imm)

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The
selector imm must be an immediate.

R0 R1 ... R7

(imm == 0) ? b : a0; ... (imm == 7) ? b : a7;(imm == 1) ? b : a1;

int _mm_movemask_epi8(__m128i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-
bit integers in a and zero extends the upper bits.

R0

a15[7] << 15 | a14[7] << 14 | ... a1[7] << 1 | a0[7]

__m128i _mm_shuffle_epi32(__m128i a, int imm)

125

Intel® C++ Intrinsics Reference

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. The shuffle
value, imm, must be an immediate. See Macro Function for Shuffle for a description
of shuffle semantics.

__m128i _mm_shufflehi_epi16(__m128i a, int imm)

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by imm. The
shuffle value, imm, must be an immediate. See Macro Function for Shuffle for a
description of shuffle semantics.

__m128i _mm_shufflelo_epi16(__m128i a, int imm)

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by imm. The
shuffle value, imm, must be an immediate. See Macro Function for Shuffle for a
description of shuffle semantics.

__m128i _mm_unpackhi_epi8(__m128i a, __m128i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8
signed or unsigned 8-bit integers in b.

R0 R1 R2 R3 ... R14 R15

a8 b8 a9 b9 ... a15 b15

__m128i _mm_unpackhi_epi16(__m128i a, __m128i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4
signed or unsigned 16-bit integers in b.

R0 R1 R2 R3 R4 R5 R6 R7

a4 b4 a5 b5 a6 b6 a7 b7

__m128i _mm_unpackhi_epi32(__m128i a, __m128i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2
ed or unsigned 32-bit integers in b. sign

R0 R1 R2 R3

a2 b2 a3 b3

126

Intel® C++ Intrinsics Reference

__m128i _mm_unpackhi_epi64(__m128i a, __m128i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or
unsigned 64-bit integer in b.

R0 R1

a1 b1

__m128i _mm_unpacklo_epi8(__m128i a, __m128i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed
or unsigned 8-bit integers in b.

R0 R1 R2 R3 ... R14 R15

a0 b0 a1 b1 ... a7 b7

__m128i _mm_unpacklo_epi16(__m128i a, __m128i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4
signed or unsigned 16-bit integers in b.

R0 R1 R2 R3 R4 R5 R6 R7

a0 b0 a1 b1 a2 b2 a3 b3

__m128i _mm_unpacklo_epi32(__m128i a, __m128i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2
signed or unsigned 32-bit integers in b.

R0 R1 R2 R3

a0 b0 a1 b1

127

Intel® C++ Intrinsics Reference

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or
unsigned 64-bit integer in b.

R0 R1

a0 b0

__m64 _mm_movepi64_pi64(__m128i a)

Returns the lower 64 bits of a as an __m64 type.

R0

a0

__128i _mm_movpi64_pi64(__m64 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

R0 R1

a0 0X0

__128i _mm_move_epi64(__m128i a)

Moves the lower 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

R0 R1

a0 0X0

__m128d _mm_unpackhi_pd(__m128d a, __m128d b)

Interleaves the upper DP FP values of a and b.

R0 R1

a1 b1

128

__m128i _mm_unpacklo_epi64(__m128i a, __m128i b)

Intel® C++ Intrinsics Reference

R0 R1

a0 b0

int _mm_movemask_pd(__m128d a)

Creates a two-bit mask from the sign bits of the two DP FP values of a

.

R

sign(a1) << 1 | sign(a0)

__m128d _mm_shuffle_pd(__m128d a, __m128d b, int i)

Selects two specific DP FP values from a and b, based on the mask i. The mask must
be an immediate. See Macro Function for Shuffle for a description of the shuffle
semantics.

 Intrinsics for Casting Support

This version of the Intel® C++ Compiler supports casting between various SP, DP,
and INT vector types. These intrinsics do not convert values; they change one data
type to another without changing the value.

The intrinsics for casting support do not correspond to any Streaming SIMD
Extensions 2 (SSE2) instructions.

 __m128 _mm_castpd_ps(__m128d in);

__m128i _mm_castpd_si128(__m128d in);

__m128d _mm_castps_pd(__m128 in);

__m128i _mm_castps_si128(__m128 in);

__m128 _mm_castsi128_ps(__m128i in);

__m128d _mm_castsi128_pd(__m128i in);

129

__m128d _mm_unpacklo_pd(__m128d a, __m128d b)

Interleaves the lower DP FP values of a and b.

Intel® C++ Intrinsics Reference

Pause Intrinsic for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the
xmmintrin.h header file.

void _mm_pause(void)

nstruction is delayed an implementation specific amount
of time. The instruction does not modify the architectural state. This intrinsic
provides especially significant performance gain.

USE intrinsic is used in spin-wait loops with the processors implementing
dynamic execution (especially out-of-order execution). In the spin-wait loop, PAUSE

or dynamic
scheduling, the PAUSE instruction reduces the penalty of exiting from the spin-loop.

Example of loop with the PAUSE instruction:

The execution of the next i

PAUSE Intrinsic

The PA

improves the speed at which the code detects the release of the lock. F

spin loop:pause
cmp eax, A
jne spin_loop

In this example, the program spins until memory location A matches the value in
register eax. The code sequence that follows shows a test-and-test-and-set. In this
example, the spin occurs only after the attempt to get a lock has failed.

get_lock: mov eax, 1
xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop

Critical Section

// critical_section code
mov A, 0 ; Release lock
jmp continue
spin_loop: pause;
// spin-loop hint
cmp 0, A ;
// check lock availability
jne spin_loop
jmp get_lock
// continue: other code

Not
anticipation of successfully gaining access to the lock. It is highly recommended that
all spin-wait loops include the PAUSE instruction. Since PAUSE is backwards
compatible to all existing IA-32 processor generations, a test for processor type (a
CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in
processors which use the PAUSE as a hint there can be significant performance
benefit.

e that the first branch is predicted to fall-through to the critical section in

130

Intel® C++ Intrinsics Reference

Macro Function for Shuffle

The Streaming SIMD Extensions 2 (SSE2) provide a macro function to help create
constants that describe shuffle operations. The macro takes two small integers (in
the range of 0 to 1) and combines them into an 2-bit immediate value used by the
SHUFPD instruction. See the following example.

Shuffle Function Macro

You can view the two integers as selectors for choosing which two words from the
first input operand and which two words from the second are to be put into the result
word.

View of Original and Result Words with Shuffle Function Macro

Overview: Streaming SIMD Extensions 3

The Intel C++ intrinsics listed in this section are designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3). They will not function correctly
on other IA-32 processors. New SSE3 intrinsics include:

• Floating-point Vector Intrinsics
• Integer Vector Intrinsics
• Miscellaneous Intrinsics
• Macro Functions

The prototypes for these intrinsics are in the pmmintrin.h header file.

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

131

Intel® C++ Intrinsics Reference

Integer Vector Intrinsics for Streaming SIMD Extensions
3

The integer vector intrinsic listed here is designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3).

The prototype for this intrinsic is in the pmmintrin.h header file.

R represents the register into which the returns are placed.

__m128i _mm_lddqu_si128(__m128i const *p);

Loads an unaligned 128-bit value. This differs from movdqu in that it can provide
higher performance in some cases. However, it also may provide lower performance
than movdqu if the memory value being read was just previously written.

R

*p;

Single-precision Floating-point Vector Intrinsics for
Streaming SIMD Extensions 3

The single-precision floating-point vector intrinsics listed here are designed for the
Intel® Pentium® 4 processor with Streaming SIMD Extensions 3 (SSE3).

The results of each intrinsic operation are placed in the registers R0, R1, R2, and R3.

To see detailed information about an intrinsic, click on that intrinsic name in the
following table.

The prototypes for these intrinsics are in the pmmintrin.h header file.

Intrinsic Operation Corresponding SSE3
Name Instruction

_mm_addsub_ps Subtract and add ADDSUBPS

_mm_hadd_ps Add HADDPS

_mm_hsub_ps Subtracts HSUBPS

_mm_movehdup_ps Duplicates MOVSHDUP

_mm_moveldup_ps Duplicates MOVSLDUP

132

Intel® C++ Intrinsics Reference

extern __m128 _mm_addsub_ps(__m128 a, __m128 b);

Subtracts even vector elements while adding odd vector elements.

R0 R1 R2 R3

a0 - b0; a1 + b1; a2 - b2; a3 + b3;

extern __m128 _mm_hadd_ps(__m128 a, __m128 b);

Adds adjacent vector elements.

R0 R1 R2 R3

a0 + a1; a2 + a3; b0 + b1; b2 + b3;

extern __m128 _mm_hsub_ps(__m128 a, __m128 b);

Subtracts adjacent vector elements.

R0 R1 R2 R3

a0 - a1; a2 - a3; b0 - b1; b2 - b3;

extern __m128 _mm_movehdup_ps(__m128 a);

Duplicates odd vector elements into even vector elements.

R0 R1 R2 R3

a1; a1; a3; a3;

extern __m128 _mm_moveldup_ps(__m128 a);

Duplicates even vector elements into odd vector elements.

R0 R1 R2 R3

a0;

a0; a2; a2;

133

Intel® C++ Intrinsics Reference

Double-precision Floating-point Vector Intrinsics for
Streaming SIMD Extensions 3

The floating-point intrinsics listed here are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3).

The results of each intrinsic operation are placed in the registers R0 and R1.

To see detailed information about an intrinsic, click on that intrinsic name in the following table.

The prototypes for these intrinsics are in the pmmintrin.h header file.

Intrinsic Operation Corresponding SSE3
Name Instruction

_mm_addsub_pd Subtract and add ADDSUBPD

_mm_hadd_pd Add HADDPD

_mm_hsub_pd Subtract HSUBPD

_mm_loaddup_pd Duplicate MOVDDUP

_mm_movedup_pd Duplicate MOVDDUP

extern __m128d _mm_addsub_pd(__m128d a, __m128d b);

Adds upper vector element while subtracting lower vector element.

R0 R1

a0 - b0; a1 + b1;

extern __m128d _mm_hadd_pd(__m128d a, __m128d b);

Adds adjacent vector elements.

R0 R1

a0 + a1; b0 + b1;

extern __m128d _mm_hsub_pd(__m128d a, __m128d b);

Subtracts adjacent vector elements.

134

Intel® C++ Intrinsics Reference

R0 R1

a0 - a1; b0 - b1;

extern __m128d _mm_loaddup_pd(double const * dp);

Duplicates a double value into upper and lower vector elements.

R0 R1

*dp; *dp;

extern __m128d _mm_movedup_pd(__m128d a);

Duplicates lower vector element into upper vector element.

R0 R1

a0; a0;

Macro Functions for Streaming SIMD Extensions 3

The macro function intrinsics listed here are designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmmintrin.h header file.

_MM_SET_DENORMALS_ZERO_MODE(x)

Macro arguments: one of __MM_DENORMALS_ZERO_ON, _MM_DENORMALS_ZERO_OFF
This causes "denormals are zero" mode to be turned on or off by setting the
appropriate bit of the control register.

_MM_GET_DENORMALS_ZERO_MODE()

No arguments. This returns the current value of the denormals are zero mode bit of
the control register.

Miscellaneous Intrinsics for Streaming SIMD Extensions
3

The miscellaneous intrinsics listed here are designed for the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3).

135

Intel® C++ Intrinsics Reference

The prototypes for these intrinsics are in the pmmintrin.h header file.

extern void _mm_monitor(void const *p, unsigned extensions, unsigned
hints);

Generates the MONITOR instruction. This sets up an address range for the monitor
hardware using p to provide the logical address, and will be passed to the monitor
instruction in register eax. The extensions parameter contains optional extensions to
the monitor hardware which will be passed in ecx. The hints parameter will contain
hints to the monitor hardware, which will be passed in edx. A non-zero value for
extensions will cause a general protection fault.

extern void _mm_mwait(unsigned extensions, unsigned hints);

Generates the MWAIT instruction. This instruction is a hint that allows the processor
to stop execution and enter an implementation-dependent optimized state until
occurrence of a class of events. In future processor designs extensions and hints
parameters may be used to convey additional information to the processor. All non-
zero values of extensions and hints are reserved. A non-zero value for extensions will
cause a general protection fault.

Overview: Supplemental Streaming SIMD Extensions 3

The Intel C++ intrinsics listed in this section are supported in the Supplemental
Streaming SIMD Extensions 3. The prototypes for these intrinsics are in
tmmintrin.h. You can also use the ia32intrin.h header file for these intrinsics.

