
MATLAB Parallelization through Scalarization

Chun-Yu Shei ∗ Adarsh Yoga Madhav Ramesh Arun Chauhan
School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA

{cshei,ayoga,mramesh,achauhan}@indiana.edu

Abstract
While the popularity of using high-level programming languages
such as MATLAB for scientific and engineering applications con-
tinues to grow, its poor performance compared to traditional lan-
guages such as Fortran or C continues to impede its deployment
in full-scale simulations and data analysis. Additionally, its poor
memory performance limits its performance. To ameliorate perfor-
mance, we have been developing a MATLAB and Octave compiler
that improves performance of MATLAB code by performing type
inference and using the resulting type information to remove com-
mon bottlenecks. We observe that unlike past results, scalarizing
array statements, instead of vectorizing scalar statements, is more
fruitful when compiling MATLAB to C or C++. Two important sit-
uations where such scalarization helps is in expressions containing
array subscripts and sequences of related array statements. In both
cases, it is possible to generate fused loops and replace array tem-
poraries by scalars, thus reducing the memory bandwidth pressure.
Additional array temporaries are obviated in the case of array sub-
scripts. Further, starting with vectorized statements guarantees that
the resulting loops can be parallelized, creating opportunities for
a mix of thread-level and instruction-level parallelism as well as
GPU execution. We have implemented this strategy in a MATLAB
compiler that compiles portions of MATLAB to C++ or CUDA C.
Evaluation results on a set of benchmarks selected from diverse
domains shows speed improvements ranging from 1.5x to 16x on
eight-core Intel Core 2 Duo machine.

Categories and Subject Descriptors D [3]: 4—compilers

General Terms vectorization, loop-fusion, scalarization

Keywords MATLAB, parallelization, SSE, GPU

1. Introduction
Programmers’ productivity in high performance computing (HPC)
has been widely accepted as an important issue that needs address-
ing. One possible way to approach this problem is to enable end
users to program in high-level languages with acceptable limits on
performance penalty. MATLAB has the potential to serve this pur-
pose. It owes its continued popularity not only to its user-friendly

∗Contact author.

[Copyright notice will appear here once ’preprint’ option is removed.]

interactive development environment, but also to its relatively high-
level, scripting, language that lets mathematical operations be ex-
pressed with natural ease. Unfortunately, MATLAB also continues
to suffer from performance problems, especially, when compared
to more traditional languages popular among HPC users such as, C
and Fortran. This often forces MATLAB users to either scale back
their applications or seek expensive redevelopment solutions such
as rewriting their code in C or Fortran.

To address MATLAB’s performance problem we have been de-
veloping a compiler for MATLAB that identifies critical portions of
code and translates those into C++ or CUDA C. Unlike past ef-
forts [3, 8, 19, 20] we do not attempt to compile entire functions.
Instead, we leverage the extensive and highly tuned MATLAB li-
braries, which are often multi-threaded, and restrict our translation
to those pieces of code that are likely to incur high overheads in
MATLAB. The most obvious choice for translation to a lower-level
language are scalar loops in MATLAB. However, such loops are rare
in well-written MATLAB programs. Far more common are outer
time-loops that contain array statements. Moreover, scalar loops in
MATLAB often do not contain loop-carried dependencies and can
be vectorized [9, 21, 25]. Instead, we focus on array statements
that are found in abundance in typical MATLAB programs, since the
language syntax encourages users to write array statements. These
could even come from loops vectorized by a prior compiler pass.

We have identified two types of frequently occurring code seg-
ments in MATLAB programs that greatly benefit from compilation
to C++ or CUDA C: array expressions involving non-scalar sub-
scripts, and sequences of related array statements.

We have found that for any greater-than-linear time operation
such as matrix multiply, it is worth performing a copy of non-
contiguous array section(s) being operated on before performing
the actual operation in order to maximize spatial locality, even
though it increases memory traffic. This is in contrast to earlier
findings in APL [1], which found the “drag-along and beating” ap-
proach beneficial in all cases. However, for linear time operations,
by avoiding the creation of such temporary array sections, we can
reduce the amount of memory traffic and dramatically increase per-
formance. Furthermore, array subscripting can be parallelized to
achieve even greater speedups in many cases.

