STAGE-MPI1©1.0
User Manual

Ahmad Faraj
Department of Computer Science,
Florida State University
Tallahassee, FL 32306
faraj@cs.fsu.edu

January 1, 2006

1 Introduction

STAGE-MPI (Static Tuning and Automatic Generation of Efficient MPI collective com-
munication routines) is a system that automatically tunes and produces customized high
performance MPI collective communication routines for Ethernet switched clusters with any
physical topology. STAGE-MPI 1.0 achieves the best results on Ethernet clusters with single
CPU nodes, although it also works on other types of nodes (e.g. SMP nodes) and other types
of networks. More support for SMP /multi-core nodes and other types of high speed system
area networks will be added in later releases.

The MPI routines supported by STAGE-MPI 1.0 are MPI_Alltoall, MPI_Alltoallv,
MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPI_Bcast, MPI_Gather, MPI_Scatter, and
MPI_Reduce. Currently, STAGE-MPI maintains extensive sets of algorithms (including
automatic routine generators that produce topology specific algorithms) for MPI_Alltoall,
MPI_Alltoallv, MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, and MPI_Bcast, and can
generally get good results for these routines. Although MPI _Reduce, MPI _Scatter, and
MPI_Gather are supported by the system, the algorithms for these operations are still in-
complete and the system may not obtain good results for these operations. STAGE-MPI 1.0
runs on MPICH 2. This document describes how to install and use the system.

2 Installation

A version of MPICH 2 must be installed before STAGE-MPI can be installed (STAGE-
MPI runs on top of MPICH 2). Refer to http://www-unix.mes.anl.gov/mpi/mpich2 for
information about installing MPICH 2.

To simplify the illustration, we will assume that the MPICH bin path is ’/usr/local /mpich2 /bin’
and STAGE-MPI is to be installed under directory ’/home/example’. The installation con-
sists of the following three steps:

e Step 1: Move the tar file (stage-mpi.tar.gz) to ’/home/example’ and unpack the package
with the following commands.

/home/example> gunzip stage-mpi.tar.gz
/home/example> tar xvf stage-mpi.tar

e Step 2: Setup environment variables: STAGE_ HOME (home directory of STAGE-MPI),
MPICH2_BIN (the MPICH 2 bin path), MPICC (the path for mpicc in MPICH 2), MPIRUN
(the path for mpiexec in MPICH 2), BUFF SIZE (the maximum message buffer size).
BUFF_SIZE is the product of the number of processors in the system and the maximum
message size for an all-to-all operation. For example, if users wish to tune MPI_Alltoall with
a message size of 512000 on 32 processors, then BUFF _SIZE should be set to 512000 * 32 =
16384000. Lastly, add paths '${STAGE_HOME} /scripts’ and '${STAGE_HOME} /bin’ to
the PATH variable. Examples of the commands to set-up the environment variables follow
(these lines may be copied into the .tcshre file):

/home/example> setenv STAGE_HOME /home/example/STAGE-MPI

2

/home/example> setenv MPICH2_BIN /usr/local/mpich2/bin

/home/example> setenv MPICC /usr/local/mpich2/bin/mpicc

/home/example> setenv MPIRUN /usr/local/mpich2/bin/mpiexec

/home/example> setenv BUFF_SIZE 16000000

/home/example> setenv PATH ${STAGE_HOME}/scripts:${STAGE_HOME}/bin:${PATH}

e Step 3: Go to the STAGE-MPI home directory and issue ’./configure’ and then change
directory to ${STAGE HOME}/tuning and type 'make’.

/home/example> cd STAGE-MPI
/home/example/STAGE-MPI> ./configure
/home/example/STAGE-MPI> cd tuning
/home/example/STAGE-MPI/tuning> make

If everything goes ok, an executable called "tune’ will be produced in the ${STAGE HOME}/tuning
directory.

3 Running STAGE-MPI

The MPICH MPDs must be established before the STAGE-MPI can be started. The process
to establish MPICH MPDs for STAGE-MPI is similar to that for running a regular MPICH
program. A hostfile must be created first. For example, assume that 4 machines: beowulfl,
beowulf2, beowulf3, and beowulf4, are used to run the program, the content in the hostfile
is

beowulfl
beowulf?2
beowulf3
beowulf4

Once the hostfile is created. Booting MPICH MPDs for STAGE-MPI uses the command
boot-mpich nprocs hostfilename, which is a script produced by our package. Boot-mpich
calls mpdboot to establish the MPDs. In addition, it also creates some necessary files for
STAGE-MPI. An example for using boot-mpich is as follows:

/home/example/STAGE-MPI/tuning> boot-mpich 4 hostfile

Here, the number of processors is 4 and the hostfile name is "hostfile’ (assumed to be in
/home/example/STAGE-MPI/tuning). boot-mpich only needs to be called once for each
configuration.