• Addition Intrinsics
• Subtraction Intrinsics
• Multiplication Intrinsics
• Absolute Value Intrinsics
• Shuffle Intrinsics
• Concatenate Intrinsics
• Negation Intrinsics

Addition Intrinsics

Use the following SSSE3 intrinsics for horizontal addition.

extern __m128i _mm_hadd_epi16 (__m128i a, __m128i b);

Add horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = a[2*i] + a[2i+1];

136

Intel® C++ Intrinsics Reference

 r[i+4] = b[2*i] + b[2*i+1];

}

extern __m128i _mm_hadd_epi32 (__m128i a, __m128i b);

Add horizontally packed signed dwords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] + a[2i+1];

 r[i+2] = b[2*i] + b[2*i+1];

}

extern __m128i _mm_hadds_epi16 (__m128i a, __m128i b);

Add horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = signed_saturate_to_word(a[2*i] + a[2i+1]);

 r[i+4] = signed_saturate_to_word(b[2*i] + b[2*i+1]);

}

extern __m64 _mm_hadd_pi16 (__m64 a, __m64 b);

Add horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] + a[2i+1];

 r[i+2] = b[2*i] + b[2*i+1];

}

137

Intel® C++ Intrinsics Reference

extern __m64 _mm_hadd_pi32 (__m64 a, __m64 b);

Add horizontally packed signed dwords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

r[0] = a[1] + a[0];

r[1] = b[1] + b[0];

extern __m64 _mm_hadds_pi16 (__m64 a, __m64 b);

Add horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = signed_saturate_to_word(a[2*i] + a[2i+1]);

 r[i+2] = signed_saturate_to_word(b[2*i] + b[2*i+1]);

}

Subtraction Intrinsics

Use the following SSSE3 intrinsics for horizontal subtraction.

extern __m128i _mm_hsub_epi16 (__m128i a, __m128i b);

Subtract horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = a[2*i] - a[2i+1];

 r[i+4] = b[2*i] - b[2*i+1];

}

138

Intel® C++ Intrinsics Reference

extern __m128i _mm_hsub_epi32 (__m128i a, __m128i b);

Subtract horiztonally packed signed dwords.

Interpreting a, b, and r as arrays of 32-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] - a[2i+1];

 r[i+2] = b[2*i] - b[2*i+1];

}

extern __m128i _mm_hsubs_epi16 (__m128i a, __m128i b);

Subract horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = signed_saturate_to_word(a[2*i] - a[2i+1]);

 r[i+4] = signed_saturate_to_word(b[2*i] - b[2*i+1]);

}

extern __m64 _mm_hsub_pi16 (__m64 a, __m64 b);

Subtract horizontally packed signed words.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = a[2*i] - a[2i+1];

 r[i+2] = b[2*i] - b[2*i+1];

}

extern __m64 _mm_hsub_pi32 (__m64 a, __m64 b);

Subtract horizontally packed signed dwords.

139

Intel® C++ Intrinsics Reference

Interpreting a, b, and r as arrays of 32-bit signed integers:

r[0] = a[0] - a[1];

r[1] = b[0] - b[1];

extern __m64 _mm_hsubs_pi16 (__m64 a, __m64 b);

Subtract horizontally packed signed words with signed saturation.

Interpreting a, b, and r as arrays of 16-bit signed integers:

for (i = 0; i < 2; i++) {

 r[i] = signed_saturate_to_word(a[2*i] - a[2i+1]);

 r[i+2] = signed_saturate_to_word(b[2*i] - b[2*i+1]);

}

Multiplication Intrinsics

Use the following SSSE3 intrinsics for multiplication.

extern __m128i _mm_maddubs_epi16 (__m128i a, __m128i b);

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack
saturated signed words.

Interpreting a as array of unsigned 8-bit integers, b as arrays of signed 8-bit
integers, and r as arrays of 16-bit signed integers:

for (i = 0; i < 8; i++) {

 r[i] = signed_saturate_to_word(a[2*i+1] * b[2*i+1] + a[2*i]*b[2*i]);

}

extern __m64 _mm_maddubs_pi16 (__m64 a, __m64 b);

Multiply signed and unsigned bytes, add horizontal pair of signed words, pack
saturated signed words.

140

Intel® C++ Intrinsics Reference

Interpreting a as array of unsigned 8-bit integers, b as arrays of signed 8-bit
integers, and r as arrays of 16-bit signed integers:

for (i = 0; i < 4; i++) {

 r[i] = signed_saturate_to_word(a[2*i+1] * b[2*i+1] + a[2*i]*b[2*i]);

}

extern __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b);

Multiply signed words, scale and round signed dwords, pack high 16-bits.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {

 r[i] = (((int32)((a[i] * b[i]) >> 14) + 1) >> 1) & 0xFFFF;

}

extern __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b);

Multiply signed words, scale and round signed dwords, pack high 16-bits.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 4; i++) {

 r[i] = (((int32)((a[i] * b[i]) >> 14) + 1) >> 1) & 0xFFFF;

}

Absolute Value Intrinsics

Use the following SSSE3 intrinsics to compute absolute values.

extern __m128i _mm_abs_epi8 (__m128i a);

Compute absolute value of signed bytes.

141

Intel® C++ Intrinsics Reference

Interpreting a and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++) {

 r[i] = abs(a[i]);

}

extern __m128i _mm_abs_epi16 (__m128i a);

Compute absolute value of signed words.

Interpreting a and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {

 r[i] = abs(a[i]);

}

extern __m128i _mm_abs_epi32 (__m128i a);

Compute absolute value of signed dwords.

Interpreting a and r as arrays of signed 32-bit integers:

for (i = 0; i < 4; i++) {

 r[i] = abs(a[i]);

}

extern __m64 _mm_abs_pi8 (__m64 a);

Compute absolute value of signed bytes.

Interpreting a and r as arrays of signed 8-bit integers:

for (i = 0; i < 8; i++) {

 r[i] = abs(a[i]);

}

142

Intel® C++ Intrinsics Reference

extern __m64 _mm_abs_pi16 (__m64 a);

Compute absolute value of signed words.

Interpreting a and r as arrays of signed 16-bit integers:

for (i = 0; i < 4; i++) {

 r[i] = abs(a[i]);

}

extern __m64 _mm_abs_pi32 (__m64 a);

Compute absolute value of signed dwords.

Interpreting a and r as arrays of signed 32-bit integers:

for (i = 0; i < 2; i++) {

 r[i] = abs(a[i]);

}

Shuffle Intrinsics

Use the following SSSE3 intrinsics for shuffle.

extern __m128i _mm_shuffle_epi8 (__m128i a, __m128i b);

Shuffle bytes from a according to contents of b.

Interpreting a, b, and r as arrays of unsigned 8-bit integers:

for (i = 0; i < 16; i++) {

 if (b[i] & 0x80) {

 r[i] = 0;

 }

 else {

143

Intel® C++ Intrinsics Reference

 r[i] = a[b[i] & 0x0F];

 }

}

extern __m64 _mm_shuffle_pi8 (__m64 a, __m64 b);

Shuffle bytes from a according to contents of b.

Interpreting a, b, and r as arrays of unsigned 8-bit integers:

for (i = 0; i < 8; i++) {

 if (b[i] & 0x80) {

 r[i] = 0;

 }

 else {

 r[i] = a[b[i] & 0x07];

 }

}

Concatenate Intrinsics

Use the following SSSE3 intrinsics for concatenation.

extern __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n);

Concatenate a and b, extract byte-aligned result shifted to the right by n.

Interpreting t1 as 256-bit unsigned integer, a, b, and r as 128-bit unsigned
integers:

t1[255:128] = a;

t1[127:0] = b;

t1[255:0] = t1[255:0] >> (8 * n); // unsigned shift

r[127:0] = t1[127:0];

144

Intel® C++ Intrinsics Reference

extern __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n);

Concatenate a and b, extract byte-aligned result shifted to the right by n.

Interpreting t1 as 127-bit unsigned integer, a, b and r as 64-bit unsigned integers:

t1[127:64] = a;

t1[63:0] = b;

t1[127:0] = t1[127:0] >> (8 * n); // unsigned shift

r[63:0] = t1[63:0];

Negation Intrinsics

Use the following SSSE3 intrinsics for negation.

extern __m128i _mm_sign_epi8 (__m128i a, __m128i b);

Negate packed bytes in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

145

Intel® C++ Intrinsics Reference

extern __m128i _mm_sign_epi16 (__m128i a, __m128i b);

Negate packed words in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

extern __m128i _mm_sign_epi32 (__m128i a, __m128i b);

Negate packed dwords in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 32-bit integers:

for (i = 0; i < 4; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

146

Intel® C++ Intrinsics Reference

 r[i] = a[i];

tern __m64 _mm_sign_pi8 (__m64 a, __m64 b);

Negate packed bytes in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 8-bit integers:

for (i = 0; i < 16; i++) {

 if (b[i] < 0) {

 else if (b[i] == 0) {

 r[i] = 0;

 r[i] = a[i];

tern __m64 _mm_sign_pi16 (__m64 a, __m64 b);

words in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 16-bit integers:

for (i = 0; i < 8; i++) {

 if (b[i] < 0) {

 }

 }

}

ex

 r[i] = -a[i];

 }

 }

 else {

 }

}

ex

Negate packed

r[i] = -a[i];

147

Intel® C++ Intrinsics Reference

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

extern __m64 _mm_sign_pi32 (__m64 a, __m64 b);

Negate packed dwords in a if corresponding sign in b is less than zero.

Interpreting a, b, and r as arrays of signed 32-bit integers:

for (i = 0; i < 2; i++) {

 if (b[i] < 0) {

 r[i] = -a[i];

 }

 else if (b[i] == 0) {

 r[i] = 0;

 }

 else {

 r[i] = a[i];

 }

}

Overview

The intrinsics in this section correspond to Intel® Streaming SIMD Extensions 4
(SSE4) instructions. SSE4 includes the following categories:

• Streaming SIMD Extensions 4 (SSE4) Vectorizing Compiler and Media
Accelerators
The prototypes for these intrinsics are in the smmitnrin.h file.

148

Intel® C++ Intrinsics Reference

• Streaming SIMD Extensions 4 (SSE4) Efficient Accelerated String and Text
Processing
The prototypes for these intrinsics are in the nmmintrin.h file.

Overview: Streaming SIMD Extensions 4 Vectorizing
Compiler and Media Accelerators

The intrinsics in this section correspond to Streaming SIMD Extensions 4 (SSE4)
Vectorizing Compiler and Media Accelerators instructions.

• Packed Blending Intrinsincs for Streaming SIMD Extensions 4
• Floating Point Dot Product Intrinsincs for Streaming SIMD Extensions 4
• Packed Format Conversion Intrinsics for Streaming SIMD Extensions 4
• Packed Integer Min/Max Intrinsics for Streaming SIMD Extensions 4
• Floating Point Rounding Intrinsics for Streaming SIMD Extensions 4
• DWORD Multiply Intrinsics for Streaming SIMD Extensions 4
• Register Insertion/Extraction Intrinsics for Streaming SIMD Extensions 4
• Test Intrinsics for Streaming SIMD Extensions 4
• Packed DWORD to Unsigned WORD Intrinsic for Streaming SIMD Extensions 4
• Packed Compare for Equal Intrinsics for Streaming SIMD Extensions 4

The prototypes for these instrinsics are in the smmintrin.h file.

Packed Blending Intrinsincs for Streaming SIMD
Extensions 4

These intrinsics pack multiple operations in a single instruction. Blending
conditionally copies one field in the source onto the corresponding field in the
destination.

Intrinsic Operation Corresponding
Name SSE4

Instruction

_mm_blend_ps Select float single precision data from 2
sources using constant mask

BLENDPS

_mm_blend_pd Select float double precision data from 2
sources using constant mask

BLENDPD

_mm_blendv_ps Select float single precision data from 2
sources using variable mask

BLENDVPS

_mm_blendv_pd Select float double precision data from 2
sources using variable mask

BLENDVPD

_mm_blendv_epi8 Select integer bytes from 2 sources using
variable mask

PBLENDVB

_mm_blend_epi16 Select integer words from 2 sources using PBLENDW

149

Intel® C++ Intrinsics Reference

constant mask

__m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask)

__m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask)

__m128d _mm_blendv_pd (__m128d v1, __m128d v2, __m128d v3)

__m128 _mm_blendv_ps (__m128 v1, __m128 v2, __m128 v3)

__m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask)

__m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask)

Floating Point Dot Product Intrinsincs for Streaming
SIMD Extensions 4

These intrinsics enable floating point single precision and double precision dot
products.

Intrinsic Operation Corresponding SSE4
Name Instruction

_mm_dp_pd Double precision dot product DPPD

_mm_dp_ps Single precision dot product DPPS

__m128d _mm_dp_pd (__m128d a, __m128d b, const int mask)

This intrinsic calculates the dot product of double precision packed values with mask-
defined summing and zeroing of the parts of the result.

__m128 _mm_dp_ps (__m128 a, __m128 b, const int mask)

150

Intel® C++ Intrinsics Reference

This intrinsic calculates the dot product of single precision packed values with mask-
defined summing and zeroing of the parts of the result.

Packed Format Conversion Intrinsics for Streaming SIMD
Extensions 4

These intrinsics convert from a packed integer to a zero-extended or sign-extended
integer with wider type.

