
Aggressive Function Splitting for Partial Inlining1 
 
 
 
 
 
 
 

 
Abstract 

 
Partial inlining is an efficient way of inlining, which 

inlines only part of the callee function, thus reducing 
the code expansion. The key problem is how to split the 
callee function effectively so that both the call 
overhead and the code expansion can be reduced. 
Previous techniques either lead to function splits too 
large to be inlined, or fail to reduce the call overhead 
effectively. In this paper, we propose a new technique 
for function splitting based on early returns in the 
function to achieve both goals. It also employs the cost 
and benefit model to allow efficient function splitting. 
Our preliminary experimental results show that the 
proposed technique can reduce the call overhead by 
33%, with the code size increase of 5.8%. 
 
1. Introduction 
 

Inlining is known as an effective way to reduce the 
function call overhead by duplicating the body of the 
callee function into the call site of the caller function. 
Since inlining increases the code size, hence the 
memory pressure, it is not desirable to inline functions 
that are too large. In fact, many techniques have been 
proposed to reduce the code growth while preserving 
the benefit of inlining [4, 5, 7, 8, 9]. One such a 
technique is partial inlining [4, 5], which inlines only 
part of the callee function. 

Partial inlining is usually performed in three steps: 
(1) Construct a subgraph of the callee function which 
will actually be inlined. The subgraph should include 
the entry basic block (BB) and at least one exit BB. (2) 
Split the callee function into two or more functions 
based on the subgraph. Those BBs that are not part of 
the subgraph are extracted from the original function 
and form a separate function, called an outlined 
function. For each edge from the subgraph to 

the outlined function, we add a transition function call, 
with variables used in the outlined function as 
parameters. Now, only the subgraph is left in the 
original function, which is called a leftover function. (3) 
Inline the leftover function into the call site(s), exactly 
as in normal inlining. 

Figure 1 illustrates the idea of partial inlining. One 
BB in the left path of the function foo() is extracted to 
an outlined function while the entry BB, the exit BB, 
and the right BB compose the leftover function. A 
function call is added from the leftover function to the 
outlined function, with variables defined and used at 
the outlined function body as parameters. Only the 
leftover function will be inlined at the call site. 

There are a couple of issues for partial inlining. 
First, it should be noted that even if the callee function 
is partially inlined so that the call overhead from the 
caller to callee is removed, there are still calls from the 
leftover function to the outlined function. So, it is 
important to minimize such calls to achieve the best 
effect of inlining. Secondly, if the leftover function is 
still too large even after the function splitting, inlining 
it is costly. Finally, the additional parameters in the call 
from the leftover to outlined function may cause some 
overhead, so they should be reduced. 

 

 
Figure 1. Overview of Partial Inlining 

1 This work was supported by the IT R&D program of MKE/KEIT 
[KI002119, Development of New Virtual Machine Specification 
and Technology]. 

Jun-Pyo Lee, Jae-Jin Kim, Soo-Mook Moon 
School of Electrical Engineering and 

Computer Science,  
Seoul National University, Seoul, Korea 

{walker, kjj7999, smoon }@altair.snu.ac.kr 
 

Suhyun Kim  
Korea Institute of Science and Technology 

(KIST) 
 

dr.suhyun.kim @gmail.com 
 



All of these issues are related to the function 
splitting, so the subgraph construction is most 
important for partial inlining. There are two previous 
approaches to the subgraph construction. One is 
removing those cold BBs that are rarely executed 
based on branch profiles [5]. Although this can lead to 
small call overhead since the call from the leftover to 
the outlined would be rarely executed, the leftover 
function would be still too large since only those BBs 
with extremely low frequency will be outlined.  

The other approach is starting from the hottest seed 
BBs in the function and growing towards the entry BB 
and the exit BBs [4]. The problem of this approach is 
that the hot seed BBs are not necessarily executed in 
every call to the original function, i.e., many calls may 
return without executing hot BBs, and thus partial 
inlining cannot eliminate such calls. 

