
Improving Low Power Processor Efficiency with Static Pipelining

Ian Finlayson†, Gang-Ryung Uh‡, David Whalley† and Gary Tyson†
†Department of Computer Science ‡Department of Computer Science

Florida State University Boise State University
{finlayso, whalley, tyson}@cs.fsu.edu uh@cs.boisestate.edu

Abstract

A new generation of mobile applications requires re-
duced energy consumption without sacrificing execution
performance. In this paper, we propose to respond to these
conflicting demands with an innovative statically pipelined
processor supported by an optimizing compiler. The central
idea of the approach is that the control during each cycle
for each portion of the processor is explicitly representedin
each instruction. Thus the pipelining is in effect statically
determined by the compiler. The benefits of this approach
include simpler hardware and that it allows the compiler to
perform optimizations that are not possible on traditional
architectures. The initial results indicate that static pipelin-
ing can significantly reduce power consumption without ad-
versely affecting performance.

1 Introduction

With the proliferation of embedded systems, energy con-
sumption has become an important design constraint. As
these embedded systems become more sophisticated, they
also need a greater degree of performance. The task of sat-
isfying the energy consumption and performance require-
ments of these embedded systems is a daunting task. One
of the most widely used techniques for increasing processor
performance is instruction pipelining. Instruction pipelin-
ing allows for increased clock frequency by reducing the
amount of work that needs to be performed for an instruc-
tion in each clock cycle. The way pipelining is tradition-
ally implemented, however, results in several areas of inef-
ficiency with respect to energy consumption. These inef-
ficiencies include unnecessary accesses to the register file
when the values will come from forwarding, checking for
forwarding and hazards when they cannot possibly occur,
latching values between pipeline registers that are often not
used and repeatedly calculating invariant values such as
branch targets.

In this paper, we introduce a technique called static

pipelining which aims to provide the performance bene-
fits of pipelining in a more energy-efficient manner. With
static pipelining, the control for each portion of the proces-
sor is explicitly represented in each instruction. Insteadof
pipelining instructions dynamically in hardware, it is done
statically by the optimizing compiler. There are several
benefits to this approach. First, energy consumption is re-
duced by avoiding unnecessary actions found in traditional
pipelines. Secondly, static pipelining gives more controlto
the compiler which allows for more fine-grained optimiza-
tions for both performance and power. Lastly, statically
pipelined processors have simpler hardware than traditional
processors which should provide a lower production cost.

This paper is structured as follows: Section 2 introduces
static pipelining at both the micro-architectural and archi-
tectural level. Section 3 discusses compilation issues with
regards to static pipelining and gives a detailed example.
Section 4 gives preliminary results. Section 5 reviews re-
lated work. Section 6 discusses future work. Lastly, Section
7 draws conclusions.

2 Statically Pipelined Architecture

One of the most common techniques for improving pro-
cessor performance is instruction pipelining. Pipeliningal-
lows for increased clock frequency by reducing the amount
of work that needs to be performed for an instruction in each
clock cycle. Figure 1 depicts a classical five stage pipeline.
Instructions spend one cycle in each stage of the pipeline
which are separated by pipeline registers.

Along with increasing performance, pipelining intro-
duces a few inefficiencies into a processor. First of all is the
need to latch information between pipeline stages. All of
the possible control signals and data values needed for an
instruction are passed through the pipeline registers to the
stage that uses them. For many instructions, much of this
information is not used. For example, the program counter
(PC) is typically passed from stage to stage for all instruc-
tions, but is only used for branches.

Pipelining also introduces branch and data hazards.

Figure 1. Simplified Datapath of a Traditional Five Stage Pip eline

Branch hazards result from the fact that, when fetching a
branch instruction, we won’t know for several cycles what
the next instruction will be. This results in either stalls for
every branch, or the need for branch predictors and delays
when branches are mis-predicted. Data hazards are the re-
sult of values being needed before a previous instruction has
written them back to the register file. Data hazards result
in the need for forwarding logic which leads to unneces-
sary register file accesses. Experiments with SimpleScalar
[1] running the MiBench benchmark suite [6] indicate that
27.9% of register reads are unnecessary because the values
will be replaced from forwarding. Additionally 11.1% of
register writes are not needed due to their only consumers
getting the values from forwarding instead. Additional inef-
ficiencies found in traditional pipelines include repeatedly
calculating branch targets when they do not change, read-
ing registers whether or not they are used for the given type
of instruction, and adding an offset to a register to form a
memory address even when that offset is zero.