Intrinsic Operation Corresponding
Name SSE4

Instruction

mm cvtepi8_epi32 Sign extend 4 bytes into 4 double
words

PMOVSXBD

mm cvtepi8_epi64 Sign extend 2 bytes into 2 quad words PMOVSXBQ

mm cvtepi8_epi16 Sign extend 8 bytes into 8 words PMOVSXBW

mm
cvtepi32_epi64

Sign extend 2 double words into 2
quad words

PMOVSXDQ

mm
cvtepi16_epi32

Sign extend 4 words into 4 double
words

PMOVSXWD

mm
cvtepi16_epi64

Sign extend 2 words into 2 quad words PMOVSXWQ

mm cvtepu8_epi32 Zero extend 4 bytes into 4 double
words

PMOVZXBD

mm cvtepu8_epi64 Zero extend 2 bytes into 2 quad words PMOVZXBQ

mm cvtepu8_epi16 Zero extend 8 bytes into 8 word PMOVZXBW

mm
cvtepu32_epi64

Zero extend 2 double words into 2
quad words

PMOVZXDQ

mm
cvtepu16_epi32

Zero extend 4 words into 4 double
words

PMOVZXWD

mm
cvtepu16_epi64

Zero extend 2 words into 2 quad words PMOVZXWQ

__m128i _mm_ cvtepi8_epi32 (__m128i a)

__m128i _mm_ cvtepi8_epi64 (__m128i a)

151

Intel® C++ Intrinsics Reference

__m128i _mm_ cvtepi8_epi16 (__m128i a)

__m128i _mm_ cvtepi32_epi64 (__m128i a)

__m128i _mm_ cvtepi16_epi32 (__m128i a)

__m128i _mm_ cvtepi16_epi64 (__m128i a)

__m128i _mm_ cvtepu8_epi32 (__m128i a)

__m128i _mm_ cvtepu8_epi64 (__m128i a)

__m128i _mm_ cvtepu8_epi16 (__m128i a)

__m128i _mm_ cvtepu32_epi64 (__m128i a)

__m128i _mm_ cvtepu16_epi32 (__m128i a)

__m128i _mm_ cvtepu16_epi64 (__m128i a)

Packed Integer Min/Max Intrinsics for Streaming SIMD
Extensions 4

These intrinsics compare packed integers in the destination operand and the source
operand, and return the minimum or maximum for each packed operand in the
destination operand.

152

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding
Name SSE4

Instruction

_mm_max_epi8 Calculate maximum of signed packed integer
bytes

PMAXSB

_mm_max_epi32 Calculate maximum of signed packed integer
double words

PMAXSD

_mm_max_epu32 Calculate maximum of unsigned packed
integer double words

PMAXUD

_mm_max_epu16 Calculate maximum of unsigned packed
integer words

PMAXUW

_mm_min_epi8 Calculate minimum of signed packed integer
bytes

PMINSB

_mm_min_epi32 Calculate minimum of signed packed integer
double words

PMINSD

_mm_min_epu32 Calculate minimum of unsigned packed
integer double words

PMINUD

_mm_min_epu16 Calculate minimum of unsigned packed
integer words

PMINUW

__m128i _mm_max_epi8 (__m128i a, __m128i b)

__m128i _mm_max_epi32 (__m128i a, __m128i b)

__m128i _mm_max_epu32 (__m128i a, __m128i b)

__m128i _mm_max_epu16 (__m128i a, __m128i b)

__m128i _mm_min_epi8 (__m128i a, __m128i b)

__m128i _mm_min_epi32 (__m128i a, __m128i b)

153

Intel® C++ Intrinsics Reference

__m128i _mm_min_epu32 (__m128i a, __m128i b)

__m128i _mm_min_epu16 (__m128i a, __m128i b)

Floating Point Rounding Intrinsics for Streaming SIMD
Extensions 4

These rounding intrinsics cover scalar and packed single-precision and double
precision floating-point operands.

The floor and ceil intrinsics correspond to the definitions of floor and ceil in the
ISO 9899:1999 standard for the C programming language.

Intrinsic Operation Corresponding SSE4
Name Instruction

ROUNDPD_mm_round_pd

mm_floor_pd

mm_ceil_pd

Packed float double precision rounding

_mm_round_ps

mm_floor_ps

mm_ceil_ps

Packed float single precision rounding ROUNDPS

_mm_round_sd

mm_floor_sd

mm_ceil_sd

Single float double precision rounding ROUNDSD

_mm_round_ss Single float single precision rounding ROUNDSS

mm_floor_ss

mm_ceil_ss

__m128d _mm_round_pd(__m128d s1, int iRoundMode)

__m128d mm_floor_pd(__m128d s1)

154

Intel® C++ Intrinsics Reference

__m128d mm_ceil_pd(__m128d s1)

__m128 _mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

__m128d _mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

__m128 _mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

DWORD Multiply Intrinsics for Streaming SIMD
Extensions 4

These DWORD multiply intrinsics are designed to aid vectorization. They enable four
simultaneous 32 bit by 32 bit multiplies.

Intrinsic Operation Corresponding
Name SSE4

Instruction

_mm_mul_epi32 Packed integer 32-bit multiplication of 2 low
pairs of operands producing two 64-bit
results

PMULDQ

_mm_mullo_epi32 Packed integer 32-bit multiplication with
truncation of upper halves of results

PMULLD

155

Intel® C++ Intrinsics Reference

__m128i _mm_mullo_epi32(__m128i a, __m128i b)

Register Insertion/Extraction Intrinsics for Streaming
SIMD Extensions 4

These intrinsics enable data insertion and extraction between general purpose
registers and XMM registers.

Intrinsic Operation Corresponding
Name SSE4

Instruction

_mm_insert_ps Insert single precision float into packed
single precision array element selected by
index

INSERTPS

_mm_extract_ps Extract single precision float from packed
single precision array element selected by
index

EXTRACTPS

_mm_extract_epi8 Extract integer byte from packed integer
array element selected by index

PEXTRB

_mm_extract_epi32 Extract integer double word from packed
integer array element selected by index

PEXTRD

_mm_extract_epi64 Extract integer quad word from packed
integer array element selected by index

PEXTRQ

_mm_extract_epi16 Extract integer word from packed integer
array element selected by index

PEXTRW

_mm_insert_epi8 Insert integer byte into packed integer PINSRB

array element selected by index

_mm_insert_epi32 double word into packed
integer array element selected by index

PINSRDInsert integer

_mm_insert_epi64 Insert integer quad word into packed
integer array element selected by index

PINSRQ

__m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);

int _mm_extract_ps(__m128 src, const int ndx);

156

__m128i _mm_mul_epi32(__m128i a, __m128i b)

Intel® C++ Intrinsics Reference

int _mm_extract_epi8 (__m128i src, const int ndx);

int _mm_extract_epi32 (__m128i src, const int ndx);

__int64 _mm_extract_epi64 (__m128i src, const int ndx);

int _mm_extract_epi16 (__m128i src, int ndx);

__m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx)

__m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx)

__m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

Test Intrinsics for Streaming SIMD Extensions 4

These intrinsics perform packed integer 128-bit comparisons.

Intrinsic Operation Corresponding
Name SSE4

Instruction

_mm_testc_si128 Check for all ones in specified bits of a
128-bit value

PTEST

_mm_testz_si128 Check for all zeros in specified bits of a
128-bit value

PTEST

_mm_testnzc_si128 Check for at least one zero and at least
one one in specified bits of a 128-bit value

PTEST

157

Intel® C++ Intrinsics Reference

int _mm_testz_si128 (__m128i s1, __m128i s2)

Returns 1 if the bitwise AND of s1 and s2 is all zero, else returns 0

int _mm_testc_si128 (__m128i s1, __m128i s2)

Returns 1 if the bitwise AND of s2 ANDNOT of s1 is all ones, else returns 0.

int _mm_testnzc_si128 (__m128i s1, __m128i s2)

Same as (!_mm)testz) && (!_mm_testc)

Packed DWORD to Unsigned WORD Intrinsic for
Streaming SIMD Extensions 4

__m128i _mm_packus_epi32(__m128i m1, __m128i m2)

Corresponding SSE4 instruction: PACKUSDW

This intrinsic converts 8 packed signed DWORDs into 8 packed unsigned WORDs,
using unsigned saturation to handle overflow condition.

Packed Compare for Equal for Streaming SIMD
Extensions 4

__m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

Corresponding SSE4 instruction: PCMPEQQ

This intrinsic performs a packed integer 64-bit comparison for equality. This intrinsic
zeroes or fills with ones the corresponding parts of the result.

158

Intel® C++ Intrinsics Reference

Overview: Streaming SIMD Extensions 4 Efficient
Accelerated String and Text Processing

The intrinsics in this section correspond to Streaming SIMD Extensions 4 (SSE4)
Efficient Accelerated String and Text Processing instructions. These instructions
include:

• Packed Comparison Intrinsics for Streaming SIMD Extensions 4
• Application Targeted Accelerators Intrinsics

The prototypes for these intrinsics are in the nmmintrin.h file.

Packed Comparison Intrinsics for Streaming SIMD
Extensions 4

These intrinsics perform packed comparisons. They correspond to SSE4 instructions.
For intrinsics that could map to more than one instruction, the Intel(R) C++
Compiler selects the instruction to generate.

Intrinsic Operation Corresponding SSE4 Name Instruction

_mm_cmpestri Packed comparison, generates index PCMPESTRI

_mm_cmpestrm Packed comparison, generates mask PCMPESTRM

_mm_cmpistri Packed comparison, generates index PCMPISTRI

_mm_cmpistrm Packed comparison, generates mask PCMPISTRM

_mm_cmpestrz Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestrc Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestrs Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestro Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpestra Packed comparison PCMPESTRM or PCMPESTRI

_mm_cmpistrz Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistrc Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistrs Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistro Packed comparison PCMPISTRM or PCMPISTRI

_mm_cmpistra Packed comparison PCMPISTRM or PCMPISTRI

int _mm_cmpestri(__m128i src1, int len1, __m128i src2, int len2, const int
mode)

This intrinsic performs a packed comparison of string data with explicit lengths,
generating an index and storing the result in ECX.

159

Intel® C++ Intrinsics Reference

__m128i _mm_cmpestrm(__m128i src1, int len1, __m128i src2, int len2, const
int mode)

This intrinsic performs a packed comparison of string data with explicit lengths,
generating a mask and storing the result in XMM0.

int _mm_cmpistri(__m128i src1, __m128i src2, const int mode)

This intrinsic performs a packed comparison of string data with implicit lengths,
generating an index and storing the result in ECX

__m128i _mm_cmpistrm(__m128i src1, __m128i src2, const int mode)

This intrinsic performs a packed comparison of string data with implicit lengths,
generating a mask and storing the result in XMM0.

int _mm_cmpestrz(__m128i src1, int len1, __m128i src2, int len2, const int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if ZFlag == 1, otherwise 0.

int _mm_cmpestrc(__m128i src1, int len1, __m128i src2, int len2, const int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if CFlag == 1, otherwise 0.

int _mm_cmpestrs(__m128i src1, int len1, __m128i src2, int len2, const int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if SFlag == 1, otherwise 0.

int _mm_cmpestro(__m128i src1, int len1, __m128i src2, int len2, const int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if OFlag == 1, otherwise 0.

160

Intel® C++ Intrinsics Reference

int _mm_cmpestra(__m128i src1, int len1, __m128i src2, int len2, const int mode);

This intrinsic performs a packed comparison of string data with explicit lengths.
Returns 1 if CFlag == 0 and ZFlag == 0, otherwise 0.

int _mm_cmpistrz(__m128i src1, __m128i src2, const int mode);

This intrinsic performs a packed comparison of string data with implicit lengths.
eturns 1 if (ZFlag == 1), otherwise 0.

t _mm_cmpistrc(__m128i src1, __m128i src2, const int mode);

licit lengths.
Returns 1 if (CFlag == 1), otherwise 0.

int _mm_cmpistrs(__m128i src1, __m128i src2, const int mode);

This intrinsic performs a packed comparison of string data with implicit lengths.

pistro(__m128i src1, __m128i src2, const int mode);

his intrinsic performs a packed comparison of string data with implicit lengths.
Returns 1 if (OFlag == 1), otherwise 0.

This intrinsic performs a packed comparison of string data with implicit lengths.
eturns 1 if (ZFlag == 0 and CFlag == 0), otherwise 0.

ormance-optimized, low-latency, lower power fixed-function accelerators
on the processor die to benefit specific applications.

R

in

This intrinsic performs a packed comparison of string data with imp

Returns 1 if (SFlag == 1), otherwise 0.

int _mm_cm

T

int _mm_cmpistra(__m128i src1, __m128i src2, const int mode);

R

Application Targeted Accelerators Intrinsics

Application Targeted Accelerators extend the capabilities of Intel architecture by
adding perf

The primitives for these intrinsics are in the file nmmintrin.h.

161

Intel® C++ Intrinsics Reference

Intrinsic Operation Corresponding
Name SSE4

Instruction

_mm_popcnt_u32 Counts number of set bits in a data
operation

POPCNT

_mm_popcnt_u64 Counts number of set bits in a data
operation

POPCNT

_mm_crc32_u8 Accumulate cyclic redundancy check CRC32

_mm_crc32_u16 Cyclic redundancy check CRC32

_mm_crc32_u32 Cyclic redundancy check CRC32

_mm_crc32_u64 CRC32Cyclic redundancy check

int _mm_popcnt_u32(unsigned int v);

int _mm_popcnt_u64(unsigned __int64 v);

unsigned int _mm_crc32_u8 (unsigned int crc, unsigned char v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m8.

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m16.

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m32.

162

Intel® C++ Intrinsics Reference

unsigned __int64 _mm_crc32_u64(unsigned __int64 crc, unsigned __int64 v);

Starting with an initial value in the first operand, accumulates a CRC32 value for the
second operand and stores the result in the destination operand. Accumulates CRC32
on r/m64.

Overview: Intrinsics for IA-64 Instructions

This section lists and describes the native intrinsics for IA-64 instructions. These
intrinsics cannot be used on the IA-32 architecture. These intrinsics give
programmers access to IA-64 instructions that cannot be generated using the
standard constructs of the C and C++ languages.

The prototypes for these intrinsics are in the ia64intrin.h header file.

The Intel® Itanium® processor does not support SSE2 intrinsics. However, you can
use the sse2mmx.h emulation pack to enable support for SSE2 instructions on IA-64
architecture.