While earlier studies have almost universally advised vectoriza-
tion in order to amortize the cost of type disambiuation and dy-
namic dispatch [9, 20, 25], we have found that when compiling
to C++, it is beneficial to scalarize array statements into C++ loops
with the goal of parallelizing them. It is still desirable for input pro-
grams to be in vector form, however, since starting from vectorized
statements guarantees that the resulting loops will be parallelizable.
We study the performance impact of parallelizing such scalarized
loops using multi-level parallelism on CPUs (thread-level paral-
lelism using OpenMP, and instruction-level parallelism using Intel
SSE2 extensions) and offloading the parallel loops on GPUs.

We have implemented a compiler that uses type inference to
translate portions of a MATLAB function into C++ or CUDA C. The

MATLAB Parallelization through Scalarization 1 2011/2/3

mailto:cshei@indiana.edu
mailto:ayoga@indiana.edu
mailto:mramesh@indiana.edu
mailto:achauhan@indiana.edu

compiler uses a modified version of Allen and Kennedy’s typed fu-
sion algorithm [2] to cluster compatible vector statements together
that are subsequently scalarized into fused parallel loops. Our algo-
rithm first clusters compatible vector statements and then generates
fused scalarized loops directly, greatly simplifying the fusion algo-
rithm. The clustering step can also be followed by generation of
CUDA C code, instead of scalarized C++ code. We replace tem-
porary arrays by privatizable scalars on the fused loops, whenever
possible, and perform a post-processing step to minimize the num-
ber of temporaries, thus reducing register pressure, by coalescing
variables with non-overlapping live ranges.

We evaluated our approach on a set of benchmarks selected
from a diverse set of MATLAB applications. We achieved appli-
cation speedups ranging from a factor of 1.5 to almost 17 on an
eight-core Intel Core 2 Duo machine, compared to MATLAB run-
ning with eight threads.

The main contributions of this paper include:
1. Identification of array statements involving element-wise oper-

ations or statements with array subscripts (i.e., arrays used as
subscripts) as major potential sources of performance improve-
ment in MATLAB programs, by translating those into a lower-
level compiled language, such as C++ or CUDA C.

2. A practical algorithm that simplifies Allen and Kennedy’s typed
loop-fusion by working with array statements, instead of loops,
and directly generates fused parallel loops with arrays replaced
by privatizable scalars, whenever possible.

3. Implementation and evaluation of the algorithm on a set of
MATLAB benchmarks on a multi-core machine and a GPGPU
platform.

2. Background
MATLAB is a dynamically typed high-level language targeted to-
wards numerical computation, with an emphasis on ease of use.
MATLAB’s control-flow operators consist of the if/else condi-
tional, for/while loops, and switch/case statements that are
commonly seen in procedural languages. It supports heavily over-
loaded operators, which greatly simplify many operations for the
user. For example, to solve the linear system Ax = B in a low-
level language such as C, a user would be required to either find
an appropriate library to call and link their program with, or write a
significant amount of code themselves. In MATLAB, the user simply
needs to write x = A \ B, with the matrix A and vector B defined,
and the overloaded \ operator checks the types of A and B and per-
forms matrix left-division automatically.

Another feature that simplifies programming in MATLAB is
support for array statements. Sub-sections of arrays can be taken
easily by simply subscripting them directly (e.g. v(1:4), to select
the first four elements), and it is even possible to, for example,
select every other array element with ease. Note that MATLAB
uses 1-based array indexing. If v is an array, then v(1:2:end)
is a vector containing every other element of v. Due to heavy
operator overloading, operations can be performed on arrays and
array sections just as easily as on scalar values.

Through the use of highly optimized libraries such as BLAS [6],
MATLAB achieves very good performance on common operations
such as dense matrix multiply. Additionally, a large collection
of domain-specific libraries (toolboxes) are available, and data-
parallelism and coarse-grained parallelism are supported though
parallelized libraries, parfor loops, and an MPI interface.

However, despite the existence of a proprietary Just-in-Time
(JIT) compiler, code that contains a significant amount of control-
flow and scalar operations does not perform well, compared to
equivalent C implementations. This is because the dynamic type
disambiguation and dispatch overhead overwhelms the actual
amount of computation when the operations largely involve scalars

or very small arrays. This is especially true of loops with predomi-
nantly scalar computations in their bodies.