Given these inefficiencies in traditional pipelining, it
would be desirable to develop a processor that avoided
them, but does not sacrifice the performance gains associ-
ated with pipelining. In this paper, we introduce an archi-
tecture to meet this goal.

Figure 2 illustrates the basic idea of our approach. With
traditional pipelining, instructions spend several cycles in
the pipeline. For example, thesub instruction in Figure
2(b) requires one cycle for each stage and remains in the
pipeline from cycles four through seven. Each instruction
is fetched and decoded and information about the instruc-
tion flows through the pipeline, via the pipeline registers,to
control each portion of the processor that will take a specific
action during each cycle.

Figure 2(c) illustrates how a statically pipelined proces-
sor operates. Data still passes through the processor in mul-
tiple cycles. But how each portion of the processor is con-
trolled during each cycle is explicitly represented in eachin-

struction. Thus instructions are encoded to simultaneously
perform actions normally associated with separate pipeline
stages. For example, at cycle 5, all portions of the proces-
sor, are controlled by a single instruction (depicted with the
shaded box) that was fetched the previous cycle. In effect
the pipelining is determined statically by the compiler as
opposed to dynamically by the hardware. Thus we refer to
such a processor as statically pipelined.

2.1 Micro-Architecture

Figure 3 depicts one possible datapath of a statically
pipe-lined processor.1 The fetch portion of the processor
is essentially unchanged from the conventional processor.
Instructions are still fetched from the instruction cache and
branches are predicted by a branch predictor.

The rest of the processor, however, is quite different.
Because statically pipelined processors do not need to
break instructions into multiple stages, there is no need for
pipeline registers. In their place are a number of internal
registers. Unlike pipeline registers, these are explicitly read
and written by the instructions, and can hold their values
across multiple cycles.

There are ten internal registers. TheRS1 andRS2 (reg-
ister source) registers are used to hold values read from the
register file. TheLV (load value) register is used to hold
values loaded from the data cache. TheSEQ (sequential
address) register is used to hold the address of the next se-
quential instruction at the time it is written. This register is
used to store the target of a branch in order to avoid calculat-
ing the target. TheSE (sign extend) register is used to hold

1In order to make the figure simpler, the multiplexer in the lower right
hand corner has been used for three purposes. It supplies thevalue written
to the data cache on a store operation, the value written to the register file
and the value written to one of the copy registers. In actuality there may be
three such multiplexers, allowing for different values to beused for each
purpose.

IF RF EX MEM WBIF RF EX MEM WBxor ...

add R2,#1,R3

sub R2,R3,R4

and R5,#7,R3

clock cycle

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

1 2 3 4 5 6 7 8 9

(c) Static Pipelining

clock cycle

IF RF EX MEM WB

IF RF EX MEM WB

IF EX MEM WB

IF RF EX MEM WB

1 2 3 4 5 6 7 8 9

RFor ...

(b) Traditional Pipelining(a) Traditional Insts

Figure 2. Traditionally Pipelined vs. Statically Pipeline d Instructions

Figure 3. Possible Datapath of a Statically Pipelined Proce ssor

a sign-extended immediate value. TheALUR (ALU result)
andTARG (target address) registers are used to hold values
calculated in the ALU. TheFPUR (FPU result) register is
used to hold results calculated in the FPU, which is used
for multi-cycle operations. If the PC is used as an input to
the ALU (as in a PC-relative address computation), then the
result is placed in theTARG register, otherwise it is placed
in the ALUR register. TheCP1 andCP2 (copy) registers
are used to hold values copied from one of the other inter-
nal registers. These copy registers are used to hold loop-
invariant values and support simple register renaming for
instruction scheduling.