For information on how to use SSE intrinsics on IA-64 architecture, see Using
Streaming SIMD Extensions on IA-64 Architecture.

For information on how to use MMX (TM) technology intrinsics on IA-64 architecture,
see MMX(TM) Technology Intrinsics on IA-64 Architecture

Native Intrinsics for IA-64 Instructions

The prototypes for these intrinsics are in the ia64intrin.h header file.

Integer Operations
Intrinsic Operation Corresponding IA-64

Instruction

_m64_dep_mr Deposit dep

_m64_dep_mi Deposit dep

_m64_dep_zr Deposit dep.z

_m64_dep_zi Deposit dep.z

_m64_extr Extract extr

_m64_extru Extract extr.u

_m64_xmal Multiply and add xma.l

_m64_xmalu Multiply and add xma.lu

163

Intel® C++ Intrinsics Reference

_m64_xmah Multiply and add xma.h

_m64_xmahu Multiply and add xma.hu

popcnt _m64_popcnt Population Count

shladd _m64_shladd Shift left and add

_m64_shrp Shift right pair shrp

FSR Operations
Intrinsic Description

void _fsetc(int
amask, int omask)

Sets the control bits of FPSR.sf0. Maps to the fsetc.sf0
r, r instruction. There is no corresponding instruction to
read the control bits. Use _mm_getfpsr().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags of
FPSR.sf0). Maps to the fclrf.sf0 instruction.

__int64 _m64_dep_mr(__int64 r, __int64 s, const int pos, const int len)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary bit
position and the result is returned. The deposited bit field begins at bit position pos
and extends to the left (toward the most significant bit) the number of bits specified
by len.

__int64 _m64_dep_mi(const int v, __int64 s, const int p, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in s at
an arbitrary bit position and the result is returned. The deposited bit field begins at
bit position p and extends to the left (toward the most significant bit) the number of
bits specified by len.

__int64 _m64_dep_zr(__int64 s, const int pos, const int len)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an
arbitrary bit position and the result is returned. The deposited bit field begins at bit
position pos and extends to the left (toward the most significant bit) the number of
bits specified by len.

__int64 _m64_dep_zi(const int v, const int pos, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field of all
zeros at an arbitrary bit position and the result is returned. The deposited bit field
begins at bit position pos and extends to the left (toward the most significant bit) the
number of bits specified by len.

164

Intel® C++ Intrinsics Reference

__int64 _m64_extr(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and sign
extended. The extracted field begins at position pos and extends len bits to the left.
The sign is taken from the most significant bit of the extracted field.

__int64 _m64_extru(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and zero
extended. The extracted field begins at position pos and extends len bits to the left.

__int64 _m64_xmal(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a
full 128-bit signed result. The 64-bit value c is zero-extended and added to the
product. The least significant 64 bits of the sum are then returned.

__int64 _m64_xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a
full 128-bit unsigned result. The 64-bit value c is zero-extended and added to the
product. The least significant 64 bits of the sum are then returned.

__int64 _m64_xmah(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a
full 128-bit signed result. The 64-bit value c is zero-extended and added to the
product. The most significant 64 bits of the sum are then returned.

__int64 _m64_xmahu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce
a full 128-bit unsigned result. The 64-bit value c is zero-extended and added to the
product. The most significant 64 bits of the sum are then returned.

__int64 _m64_popcnt(__int64 a)

165

Intel® C++ Intrinsics Reference

The number of bits in the 64-bit integer a that have the value 1 are counted, and the
resulting sum is returned.

__int64 _m64_shladd(__int64 a, const int count, __int64 b)

a is shifted to the left by count bits and then added to b. The result is returned.

__int64 _m64_shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits.
The least significant 64 bits of the result are returned.

Lock and Atomic Operation Related Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned __int64
_InterlockedExchange8(volatile unsigned char
*Target, unsigned __int64 value)

Map to the xchg1 instruction.
Atomically write the least
significant byte of its 2nd
argument to address
specified by its 1st
argument.

unsigned __int64
_InterlockedCompareExchange8_rel(volatile
unsigned char *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Compare and exchange
atomically the least
significant byte at the
address specified by its 1st
argument. Maps to the
cmpxchg1.rel instruction
with appropriate setup.

unsigned __int64
_InterlockedCompareExchange8_acq(volatile
unsigned char *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Same as the previous
intrinsic, but using acquire
semantic.

unsigned __int64
_InterlockedExchange16(volatile unsigned
short *Target, unsigned __int64 value)

Map to the xchg2 instruction.
Atomically write the least

nd

argument.

significant word of its 2
argument to address
specified by its 1st

unsigned __int64
_InterlockedCompareExchange16_rel(volatile
unsigned short *Destination, unsigned int64
Exchange, unsigned __int64 Comparand)

Compare and exchange
atomically the least
significant word at the
address specified by its 1st

166

Intel® C++ Intrinsics Reference

argument. Maps to the
cmpxchg2.rel instruction
with appropriate setup.

unsigned __int64
_InterlockedCompareExchange16_acq(volatile
unsigned short *Destination, unsigned int64
Exchange, unsigned __int64 Comparand)

Same as the previous
intrinsic, but using acquire
semantic.

int _InterlockedIncrement(volatile int
*addend

Atomically increment by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

int _InterlockedDecrement(volatile int
*addend

Atomically decrement by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

int _InterlockedExchange(volatile int
*Target, long value

Do an exchange operation
atomically. Maps to the
xchg4 instruction.

int _InterlockedCompareExchange(volatile int
*Destination, int Exchange, int Comparand

Do a compare and exchange
operation atomically. Maps
to the cmpxchg4 instruction
with appropriate setup.

int _InterlockedExchangeAdd(volatile int
*addend, int increment

Use compare and exchange
to do an atomic add of the
increment value to the
addend. Maps to a loop with
the cmpxchg4 instruction to
guarantee atomicity.

int InterlockedAdd(volatile int *addend, int
increment)

Same as the previous
intrinsic, but returns new
value, not the original one.

void *
_InterlockedCompareExchangePointer(void *
volatile *Destination, void *Exchange, void
*Comparand)

Map the exch8 instruction;
Atomically compare and
exchange the pointer value
specified by its first
argument (all arguments are
pointers)

unsigned __int64
_InterlockedExchangeU(volatile unsigned int
*Target, unsigned __int64 value)

Atomically exchange the 32-
bit quantity specified by the
1st argument. Maps to the
xchg4 instruction.

unsigned __int64
_InterlockedCompareExchange_rel(volatile
unsigned int *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg4.rel
instruction with appropriate
setup. Atomically compare
and exchange the value

167

Intel® C++ Intrinsics Reference

specified by the first
argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange_acq(volatile
unsigned int *Destination, unsigned __int64
Exchange, unsigned __int64 Comparand)

Same as the previous
intrinsic, but map the
cmpxchg4.acq instruction.

void _ReleaseSpinLock(volatile int *x) Release spin lock.

__int64 _InterlockedIncrement64(volatile
__int64 *addend)

Increment by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedDecrement64(volatile
__int64 *addend)

Decrement by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedExchange64(volatile
__int64 *Target, __int64 value)

Do an exchange operation
atomically. Maps to the xchg
instruction.

unsigned __int64
_InterlockedExchangeU64(volatile unsigned
__int64 *Target, unsigned __int64 value)

Same as
InterlockedExchange64
(for unsigned quantities).

unsigned __int64
_InterlockedCompareExchange64_rel(volatile
unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg.rel
instruction with appropriate
setup. Atomically compare
and exchange the value
specified by the first
argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange64_acq(volatile
unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64 Comparand)

Maps to the cmpxchg.acq
instruction with appropriate
setup. Atomically compare
and exchange the value
specified by the first
argument (a 64-bit pointer).

__int64
_InterlockedCompareExchange64(volatile
__int64 *Destination, __int64
__int64 Comparand)

Same as the previous

Exchange,
intrinsic for signed
quantities.

__int64 _InterlockedExchangeAd
__int64 *addend, __int64 incre

e

arantee atomicity

d64(volatile
ment)

Use compare and exchang
to do an atomic add of the
increment value to the
addend. Maps to a loop with
the cmpxchg instruction to
gu

__int64 _InterlockedAdd64(vola
*addend, __int64 increment); intrinsic, but returns the new

value, not the original value.

tile __int64 Same as the previous

168

Intel® C++ Intrinsics Reference

See Note.

Note

_InterlockedSub64 is provided as a macro definition based on
_InterlockedAdd64.
#define _InterlockedSub64(target, incr)
_InterlockedAdd64((target),(-(incr))).

Uses cmpxchg to do an atomic sub of the incr value to the target. Maps to a
loop with the cmpxchg instruction to guarantee atomicity.

Load and Store

You can use the load and store intrinsic to force the strict memory access ordering of
specific data objects. This intended use is for the case when the user suppresses the
strict memory access ordering by using the -serialize-volatile- option.

Intrinsic Prototype Description

__st1_rel void __st1_rel(void *dst, const char
value);

Generates an st1.rel
instruction.

__st2_rel void __st2_rel(void *dst, const
short value);

Generates an st2.rel
instruction.

__st4_rel void __st4_rel(void *dst, const int
value);

Generates an st4.rel
instruction.

__st8_rel void __st8_rel(void *dst, const
__int64 value);

Generates an st8.rel
instruction.

__ld1_acq unsigned char __ld1_acq(void *src); Generates an ld1.acq
instruction.

__ld2_acq unsigned short __ld2_acq(void *src); Generates an ld2.acq
instruction.

__ld4_acq unsigned int __ld4_acq(void *src); Generates an ld4.acq
instruction.

__ld8_acq unsigned __int64 __ld8_acq(void
*src);

Generates an ld8.acq
instruction.

Operating System Related Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned int64 Gets the value from a hardware register based

169

Intel® C++ Intrinsics Reference

__getReg(const int whichReg) on the index passed in. Produces a
corresponding mov = r instruction. Provides
access to the following registers:
See Register Names for getReg() and setReg().

void __setReg(const int
whichReg, unsigned __int64
value)

Sets the value for a hardware register based on
the index passed in. Produces a corresponding
mov = r instruction.
See Register Names for getReg() and setReg().

unsigned __int64
__getIndReg(const int
whichIndReg, __int64 index)

Return the value of an indexed register. The
index is the 2nd argument; the register file is
the first argument.

void __setIndReg(const int
whichIndReg, __int64 index,
unsigned __int64 value)

Copy a value in an indexed register. The index is
the 2nd argument; the register file is the first
argument.

void *__ptr64 _rdteb(void) Gets TEB address. The TEB address is kept in
r13 and maps to the move r=tp instruction

void __isrlz(void) Executes the serialize instruction. Maps to the
srlz.i instruction.

void __dsrlz(void) Serializes the data. Maps to the srlz.d
instruction.

unsigned __int64
__fetchadd4_acq(unsigned int
*addend, const int
increment)

Map the fetchadd4.acq instruction.

unsigned __int64
__fetchadd4_rel(unsigned int
*addend, const int
increment)

Map the fetchadd4.rel instruction.

unsigned __int64
__fetchadd8_acq(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.acq instruction.

unsigned __int64
__fetchadd8_rel(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.rel instruction.

void __fwb(void) Flushes the write buffers. Maps to the fwb
instruction.

void __ldfs(const int
whichFloatReg, void *src)

Map the ldfs instruction. Load a single precision
value to the specified register.

void __ldfd(const int
whichFloatReg, void *src)

Map the ldfd instruction. Load a double
precision value to the specified register.

void __ldfe(const int
whichFloatReg, void *src)

Map the ldfe instruction. Load an extended
precision value to the specified register.

void __ldf8(const int Map the ldf8 instruction.

170

Intel® C++ Intrinsics Reference

whichFloatReg, void *src)

void __ldf_fill(const int
whichFloatReg, void *src)

Map the ldf.fill instruction.

void __stfs(void *dst, const
int whichFloatReg)

Map the sfts instruction.

void __stfd(void *dst, const
int whichFloatReg)

Map the stfd instruction.

void __stfe(void *dst, const
int whichFloatReg)

Map the stfe instruction.

void __stf8(void *dst, const
int whichFloatReg)

Map the stf8 instruction.

void __stf_spill(void *dst,
const int whichFloatReg)

Map the stf.spill instruction.

void __mf(void) Executes a memory fence instruction. Maps to
the mf instruction.

void __mfa(void) Executes a memory fence, acceptance form
instruction. Maps to the mf.a instruction.

void __synci(void) Enables memory synchronization. Maps to the
sync.i instruction.

void __thash(__int64) Generates a translation hash entry address.
Maps to the thash r = r instruction.

void __ttag(__int64) Generates a translation hash entry tag. Maps to
the ttag r=r instruction.

void __itcd(__int64 pa) Insert an entry into the data translation cache
(Map itc.d instruction).

void __itci(__int64 pa) Insert an entry into the instruction translation
cache (Map itc.i).

void __itrd(__int64
whichTransReg, __int64 pa)

Map the itr.d instruction.

void __itri(__int64
whichTransReg, __int64 pa)

Map the itr.i instruction.

void __ptce(__int64 va) Map the ptc.e instruction.

void __ptcl(__int64 va,
__int64 pagesz)

Purges the local translation cache. Maps to the
ptc.l r, r instruction.

void __ptcg(__int64 va,
__int64 pagesz)

Purges the global translation cache. Maps to the
ptc.g r, r instruction.

void __ptcga(__int64 va,
__int64 pagesz)

Purges the global translation cache and ALAT.
Maps to the ptc.ga r, r instruction.

void __ptri(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the
ptr.i r, r instruction.