Neither approach employs the cost and the benefit 
model for partial inlining, unlike in regular inlining [6]. 
That is, the cost involved with the size of the leftover 
function or with the parameter overhead of transition 
calls is not considered, while the benefit of reducing 
calls is not estimated. This would lead to some adhoc 
way of the subgraph construction. 

In this paper, we propose a new subgraph 
construction approach which employs the edge to an 
exit BB as a seed. Since this edge has a return ratio, it 
can be used to assure how much call overhead is 
eliminated by including this edge. Also, we apply a 
detailed cost and benefit analysis for each subgraph 
and select one that has the highest performance effect.  

The rest of the paper is structured as follows. 
Section 2 introduces motivating example of our work. 
Section 3 presents key implementation details with 
algorithms and the concept of subgraph we used for 
partial inlining. Section 4 shows the implementation on 
top of LLVM. Preliminary experimental results are 
reported in Section 5. Related work is discussed in 
section 6 and the summary follows in Section 6. 

 
2. Observation of Function Splitting 
 

Figure 2 (a) shows the control flow graph (CFG) of 
an example function, with its edges annotated with the 
relative execution frequency. It has a hot loop where 
bb4 is the hottest BB. The two exit BBs, exit1 and 
exit2 (which include a return statement), cover 25% 
and 75% of calls, respectively. 

Let us construct a subgraph for this function. If we 
take the approach in [5], figure 2 (b) would be the 
result. Only the BB exit2 is outlined since the branch 
profile indicates that both edges to exit2 are highly 
biased, meaning that it is too cold. 

On the other hand, if we take the approach in [4], 
we construct a subgraph starting from bb4 as a hot seed 
BB. Figure 2 (c) would be the result where bb3 and 
exit1 are outlined. 

Unfortunately, neither result is attractive. In Figure 
2 (b), only one BB is outlined, so the leftover function 
is still too large to be inlined, although it can remove 
75% of calls when inlined since it includes exit1. In 
Figure 2 (c), the leftover function has fewer BBs, but it 
can eliminate only 20% of the calls when inlined and 
the remaining 80% of the calls will be transferred to 
the outlined function via a function call. 

Figure 3 (a) would be a better function splitting 
result. The leftover function can reduces 75% of calls 
when inlined, while only four BBs are left. Figure 3 (b) 
shows the final CFG after function splitting is 
completed. A separate outlined function is created for 
each transition edge, which leads to the duplication of 
exit2. This is simpler and cheaper than making a 
single outlined function that can handle all entry points. 

We can make two observations from these results. 
One is that even BBs with highest execution frequency 
would better be outlined sometimes, so taking the 
hottest BB as a seed is not always desirable. Instead, it 
is better to take an edge to an exit BB with a high 
execution frequency as a seed since if the edge is 
included in the leftover function, that frequency of 
calls are guaranteed to be removed. We expand the 
seed by including predecessors of the chosen exit BB 
recursively until we include the entry BB. In Figure 2 
(a), the edge from bb3 to exit1 can be taken as a seed, 
which is expanded by including their predecessors, bb1 
and entry, composing the subgraph in Figure 3 (a). 

Another observation is that we must split functions 
considering the call overhead of the outlines functions, 
which includes the parameter passing cost as well as 
the call frequency itself. Creating a separate function 
for each transition edge is a way of reducing the call 
overhead. We also need to consider the increase of the 
code as a result of partial inlining. Consequently, it is 
desirable to introduce a cost-benefit model for partial 
inlining. 

These observations lead to our function splitting 
algorithm, which is based on early returns. 