Now, you are ready to run the tuning system. Change directory to ${STAGE_HOME}/tuning
and type 'tune’ to start tuning.

/home/example/STAGE-MPI> cd tuning
/home/example/STAGE-MPI/tuning> tune

The system will prompt the user for a series of inputs:

1.

The number of processors to tune for. This number must be less than or equal to the
number of processors used to boot the MPICH MPDs (nprocs used in boot-mpich).
The generated routines are optimized for the number of processes (and its implicit

topology).

. Whether to use the network topology information. If the topology information is not

available, only general purpose algorithms will be used in the tuning. The system
implicitly assumes that all nodes are connected by one switch. If the topology infor-
mation is available, the user will need to input the network type and the topology file
that contains the topology information. The format of the topology file will be dis-
cussed in the next section. Currently, the only network type supported by our system
is ’ethernet’. In this case, the system will automatically produce the topology specific
algorithms and use them in the tuning.

The MPI collective communication routine to tune. The user may choose to tune a
particular routine or all non-v MPI routines. If the user chooses to tune a v-version
routine (MPI_Alltoallv, MPI_Allgatherv, etc), the system will ask for a message size
pattern file and produce the routine that is optimized for that particular message
pattern. The format of the message size pattern file will be discussed in the next
section.

Timing mechanism. The system maintains a set of timing mechanisms, which decide
how the performance is measured. The user can choose one mechanism from the set.
There are three timing mechanisms provided by the system: mpptest-barrier, mpptest,
and OL. Please refer to Section 5 for the details of these timing mechanisms.

Message size. The user has two options: tuning for a specific message size, or for a
range of message sizes. If user picks the second option, he/she will be prompted to
enter the lower and upper bounds for the message size range.

. Whether to use the log file. If, for some reason, the tuning was not completed for a

previous execution, choosing to use the log file will continue the tuning process from
the breakpoint.

Following is an example for running the tuning program. In this example, the MPI_Alltoall
routine for all message sizes is tuned on 8 nodes with no topology information (no topology
information assumes all nodes are connected by a single switch).

/home/example/STAGE-MPI/tuning> tune
Enter the number of processors in the system: 8
Do you have topology information (y or n): n

4

0) alltoall
1) allgather
2) allreduce
3) bcast

4) alltoallv
5) allgatherv
6) gather

7) scatter

8) reduce

9) gatherv
10) scatterv
Select a number from above to tune an MPI routine (-1 to tune all): O

0) mpptest-barrier
1) mpptest
2) ol

Please pick from the above timing mechanisms: 1
Do you want to tune for a specific message size (y or n): n
Enter message range, there are 14 message sizes points:
0
1
64
256
1K
2K
4K
8K
16K
32K
64K
128K
: 266K
(> 256K) INFINITY

© 00 NO O WN +—= O

e e
W N - O -

Enter lower bound for message range (0 to 12): O
Enter upper bound for message range (1 to 13): 13
Should the system read any log files (y or m): n

Following is an example for running the tuning program with topology information. In
this example, the MPI_Alltoall routine for all message sizes is tuned on an 8-node cluster
whose topology is described in file topo2sw.txt.

/home/example/STAGE-MPI/tuning> tune

Enter the number of processors in the system: 8

Do you have topology information (y or n): y

Enter platform (ethernet, infiniband, ..etc) you are running on: ethernet
Please enter topology information file name: topo2sw.txt

0) alltoall

1) allgather

2) allreduce

3) bcast

4) alltoallv

5) allgatherv

6) gather

7) scatter

8) reduce

9) gatherv

10) scatterv

Select a number from above to tune an MPI routine (-1 to tune all): O

0) mpptest-barrier
1) mpptest
2) ol

Please pick from the above timing mechanisms: 1
Do you want to tune for a specific message size (y or n): n
Enter message range, there are 14 message sizes points:
0
1
64
256
1K
2K
4K
8K
16K
32K
64K
128K
: 266K
(> 256K) INFINITY

©O© 00 NO O WN +— O

e
W N - O -

Enter lower bound for message range (0 to 12): O
Enter upper bound for message range (1 to 13): 13
Should the system read any log files (y or n): n

After the tuning, all related files including the final routines and the routines selected by
the final routines, and test drivers are placed in ${STAGE-MPI}/tuning/TUNED. For example,
if MPI_Alltoallis tuned, the file alltoall-tuned.c contains the tuned routine and alltoall-tuned-
driver.c is an example driver program that uses the tuned all-to-all routine. Note that when
the user tunes for a specific message size or range, then the driver should also be given the
same message size or a size within the same range that was tuned. The following command
can be used to run the example driver, which gives the performance information about the
tuned routine.