171

Intel® C++ Intrinsics Reference

void __ptrd(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the
ptr.d r, r instruction.

__int64 __tpa(__int64 va) Map the tpa instruction.

void __invalat(void) Invalidates ALAT. Maps to the invala
instruction.

void __invala (void) Same as void __invalat(void)

void __invala_gr(const int
whichGeneralReg)

whichGeneralReg = 0-127

void __invala_fr(const int
whichFloatReg)

whichFloatReg = 0-127

void __break(const int) Generates a break instruction with an
immediate.

void __nop(const int) Generate a nop instruction.

void __debugbreak(void) Generates a Debug Break Instruction fault.

void __fc(__int64) Flushes a cache line associated with the address
given by the argument. Maps to the fc
instruction.

void __sum(int mask) Sets the user mask bits of PSR. Maps to the sum
imm24 instruction.

void __rum(int mask) Resets the user mask.

__int64 _ReturnAddress(void) Get the caller's address.

void __lfetch(int lfhint,
void *y)

Generate the lfetch.lfhint instruction. The
value of the first argument specifies the hint
type.

void __lfetch_fault(int
lfhint, void *y)

Generate the lfetch.fault.lfhint instruction.
The value of the first argument specifies the hint
type.

void __lfetch_excl(int
lfhint, void *y)

Generate the lfetch.excl.lfhint instruction.
The value {0|1|2|3} of the first argument
specifies the hint type.

void __lfetch_fault_excl(int
lfhint, void *y)

Generate the lfetch.fault.excl.lfhint
instruction. The value of the first argument
specifies the hint type.

unsigned int
__cacheSize(unsigned int
cacheLevel)

__cacheSize(n) returns the size in bytes of the
cache at level n. 1 represents the first-level
cache. 0 is returned for a non-existent cache
level. For example, an application may query
the cache size and use it to select block sizes in
algorithms that operate on matrices.

void __memory_barrier(void) Creates a barrier across which the compiler will
not schedule any data access instruction. The

172

Intel® C++ Intrinsics Reference

compiler may allocate local data in registers
across a memory barrier, but not global data.

void __ssm(int mask) Sets the system mask. Maps to the ssm imm24
instruction.

void __rsm(int mask) Resets the system mask bits of PSR. Maps to
the rsm imm24 instruction.

Conversion Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

__int64 _m_to_int64(__m64 a) Convert a of type __m64 to type __int64.
Translates to nop since both types reside in
the same register for systems based on IA-
64 architecture.

__m64 _m_from_int64(__int64 a) Convert a of type __int64 to type __m64.
Translates to nop since both types reside in
the same register for systems based on IA-
64 architecture.

__int64
__round_double_to_int64(double
d)

Convert its double precision argument to a
signed integer.

unsigned __int64
__getf_exp(double d)

Map the getf.exp instruction and return
the 16-bit exponent and the sign of its
operand.

Register Names for getReg() and setReg()

The prototypes for getReg() and setReg() intrinsics are in the ia64regs.h header
file.

Name whichReg

_IA64_REG_IP 1016

_IA64_REG_PSR 1019

_IA64_REG_PSR_L 1019

173

Intel® C++ Intrinsics Reference

Application Registers
Name whichReg

_IA64_REG_AR_KR0 3072

_IA64_REG_AR_KR1 3073

_IA64_REG_AR_KR2 3074

_IA64_REG_AR_KR3 3075

_IA64_REG_AR_KR4 3076

_IA64_REG_AR_KR5 3077

_IA64_REG_AR_KR6 3078

_IA64_REG_AR_KR7 3079

_IA64_REG_AR_RSC 3088

_IA64_REG_AR_BSP 3089

_IA64_REG_AR_BSPSTORE 3090

_IA64_REG_AR_RNAT 3091

_IA64_REG_AR_FCR 3093

_IA64_REG_AR_EFLAG 3096

_IA64_REG_AR_CSD 3097

_IA64_REG_AR_SSD 3098

_IA64_REG_AR_CFLAG 3099

_IA64_REG_AR_FSR 3100

_IA64_REG_AR_FIR 3101

_IA64_REG_AR_FDR 3102

_IA64_REG_AR_CCV 3104

_IA64_REG_AR_UNAT 3108

_IA64_REG_AR_FPSR 3112

_IA64_REG_AR_ITC 3116

_IA64_REG_AR_PFS 3136

_IA64_REG_AR_LC 3137

_IA64_REG_AR_EC 3138

174

Intel® C++ Intrinsics Reference

Control Registers
Name whichReg

_IA64_REG_CR_DCR 4096

_IA64_REG_CR_ITM 4097

_IA64_REG_CR_IVA 4098

_IA64_REG_CR_PTA 4104

_IA64_REG_CR_IPSR 4112

_IA64_REG_CR_ISR 4113

_IA64_REG_CR_IIP 4115

_IA64_REG_CR_IFA 4116

_IA64_REG_CR_ITIR 4117

_IA64_REG_CR_IIPA 4118

_IA64_REG_CR_IFS 4119

_IA64_REG_CR_IIM 4120

_IA64_REG_CR_IHA 4121

_IA64_REG_CR_LID 4160

_IA64_REG_CR_IVR 4161 ^

_IA64_REG_CR_TPR 4162

_IA64_REG_CR_EOI 4163

_IA64_REG_CR_IRR0 4164 ^

_IA64_REG_CR_IRR1 4165 ^

_IA64_REG_CR_IRR2 4166 ^

_IA64_REG_CR_IRR3 4167 ^

_IA64_REG_CR_ITV 4168

_IA64_REG_CR_PMV 4169

_IA64_REG_CR_CMCV 4170

_IA64_REG_CR_LRR0 4176

_IA64_REG_CR_LRR1 4177
175

General Integer Registers
Name whichReg

_IA64_REG_GP 1025

_IA64_REG_SP 1036

_IA64_REG_TP 1037

Intel® C++ Intrinsics Reference

_IA64_REG_INDR_IBR 9002

_IA64_REG_INDR_PKR 9003

_IA64_REG_INDR_PMC 9004

_IA64_REG_INDR_PMD 9005

_IA64_REG_INDR_RR 9006

_IA64_REG_INDR_RESERVED 9007

Multimedia Additions

The prototypes for these intrinsics are in the ia64intrin.h header file.

For detailed information about an intrinsic, click on the intrinsic name in the following
table.

Intrinsic Operation Corresponding IA-64
Instruction

_m64_czx1l Compute Zero Index czx1.l

_m64_czx1r Compute Zero Index czx1.r

_m64_czx2l Compute Zero Index czx2.l

_m64_czx2r Compute Zero Index czx2.r

_m64_mix1l Mix mix1.l

_m64_mix1r Mix mix1.r

_m64_mix2l Mix mix2.l

_m64_mix2r Mix mix2.r

_m64_mix4l Mix mix4.l

_m64_mix4r Mix mix4.r

_m64_mux1 Permutation mux1

_m64_mux2 Permutation mux2

_m64_padd1uus Parallel add padd1.uus

_m64_padd2uus Parallel add padd2.uus

_m64_pavg1_nraz Parallel average pavg1

_m64_pavg2_nraz Parallel average pavg2

_m64_pavgsub1 Parallel average subtract pavgsub1

176

Indirect Registers for getIndReg() and setIndReg()
Name whichReg

_IA64_REG_INDR_CPUID 9000 ^

_IA64_REG_INDR_DBR 9001

Intel® C++ Intrinsics Reference

_m64_pavgsub2 Parallel average subtract pavgsub2

_m64_pmpy2r Parallel multiply pmpy2.r

_m64_pmpy2l Parallel multiply pmpy2.l

_m64_pmpyshr2 Parallel multiply and shift
right

pmpyshr2

_m64_pmpyshr2u Parallel multiply and shift
right

pmpyshr2.u

_m64_pshladd2 Parallel shift left and add pshladd2

_m64_pshradd2 Parallel shift right and add pshradd2

_m64_psub1uus Parallel subtract psub1.uus

_m64_psub2uus Parallel subtract psub2.uus

__int64 _m64_czx1l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to
the least significant element, and the index of the first zero element is returned. The
element width is 8 bits, so the range of the result is from 0 - 7. If no zero element is
found, the default result is 8.

__int64 _m64_czx1r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to
the most significant element, and the index of the first zero element is returned. The
element width is 8 bits, so the range of the result is from 0 - 7. If no zero element is
found, the default result is 8.

__int64 _m64_czx2l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to
the least significant element, and the index of the first zero element is returned. The
element width is 16 bits, so the range of the result is from 0 - 3. If no zero element
is found, the default result is 4.

__int64 _m64_czx2r(__m64 a)

177

Intel® C++ Intrinsics Reference

The 64-bit value a is scanned for a zero element from the least significant element to
the most significant element, and the index of the first zero element is returned. The
element width is 16 bits, so the range of the result is from 0 - 3. If no zero element
is found, the default result is 4.

__m64 _m64_mix1l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as
shown in Figure 1, and return the result.

__m64 _m64_mix1r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as
shown in Figure 2, and return the result.

__m64 _m64_mix2l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as
shown in Figure 3, and return the result.

__m64 _m64_mix2r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as
shown in Figure 4, and return the result.

178

Intel® C++ Intrinsics Reference

__m64 _m64_mix4l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as
shown in Figure 5, and return the result.

__m64 _m64_mix4r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as
shown in Figure 6, and return the result.

__m64 _m64_mux1(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and
the result is returned. Table 1 shows the possible values of n.

179

Intel® C++ Intrinsics Reference

Table 1. Values of n for m64_mux1 Operation
 n

@brcst 0

@mix 8

@shuf 9

@alt 0xA

@rev 0xB

__m64 _m64_mux2(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and
the result is returned.

180

Intel® C++ Intrinsics Reference

__m64 _m64_pavgsub1(__m64 a, __m64 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data
elements (bytes) of a and the results of the subtraction are then each independently
shifted to the right by one position. The high-order bits of each element are filled
with the borrow bits of the subtraction.

__m64 _m64_pavgsub2(__m64 a, __m64 b)

The unsigned data elements (double bytes) of b are subtracted from the unsigned
ata elements (double bytes) of a and the results of the subtraction are then each

to the right by one position. The high-order bits of each
element are filled with the borrow bits of the subtraction.

__m64 _m64_pmpy2l(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the most significant data
element, are multiplied by the corresponding two signed 16-bit data elements of b,
and the two 32-bit results are returned as shown in Figure 9.

d
independently shifted

181

Intel® C++ Intrinsics Reference

__m64 _m64_pmpy2r(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the least significant data
element, are multiplied by the corresponding two signed 16-bit data elements of b,
and the two 32-bit results are returned as shown in Figure 10.

__m64 _m64_pmpyshr2(__m64 a, __m64 b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding signed
16-bit data elements of b, yielding four 32-bit products. Each product is then shifted
to the right count bits and the least significant 16 bits of each shifted product form 4
16-bit results, which are returned as one 64-bit word.

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding
unsigned 16-bit data elements of b, yielding four 32-bit products. Each product is
then shifted to the right count bits and the least significant 16 bits of each shifted
product form 4 16-bit results, which are returned as one 64-bit word.

182

Intel® C++ Intrinsics Reference

__m64 _m64_pshradd2(__m64 a, const int count, __m64 b)

The four signed 16-bit data elements of a are each independently shifted to the right
by count bits (the high order bits of each element are filled with the initial value of
the sign bits of the data elements in a); they are then added to the four signed 16-
bit data elements of b. The result is returned.

__m64 _m64_padd1uus(__m64 a, __m64 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated
as unsigned, while the elements of b are treated as signed. The results are treated
as unsigned and are returned as one 64-bit word.

__m64 _m64_padd2uus(__m64 a, __m64 b)

e elements of a are treated
as unsigned, while the elements of b are treated as signed. The results are treated
as unsigned and are returned as one 64-bit word.

__m64 _m64_psub1uus(__m64 a, __m64 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are
e elements of b are treated as signed. The results are

treated as unsigned and are returned as one 64-bit word.

__m64 _m64_psub2uus(__m64 a, __m64 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are
treated as unsign ile the elements of b are treated as signed. The results are
treated as unsigned and are returned as one 64-bit word.

__m64 _m64_pshladd2(__m64 a, const int count, __m64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the
result are forced to 0, and then bits [31:30] of b are copied to bits [62:61] of the
result. The result is returned.

a is added to b as four separate 16-bit wide elements. Th

treated as unsigned, while th

ed, wh

__m64 _m64_pavg1_nraz(__m64 a, __m64 b)

183

Intel® C++ Intrinsics Reference

The unsigned byte-wide data elements of a are added to the unsigned byte-wide
data elements of b and the results of each add are then independently shifted to the
right by one position. The high-order bits of each element are filled with the carry
bits of the sums.

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide
data elements of b and the results of each add are then independently shifted to the
right by one position. The high-order bits of each element are filled with the carry
bits of the sums.

Synchronization Primitives

The synchronization primitive intrinsics provide a variety of operations. Besides
performing these operations, each intrinsic has two key properties:

• the function performed is guaranteed to be atomic
• associated with each intrinsic are certain memory barrier properties that

restrict the movement of memory references to visible data across the
intrinsic operation by either the compiler or the processor

For the following intrinsics, <type> is either a 32-bit or 64-bit integer.