A second major source of inefficiency arises when subscript ex-
pressions contain references to arrays. Array subscripts are not only
allowed, but are in fact common in MATLAB since they offer simple
idioms to slice, reshape, and permute multi-dimensional arrays. For
instance the expression A(b) refers to reordered elements of A if b
is a permutation of positive integers in the index range of A. On the
other hand, if b is a “logical” array then the expression denotes a
selection of those elements of A for which b is true. Unfortunately,
these are also idioms that the interpreter cannot efficiently handle.
The interpreter seems1 to create a new temporary array whenever
such an expression is encountered. For operations that only scan an
array section once (or a small number of times) creating such inter-
mediate copies can lead to large unnecessary overheads. Addition-
ally, while the interpreter leverages data-parallel implementations
of vector operations such as sin and power, it still does not avoid
the creation of temporary arrays when their arguments contain sub-
scripts.

Section 4 describes our approach to address these issues, which
is the main contribution of this paper. However, we start with
an overview of our compiler and a discussion of some high-level
design and implementation issues in the next section.

3. Compiler Architecture
Figure 1 shows an outline of our MATLAB compiler. The compiler
is designed to perform source-to-source translation as well as trans-
lation to C++ or CUDA C. Note that we have omitted several details
in the figure for the sake of clarity, which we describe next.

The compiler leverages the Octave front-end. Octave is a GNU-
licensed open-source project that is designed to be compatible
with MATLAB at the language-level [13]. This gives us a robust
mechanism to parse MATLAB as well as Octave source. Our com-
piler is implemented in Ruby and makes use of our homegrown
Ruby-embedded domain-specific language, called RubyWrite, for
rewriting the abstract syntax trees (ASTs). A filter translates the
AST coming out of the Octave parser into the RubyWrite format.

Before performing any analysis on the AST, all expressions are
first completely flattened. For example, an expression a+b+c will
get split into two by introducing a temporary variable t, as t=a+b;
t+c. This mimics what the interpreter is likely to do and also ex-
poses all the hidden temporary variables that must be created when
the program is interpreted. More importantly, it greatly simplifies
the process of type inference by creating explicit variable names,
and accompanying types, for all the sub-expressions. Further, the
process of expression flattening helps provide a more accurate es-
timate of a program’s memory footprint by exposing the hidden
temporary arrays.

Our type inference strategy works in two steps. First, type vari-
ables are introduced for each program variable and MATLAB code
is inserted for computing the type values. For example a statement
x=1; will cause the code iType x=’i’; to be inserted before the
statement, where iType x refers to the “intrinsic” (or base) type
of the variable x, which in this case is integer (’i’) since x gets
its value directly from a constant that is an integer. Similarly, for a
statement x=a+b; the intrinsic type of x is computed by insert-
ing the code iType x = IXF sum(iType a,iType b);, where
IXF sum is the type transfer function for intrinsic types for the sum
(+) operator. The second step is to do an aggressive partial evalu-
ation of the program. For this purpose the compiler utilizes a sep-
arately running MATLAB (or Octave) interpreter. A vast majority
of type values get completely statically evaluated through this pro-

1 Since MATLAB implementation is proprietary, this is our best guess based
on indirect evidence such as execution time.

MATLAB Parallelization through Scalarization 2 2011/2/3

Front end Prelim Optimizations

Advanced optimizationsBack end

I
n
t
e
r
p
r
e
t
e
r

M
A
T
L
A
B

Parsing using
Octave

parsing library

Octave parse
tree to

RubyWrite
conversion

MATLAB /
Octave
code

Type
inference

Data flow
analysis and
optimization

Optimized
code

Code
generation

Library
function
selection

Code
sequence

optimization

Type-based
specialization

Figure 1. The overall architecture of the MATLAB compiler.

cess. Code for evaluating the rest of the type values is left behind to
be evaluated at run-time that can be used to perform run-time (dy-
namic) optimization. A subsequent dead-code elimination pass gets
rid of any type values that do not get used for run-time optimiza-
tion. More details on our type inference approach are available [22].
Note that a similar method can be used to propagate any properties
about variables that we care about, not just intrinsic types.