Because these internal registers are part of the machine
state, they must be saved and restored with the register file
upon context switches. Since these internal registers are
small, and can be placed near the portion of the processor
that access it, each internal register is accessible at a lower
energy cost than the centralized register file. Note that while
the pipeline registers are read and written every cycle, the
internal registers are only accessed when needed. Because
these registers are exposed at the architectural level, a new
level of compiler optimizations can be exploited as we will
demonstrate in Section 3.

A static pipeline can be viewed as a two-stage processor
with the two stages being fetch and everything after fetch.

As discussed in the next sub-section, the statically pipelined
instructions are already partially decoded as compared to
traditional instructions. Because everything after fetchhap-
pens in parallel, the clock frequency for a static pipeline can
be just as high as for a traditional pipeline. Therefore if the
number of instructions executed does not increase as com-
pared to a traditional pipeline, there will be no performance
loss associated with static pipelining. Section 3 will discuss
compiler optimizations for keeping the number of instruc-
tions executed as low as, or lower than, those of traditional
pipelines.

Hazards due to multi-cycle operations can easily be de-
tected without special logic to compare register numbers
from instructions obtained from pipeline registers. If dur-
ing a given cycle the FPUR register is to be used as a source
and the corresponding functional unit has not completed a
multi-cycle operation, then the current instruction is aborted
and the instruction will be reattempted on the next cycle.
This process continues until the FPU has completed the op-
eration. Misses in the data cache can be handled in a similar
fashion with the LV register.

One benefit of static pipelining is that the branch penalty
is reduced to one cycle. This is because branches are
resolved only one cycle after the following instruction is
fetched. Interestingly, if a delay slot were employed with

a static pipeline, then there would be no mis-prediction
penalty, nor any need for branch prediction at all. In this
paper, however, we do not use a delay slot and use the
same fetch mechanism for the baseline MIPS and the static
pipeline.

2.2 Instruction Set

The instruction set architecture for a statically pipelined
architecture is quite different than one for a conventional
processor. Each instruction consists of a set of effects, each
of which updates some portion of the processor. The effects
that are allowed in each cycle mostly correspond to what
the baseline five-stage pipeline can do in one cycle, which
include one ALU or FPU operation, one memory operation,
two register reads, one register write and one sign exten-
sion. In addition, one copy can be made from an internal
register to one of the two copy registers and the next se-
quential instruction address can optionally be saved in the
SEQ register. Lastly, the next PC can be assigned the value
of one of the internal registers. If the ALU operation is a
branch operation, then the next PC will only be set accord-
ing to the outcome of the branch, otherwise, the branch is
unconditionally taken.

In order to evaluate the architecture, we currently allow
any combination of these effects to be specified in any in-
struction. To specify all of these effects at one time would
require 64-bit instructions, which are too wide for most low
power embedded systems. In an actual implementation,
only the commonly used combinations of effects would be
able to be able to be specified at a time, with a field in the
instruction specifying which combination is used. Our pre-
liminary analysis shows that it is practical to use 32-bit in-
structions with minimal loss in efficiency.

All of the effects specified in a single instruction are in-
dependent and are performed in parallel. The values in the
internal registers are read at the beginning of the cycle and
written at the end of the cycle. Note that except for the ef-
fects that solely read or write a register file value, all of the
effects operate solely on the internal registers. This is anal-
ogous to how RISC architectures only allow load or store
instructions to reference memory locations.

In a traditional architecture, when reading a value from
the register file, it is clear from the opcode whether that
value will be used as an integer or floating point value. This
allows the instructions to “double up” on the number of
available registers by having separate integer and floating-
point register files. In a statically pipelined architecture,
however, a register is not read in the same instruction as
the arithmetic operation that uses it. Therefore to have both
integer and floating point register files, we would need one
extra bit for each register field. To avoid this problem, we
use a single register file to hold both integer and floating

point values. Another reason for traditional architectures
to use distinct register files is to simplify forwarding logic
which is not an issue for this architecture. While this may
increase register pressure for programs using both integer
and floating point registers, we will show in Section 3 that
static pipelining reduces the number of references to the
centralized register file.