 
Figure 2. Sample CFG and Previous Function Splitting 

 



 

 
 

Figure 3. Better Function Splitting Result 
 

3. Function Splitting based on Early Returns 
 

Previous section introduced the approach of 
function splitting based on an exit edge with high 
execution frequency, which leads to a small-sized 
leftover function and a large reduction of call overhead. 
It also proposed the cost-benefit model to function 
splitting. This section provides the detail of such 
function splitting. 
 
3.1. Early Return Subgraph 
 

Let us define a return edge as an edge whose target 
is an exit BB containing a return instruction. Then, an 
n-early return subgraph (n-ER subgraph) can be 
defined as a minimum subgraph which contains n 
different return edges of the CFG. If there is a path 
from the entry BB to one of those n return edges, all 
the BBs on the path should be included in the n-ER 
subgraph. For a given n-ER subgraph, its call coverage 
is defined as the sum of execution frequencies of its 
return edges. Figure 4 (a) shows the original CFG. 
Figure 4 (b)-(d) shows examples of n-ER subgraphs 
which are composed of shaded BBs. 
 

 
 

Figure 4. n-ER subgraph 
 

3.2. ER Subgraph Construction 
 
The 1-ER subgraph can be easily constructed by 

taking a return edge and adding its source BB and exit 
BB. Then, we take the source BB as a seed and 

recursively add its predecessor BBs until the entry BB 
is added. The n-ER subgraph also can be constructed 
by simple recursion: (1) we first construct every 
possible 1-ER subgraph, and then, based on benefit-to-
cost ratio (see Section 3.3), we choose the 1-ER 
subgraph with the highest ratio; (2) we then construct 
every possible 2-ER subgraph by adding one more 
return edge (and the corresponding BBs) to the 1-ER 
subgraph constructed in (1) and then choose the best 2-
ER subgraph with the highest benefit-to-cost ratio; (3) 
we repeat this process until the (n+1)-ER subgraph is 
too large to be inlined. Then the n-ER subgraph will be 
the leftover function. Figure 5 describes this process in 
more detail. 
 function UpdateERG(RetEdge, PrevEdges, PrevER) CurrEdges := PrevEdges ∪ {RetEdge}; CurrER := PrevER ∪ {RetEdge.Src, RetEdge.Dst};  Stack .push(RetEdge.Src);  while Stack is not empty   BB := Stack.pop();   for each predecessor P of BB if P  CurrER   CurrER := CurrER ∪ {P};   Stack.push(P);   for each successor S of P     if S is return edge; CurrEdges := CurrEdges ∪ {P, S};         fi; end for;     fi;   end for; end while; if CurrER is larger than threshold    return (NIL, NIL); else return (CurrER, CurEdges); fi;  end UpdateERG  function ConstructERG(Func) TotalEdges := set of total return edges of Func; do   for each edge E in TotalEdges     (CurrER, CurrEdges) := UpdateERG(E, PrevER, PrevEdges);     if Benefit2CostRatio CurrER  > Benefit2CostRatio ER        (ER, Edges) := (CurrER, CurrEdges);     fi; end for;   (PrevER, PrevEdges) := (ER, Edges); while ER is updated return ER end ConstructERG  

 

Figure 5. n-ER Subgraph Construction Algorithm 



3.3. Cost and Benefit Estimation 
 

Generally, the cost and benefit of the regular 
inlining can be estimated by the increased code size 
and the reduced number of function calls, respectively. 
With partial inlining, however, both estimations should 
be updated such that the code size increase comes only 
from the leftover function inlined while only part of the 
calls are reduced even after inlining since those calls to 
outlined functions are added. Moreover, the overhead 
of calling outlined functions possibly with more 
parameters than the original function parameters and 
the code size increase for the outlined function should 
be considered as well. 