Before partial evaluation, the compiler converts the code into
static single assignment (SSA) form [11]. The conversion from
SSA follows standard textbook algorithms working on the control
flow graph [10]. For converting out of SSA the compiler uses a re-
cent algorithm that is more efficient and introduces fewer redundant
copies than standard out-of-SSA algorithms [7].

The code generated by the compiler is a mix of MATLAB and
C++ or CUDA C. Certain portions of the original MATLAB code
are implemented as mex files, which are MATLAB’s dynamically
loadable compiled modules. We chose to generate C++ because
that lets us use the open source C++ Octave library, if needed,
and also keeps the option open to leverage modern generic libraries
such as the Matrix Template Library [23].

4. Approach
4.1 Problem

m = f(1).*(n(c,c,c))
+ f(2).*(n(c,c,u)+n(c,c,d)

+n(c,u,c)+n(c,d,c)
+n(u,c,c)+n(d,c,c))

+ f(3).*(n(c,u,u)+n(c,u,d)
+n(c,d,u)+n(c,d,d)
+n(u,c,u)+n(u,c,d)
+n(d,c,u)+n(d,c,d)
+n(u,u,c)+n(u,d,c)
+n(d,u,c)+n(d,d,c))

+ f(4).*(n(u,u,u)+n(u,u,d)
+n(u,d,u)+n(u,d,d)
+n(d,u,u)+n(d,u,d)
+n(d,d,u)+n(d,d,d));

Figure 2. Code snippet from MAT-
LAB version of NASMG.

In order to understand
the performance bot-
tlenecks in MATLAB
programs, we profiled
a set of MATLAB ap-
plications and quickly
discovered that a large
number of applica-
tions spent substan-
tial amounts of time—
in some cases almost
all their time—in what
appeared to be triv-
ial operations. Invari-
ably, these operations
involved subscripting
arrays with other arrays
or range expressions. A
MATLAB range expres-

sion is of the form a:s:b that represents integers a through b in
increments of s. Range expressions can be used to conveniently
carve out rectangular array sections that need not be contiguous.
Indirection arrays can be used to permute multi-dimensional ar-

rays. Both of these are MATLAB idioms that occur frequently in
applications.

Consider the code snippet in Figure 2 from a MATLAB trans-
lation of the sequential version of the well known NASMG bench-
mark [4]. In this code n is a three dimensional cubic array of size
(say) N, and c, d, and u are permutations of the range 1:N. f is a
short array of four scalar values. The operation .* is an element-
wise product, which translates to scaling in the above case since
MATLAB does an implicit scalar expansion when it expects a vector
where a scalar is given. The above code performs a simple compu-
tation, but creates 27 array temporaries that are simply permuted
copies of n, and is the biggest bottleneck in NASMG. Translating just
the above piece of code into C results in about 2x speed improve-
ment on a Core 2 Duo processor. The speedup increases to 7x if the
implicit loops that get generated around each individual operations
are fused. Such loop fusion also allows the resulting loop nest to
be parallelized, since the loop nest is guaranteed to not have any
loop-carried dependencies.

Inner loops that perform mostly scalar operations are another
common cause of performance problems in MATLAB programs.
Many such loops are vectorizable, and thus can be handled by
the compiler in their vectorized form. We assume that an earlier
pass has already vectorized such loops. It is useful to work with
array statements resulting from vectorizable loops, instead of the
loops in their original form, since that allows array statements to be
clustered with other array statements and simplifies the generation
of fused parallel loops, as explained later.

4.2 Scalarization
Scalarization is the process of converting a vector (array) state-
ment into a sequential loop. This is typically used to execute array
statements on single cores. However, such scalarized loops are also
good candidates for loop-level parallelism.

While earlier studies have almost universally advised vectoriza-
tion in MATLAB [9, 21, 25], our key observation is that in many
cases, the reverse is beneficial when compiling MATLAB to C++.
At the same time, by only compiling those sections of code on
which MATLAB performs poorly, we continue to leverage MAT-
LAB’s highly-optimized libraries for operations that it does handle
well, such as matrix multiplication and other specialized kernels,
such as FFT.