/home/example/STAGE-MPI/tuning> cd TUNED
.../STAGE-MPI/tuning/TUNED> mpicc -1m alltoall-tuned-driver.c -I. -DVERBOSE
.../STAGE-MPI/tuning/TUNED> mpiexec -machinefile ../hostfile -n 8 a.out 10 100

4 Input file formats

We will describe the formats of the topology file and the message size pattern file. Some
examples of the files are given in the ${STAGE-MPI}/examples directory. Note that if the
cluster of workstations is connected by a single switch, then it does not make a difference if
users have topology information or not.

4.1 Format of the topology file

The format of the topology file is related to but slightly different from the hostfile used by
boot-mpich. The file first specifies how each node is connected to a switch. Each of this is
specified by a node-switch connection line as follows.

hostname switchname

The hostname is the real name of the node and the switchname is switch name you assign
to the switches. The switch name has the format s# (e.g. s0, sl, etc), and must
start from ’s0’ and be continuous. For example, the topology cannot have switches s0,
s1, and s4. In this case, s4 must be renamed to s2. The machine order of these lines must
be exactly the same as the the the machine order in the hostfile. For example, assume that
the content of the hostfile is:

beowulfO
beowulfl
beowulf2
beowulf3
beowulf4
beowulfb
beowulf6
beowulf7

The node-switch connection lines in the topology file may look like:

beowulfO sO
beowulfl sO
beowulf2 s0
beowulf3 si
beowulf4d si
beowulf5 s2
beowulf6 s2
beowulf7 s3

Notice the exact match of the sequence of machine names in the two files. After the
node-switch connection lines, a line that only contains only dashes ’ " is followed. After
that, the switch-switch connection lines are specified. All the connections are bidirectional
and each connection should only be specified once. Also the topology must be a tree (as
Ethernet topology is always a tree). Following is a topology and its corresponding file.

Topology:
0 3 5
I I I
o + o + e + e +
I I I I I I | I
1 --1 sO |-—==————- | sl [-——-——- | s2 |-——-—- | s3 [--7
I I | I I I I I
e + e + e + e +
I I I
2 4 6

Topology file:

beowulfO sO
beowulfl sO
beowulf2 sO
beowulf3 si
beowulfd si
beowulf5 s2
beowulf6 s2
beowulf7 s3

An example topology that involves 4 machines connected to a single switch is shown below.
Notice that the dashes are still needed even in the one switch case.

0

I
o +
I I

1--1 sO |--3

I I
o +

I

2

Topology file:

beowulfO sO
beowulfl sO
beowulf2 sO
beowulf3 sO

4.2 Format of the message size pattern file

When the user selects to tune v-version MPI routines such as alltoallv, allgatherv, gatherv,
and scatterv, files describing the message size patterns are needed. The files give the send
counts, send displacements, receive counts, and receive displacements arrays in the corre-
sponding MPI routine. One way to get these arrays is to profile a particular application.

The system, however, has a corresponding size-pattern generator for each of these
collectives, which is included in the bin directory. For example, assume we want to tune
alltoallv. Issuing:

/home/example/STAGE-MPI /tuning> generate-alltoallv-size-pattern 4 1

generates a size-pattern file that includes 1 size patterns on 4 nodes (the generated file
is named “alltoallv-4-nodes-size-pattern.txt”). Users can generate more size patterns by
changing the second parameter on the command line form 1 to 12. The format of that file
is as follows:

total patterns: 1
64 64 64 64

0 64 128 192

64 64 64 64

064 128 192
64 64 64 64
064 128 192
64 64 64 64
064 128 192
64 64 64 64
064 128 192
64 64 64 64
0 64 128 192
64 64 64 64
064 128 192
64 64 64 64
064 128 192

The first four rows correspond to the send counts, send displacements, receive counts,
and receive displacements arrays for the first node. The next four rows are assigned for the
second node, and so forth. If users profile their applications, the output of their profiler must
match the one included is these files.

The following shows the format for the MPI_Allgatherv size pattern for four nodes. The
first line is the send count for all processors (in this case, each node sends a count = 1).
The second two lines are the recv counts and displacements arrays, respectively, for the first
processor. The second two lines are the recv counts and displacements arrays for the second
processor, and so forth.

1111
1111
0123
1111
0123
1111
0123
1111
0123

The format for the MPI_Gatherv is shown next on four processors. The first line repre-
sents the send count for each of the four processors. The remaining two lines are the recv
counts array and the displacements array for the root processor.

1111
1111
0123

Finally, the MPI_Scatterv format for four processors in shown below. The first two lines
are the send counts array and the displacements array for the root processor, and the last

10

line is the recv count for each processor.