3 Compilation

A statically pipelined architecture exposes more details
of the datapath to the compiler. This allows the compiler
to perform optimizations that would not be possible on a
conventional machine.

This section gives an overview of compiling for a stat-
ically pipelined architecture with a simple running exam-
ple, the source code for which can be seen in Figure 4(a).
The baseline we use for comparison is the MIPS architec-
ture. The code above was compiled with the VPO [2] MIPS
port, with all optimizations except instruction scheduling
applied, and the main loop is shown in Figure 4(b). In this
example,r[9] is used as a pointer to the current array el-
ement,r[5] is a pointer to the end of the array, andr[6]
holds the valuem. The requirements for each iteration of
the loop are shown in Figure 4(c).2

We ported the VPO compiler to the statically pipelined
processor. In this chapter, we will explain its function and
show how this example can be compiled efficiently for a
statically pipelined machine.

The process begins by first compiling the code for the
MIPS architecture with many optimizations turned on. This
is done because it was found that certain optimizations,
such as register allocation, were much easier to apply for
the MIPS architecture than for the static pipeline. This is
similar to the way in which many compilers have a plat-
form independent and then platform dependent optimiza-
tion stages.

VPO works with an intermediate representation, shown
in the code listings, called “RTLs”. Each generated RTL
maps to one assembly language instruction on the target
machine. The RTLs generated by the MIPS compiler are
legal for the MIPS, but not for a static pipeline. The next
step in compilation, therefore, is to break these RTLs into
ones that are legal for a static pipeline.

Next, the modified intermediate code is given as input
to the compiler which produces the assembly. Figure 4(d)
shows the output of the compiler run on the example above
with no optimizations applied. As can be seen, the MIPS
instructions are broken into the effects needed to accom-
plish that instruction. The dashed lines separate effects cor-

2There are five ALU operations because, on the MIPS, the displace-
ment is added to the base register to form a memory address even ifthat
displacement is 0.

for (i = 0; i < 100; i++)

 a[i] += m;

L6:

 r[3] = M[r[9]];

 r[2] = r[3] + r[6];

 M[r[9]] = r[2];

 r[9] = r[9] + 4;

 PC = r[9] != r[5], L6

L6:

(a) Source Code

(b) MIPS Code

(d) Initial Statically
 Pipelined Code

5 instructions
8 RF reads
1 branch calcs.

(c) MIPS requirements for
 each array element

RS1 = r[3];

RS1 = r[2];

RS1 = r[9];

RS1 = r[9];

RS1 = r[9];

LV = M[RS1];

r[3] = LV;

r[2] = ALUR;

RS2 = r[6];

ALUR =

RS2 = r[9];

M[RS2] =

r[9] = ALUR;

SE = 4;

ALUR = RS1 + SE;

PC =

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

+ RS2;RS1

;RS1

!= RS2, TARG;RS1

L6:

RS1 = r[3];

RS1 = r[2];

RS1 = r[9];

RS1 = r[9];

RS1 = r[9];

LV = M[RS1];

r[3] = LV;

r[2] = ALUR;

RS2 = r[6];

ALUR = LV + RS2;

RS2 = r[9];

M[RS2] = ALUR;

r[9] = ALUR;

SE = 4;

ALUR = RS1 + SE;

PC = ALUR != RS2, TARG;

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

(e) After Copy Propogation

(f) After Dead Assignment
 Elimination

L6:

RS1 = r[9];

RS1 = r[9];

LV = M[RS1];

RS2 = r[6];

ALUR = LV + RS2;

RS2 = r[9];

M[] = ALUR;

r[9] = ALUR;

SE = 4;

ALUR = RS1 + SE;

PC = ALUR != RS2, TARG;

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

RS2

 5 ALU ops
3 RF writes
2 sign extends

Figure 4. Example of Compiling for a Statically Pipelined Pr ocessor

responding to different MIPS instructions. It’s interesting to
note that the instruction effects in Figure 4(d) actually cor-
respond to what happens in a conventional pipeline, though
they use fields in the pipeline registers rather than inter-
nal registers. As it stands now, however, the code is much
less efficient than the MIPS code, taking 15 instructions in
place of 5. The next step then, is to apply traditional com-
piler optimizations on the initial statically pipelined code.
While these optimizations have already been applied in the
platform independent optimization phase, they can provide
additional benefits when applied to statically pipelined in-
structions.