We first define the benefit of partial inlining as 
follows: 
 Benefit = reduced function call overhead by ERs            –  additional overhead by calling outlined function 
 

Function call incurs several overhead including 
control transfer, register save/restore, parameter 
passing, and etc. Although the overhead can vary 
significantly with the location of call site and the time 
when the call happens, it can be generalized as sum of 
the fixed call overhead (called FixedCallCost below) 
and dynamic call overhead which is proportional to the 
number of parameters. To make the calculation simple, 
FixedCallCost is defined as the relative overhead of 
general function call when the overhead of each 
parameter passing is estimated to one (this is 
architecture dependent value, though). 

 CallOverhead = FixedCallCost + # of parameters 
 
Even though the outlined function is called, 

function call count is not changed, since the original 
call is already inlined. So, based on the CallOverhead 
definition above, the increased overhead of calling 
outlined function can be defined as the difference in 
number of parameters between original function and 
outlined function. Including this, the benefit can be 
defined as below. An outlined function is created for 
each exit from the subgraph to outlined function, which 
can have different number of parameters. 
 Benefit= (∑ ER ratio) ∗ (FixedCallCost + # of params)        – ∑ exit_ratio(i) ∗ (diff. in # of params of outlinedi)  

Now we discuss the cost, which can be simply 
estimated by the increased code size. It should be noted 
that only the leftover function is inlined at each call 
site, while the outlined functions are shared among 
them. Also, the cost of outlined function size should be 
shared among multiple call sites within the leftover 

function. Thus, the cost of partial inlining can be 
defined as below. 
 Cost := (size of leftover func.) ∗ (# of call site)                + ∑ size of outlined function   

Finally, we need to define Benefit2CostRatio which 
controls subgraph selection. Simple benefit to cost 
ratio is not attractive, since it may prevent aggressive 
function splitting. For example, let us assume that 1-
ER subgraph has relatively large call coverage with 
small code size. If another return edge has similar call 
coverage, but requires slightly larger code size increase 
than the code size of previous 1-ER graph. In this case, 
1-ER has always highest benefit to cost ratio and 
further opportunities to reduce call overhead cannot be 
exploited. Thus, we need a metric which allows 
aggressive subgraph construction when total code size 
is relatively small. This is possible by adding constant 
to Cost, and Benefit2CostRatio is defined below. Here, 
CostNormalizeFactor is determined by extensive 
testing. 
 Benefit2CostRatio :=  Benefit / (1 + Cost ∗  CostNormalizeFactor)  

 
3.4. Function Splitting 
 

After the ER Subgraph is identified, we clone the 
function so that the cloned function is used for function 
splitting. The original function will be used for indirect 
call sites or call sites with low execution frequency. 
With the cloned function, we extract those BBs which 
are not part of the ER subgraph and form an outlined 
function. The control and data flows between the ER 
subgraph and the outlined function should be 
reconciled as follows: 
 
(a) ER subgraph à outlined function 

As to the control flow, a function call is needed at 
the transition edge. As to the data flow, all used and 
defined variables in the outlined function are passed as 
parameters (however, by duplicating the return block, 
it can be avoided to pass the address of defined 
variables as parameters, and the outlined function 
should have same return value as in the original 
function). If there are multiple transition edges from 
the ER subgraph to the outlined function, there can be 
two choices: (1) make a separate function for each 
transition edge, or (2) make a single function which 
serves all the transition edges. For the case of (2), 
another parameter is needed to indicate which edge is 
taken to enter the function, in addition to the superset 
of all the parameters needed at each edge. 
Consequently, (1) is simpler and cheaper to implement 



and its code size overhead is already considered by the 
cost and benefit analysis. 

 
(b) Outlined function à ER subgraph 

Control joins from the outlined functions to the ER 
subgraph is avoided by code duplication. If any BB 
within the ER subgraph has predecessor BBs from the 
outlined function, the BB and its successors are 
duplicated. With this duplication, if the outlined 
function is called, the control never returns to the ER 
subgraph, but returns to the caller directly. 