Figure 3 shows the outline of the algorithm used in the compiler
to identify scalarizable clusters of statements and directly gener-
ate fused parallel loops around them. The algorithm performs in-
tegrated scalarization, fusion, scalar replacement, and scalar pri-
vatization. It operates on one basic block of the code at a time.
We assume that prior passes have already performed loop-invariant

MATLAB Parallelization through Scalarization 3 2011/2/3

1 Algorithm: SCALARIZE, FUSE, AND PARALLELIZE

2 Input: function F in SSA form; dependence graph of F
3 Output: modified F; helper functions

4 foreach basic block B in F do
5 W ← statements involving element-wise array operations in B
6 foreach statement w ∈ W do
7 Tw ← array size involved in w (call this “type” of w)

8 foreach t = “type” of statements in B, in decreasing order of types do
9 D← modified dependence graph returned by Allen and Kennedy’s typed-fusion algorithm on B with type t

10 B′ = empty block
11 foreach d ∈ D in topological order do
12 if d is a simple node then
13 add d to B′

14 else
15 let s be the sequence of array statements corresponding to the compound node d
16 let V be the variables defined within s and not used after s (local variables)
17 let f be a new function name
18 generate function f with body consisting of scalarized fused parallel loop surrounding the statements in s
19 set all the upwardly exposed variable references (use before definition) not in V as input args to f
20 set all the variables defined in s that are not in V as output args of f
21 replace all arrays in V by scalars and mark them privatizable (scalar replacement)
22 add call to generated function f to B′

23 B = B′

Figure 3. Scalarization and generation of fused parallel loops with scalar replacement.

code motion so that redundant computation has been removed from
loop bodies, and loop vectorization so that any parallelizable code
is available as array statements. Both of these are standard com-
piler techniques [2]. Allen and Kennedy’s typed loop fusion algo-
rithm is used to construct maximal sequences of array statements.
In our case the “loops” really are individual array statements. As
a result, the pre-analysis that the algorithm requires to characterize
each loop is considerably simplified. The “type” of an array state-
ment is simply the size of the array(s) involved in that statement.
Since we operate on statements that perform element-wise opera-
tion, all arrays involved in such a statement must have matching
sizes.

The problem of determining an appropriate order in which to
process the “types” in typed loop-fusion is NP-complete [2]. We
use the heuristic of processing the types in the decreasing order
of their values, i.e., array sizes. The rationale behind the heuristic
is that preferentially generating fused loops around larger array
sizes is likely to lead to bigger savings when temporary arrays are
replaced by scalars in those loops.

Figure 4 shows abbreviated C++ code emitted by our compiler
for the snippet of MATLAB code shown earlier in Figure 2

4.3 Loop-level Parallelism
Loops resulting from the algorithm are amenable to parallelization.
Since we start with vector operations, the resulting loop is inher-
ently parallel. One exception is the presence of subscripted array
references that require copies to be inserted in scalarized loops, or
other special measures [26]. Since we handle subscripts by flatten-
ing them using temporaries, this does not pose any special problem.
Subsequent scalar replacement is able to remove such temporaries
for array subscripts. In principle, such loops are not parallel since
they cause a loop-carried dependence. For instance, consider the
statement a(2:n) = a(1:n-1), which gets translated to temp =
a(1:n-1); a(2:n) = temp;. A fused loop around these state-
ments would have a loop-carried dependence. However, when these

1 f o r (i n t ParaM tmp2 = 0 ; ParaM tmp2 < s i z e [2] ;
ParaM tmp2 ++) {

f o r (i n t ParaM tmp3 = 0 ; ParaM tmp3 < s i z e [1] ;
ParaM tmp3 ++) {

3 f o r (i n t ParaM tmp4 = 0 ; ParaM tmp4 < s i z e [0] ;
ParaM tmp4 ++) {

double PARAM tmp7$1 = n $ 0 v a l [i n t (c $ 1 v a l [
ParaM tmp4]−1)+ i n t (c $ 1 v a l [ParaM tmp3
]−1)∗n$0 dims [0] + i n t (c $ 1 v a l [ParaM tmp2
]−1)∗n$0 dims [0]∗ n$0 dims [1]] ;