Figure 4(e) shows the result of applying copy propaga-
tion. 3 Copy propagation is an optimization which, for an
assignment x = y, the compiler replaces later uses of x with
y as long as intervening instructions have not changed the
value of x or y. The values that were replaced by copy prop-
agation appear in bold face in Figure 4(d).

This optimization doesn’t provide any benefits on its
own, but it results in assignments to registers that are never
used. The next step, therefore, is to apply dead assignment
elimination, the result of which can be seen in Figure 4(f).
Dead assignment elimination removes assignments to reg-
isters when the value is never read. The assignments that
fulfill this property are shown in bold face in Figure 4(e).

The next optimization we apply is common sub-
expression elimination, the results of which appear in Fig-
ure 5(a). This optimization looks for instances when values
are produced more than once and replaces subsequent pro-

3In actuality, VPO performs copy propagation, dead assignmentelim-
ination, redundant assignment elimination and common sub-expression
elimination together. They are separated here for illustrative purposes.

ductions of the value with the first one. In this case, loading
r[9] is done twice, so the compiler ruses the value inRS1
rather than re-load the value intoRS2. Because an inter-
nal register access is cheaper than a register file access, the
compiler will prefer the former. This is similar to the way
in which compilers prefer register file accesses to memory
accesses.

We also apply redundant assignment elimination at this
point. This optimization removes assignments that have
been made previously so long as neither value has changed
since the last assignment. In this case the assignmentRS1
= r[9]; has become redundant after dead assignment
elimination, so can be removed. The RTLs affected are
shown in bold face in Figure 4(f).

Because the effects that were removed have to remain
in a traditional pipeline, removing them saves energy con-
sumption over the baseline. By making these effects ex-
plicit, static pipelining gives the compiler the ability totar-
get them. Some of these optimizations may not affect the
performance after scheduling is performed, but it will af-
fect the energy consumption. Our compiler also currently
performs control flow optimizations and strength reduction,
but these did not affect the loop body in this example.

While the code generation and optimizations described
so far have been implemented and are automatically per-
formed by the compiler, the remaining optimizations dis-
cussed in this section are performed by hand, though we
will automate them. The first one we perform is loop-
invariant code motion. Loop-invariant code motion is an
optimization that moves instructions out of a loop when do-
ing so does not change the program behavior. Figure 5(b)
shows the result of applying this transformation. The effects

RS1 = r[9];

LV = M[RS1];

ALUR = LV + CP2;

M[RS1] = ALUR;

ALUR = RS1 + SE;

r[9] = ALUR;

RS2 = r[5];

PC = ALUR != RS2, TARG;

 SE = 4; RS2 = r[6];

 CP2 = RS2; RS1 = r[9];

 LV = M[RS1]; RS2 = r[5]; SEQ = PC + 4;

 (a) Code after Common Sub-
 Expression Elimination and
Redundant Assignment Elimination (b) Code after Loop Invariant

 Code Motion

(c) Code after Scheduling

(d) Static Pipeline requirements for each array element

3 instructions 3 ALU operations
1 register file read 1 register file write
0 branch address calculations 0 sign extensions

SE = offset(L6);

TARG = PC + SE;

SE = 4;

RS2 = r[6];

CP2 = RS2;
 ALUR = LV + CP2; RS1 = r[9];

 ALUR = RS1 + SE; M[RS1] = ALUR;

 PC = ALUR != RS2, SEQ; LV = M[ALUR]; r[9] = ALUR;

 ALUR = LV + CP2; RS1 = r[9];

 M[RS1] = ALUR;

L6:

RS1 = r[9];
LV = M[RS1];

RS2 = r[6];
ALUR = LV +

M[RS1] = ALUR;

r[9] = ALUR;

SE = 4;
ALUR = RS1 + SE;