 
4. Implementation on top of the LLVM 
 

We implemented the proposed partial inlining on top 
of the low-level virtual machine (LLVM) compiler 
infrastructure (version 2.6) [1]. LLVM has its own 
virtual instruction set architecture called LLVA [2], 
which is language and architecture neutral. The same 
LLVA representation is used uniformly throughout the 
compile time and the link time, and the LLVA code is 
available even after linking [3]. Proposed partial 
inlining can be applied at any stage, yet we apply it 
after linking in the current implementation. This helps 
isolating the impact of partial inlining, but it also keeps 
the leftover function from becoming larger by inlining 
other functions. 

We employed the edge profiler of the LLVM to get 
the edge profiles. Also, after partial inlining is done, 
several optimization passes in the LLVM are applied to 
exploit additional optimization opportunities which 
partial inlining allows. When we measure the runtime 
impact of partial inlining, the base version is created by 
applying the same optimization passes after linking is 
done. 
 
5. Preliminary Experimental Results 
 

This section shows some preliminary experimental 
results with the proposed partial inlining. 

 
5.1. Experimental Setup 

 
Our experiments are performed on a machine with 

Intel Core i5 CPU 2.67GHz, 3GB memory, 32KB L1 
cache, 256KB L2 cache, and 8MB L3 cache. The 
benchmarks are SPEC2000 integer benchmarks [10]. 
All the experiments are done using one set of the 
reference input (if there are multiple set), except the 
training run which uses the train input. For runtime 
measurement, we take the minimum value in five 
consecutive identical runs. 

 

5.2. Static Result 
 
Table 1 shows the inlining statistics of partial 

inlining and the code size result. Each function is 
categorized into three groups: 

- Cold represents a function for which partial 
inlining is not employed, since the profile 
information indicates that there is no beneficial 
call site to that function. 

- NoSubG represents a function for which our 
partial inliner fails to construct a beneficial 
subgraph based on the cost and benefit analysis. 

- Inlined represents a function which is partially 
inlined successfully. 

 
Table 1. Static Results of Partial Inlining 

# of functions # of inlined 
callsites

Binary size 
increaseCold NoSubG Inlined

gzip 15 3 1 10 1.001 

vpr 54 3 4 5 1.003 

gcc 790 107 147 602 1.236 

crafty 37 13 10 69 1.073 

parser 24 47 28 96 1.192 

eon 488 2 4 6 1.000 

perlbmk 692 16 8 16 1.013 

gap 691 18 15 57 1.043 

bzip2 4 5 1 3 1.000 

twolf 55 10 7 14 1.022 

Average 1.058 

 
Table 1 shows that eon, perlbmk and gap has a 

large number of Cold functions compared to other 
functions. These benchmarks have many indirect call 
sites which cannot be identified by the profiler. In 
order to apply partial inlining for these benchmarks, 
other techniques such as devirtualization [15] would be 
needed. 

On average, the code size increases by 5.8%. In gcc 
and parser, the code size increases substantially. 
Even for these two benchmarks, many functions are 
not inlined, so the code increase is not due to excessive 
partial inlining. In the next section, we will see if the 
code size increase contributes for reducing call 
overhead. 

 
5.3. Runtime Results 

 
Figure 6 shows the effect of partial inlining in terms 

of the call count, by comparing the total number of call 
counts for the original program and the partial-inlined 
program. The graph shows that partial inlining 
achieves around 33% call count reduction on average. 
Unfortunately, this does not directly lead to the 
performance improvement, as shown in Figure 7. It 



shows the runtime speedup with partial inlining.  There 
are some marginal (1%~4%) performance 
improvements for 6 out of 10 benchmarks.  

One reason would be that the LLVM already has an 
aggressive inlining policy, and thus, the majority of 
call overhead would have already been removed by the 
LLVM since we apply partial inlining after linking. 
Moreover, the LLVM is known to perform powerful 
inter-procedural analyses and optimizations, which are 
usually enabled by its inlining. For the case of our 
partial inlining, we applied limited optimizations only. 
So we have to investigate the impact of partial inlining 
to existing compiler optimization fully, so as to allow 
more optimizations with partial inlining. 
 