5 double PARAM tmp8$1 = PARAM tmp6$1 val ∗
PARAM tmp7$1 ;

double PARAM tmp10$1 = n $ 0 v a l [i n t (c $ 1 v a l [
ParaM tmp4]−1)+ i n t (c $ 1 v a l [ParaM tmp3
]−1)∗n$0 dims [0] + i n t (u $ 1 v a l [ParaM tmp2
]−1)∗n$0 dims [0]∗ n$0 dims [1]] ;

7 . . .
double PARAM tmp62$1 = PARAM tmp60$1 +

PARAM tmp61$1 ;
9 double PARAM tmp63$1 = n $ 0 v a l [i n t (d $ 1 v a l [

ParaM tmp4]−1)+ i n t (d $ 1 v a l [ParaM tmp3
]−1)∗n$0 dims [0] + i n t (d $ 1 v a l [ParaM tmp2
]−1)∗n$0 dims [0]∗ n$0 dims [1]] ;

double PARAM tmp64$1 = PARAM tmp62$1 +
PARAM tmp63$1 ;

11 double PARAM tmp65$1 = PARAM tmp49$1 val ∗
PARAM tmp64$1 ;

m$1 val [ParaM tmp4+ParaM tmp3∗m$1 dims [0] +
ParaM tmp2∗m$1 dims [0]∗m$1 dims [1]] =
PARAM tmp48$1 + PARAM tmp65$1 ;

13 }
}

15 }

Figure 4. Translated code for a portion of NASMG benchmark.

MATLAB Parallelization through Scalarization 4 2011/2/3

statements are abstracted into a mex function after translation into
C++, a is an input argument to that function. Since the mex func-
tions follow copy-on-write semantics for their arguments, the loop-
carried dependence is effectively eliminated, making it safe to par-
allelize the fused loop.

Another possible problem arises when arrays, subscripted with
other arrays, occur on the left hand side of an assignment. For
example, a(b) = a; where a and b are both arrays of same size,
say n. Unless b is a permutation of 1:n the scalarized loop is not
parallel. MATLAB follows the semantics of a sequential loop in
such cases. Thus, the last assignment to an element of a persists.
To preserve the semantics, we do not attempt to parallelize such
statements.

4.4 Instruction-level Parallelism
On modern x86 architecture, the SSE2 extensions allow aggres-
sive Single Instruction Multiple Data (SIMD) parallelism to be ex-
ploited at the instruction level. Most modern compilers, including
recent versions of gcc, are able to leverage these extensions. How-
ever, array references inside the loop body must obey certain con-
straints for this to happen. The C++ code generated by our compiler
attempts to follow those constraints whenever possible. In particu-
lar, it keeps the array subscripts as simple as possible and avoids
indirection, whenever possible. As a result, the C++ code emitted
from our compiler is suitable for compiling using SSE2 extensions
by a backend compiler.

4.5 Fine-grained Parallelism on GPUs
Our compiler can generate CUDA C code from the fused loops
resulting from the algorithm in Figure 3. The compiler has a tun-
able upper limit on the number of threads to spawn on the GPU,
by controlling the number of blocks and the number of threads per
block. This guards against creating too many threads when process-
ing large arrays. The compiler arranges for the input arguments to
be first copied into the shared memory, through a device-to-device
copy, and then performs computations from shared memory. This
was found to be faster than operating directly from global mem-
ory. Allocation of privatizable scalars is controlled by the CUDA
C compiler, but they are highly likely to be allocated in per-thread
registers. Finally, an aggressive post-processing step tries to min-
imize scalar temporaries by merging names with non-overlapping
live ranges in order to reduce the register pressure.

5. Experimental Evaluation
We have implemented our approach in our MATLAB compiler,
which can generate either C++ or CUDA C code. Experiments
were run using MATLAB R2010b on an 8-core Intel Xeon X5365
(3 GHz, 8 GB DDR2 memory, 8 MB L2 cache) running 64-bit Gen-
too Linux 2.6.32, unless indicated otherwise. C code was compiled
with GCC 4.5.1 with optimization flags ‘-O2 -ftree-vectorize’.
Each test was run five times, and the average execution time taken.
For GPU testing, we used the NVIDIA Tesla card C1060 (4 GB
memory), compiled with NVIDIA CUDA C compiler release 3.1,
V0.2.1221.