PC = ALUR != RS2, TARG;

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

RS2 ;

L6:

L6:

Figure 5. Example of Optimizing Code for a Statically Pipeli ned Processor

that were moved outside the loop are shown in bold face in
Figure 5(a). As can be seen, loop-invariant code motion
also can be applied to statically pipelined code in ways that
it can’t for traditional architectures. We are able to move
out the calculation of the branch target and also the sign
extension. Traditional machines are unable to break these
effects out of the instructions that utilize them so the values
are needlessly calculated each iteration. Also, by taking ad-
vantage of the copy register we are able to move the read of
r[6] outside the loop as well. The compiler is now able to
create a more efficient loop due to its fine-grained control
of the instruction effects.

While the code in Figure 5(b) is an improvement, and
has fewer register file accesses than the baseline, it still re-
quires more instructions. This increase in execution time
may offset any energy savings we achieve. In order to re-
duce the number of instructions in the loop, we need to
schedule multiple effects together. For this example, and
the benchmark used in the results section, the scheduling
was done by hand.

Figure 5(c) shows the loop after scheduling. The itera-
tions of the loop are overlapped using software pipelining
[3]. With the MIPS baseline, there is no need to do soft-
ware pipelining because there are no long latency opera-
tions. For a statically pipelined machine, however, it allows
for a tighter main loop. We also pack together effects that
can be executed in parallel, obeying data and structural de-
pendencies. Additionally, we remove the computation of
the branch target by storing it in theSEQ register before
entering the loop.

The pipeline requirements for the statically pipelined
code are shown in Figure 5(d). In the main loop, we had
two fewer instructions and ALU operations than the base-
line. We also had seven fewer register file reads and two
fewer register file writes, and removed a sign extension and

branch address calculation. For this example, the loop body
will execute in fewer instructions and with less energy con-
sumption.

The baseline we are comparing against was already op-
timized MIPS code. By allowing the compiler access to
the details of the pipeline, it can remove instruction effects
that cannot be removed on traditional machines. This ex-
ample, while somewhat trivial, does demonstrate the ways
in which a compiler for a statically pipelined architecture
can improve program efficiency.

4 Evaluation

This section will present a preliminary evaluation using
benchmarks compiled with our compiler and then hand-
scheduled as described in the previous section. The bench-
marks used are the simple vector addition example from
the previous section, and the convolution benchmark from
Dspstone [12]. Convolution was chosen because it is a
real benchmark that has a short enough main loop to make
scheduling by hand feasible.

We extended the GNU assembler to assemble statically
pipe-lined instructions and implemented a simulator based
on the SimpleScalar suite. In order to avoid having to com-
pile the standard C library, we allow statically pipelined
code to call functions compiled for MIPS. There is a bit
in the instruction that indicates whether it is a MIPS or stat-
ically pipelined instruction. After fetching an instruction,
the simulator checks this bit and handles the instruction ac-
cordingly. On a mode change, the simulator will also drain
the pipeline. In order to make for a fair comparison, we set
the number of iterations to 100,000. For both benchmarks,
when compiled for the static pipeline, over 98% of the in-
structions executed are statically pipelined ones, with the
remaining MIPS instructions coming from calls to printf.

For the MIPS baseline, the programs were compiled with
the VPO MIPS port with full optimizations enabled.

Table 1 gives the results of our experiments. We report
the number of instructions committed, register file reads and
writes and “internal” reads and writes. For the MIPS pro-
grams, these internal accesses are the number of accesses to
the pipeline registers. Because there are four such registers,
and they are read and written every cycle, this figure is sim-
ply the number of cycles multiplied by four. For the static
pipeline, the internal accesses refer to the internal registers.

As can be seen, the statically pipelined versions of these
programs executed significantly fewer instructions. This
is done by applying traditional compiler optimizations at
a lower level and by carefully scheduling the loop as dis-
cussed in Section 3. The static pipeline also accessed the
register file significantly less, because it is able to retainval-
ues in internal registers with the help of the compiler.