 
Figure 6.  Total Call Count Reduction Ratio 

 

 
Figure 7. Runtime Speedup 

 
5.4. Dynamic Call Count Statistics 

 
Figure 8 shows the decomposition of dynamic call 

count when partial inlining is applied using profile 
information by train input. Each portion represents 
dynamic call count of corresponding functions which 
follows the definition in section 5.2 except Cold portion. 
Due to low execution frequency, there are call sites 
which call the original function even though the callee 
function is partially inlined. So, the call count of the 
original function is counted as part of Cold portion. 

 
Large portion of Cold in several benchmarks 

For those benchmarks which have a large portion of Cold in the static count, we can see a similar result here. 
To check the impact of indirect call, we manually 
subtracted indirect call count from the Cold portion and 
obtained Figure 9. Since a function can be called from 
both a direct call site and an indirect call site, 
subtracting indirect call count from Cold portion is not 
totally valid. However, in most benchmarks, it shows 
that Cold portion would have a meaningless value if the 
indirect call effect is eliminated. Perlbmk is one of 
exceptional case, where large portion of Cold comes 
from incomplete profile information (with profile 
information by reference input, a large portion of Cold 
is moved to NoSubgraph). The other exception is gcc. 
Several functions in gcc usually have hundreds of call 
sites, of which, the majority of them are not inlined due 
to low execution frequency. However, there are 
hundreds of those call sites, the summation of those 
call sites contributes to the relatively large portion of Cold in gcc.  
 
Large portion of NoSubgraph 

In many benchmarks, NoSubgraph takes large 
portion. This is more clear when the impact of indirect 
call is removed in figure 9. The portion of NoSubgraph 
means that our subgraph construction algorithm fails to 
identify useful subgraph for inlining, and thus we may 
miss some opportunity to reduce call overhead more. 
We investigated the reason why subgraph construction 
failed for several hot functions, and found that in many 
cases, there exists only one or two return edge(s). Since 
our algorithm relies on the return edge, if there is only 
one return edge, it cannot construct subgraph. 

As a future work, our subgraph construction 
algorithm needs to be improved to handle such a case 
where only limited number of return edges exists. One 
solution would be splitting control join BB to make 
multiple return edges. First, selects a control join BB 
which is nearest from the return edge. Second, 
duplicates conrol join BB for each incoming edge to 
the BB. Third, duplicates other BBs between control 
join BB and return edge if exists. Now, we have a 
return BB which has multiple return edges, and can 
apply the subgraph construction algorithm. 

 
Figure 8. Dynamic Call Count Decomposition 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

0%

20%

40%

60%

80%

100%

g
zi
p

vp
r

g
cc

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

b
zi
p
2

tw
o
lf

Inlined

NoSubgraph

Cold



 
Figure 9. Dynamic Call Count Decomposition 

(Manually subtracting indirect call count from Cold) 
 

5.5. Evaluation of Subgraph Construction 
Algorithm 

 
Figure 10 shows the effectiveness of our subgraph 

construction algorithm, when partial inlining is 
performed using profile information by train input. To 
show the effectiveness, we define the following ratio: 

- subgraph reduction ratio is defined as average of 
the subgraph size to entire function size ratio. 

- effective inline ratio is a the probability of inlined 
function does not call outlined function, and 
defined as below. 

 effective inline ratio := 1 –  outlined function call count/inlined function call count 
 
Subgraph reduction ratio means how small the 

subgraph is constructed compared to the original 
function. If this value is low enough, then we can say 
that our algorithm successfully reduces a function for 
inlining. In [5], the average subgraph reduction ratio is 
reported as around 15%. So, the average number 
slightly around 50% is very promising result.  