<type> *ptr,<type> val)

<type> __sync_fetch_and_or(<type> *ptr,<type> val)
<type> __sync_fetch_and_sub(<type> *ptr,<type> val)
<type> __sync_fetch_and_xor(<type> *ptr,<type> val)

Atomic Op-and-fetch Operations

<type> __sync_add_and_fetch(<type> *ptr,<type> val)
<type> __sync_sub_and_fetch(<type> *ptr,<type> val)
<type> __sync_or_and_fetch(<type> *ptr,<type> val)
<type> __sync_and_and_fetch(<type> *ptr,<type> val)
<type> __sync_nand_and_fetch(<type> *ptr,<type> val)
<type> __sync_xor_and_fetch(<type> *ptr,<type> val)

Atomic Compare-and-swap Operations

<type> __sync_val_compare_and_swap(<type> *ptr, <type> old_val, <type>
new_val)
int __sync_bool_compare_and_swap(<type> *ptr, <type> old_val, <type>
new_val)

__m64 _m64_pavg2_nraz(__m64 a, __m64 b)

Atomic Fetch-and-op Operations

<type> __sync_fetch_and_add(<type> *ptr,<type> val)
<type> __sync_fetch_and_and(
<type> __sync_fetch_and_nand(<type> *ptr,<type> val)

184

Intel® C++ Intrinsics Reference

void __sync_synchronize (void);

Atomic Lock-test-and-set Operation

<type> __sync_lock_test_and_set(<type> *ptr,<type> val)

Atomic Lock-release Operation

void __sync_lock_release(<type> *ptr)

s Intrinsics

void* __get_return_address(unsigned int level);

This intrinsic yields the return address of the current function. The level argument
must be a constant value. A value of 0 yields the return address of the current
function. Any other value yields a zero return address. On Linux systems, this
intrinsic is synonymous with __builtin_return_address. The name and the
argument are provided for compatibility with gcc*.

void __set_return_address(void* addr);

This intrinsic overwrites the default return address of the current function with the
address indicated by its argument. On return from the current invocation, program
execution continues at the address provided.

void* __get_frame_address(unsigned int level);

This intrinsic returns the frame address of the current function. The level argument
must be a constant value. A value of 0 yields the frame address of the current
function. Any other value yields a zero return value. On Linux systems, this intrinsic
is synonymous with __builtin_frame_address. The name and the argument are
provided for compatibility with gcc.

Intrinsics for Dual-Core Intel® Itanium® 2 processor
9000 series

The Dual-Core Intel® Itanium® 2 processor 9000 series supports the intrinsics listed
in the table below.

These intrinsics each generate IA-64 instructions. The first alpha-numerical chain in
the intrinsic name represents the return type, and the second alpha-numerical chain

Atomic Synchronize Operation

Miscellaneou

185

Intel® C++ Intrinsics Reference

in the intrinsic name represents the instruction the intrinsic generates. For example,
the intrinsic _int64_cmp8xchg generates the _int64 return type and the cmp8xchg
IA-64 instruction.

For detailed information about an intrinsic, click on that intrinsic in the following
table.

Click here for an example of several of these intrinsics.

For more information about the instructions these intrinsics generate, please see the
documentation area of the Itanium 2 processor website.

Note

Calling these intrinsics on any previous Itanium® processor causes an illegal
instruction fault.

Intrinsic Name Operation

__cmp8xchg16 Compare and Exchange

__ld16 Load

__fc_i Flush cache

__hint Provide performance hints

__st16 Store

__int64 __cmp8xchg16(const int <sem>, const int <ldhint>, void *<addr>,
__int64 <xchg_lo>)

exchange instruction.

Returns the original 64-bit value read from memory at the specified address.

The following table describes each argument for this intrinsic.

Generates the 16-byte form of the IA-64 compare and

sem ldhint addr xchg_lo

Literal value between 0
and 1 that specifies the
semaphore completer
(0==.acq, 1==.rel)

Literal value between 0
and 2 that specifies the
load hint completer
(0==.none, 1==.nt1,
2==.nta).

The
address of
the value to
read.

The least
significant 8
bytes of the
exchange value.

The following table describes each implicit argument for this intrinsic.

186

Intel® C++ Intrinsics Reference

xchg_hi cmpnd

Highest 8 bytes of the exchange
value. Use the setReg intrinsic to set
the <xchg_hi> value in the register
AR[CSD]. [__setReg
(_IA64_REG_AR_CSD, <xchg_hi>);
].

The 64-bit compare value. Use the __setReg
intrinsic to set the <cmpnd> value in the
register AR[CCV]. [__setReg
(_IA64_REG_AR_CCV,<cmpnd>);]

__int64 __ld16(const int <ldtype>, const int <ldhint>, void *<addr>)

Generates the IA-64 instruction that loads 16 bytes from the given address.

Returns the lower 8 bytes of the quantity loaded from <addr>. The higher 8 bytes
are loaded in register AR[CSD].

Generates implicit return of the higher 8 bytes to the register AR[CSD]. You can use
eg intrinsic to copy the value into a user variable. [foo =

__getReg(_IA64_REG_AR_CSD);]

The following table describes each argument for this intrinsic.

the __getR

ldtype ldhint addr

A literal value between 0 and 1
that specifies the load type
(0==none, 1==.acq).

A literal value between 0 and 2 that
specifies the hint completer
(0==none, 1==.nt1, 2== .nta).

The address
to load from.

The following table describes the argument for this intrinsic.

void __fc_i(void *<addr>)

Generates the IA-64 instruction that flushes the cache line associated with the
specified address and ensures coherency between instruction cache and data cache.

cache_line

An address associated with the cache line you want to flush

void __hint(const int <hint_value>)

187

Intel® C++ Intrinsics Reference

Generates the IA-64 instruction that provides performance hints about the program
being executed.

The following table describes the argument for this intrinsic.

hint_value

A literal value that specifies the hint. Currently, zero is the only legal value.
__hint(0) generates the IA-64 hint@pause instruction.

void __st16(const int <sttype>, const int <sthint>, void *<addr>,
__int64 <src_lo>)

Generates the IA-64 instruction to store 16 bytes at the given address.

The following table describes each argument for this intrinsic.

sttype sthint addr src_lo

A literal value between 0
and 1 that specifies the
store type completer
(0==.none, 1==.rel).

A literal value between 0
and 1 that specifies the
store hint completer
(0==.none, 1==.nta).

The address
where the 16-
byte value is
stored.

The lowest 8
bytes of the
16-byte
value to
store.

The following table describes the implicit argument for this intrinsic.

src_hi

The highest 8 bytes of the 16-byte value to store. Use the setReg intrinsic to set
the <src_hi> value in the register AR[CSD]. [__setReg(_IA64_REG_AR_CSD,
<src_hi>);]

Examples

The following examples show how to use the intrinsics listed above to generate the
corresponding instructions. In all cases, use the __setReg (resp. __getReg) intrinsic
to set up implicit arguments (resp. retrieve implicit return values).

// file foo.c

//

#include <ia64intrin.h>

188

Intel® C++ Intrinsics Reference

void foo_ld16(__int64* lo, __int64* hi, void* addr)

{

 /**/

 // The following two calls load the 16-byte value at the given
address

 // into two (2) 64-bit integers

 // The higher 8 bytes are returned implicitly in the CSD register;

// The call to __getReg moves that value into a user variable (hi).

// The instruction generated is a plain ld16

// ld16 Ra,ar.csd=[Rb]

 *lo = __ld16(__ldtype_none, __ldhint_none, addr);

 *hi = __getReg(_IA64_REG_AR_CSD);

 /**/

}

void foo_ld16_acq(__int64* lo, __int64* hi, void* addr)

{

 /**/

 // This is the same as the previous example, except that it uses the

 // __ldtype_acq completer to generate the acquire_from of the ld16:

 // ld16.acq Ra,ar.csd=[Rb]

 *lo = __ld16(__ldtype_acq, __ldhint_none, addr);

 *hi = __getReg(_IA64_REG_AR_CSD);

 /**/

}

 //

189

Intel® C++ Intrinsics Reference

void foo_st16(__int64 lo, __int64 hi, void* addr)

{

 /**/

 // first set the highest 64-bits into CSD register. Then call

 // __st16 with the lowest 64-bits as argument

 //

 __setReg(_IA64_REG_AR_CSD, hi);

 __st16(__sttype_none, __sthint_none, addr, lo);

 /**/

}

__int64 foo_cmp8xchg16(__int64 xchg_lo, __int64 xchg_hi, __int64 cmpnd,
void* addr)

{

 __int64 old_value;

 /**/

 // set the highest bits of the exchange value and the comperand
value

 // respectively in CSD and CCV. Then, call the exchange intrinsic

 //

 __setReg(_IA64_REG_AR_CSD, xchg_hi);

 __setReg(_IA64_REG_AR_CCV, cmpnd);

 old_value = __cmp8xchg16(__semtype_acq, __ldhint_none, addr,
xchg_lo);

 return old_value;

}

// end foo.c

 /**/

190

Intel® C++ Intrinsics Reference

Microsoft-compatible Intrinsics for Dual-Core Intel®
Itanium® 2 processor 9000 series

The Dual-Core Intel® Itanium® 2 processor 9000 series supports the intrinsics listed

in the intrinsic name represents the IA-64 instruction the intrinsic generates. For
example, the intrinsic _int64_cmp8xchg generates the cmp8xchg IA-64 instruction.

mation about the instructions these intrinsics generate, please see the
documentation area of the Itanium 2 processor website.

For detailed information about an intrinsic, click on that intrinsic name in the
following table.

in the table below. These intrinsics are also compatible with the Microsoft compiler.
These intrinsics each generate IA-64 instructions. The second alpha-numerical chain

For more infor

Intrinsic Name Operation Corresponding IA-64
Instruction

_InterlockedCompare64Exchange128 Compare and
exchange

_InterlockedCompare64Exchange128_acq Compare and
Exchange

_InterlockedCompare64Exchange128_rel Compare and
Exchange

__load128 Read

__load128_acq Read

__store128 Store

__store128_rel Store

__int64 _InterlockedCompare64Exchange128(__int64 volatile *
<Destination>, __int64 <ExchangeHigh>, __int64 <ExchangeLow>, __int64
<Comperand>)

Generates a compare and exchange IA-64 instruction.

Returns the lowest 64-bit value of the destination.

The following table describes each argument for this intrinsic.

Destination ExchangeHigh ExchangeLow Comperand

Pointer to the 128-
bit Destination
value

Highest 64 bits of
the Exchange value

Lowest 64 bits of
the Exchange value

Value to compare
with Destination

191

Intel® C++ Intrinsics Reference

__int64 _InterlockedCompare64Exchange128_acq(__int64 volatile *
<Destination>, __int64 <ExchangeHigh>, __int64 <ExchangeLow>, __int64
<Comperand>)

Generates a compare and exchange IA-64 instruction. Same as
_InterlockedCompare64Exchange128, but this intrinsic uses acquire semantics.

Returns the lowest 64-bit value of the destination.

The following table describes each argument for this intrinsic.

Destination ExchangeHigh ExchangeLow Comperand

Pointer to the 128-
bit Destination
value

Highest 64 bits of
the Exchange value

Lowest 64 bits of
the Exchange value

Value to compare
with Destination

__int64 _InterlockedCompare64Exchange128_rel(__int64 volatile *
<Destination>, __int64 <ExchangeHigh>, __int64 <ExchangeLow>, __int64
<Comperand>

Generates a compare and exchange IA-64 instruction. Same as
_InterlockedCompare64Exchange128, but this intrinsic uses release semantics.

Returns the lowest 64-bit value of the destination.

The following table describes each argument for this intrinsic.

Destination ExchangeHigh ExchangeLow Comperand

Pointer to the 128-
bit Destination
value

Highest 64 bits of
the Exchange value

Lowest 64 bits of
the Exchange value

Value to compare
with Destination

__int64 __load128(__int64 volatile * Source, __int64
*<DestinationHigh>)

Generates the IA-64 instruction that atomically reads 128 bits from the memory
location.

Returns the lowest 64-bit value of the 128-bit loaded value.

The following table describes each argument for this intrinsic.

Source DestinationHigh

192

Intel® C++ Intrinsics Reference

Pointer to the 128-bit
Source value

Pointer to the location in memory that stores the highest
64 bits of the 128-bit loaded value

__int64 __load128_acq(__int64 volatile * <Source>, __int64
*<DestinationHigh>

Generates the IA-64 instruction that atomically reads 128 bits from the memory
location. Same as __load128, but the this intrinsic uses acquire semantics.

Returns the lowest 64-bit value of the 128-bit loaded value.

The following table describes each argument for this intrinsic.

Source DestinationHigh

Pointer to the 128-bit
Source value

Pointer to the location in memory that stores the highest
64 bits of the 128-bit loaded value

__void __store128(__int64 volatile * <Destination>, __int64
<SourceHigh> __int64 <SourceLow>)

Generates the IA-64 instruction that atomically stores 128 bits at the destination
me

No

mory location.

returns.

Destination SourceHigh SourceLow

Pointer to the 128-bit
Destination value

The highest 64 bits of the
value to be stored

The lowest 64 bits of the
value to be stored

__void __store128_rel(__int64 volatile * <Destination>, __int64
<SourceHigh> __int64 <SourceLow>)

Generates the IA-64 instruction that atomically stores 128 bits at the destination
memory location. Same as __store128, but this intrinsic uses release semantics.