Instead of accessing the register file, the statically
pipelined code accesses the internal registers often, as
shown in the table. It may appear that the only benefit
of static pipelining is that the registers accessed are sin-
gle registers instead part of a larger register file. However,
the static pipeline uses the internal registers in lieu of the
pipeline registers. As can be seen in the table, the pipeline
registers are accessed significantly more often than the in-
ternal registers. Additionally the pipeline registers areusu-
ally much larger than the internal registers.

While accurate energy consumption values have yet to
be assessed, it should be clear that the energy reduction in
these benchmarks would be significant. While the results
for larger benchmarks may not be quite so dramatic as these,
this experiment shows that static pipelining, with appropri-
ate compiler optimizations has the potential to be a viable
technique for significantly reducing processor energy con-
sumption.

5 Related Work

Statically pipelined instructions are most similar to hor-
izontal micro-instructions [11], however, there are signif-
icant differences. Firstly, the effects in statically pipelined
instructions specify how to pipeline instructions across mul-
tiple cycles. While horizontal micro-instructions also spec-
ify computation at a low level, they do not expose pipelin-
ing at the architectural level. Also, in a micro-programmed
processor, each machine instruction causes the execution of
micro-instructions within a micro-routine stored in ROM.
Furthermore compiler optimizations cannot be performed
across these micro-routines since this level is not generally
exposed to the compiler. Static pipelining also bares some
resemblance to VLIW [5] in that the compiler determines
which operations are independent. However, most VLIW
instructions represent multiple RISC operations that can be

performed in parallel. In contrast, the static pipelining ap-
proach encodes individual instruction effects that can be is-
sued in parallel, where each effect corresponds to an action
taken by a single pipeline stage of a traditional instruction.

Another architecture that exposes more details of the dat-
apath to the compiler is the Transport-Triggered Architec-
ture (TTA) [4]. TTAs are similar to VLIWs in that there are
a large number of parallel computations specified in each in-
struction. TTAs, however, can move values directly to and
from functional unit ports, to avoid the need for large, multi-
ported register files. Similar to TTAs are Coarse-Grained
Reconfigurable Architectures (CGRAs) [7]. CGRAs con-
sist of a grid of functional units and register files. Programs
are mapped onto the grid by the compiler, which has a great
deal of flexibility in scheduling. Another architecture that
gives the compiler direct control of the micro-architecture is
the No Instruction Set Computer (NISC) [8]. Unlike other
architectures, there is no fixed ISA that bridges the com-
piler with the hardware. Instead, the compiler generates
control signals for the datapath directly. All of these archi-
tectures rely on multiple functional units and register files
to improve performance at the expense of a significant in-
crease in code size. In contrast, static pipelining focuseson
improving energy consumption without adversely affecting
performance or code size.

There have also been many studies that focused on in-
creasing the energy-efficiency of pipelines by avoiding un-
necessary computations. One work presented many meth-
ods for reducing the energy consumption of register file
accesses [10]. One method, bypass skip, avoids reading
operands from the register file when the result would come
from forwarding anyway. Another method they present is
read caching, which is based on the observation that subse-
quent instructions will often read the same registers. An-
other technique that avoids unnecessary register accessesis
static strands [9]. A strand is a sequence of instructions
that has some number of inputs and only one output. The
key idea here is that if a strand is treated as one instruction,
then the intermediate results do not need to be written to the
register file. Strands are dispatched as a single instruction
where they are executed on a multi-cycle ALU which cycles
its outputs back to its inputs. All of these techniques attempt
to make processors running traditional instruction sets more
efficient. A statically pipelined processor can avoid all un-
necessary register file accesses without the need for special
logic, which can negate the energy savings.