5.1 Applications
We evaluated our approach on five applications and one kernel writ-
ten in MATLAB, drawn from diverse domains. The applications
studied were nBody3D, NASMG, FDTD, Heated Plate, Forward
and Shallow Water 1D. nBody3D performs a three-dimensional
N-body simulation, NASMG is the multigrid benchmark from the
NAS benchmark suite, FDTD applies the Finite Difference Time
Domain technique on a hexahedral cavity with conducting walls,
Heated Plate implements thermal simulation, Forward is a com-

putationally intensive kernel within the Black Scholes applica-
tion that analyzes stock market data, and Shallow Water 1D is a
solver for shallow water equations in one dimension.

We were able to obtain speedups ranging from about 1.5
(nBody3D one thread) to almost 17 (NASMG eight threads) com-
pared to MATLAB interpreter running in threaded mode, for three
applications as Figure 5 shows2.

In each case, we notice that the performance improvement flat-
tens with increasing number of threads. We believe that this is be-
cause element-wise operations that these loops perform are linear-
time operations, which rapidly saturate the memory bandwidth
once more processing cores are involved. In the case of NASMG, a
significant amount of time goes in computing temporary values due
to its complex subscript expressions, as was shown in Figure 2. As
a result, there may be slightly lower memory pressure, leading to
somewhat better scalability with number of threads. However, the
improvement is marginal beyond four threads.

One of the computation fragments in nBody3D shows 1.5x
speed improvement when SSE is enabled. Figure 6 shows the im-
pact of using SSE2 extensions on the code fragment shown in the
figure. This code fragment is picked as an array statement sequence
to be compiled into a mex function by our compiler However, its
overall impact on the whole application is minimal as the graph
for nBody3D suggests. In the case of NASMG and Heated Plate,
indirect array accesses prevent the backend compiler from using
SSE. Therefore, the graph for those do not include separate plots
with SSE. The graph for NASMG includes plots for two different
benchmark sizes, classes A and B, respectively.

Our evaluation on the remaining three benchmarks demon-
strated that applying our scalarizing method indiscriminately can
lead to performance degradation, instead of improvement. The ta-
ble in Figure 7 shows the typical performance slowdowns with
three of the applications on the CPU and two of the applications
on the GPU. In each case, the data movement costs overwhelm any
gains in speed due to compilation into C/C++ and parallelization.
For the CPU case, the need for data copy arises out of the copy-on-
write semantics of arrary arguments to mex calls. For GPU, the data
needs to be moved back and forth between CPU and GPU memory.
We are currently developing an algorithm that takes the data move-
ment costs into account to filter out the candidate code segments
that would require too much data copying. Our initial experience
shows that each of the cases listed in Figure 7 can be filtered out
using that method, thus avoiding the drastic slowdowns that might
occur with a naı̈ve approach.

5.2 Microbenchmarks for Memory Hierarchy Performance
To isolate the impact of memory hierarchy, we performed some
microbenchmarks on vectors and matrices of various sizes while
specifying different subscript access patterns. Figure 8 summarizes
the results from our experiments. These tests were conducted using
MATLAB version R2010a and gcc version 4.3.4.

The leftmost plot shows the speedups obtained on a single-
dimensional array (vector) for increasing sizes, using eight threads
on an 8-core machine for both C++ and MATLAB runs.

We first selected a contiguous portion of a vector from the be-
ginning, and added it to a similarly selected contiguous portion of
another vector. We then performed a similar test, only selecting
contiguous portions from the ends of the vectors instead of the be-
ginnings. We then tested strided accesses, with step sizes of 2 (se-
lecting every other element) and 8. We selected a step size of 8 to be

2 Note that MATLAB’s mcc compiler does not seem to perform any optimiza-
tions. Instead, it primarily serves as a way to package MATLAB code into
executable binaries that could interface with C code. Therefore, the running
times obtained with mcc are practically identical to those for the MATLAB
interpreter.