Effective inline ratio means that for each inlined 
function, what portion of call overhead is really 
reduced by partial inling. In most benchmarks, this 
ratio is over 80%. Around 80% of effective inline ratio 
is relatively high compared to its low counterpart, 
subgraph reduction ratio. 

From the result, we can say that on average, our 
partial inliner eliminates over 80% call overhead by 
inlining only around 50% code of original function. So, 
the gap between these two ratios can be seen as 
indicating the effectiveness of our subgraph 
construction algorithm. 
 
6. Related Work 
 

The most relevant work is done by R. Muth and S. 
Debray [4]. As in our approach, they defined subgraph 
 

 
Figure 10. Effectiveness of subgraph construction 

algorithm 
 
(which is called critical subgraph) for inlining purpose 
and the remaining basic blocks are extracted. Also, 
they do not allow control join from the outlined 
function to critical subgraph. However, they generate 
single outlined function for all transition edges from 
the subgraph, which seems like to increase of calling 
outlined function. Also, their purpose is not to enable 
aggressive inlining of large functions, but to replace 
full inlining with partial inlining. Thus, they calculate 
critical graph to cover large portion (usually over 90%) 
of dynamic instruction count from the hottest blocks as 
seed. As a result, their critical subgraph is fairly large 
compared to ours and usually contains loop. According 
to their result, although it is successful to reduce code 
growth, the performance is degraded compared to full 
inlining counterpart. It also looks like their 
implementation is not fully integrated with the existing 
compiler environment. 

Another similar work is done by P. Zhao and JN. 
Amaral [5]. They used partial inlining not to replace 
conventional inlining, but to increase inlining 
opportunity of large function. Like us, all the existing 
compiler optimization passes can be applied after 
partial inlining is performed, although in our case, we 
can achieve this due to LLVA representation which 
makes it possible to perform any compiler optimization 
even after link-time. Similar to us, the extracted cold 
region forms separate function. Unlike our approach, 
however, when extracting cold region, control join to 
leftover function is allowed. Even though they tried to 
minimize the overhead related to control join, their 
approach is moving most of overhead to cold region 
and keeping the overhead within hot region as small as 
possible. Thus, the overhead of calling outlined 
function remains still large. This prevents aggressive 
outlining and results in large leftover function. 
According to their experimental result, the average 
function size is only reduced by 10% ~20% for most 
benchmarks. 

0%

20%

40%

60%

80%

100%
g
zi
p

vp
r

g
cc

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

b
zi
p
2

tw
o
lf

Inlined

NoSubgraph

Cold 0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Subgraph Reduction Ratio Effective Inline Ratio



In dynamic compilation environment, Suganuma et 
al. [7] proposed similar partial inlining mechanism in 
their region-based compilation framework for Java. 
Since it is based on dynamic compiler, the outlined 
function is not generated until it is really called. 
Usually, calling outlined function costs fairly high due 
to on stack replacement (OSR), and thus their region 
selection is very conservative, i.e., they extracts only 
rarely executed blocks.  

There are several works regarding general inlining 
heuristics [6, 8, 9] and inline analysis phase ordering 
[13] which can be used at online and/or offline. In our 
work, we focused on the function splitting, and inlining 
is only controlled by execution frequency of call site. 
So, most of work regarding inlining decision is 
orthogonal to our work and can be used together. 
 
7. Summary 
 

Our function outlining approach aggressively splits a 
function based on the subgraph which is obtained 
starting from a return edge. Return edge is very crucial 
in constructing a subgraph since the whole purpose is 
reducing call overhead. Our algorithm successfully 
constructs a subgraph whose size is the half of the 
original function on average. 