No returns.

Destination SourceHigh SourceLow

Pointer to the 128-bit
Destination value

The highest 64 bits of the
value to be stored

The lowest 64 bits of the
value to be stored

193

Intel® C++ Intrinsics Reference

Overview: Data Alignment, Memory Allocation Intrinsics,
and Inline Assembly

This section describes features that support usage of the intrinsics. The following
topics are described:

• Alignment Support
• Allocating and Freeing Aligned Memory Blocks
• Inline Assembly

Alignment Support

Aligning data improves the performance of intrinsics. When using the Streaming
SIMD Extensions, you should align data to 16 bytes in memory operations.
Specifically, you must align __m128 objects as addresses passed to the _mm_load
and _mm_store intrinsics. If you want to declare arrays of floats and treat them as
__m128 objects by casting, you need to ensure that the float arrays are properly
aligned.

Use __declspec(align) to direct the compiler to align data more strictly than it
otherwise would. For example, a data object of type int is allocated at a byte address
which is a multiple of 4 by default. However, by using __declspec(align), you can
direct the compiler to instead use an address which is a multiple of 8, 16, or 32 with
the following restriction on IA-32:

• 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line
usage. By clustering small objects that are commonly used together into a struct,
and forcing the struct to be allocated at the beginning of a cache line, you can
effectively guarantee that each object is loaded into the cache as soon as any one is
accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:

align(n)

where n is an integral power of 2, up to 4096. The value specified is the requested
alignment.

Caution

In this release, __declspec(align(8)) does not function correctly. Use
__declspec(align(16)) instead.

194

Intel® C++ Intrinsics Reference

If a value is specified that is less than the alignment of the affected data type, it
has no effect. In other words, data is aligned to the maximum of its own
alignment or the alignment specified with __declspec(align).

You can request alignments for individual variables, whether of static or automatic
storage duration. (Global and static variables have static storage duration; local
variables have automatic storage duration by default.) You cannot adjust the
alignment of a parameter, nor a field of a struct or class. You can, however,
increase the alignment of a struct (or union or class), in which case every object
of that type is affected.

As an example, suppose that a function uses local variables i and j as subscripts
into a 2-dimensional array. They might be declared as follows:

int i, j;

These variables are commonly used together. But they can fall in different cache
lines, which could be detrimental to performance. You can instead declare them as
follows:

__declspec(align(16)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++,
you can omit the struct variable name (written as sub in the previous example). In
C, however, it is required, and you must write references to i and j as sub.i and
sub.j.

If you use many functions with such subscript pairs, it is more convenient to declare
and use a struct type for them, as in the following example:

typedef struct __declspec(align(16)) { int i, j; } Sub;

By placing the __declspec(align) after the keyword struct, you are requesting the
appropriate alignment for all objects of that type. Note that allocation of parameters
is unaffected by __declspec(align). (If necessary, you can assign the value of a
parameter to a local variable with the appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__declspec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory Blocks

Use the _mm_malloc and _mm_free intrinsics to allocate and free aligned blocks of
memory. These intrinsics are based on malloc and free, which are in the libirc.a
library. You need to include malloc.h. The syntax for these intrinsics is as follows:

void* _mm_malloc (int size, int align)

195

Note

Intel® C++ Intrinsics Reference

void _mm_free (void *p)

The _mm_malloc routine takes an extra parameter, which is the alignment constraint.
This constraint must be a power of two. The pointer that is returned from
_mm_malloc is guaranteed to be aligned on the specified boundary.

Note

Memory that is allocated using _mm_malloc must be freed using _mm_free .
Calling free on memory allocated with _mm_malloc or calling _mm_free on
memory allocated with malloc will cause unpredictable behavior.

Inline Assembly
Microsoft Style Inline Assembly

The Intel® C++ Compiler supports Microsoft-style inline assembly with the -use-
msasm compiler option. See your Microsoft documentation for the proper syntax.

GNU*-like Style Inline Assembly (IA-32 architecture and Intel 64
architecture only)

The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as
follows:

asm-keyword [volatile-keyword] (asm-template [asm-interface]) ;

Note

The Intel C++ Compiler supports gcc-style inline ASM if the assembler code uses
AT&T* System V/386 syntax.

Caution

The Intel C++ Compiler does not support the mixing UNIX and Microsoft style
asms.

Syntax Description
Element

asm-
keyword

asm statements begin with the keyword asm. Alternatively, either
__asm or __asm__ may be used for compatibility. See Caution
statement.

volatile-
keyword

If the optional keyword volatile is given, the asm is volatile. Two
volatile asm statements will never be moved past each other, and a
reference to a volatile variable will not be moved relative to a
volatile asm. Alternate keywords __volatile and __volatile__ may
be used for compatibility.

196

Intel® C++ Intrinsics Reference

asm-
template

The asm-template is a C language ASCII string which specifies how to
output the assembly code for an instruction. Most of the template is a
fixed string; everything but the substitution-directives, if any, is
passed through to the assembler. The syntax for a substitution
directive is a % followed by one or two characters.

asm-
interface

The asm-interface consists of three parts:
1. an optional output-list
2. an optional input-list
3. an optional clobber-list
These are separated by colon (:) characters. If the output-list is
missing, but an input-list is given, the input list may be preceded
by two colons (::)to take the place of the missing output-list. If the
asm-interface is omitted altogether, the asm statement is considered
volatile regardless of whether a volatile-keyword was specified.

output-
list

An output-list consists of one or more output-specs separated by
commas. For the purposes of substitution in the asm-template, each
output-spec is numbered. The first operand in the output-list is
numbered 0, the second is 1, and so on. Numbering is continuous
through the output-list and into the input-list. The total number
of operands is limited to 30 (i.e. 0-29).

input-list Similar to an output-list, an input-list consists of one or more
input-specs separated by commas. For the purposes of substitution
in the asm-template, each input-spec is numbered, with the
numbers continuing from those in the output-list.

clobber-
list

A clobber-list tells the compiler that the asm uses or changes a
specific machine register that is either coded directly into the asm or is
changed implicitly by the assembly instruction. The clobber-list is a
comma-separated list of clobber-specs.

input-spec The input-specs tell the compiler about expressions whose values
may be needed by the inserted assembly instruction. In order to
describe fully the input requirements of the asm, you can list input-
specs that are not actually referenced in the asm-template.

clobber-
spec

Each clobber-spec specifies the name of a single machine register
that is clobbered. The register name may optionally be preceded by a
%. You can specify any valid machine register name. It is also legal to
specify "memory" in a clobber-spec. This prevents the compiler from
keeping data cached in registers across the asm statement.

Overview: Intrinsics Cross-processor Implementation

This section provides a series of tables that compare intrinsics performance across
architectures. Before implementing intrinsics across architectures, please note the
following.

197

Intel® C++ Intrinsics Reference

• Instrinsics may generate code that does not run on all IA processors. You
should therefore use CPUID to detect the processor and generate the
appropriate code.

• Implement intrinsics by processor family, not by specific processor. The
guiding principle for which family -- IA-32 or Itanium® processors -- the
intrinsic is implemented on is performance, not compatibility. Where there is
added performance on both families, the intrinsic will be identical.

Intrinsics For Implementation Across All IA

The following intrinsics provide significant performance gain over a non-intrinsic-
based code equivalent.

int abs(int)

long labs(long)

unsigned long __lrotl(unsigned long value, int shift)

unsigned long __lrotr(unsigned long value, int shift)

unsigned int __rotl(unsigned int value, int shift)

unsigned int __rotr(unsigned int value, int shift)

__int64 __i64_rotl(__int64 value, int shift)

__int64 __i64_rotr(__int64 value, int shift)

double fabs(double)

double log(double)

float logf(float)

double log10(double)

float log10f(float)

double exp(double)

float expf(float)

double pow(double, double)

float powf(float, float)

double sin(double)

float sinf(float)

double cos(double)

float cosf(float)

double tan(double)

float tanf(float)

double acos(double)

198

Intel® C++ Intrinsics Reference

float acosf(float)

double acosh(double)

float acoshf(float)

double asin(double)

float asinf(float)

double asinh(double)

float asinhf(float)

double atan(double)

float atanf(float)

double atanh(double)

float atanhf(float)

float cabs(double)*

double ceil(double)

float ceilf(float)

double cosh(double)

float coshf(float)

float fabsf(float)

double floor(double)

float floorf(float)

double fmod(double)

float fmodf(float)

double hypot(double, double)

float hypotf(float)

double rint(double)

float rintf(float)

double sinh(double)

float sinhf(float)

float sqrtf(float)

double tanh(double)

float tanhf(float)

char *_strset(char *, _int32)

void *memcmp(const void *cs, const void *ct, size_t n)

void *memcpy(void *s, const void *ct, size_t n)

void *memset(void * s, int c, size_t n)

199

Intel® C++ Intrinsics Reference

char *Strcat(char * s, const char * ct)

int *strcmp(const char *, const char *)

char *strcpy(char * s, const char * ct)

size_t strlen(const char * cs)

int strncmp(char *, char *, int)

int strncpy(char *, char *, int)

void *__alloca(int)

int _setjmp(jmp_buf)

_exception_code(void)

_exception_info(void)

_abnormal_termination(void)

void _enable()

void _disable()

int _bswap(int)

int _in_byte(int)

int _in_dword(int)

int _in_word(int)

int _inp(int)

int _inpd(int)

int _inpw(int)

int _out_byte(int, int)

int _out_dword(int, int)

int _out_word(int, int)

int _outp(int, int)

int _outpd(int, int)

int _outpw(int, int)

unsigned short _rotwl(unsigned short val, int count)

unsigned short _rotwr(unsigned short val, int count)

MMX(TM) Technology Intrinsics Implementation
Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based
code equivalent.

200

Intel® C++ Intrinsics Reference

• B = Non-intrinsic-based source code would be better; the intrinsic's
implementation may map directly to native instructions, but they offer no
significant performance gain.

• C = Requires contorted implementation for particular microarchitecture. Will
result in very poor performance if used.

Intrinsic Name MMX(TM)
Technology

IA-64
Architecture

SSE

SSE2

_mm_empty A B

_mm_cvtsi32_si64 A A

_mm_cvtsi64_si32 A A

_mm_packs_pi16 A A

_mm_packs_pi32 A A

_mm_packs_pu16 A A

_mm_unpackhi_pi8 A A

_mm_unpackhi_pi16 A A

_mm_unpackhi_pi32 A A

_mm_unpacklo_pi8 A A

_mm_unpacklo_pi16 A A

_mm_unpacklo_pi32 A A

_mm_add_pi8 A A

_mm_add_pi16 A A

_mm_add_pi32 A A

_mm_adds_pi8 A A

_mm_adds_pi16 A A

_mm_adds_pu8 A A

_mm_adds_pu16 A A

_mm_sub_pi8 A A

_mm_sub_pi16 A A

_mm_sub_pi32 A A

_mm_subs_pi8 A A

201

Intel® C++ Intrinsics Reference

_mm_subs_pi16 A A

_mm_subs_pu8 A A

_mm_subs_pu16 A A

_mm_madd_pi16 A C

_mm_mulhi_pi16 A A

_mm_mullo_pi16 A A

_mm_sll_pi16 A A

_mm_slli_pi16 A A

_mm_sll_pi32 A A

_mm_slli_pi32 A A

_mm_sll_pi64 A A

_mm_slli_pi64 A A

_mm_sra_pi16 A A

_mm_srai_pi16 A A

_mm_sra_pi32 A A

_mm_srai_pi32 A A

_mm_srl_pi16 A A

_mm_srli_pi16 A A

_mm_srl_pi32 A A

_mm_srli_pi32 A A

_mm_srl_si64 A A

_mm_srli_si64 A A

_mm_and_si64 A A

_mm_andnot_si64 A A

_mm_or_si64 A A

_mm_xor_si64 A A

_mm_cmpeq_pi8 A A

_mm_cmpeq_pi16 A A

_mm_cmpeq_pi32 A A

_mm_cmpgt_pi8 A A

_mm_cmpgt_pi16 A A

202

Intel® C++ Intrinsics Reference

_mm_cmpgt_pi32 A A

_mm_setzero_si64 A A

_mm_set_pi32 A A

_mm_set_pi16 A C

_mm_set_pi8 A C

_mm_set1_pi32 A A

_mm_set1_pi16 A A

_mm_set1_pi8 A A

_mm_setr_pi32 A A

_mm_setr_pi16 A C

_mm_setr_pi8 A C

_mm_empty is implemented in IA-64 instructions as a NOP for source compatibility
only.

Streaming SIMD Extens ns Intrinsics Implementation

Regular Streaming SIM tensions (SSE) intrinsics work on 4 32-bit single precision
values. On IA-64 architecture-base yst s, basic operations like add and compare
require two SIMD instructions. All can be executed in the same cycle so the
throughput is one basi operation per cycle or 4 32-bit single precision
operations per cycle.

Key to the table

• A = Expected to give significant performance gain over non-intrinsic-based
code equivalen

• B = Non-intrinsic-based source code would be better; the intrinsic's
implementation may map di tly native instructions but they offer no
significant performance gain.