6 Future Work

The most important piece of future work is to improve
the optimizing compiler. The automation of the scheduling
and software-pipelining we performed by hand will allow
for the evaluation of larger benchmarks. In addition we will

Benchmark Architecture Instructions Register Reads Register Writes Internal Reads Internal Writes
MIPS 507512 1216884 303047 2034536 2034536

Vector Add Static 307584 116808 103028 1000073 500069
reduction 39.4% 90.4% 66.0% 50.8% 75.4%

MIPS 1309656 2621928 804529 5244432 5244432
Convolution Static 708824 418880 403634 2200416 1500335

reduction 45.9% 84.0% 49.8% 58.0% 71.4%

Table 1. Results of the Experimental Evaluation

develop and evaluate other compiler optimizations for this
machine, including allocating internal registers to variables.
There are also several possibilities for encoding the instruc-
tions efficiently. These options include using different for-
mats for different sets of effects to perform, code compres-
sion and programmable decoders. Additionally, we will
experiment with other architectural features such as delay
slots. Another big area of future work is the development of
a Verilog model. This will allow for accurate measurement
of energy consumption, as well as area and timing.

7 Conclusion

In this paper, we have introduced the technique of static
pipelining to improve processor efficiency. By statically
specifying how instructions are broken into stages, we have
simpler hardware and allow the compiler more control in
producing efficient code. Statically pipelined processors
provide the performance benefits of pipelining without the
inefficiencies of dynamic pipelining.

We have shown how efficient code can be generated for
simple benchmarks for a statically pipelined processor to
target both performance and power. Preliminary experi-
ments show that static pipelining can significantly reduce
energy consumption by reducing the number of register
file accesses, while also improving performance. With the
continuing expansion of high-performance mobile devices,
static pipelining can be a viable technique for satisfying
next-generation performance and power requirements.

Acknowledgements

We thank the anonymous reviewers for their constructive
comments and suggestions. This research was supported in
part by NSF grants CNS-0964413 and CNS-0915926.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An In-
frastructure for Computer System Modeling.Computer,
35(2):59–67, 2002.

[2] M. Benitez and J. Davidson. A Portable Global Optimizer
and Linker.ACM SIGPLAN Notices, 23(7):329–338, 1988.

[3] D. Cho, R. Ayyagari, G. Uh, and Y. Paek. Preprocessing
Strategy for Effective Modulo Scheduling on Multi-Issue
Digital Signal Processors. InProceedings of the 16th In-
ternational Conference on Compiler Constructions, Braga,
Portugal, 2007.

[4] H. Corporaal and M. Arnold. Using Transport Triggered
Architectures for Embedded Processor Design.Integrated
Computer-Aided Engineering, 5(1):19–38, 1998.

[5] J. Fisher. VLIW Machine: A Multiprocessor for Compiling
Scientific Code.Computer, 17(7):45–53, 1984.

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. MiBench: A Free, Commercially Represen-
tative Embedded Benchmark Suite. InWorkload Character-
ization, 2001. WWC-4. 2001 IEEE International Workshop
on, pages 3–14. IEEE, 2002.

[7] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph
embedding: mapping applications onto coarse-grained re-
configurable architectures. InProceedings of the 2006 in-
ternational conference on Compilers, architecture and syn-
thesis for embedded systems, pages 136–146. ACM, 2006.

[8] M. Reshadi, B. Gorjiara, and D. Gajski. Utilizing horizontal
and vertical parallelism with a no-instruction-set compiler
for custom datapaths. InICCD ’05: Proceedings of the 2005
International Conference on Computer Design, pages 69–
76, Washington, DC, USA, 2005. IEEE Computer Society.

[9] P. Sassone, D. Wills, and G. Loh. Static Strands: Safely
Collapsing Dependence Chains for Increasing Embedded
Power Efficiency. InProceedings of the 2005 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems, pages 127–136. ACM, 2005.

[10] J. H. Tseng and K. Asanovic. Energy-efficient register ac-
cess. InSBCCI ’00: Proceedings of the 13th symposium on
Integrated circuits and systems design, page 377, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

[11] M. Wilkes and J. Stringer. Micro-Programming and the De-
sign of the Control Circuits in an Electronic Digital Com-
puter. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 49, pages 230–238. Cam-
bridge Univ Press, 1953.

[12] V. Zivojnovic, J. VELARDE, and G. SCHL. C. 1994. DSP-
stone: A DSP-Oriented Benchmarking Methodology. In
Proceedings of the Fifth International Conference on Signal
Processing Applications and Technology (Oct.).