1111
0123
1111

5 Timing mechanisms

STAGE-MPI comes with different timing mechanisms to measure the performance of the
individual communication algorithms. Users are given the choice of selecting one of the
three following mechanisms: mpptest, mpptest-barrier, and ol (overhead latency). In all
mechanisms, the MPI collective routine is executed a number of iterations. The following
shows a code segment of the mpptest:

MPI_Barrier(...)

start = MPI_Wtime();

For (i = 0; i < ITER; i++) {
MPI_Alltoall(...);

}

elapsed = MPI_Wtime() - start;

The mpptest-barrier is similar to the mpptest mechanism except that a barrier synchro-
nization is inserted in each iteration before the MPI collective routine to eliminate the
pipelining effect. In both mpptest and mpptest-barrier, the per iteration elapsed time is
reported at the end as the performance measurement. The following shows a code segment
of the mpptest-barrier:

MPI_Barrier(...)

start = MPI_Wtime();

For (i = 0; i < ITER; i++) {
MPI_Barrier(...);
MPI_Alltoall(...);

}

elapsed = MPI_Wtime() - start;

Figure 1 describes the ol timing mechanism. This method tries to measure the collective
operation latency indirectly by measuring the operation latency for individual nodes and
taking the maximum of these measurements as a reasonable approximation of the entire
operation latency. The algorithm first computes the average latency of acknowledgments
sent from a node ¢ to the root, which is simply equal to the overhead of a single point—to—
point message from ¢ to the root. In the second step, the root does not start the collective

11

operation until it receives an acknowledgment from current node 7, which avoids the pipeline
effect. This step repeats some M number of iterations where the root averages the elapsed
time E; over M. Then, the OL; is computed by simply subtracting the acknowledgment
overhead from the elapsed time for a node i. Finally, the maximum of OL;, 0 < i < P is
reported.

Root (node 0): Current node i: All other nodes:

= MPI_Wtime() for x=1..M MPI_Barrier
MPI_Recv from root

Y

for x=1..M for x=1.M+1
MPI_Send to i MPI_Send to root MPI_Bcast
MPI_Recv from i MPI_Barrier
t2= MPI_Wtime() for x=1.M+1
MPI_Bcast
RTL. =(t 5-tp/M MPI_Send ACK to Root
MPI_Barrier
MPI_Bcast

MPI_Recv ACK from i
t 1= MPI_Wtime()

for x=1..M
MPI_Bcast
MPI_Recv ACK from i

th= MPI_Wtime()

E1 = (t2—t 1)/M
OLi =E i_(RTLi /2)
Report max(OLi)

Figure 1: OL timing mechanism

6 'Trouble-shooting

TUNING SESSION HANGS:

In some cases, users may experience that some tuning runs are taking a much longer time
than usual. This may indicate that the system is hanging. It is not clear to us what is
causing the system to hang at this time. We found that the MPICH library itself may hang
in some cases. We suspect that this problem may be caused by the underlying point-to-point
communication system.

FIX:
The first step is to kill the tuning process, and we urge NOT to use CTRL-C. To do this, issue:

/home/example/STAGE-MPI/tuning> killall tune

12

In the second step, isolate the machine that is causing the hanging behavior. This can
be done by pinging or ssh-ing all the machines in the hostfile. The one that cannot be
reached must be rebooted. Note that sometimes more than a machine is hanging, and thus,
more machines will need to be rebooted. Finally, kill all the current MPDs running on the
remaining nodes, and issue the “boot-mpich” command again.

REMINDER:

If for some reason the system hangs or users had to abort their tuning session earlier, there
is no need to restart the tuning run or session from scratch. The STAGE-MPI has a logging
capability that makes the tuning system pick up the tuning process at the last point just
before it was stopped.

7 Contacting the developers

Please contact Ahmad Faraj (faraj@cs.fsu.edu) or Xin Yuan (xyuan@cs.fsu.edu) for problems
with the system.

13

8 COPYRIGHTS

Copyright (c¢) 2006, Ahmad Faraj & Xin Yuan,
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

e Neither the name of the Florida State University nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

>k >k ok ok koK ok ok ok ok ok sk sk sk sk sk ok sk skoskokoskook ok ok ok sk sk sk skoskokokoskook sk sk sk sk skokeok kol sk sk sk sk ok skoskokokoskook skosk sk sk skokokokok skoskoskosk kokokokok skoskoskokokokok

Any results obtained from executing this software require the acknowledgment and citation
of the software and its owners. The full citation is given below:

A. Faraj and X. Yuan. ”Automatic Generation and Tuning of MPI Collective Commu-
nication Routines.” The 19th ACM International Conference on Supercomputing (ICS),

Cambridge, Massachusetts, June 20-22, 2005.
Stk ok KKK ok KKK oK ok oK KK ok ok KK R K SRR ok K SRR koK ok ok ok ok ok K ok ok KSRk kK SRk Sk K ok KRk ok K oK

14