• C = Requires contorted implementation for particular microarchitecture. Will
result in very p erforma e if ed.

io

D Ex
d s em

c SSE

entries

t.

rec to

oor p nc us

Intrinsic
Name

MMX(TM
Techn

SSE
ology

SSE2

IA-64
Architecture

_mm_add_ss N/A B B

_mm_add_ps N/A A A

203

Intel® C++ Intrinsics Reference

_mm_sub_ss B N/A B

_mm_sub_ps A A N/A

_mm_mul_ss N/A B B

_mm_mul_ps N/A A A

_mm_div_ss B N/A B

_mm_div_ps A A N/A

_mm_sqrt_ss N/A B B

_mm_sqrt_ps N/A A A

_mm_rcp_ss B N/A B

_mm_rcp_ps N/A A A

_mm_rsqrt_ss B B N/A

_mm_rsqrt_ps A A N/A

_mm_min_ss B N/A B

_mm_min_ps A N/A A

_mm_max_ss N/A B B

_mm_max_ps N/A A A

_mm_and_ps N/A A A

_mm_andnot_ps A A N/A

_mm_or_ps A N/A A

_mm_xor_ps N/A A A

_mm_cmpeq_ss N/A B B

_mm_cmpeq_ps N/A A A

_mm_cmplt_ss B N/A B

_mm_cmplt_ps N/A A A

_mm_cmple_ss N/A B B

_mm_cmple_ps N/A A A

_mm_cmpgt_ss B B N/A

_mm_cmpgt_ps N/A A A

_mm_cmpge_ss N/A B B

_mm_cmpge_ps N/A A A

_mm_cmpneq_ss B B N/A

204

Intel® C++ Intrinsics Reference

_mm_cmpneq_ps A N/A A

_mm_cmpnlt_ss N/A B B

_mm_cmpnlt_ps N/A A A

_mm_cmpnle_ss N/A B B

_mm_cmpnle_ps N/A A A

_mm_cmpngt_ss N/A B B

_mm_cmpngt_ps N/A A A

_mm B _cmpnge_ss N/A B

_mm_cmpnge_ps N/A A A

_mm_cmpord_ss N/A B B

_mm_cmpord_ps N/A A A

_mm_cmpunord_ss N/A B B

_mm_cmpunord_ps N/A A A

_mm_comieq_ss N/A B B

_mm_comilt_ss N/A B B

_mm_comile_ss N/A B B

_mm_comigt_ss N/A B B

_mm_comige_ss N/A B B

_mm_comineq_ss N/A B B

_mm_ucomieq_ss N/A B B

_mm_ucomilt_ss N/A B B

_mm_ucomile_ss N/A B B

_mm_ucomigt_ss N/A B B

_mm_ucomige_ss N/A B B

_mm_ucomineq_ss N/A B B

_mm_cvtss_si32 N/A A B

_mm_cvtps_pi32 N/A A A

_mm_cvttss_si32 N/A A B

_mm_cvttps_pi32 N/A A A

_mm_cvtsi32_ss N/A A B

205

Intel® C++ Intrinsics Reference

_mm_cvtpi32_ps N/A A C

_mm_cvtpi16_ps N/A A C

_mm_cvtpu16_ps N/A A C

_mm_cvtpi8_ps N/A A C

_mm_cvtpu8_ps N/A A C

_mm_cvtpi32x2_ps N/A A C

_mm_cvtps_pi16 N/A A C

_mm_cvtps_pi8 N/A A C

_mm_move_ss N/A A A

_mm_shuffle_ps N/A A A

_mm_unpackhi_ps N/A A A

_mm_unpacklo_ps N/A A A

_mm_movehl_ps N/A A A

_mm_movelh_ps N/A A A

_mm_movemask_ps N/A A C

_mm_getcsr N/A A A

_mm_setcsr N/A A A

_mm_loadh_pi N/A A A

_mm_loadl_pi N/A A A

_mm_load_ss N/A A B

_mm_load1_ps N/A A A

_mm_load_ps N/A A A

_mm_loadu_ps N/A A A

_mm_loadr_ps N/A A A

_mm_storeh_pi N/A A A

_mm_storel_pi N/A A A

_mm_store_ss N/A A A

_mm_store_ps N/A A A

_mm_store1_ps N/A A A

_mm_storeu_ps N/A A A

_mm_storer_ps N/A A A

206

Intel® C++ Intrinsics Reference

_mm_set_ss N/A A A

_mm_set1_ps N/A A A

_mm_set_ps N/A A A

_mm_setr_ps N/A A A

_mm_setzero_ps N/A A A

_mm_prefetch N/A A A

_mm_stream_pi N/A A A

_mm_stream_ps N/A A A

_mm_sfence N/A A A

_mm_extract_pi16 N/A A A

_mm_insert_pi16 N/A A A

_mm_max_pi16 N/A A A

_mm_max_pu8 N/A A A

_mm_min_pi16 N/A A A

_mm_min_pu8 N/A A A

_mm_movemask_pi8 N/A A C

_mm_mulhi_pu16 N/A A A

_mm_shuffle_pi16 N/A A A

_mm_maskmove_si64 N/A A C

_mm_avg_pu8 N/A A A

_mm_avg_pu16 N/A A A

_mm_sad_pu8 N/A A A

Streaming SIMD Extensions 2 Intrinsics Implementation

On processors that do not support SSE2 instructions but do support MMX
Technology, you can use the sse2mmx.h emulation pack to enable support for SSE2
instructions. You can use the sse2mmx.h header file for the following processors:

• Intel® Itanium® processor
• Intel® Pentium® III processor
• Intel® Pentium® II processor
• Intel® Pentium® processors with MMX™ Technology

207

Intel® C++ Intrinsics Reference

209

Index
E

EMMS Instruction

about12

using..13

EMMS Instruction..........................13

I

intrinsics

about .. 1

arithmetic intrinsics 6, 17, 30, 68, 92

data alignment..................191, 192

data types.................................. 2

floating point .. 7, 29, 68, 72, 73, 82,
86, 88, 90, 129, 131

inline assembly193

memory allocation....................192

registers 2

using ... 4

M

macros

for SSE3132

matrix transposition....................66

read and write control registers64

shuffle for SSE...........................64

shuffle for SSE2128

S

Streaming SIMD Extensions............29

Streaming SIMD Extensions 267

Streaming SIMD Extensions 3128

Streaming SIMD Extensions 4146

Supplemental Streaming SIMD
Extensions 3............................133

	Intel(R) C++ Intrinsics Reference
	Disclaimer and Legal Information
	Intrinsics Reference
	Overview: Intrinsics Reference
	Availability of Intrinsics on Intel Processors

	Details about Intrinsics
	Registers
	Data Types
	New Data Types Available
	__m64 Data Type
	__m128 Data Types
	Data Types Usage Guidelines
	Accessing __m128i Data

	Naming and Usage Syntax
	 References
	Intrinsics for Use Across All IA
	Overview: Intrinsics For All IA
	Integer Arithmetic Intrinsics
	Floating-point Intrinsics
	String and Block Copy Intrinsics
	Miscellaneous Intrinsics

	MMX(TM) Technology Intrinsics
	Overview: MMX(TM) Technology Intrinsics
	The EMMS Instruction: Why You Need It
	
	Why You Need EMMS to Reset After an MMX(TM) Instruction

	EMMS Usage Guidelines
	MMX(TM) Technology General Support Intrinsics
	MMX(TM) Technology Packed Arithmetic Intrinsics
	MMX(TM) Technology Shift Intrinsics
	MMX(TM) Technology Logical Intrinsics
	MMX(TM) Technology Compare Intrinsics
	MMX(TM) Technology Set Intrinsics
	MMX(TM) Technology Intrinsics on IA-64 Architecture
	Data Types

	Streaming SIMD Extensions
	Overview: Streaming SIMD Extensions
	Floating-point Intrinsics for Streaming SIMD Extensions
	Arithmetic Operations for Streaming SIMD Extensions
	Logical Operations for Streaming SIMD Extensions
	Comparisons for Streaming SIMD Extensions
	Conversion Operations for Streaming SIMD Extensions
	Load Operations for Streaming SIMD Extensions
	Set Operations for Streaming SIMD Extensions
	Store Operations for Streaming SIMD Extensions
	Cacheability Support Using Streaming SIMD Extensions
	Integer Intrinsics Using Streaming SIMD Extensions
	Intrinsics to Read and Write Registers for Streaming SIMD Extensions
	Miscellaneous Intrinsics Using Streaming SIMD Extensions
	Using Streaming SIMD Extensions on IA-64 Architecture
	Data Types
	Compatibility versus Performance

	Macro Functions
	Macro Function for Shuffle Using Streaming SIMD Extensions
	Shuffle Function Macro
	View of Original and Result Words with Shuffle Function Macro

	Macro Functions to Read and Write the Control Registers
	Exception State Macros with _MM_EXCEPT_DIV_ZERO

	Macro Function for Matrix Transposition
	Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

	Streaming SIMD Extensions 2
	Overview: Streaming SIMD Extensions 2
	Floating-point Intrinsics
	Floating-point Arithmetic Operations for Streaming SIMD Extensions 2
	Floating-point Logical Operations for Streaming SIMD Extensions 2
	Floating-point Comparison Operations for Streaming SIMD Extensions 2
	Floating-point Conversion Operations for Streaming SIMD Extensions 2
	Floating-point Load Operations for Streaming SIMD Extensions 2
	Floating-point Set Operations for Streaming SIMD Extensions 2
	Floating-point Store Operations for Streaming SIMD Extensions 2

	Integer Intrinsics
	Integer Arithmetic Operations for Streaming SIMD Extensions 2
	Integer Logical Operations for Streaming SIMD Extensions 2
	Integer Shift Operations for Streaming SIMD Extensions 2
	Integer Comparison Operations for Streaming SIMD Extensions 2
	Integer Conversion Operations for Streaming SIMD Extensions 2
	Integer Move Operations for Streaming SIMD Extensions 2
	Integer Load Operations for Streaming SIMD Extensions 2
	Integer Set Operations for SSE2
	Integer Store Operations for Streaming SIMD Extensions 2

	Miscellaneous Functions and Intrinsics
	Cacheability Support Operations for Streaming SIMD Extensions 2
	Miscellaneous Operations for Streaming SIMD Extensions 2
	Intrinsics for Casting Support
	Pause Intrinsic for Streaming SIMD Extensions 2
	Macro Function for Shuffle

	Streaming SIMD Extensions 3
	Overview: Streaming SIMD Extensions 3
	Integer Vector Intrinsics for Streaming SIMD Extensions 3
	Single-precision Floating-point Vector Intrinsics for Streaming SIMD Extensions 3
	Double-precision Floating-point Vector Intrinsics for Streaming SIMD Extensions 3
	Macro Functions for Streaming SIMD Extensions 3
	Miscellaneous Intrinsics for Streaming SIMD Extensions 3

	Supplemental Streaming SIMD Extensions 3
	Overview: Supplemental Streaming SIMD Extensions 3
	Addition Intrinsics
	Subtraction Intrinsics
	Multiplication Intrinsics
	Absolute Value Intrinsics
	Shuffle Intrinsics
	Concatenate Intrinsics
	Negation Intrinsics

	Streaming SIMD Extensions 4
	Overview: Streaming SIMD Extensions 4
	Streaming SIMD Extensions 4-Vectorizing Compilers and Media Accelerators
	Overview: Streaming SIMD Extensions 4 Vectorizing Compiler and Media Accelerators
	Packed Blending Intrinsincs for Streaming SIMD Extensions 4
	Floating Point Dot Product Intrinsincs for Streaming SIMD Extensions 4
	Packed Format Conversion Intrinsics for Streaming SIMD Extensions 4
	Packed Integer Min/Max Intrinsics for Streaming SIMD Extensions 4
	Floating Point Rounding Intrinsics for Streaming SIMD Extensions 4
	DWORD Multiply Intrinsics for Streaming SIMD Extensions 4
	Register Insertion/Extraction Intrinsics for Streaming SIMD Extensions 4
	Test Intrinsics for Streaming SIMD Extensions 4
	Packed DWORD to Unsigned WORD Intrinsic for Streaming SIMD Extensions 4
	Packed Compare for Equal for Streaming SIMD Extensions 4

	Streaming SIMD Extensions 4-Efficient Accelerated String and Text Processing
	Overview: Streaming SIMD Extensions 4 Efficient Accelerated String and Text Processing
	Packed Comparison Intrinsics for Streaming SIMD Extensions 4
	Application Targeted Accelerators Intrinsics

	Intrinsics for IA-64 Instructions
	Overview: Intrinsics for IA-64 Instructions
	Native Intrinsics for IA-64 Instructions
	Lock and Atomic Operation Related Intrinsics
	Load and Store
	Operating System Related Intrinsics
	Conversion Intrinsics
	Register Names for getReg() and setReg()
	Multimedia Additions
	Synchronization Primitives
	Atomic Fetch-and-op Operations
	Atomic Op-and-fetch Operations
	Atomic Compare-and-swap Operations
	Atomic Synchronize Operation
	Atomic Lock-test-and-set Operation
	Atomic Lock-release Operation

	Miscellaneous Intrinsics
	Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000 series
	Examples

	Microsoft-compatible Intrinsics for Dual-Core Intel® Itanium® 2 processor 9000 series

	Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Overview: Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
	Alignment Support
	Allocating and Freeing Aligned Memory Blocks
	Inline Assembly

	Intrinsics Cross-processor Implementation
	Overview: Intrinsics Cross-processor Implementation
	Intrinsics For Implementation Across All IA
	MMX(TM) Technology Intrinsics Implementation
	Streaming SIMD Extensions Intrinsics Implementation
	Streaming SIMD Extensions 2 Intrinsics Implementation

	Index