The price of smaller leftover function is frequent 
calls to outlined function. To control the overhead of 
calling outlined function, we provide two solutions. 
First, the overhead of calling outlined function is 
minimized by code duplication. For each transition 
edge from the subgraph to the outlined function, 
separate function is created. Also, if there exists a 
control path from outlined function back to the 
subgraph, required BBs are duplicated not to allow 
control join, which makes the outlined function simple. 
Second, the cost of calling outlined function is 
considered when calculating the cost and benefit of 
partial inlining, which prevents creation of large 
outlined function with high execution frequency. Our 
cost and benefit analysis achieves relatively low call 
ratio to outlined function, which assures that the 
overhead of calling outlined function is well controlled. 

With experimental study, several issues are found. 
First, there are still many opportunities which are 
missed by current approach: indirect call site and a 
function with single return edge. Our work should be 
extended to deal with those cases. Second, the runtime 
performance does not improved much. To make partial 
inlining more attractive, additional optimization passes 
should be studied further to achieve better runtime 
result. 
 

8. References 
 
[1] http://llvm.org 
 
[2] V. Adve, C. Lattner, M. Brukman, A. Shulka, and B. Gaeke, 
“LLVA: A Low-level Virtual Instruction Set Architecture”, In 
Proc. Int’l Symposium on Microarchitecture (MICRO-36), San 
Diego, CA, Dec. 2003. 
 
[3] C. Latter and V. Adve, “LLVM: A Compilation Framework 
for Lifelong Program Analysis & Transformation”, In Proc. Int’l 
Symposium on Code Generation and Optimization (CGO’04), 
Palo Alto, CA, Mar. 2004. 
 
[4] R. Muth and S. Debray, “Partial Inlining”, Technical Report, 
Department of Computer Science, University of Arizona, 1997. 
 
[5] P. Zhao and JN. Amaral, “Ablego: a function outlining and 
partial inlining framework”, Software:Practice and Experience, 
37(5):465-491, Apr. 2007. 
 
[6] P. Zhao and JN. Amaral, “To Inline or Not to Inline? 
Enhanced Inlining Decisions”, In Proc. 4th Workshop on 
Languages and Compilers for Parallel Computing(LCPC), 
College Station, Texas, Oct. 2003. 
 
[7] T. Suganuma, T. Yasue and T. Nakatani, “A Region-Based 
Compilation Technique for a Java Just-In-Time Compiler”, In 
Proc. Int’l Conference on Programming Language Design and 
Implementation(PLDI), San Diego, CA, Jun. 2003 
 
[8] J. Cavazos and M.F.P. O’Boyle, “Automatic Tuning of 
Inlining Heuristics”, In Proc. Supercomputing 2005 Conference, 
Nov. 2005 
 
[9] X. Zhou, L. Yan, and J. Lilius, “Function Inlining in 
Embedded Systems with Code Size Limitation”, In Proc. Int’l 
Conference on Embedded Software and Systems(ICESS), 2007 
 
[10] http://www.spec.org 
 
[11] K. Pettis and RC. Hansen, “Profile Guided Code 
Positioning”, In Proc. Int’l Conference on Programming 
Language Design and Implementation(PLDI), New York, 1990. 
 
[12] A. Ayers, R. Schooler and R. Gottlieb, “Aggressive 
Inlining”, In Proc. Int’l Conference on Programming Language 
Design and Implementation(PLDI), May, 1997. 
 
[13] D.R. Chakrabarati and S.-M. Liu, “Inline Analysis: Beyond 
Selection Heuristics”, In Proc. Int’l Symposium on Code 
Generation and Optimization (CGO’04), 2006. 
 
[14] D.R. Chakrabarati, L.A. Lozano, X.D. Li, R. Hundt and S.-
M. Liu, “Scalable high performance cross-module inlining”,  In 
Proc. Int’l Conference on Parallel Architecture and Compilation 
Techniques (PACT), 2004. 
 
[15] D.F. Bacon and P.F. Sweeny, “Fast static analysis of C++ 
virtual function calls”, In Proc. ACM SIGPLAN Conference on 
Object-oriented programming, systems, languages, and 
applications (OOPSLA), 1996. 

 