MATLAB Parallelization through Scalarization 5 2011/2/3

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

S
p
e
e
d
u
p
 o

v
e
r

M
A

T
L
A

B
 i
n
te

rp
re

te
r

Number of threads

N−Body 3D

With SSE

Without SSE

1 2 3 4 5 6 7 8

2

4

6

8

10

12

14

16

18

20

22

S
p
e
e
d
u
p
 o

v
e
r

M
A

T
L
A

B
 i
n
te

rp
re

te
r

Number of threads

NASMG

Class A

Class B

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

S
p
e
e
d
u
p
 o

v
e
r

M
A

T
L
A

B
 i
n
te

rp
re

te
r

Number of threads

Heated Plate

Figure 5. Speedups of a selection of benchmarks with varying number of threads, using OpenMP.

dr(:, :, 1) = dr(:, :, 1)./r;
dr(:, :, 2) = dr(:, :, 2)./r;
dr(:, :, 3) = dr(:, :, 3)./r;

1 2 3 4 5 6 7 8
0.5

1

1.5

2

S
p
e
e
d
u
p
 o

v
e
r

M
A

T
L
A

B
 i
n
te

rp
re

te
r

Number of threads

Code Snippet from nBody3D

With SSE

Without SSE

Figure 6. Snippet of code from nBody3D illustrating the impact of en-
abling SSE2 instructions.

Application Nav̈e slowdown
One CPU thread GPU

FDTD 3.27
Forward 6.12 36.22
Shallow Water 1D 4.68
nBody3D 2.18

Figure 7. Slowdowns with naı̈ve application of the scalarizing algorithm.

included because it is the first stride size that doesn’t benefit from
spatial locality, as our array element sizes were 8 byte doubles
and our test machine’s cache line size was 64 bytes. Finally, to test
worst case performance, we selected random permutations of the
two input vectors to sum.

The two cases with contiguous subsections of vectors being se-
lected behave nearly identically, despite the fact that we observed
that in MATLAB’s command window, accessing A(1:(end-1))
takes approximately twice as long as accessing A(1:end) and
A(2:end) for large vectors. Since MATLAB’s internal implementa-
tion is proprietary, we do not have an explanation for this seemingly
anomalous behavior.

As we increase the stride size to 2, then 8, we see a decrease
in the amount we are able to outperform MATLAB’s interpreter,
although we are still consistently faster in all cases. The relative

decrease in performance is most likely due to the reduced spatial
locality such strided access patterns incur. Of course, MATLAB it-
self will also experience a similar reduction, but its extra interpre-
tive overheads likely mask the effect, compared to our generated C
code.

Finally, we observe that while we are initially able to outper-
form MATLAB’s interpreter for the random permutation test case,
our performance eventually drops to equal that of MATLAB’s. We
believed this to be a result of TLB misses, since the input vec-
tor sizes approached 400 MB for the largest input sizes we tested,
and randomly accessing elements of such large vectors could con-
ceivably result in many TLB misses. To verify this, we used the
Performance Application Programming Interface (PAPI) to access
the processor’s hardware performance counters and read the actual
number of TLB misses incurred during our test. We found that for
an input vector size of 49 million elements, the contiguous access
case results in approximately 2.5 million TLB misses, while the
random permutation case results in nearly 100 million TLB misses.
Such a 50-fold increase in TLB misses indicates that TLB misses
becomes the dominant bottleneck in the random permutation case
for large vectors, which even our C code could not overcome.

We performed similar microbenchmarks on two-dimensional
arrays (matrices) of various sizes, with similar subscript access pat-
terns, shown in the middle plot in Figure 8. As in the vector case,
subscripting contiguous sections of the input matrices provides the
largest speedup relative to MATLAB. As expected, increasing the
stride size to 2, then 8, shows a similar decrease in performance as
observed in the vector benchmarks. Somewhat surprisingly, how-
ever, are the consistently good results we achieve in the random
permutation case. This is most likely because for matrices, provid-
ing two randomly permuted subscripts such as A(randperm(n),
randperm(n)) (randperm(n) returns a random permutation of
the integers 1:n) has the effect of randomly permuting one dimen-
sion, then the other. As a result, by taking advantage of MATLAB’s
column-major storage format and traversing column-by-column,
the memory access patterns for each column are limited to the in-
put column currently being processed, and the number of cache and
TLB misses is limited.

Finally, we also performed a series of vector microbenchmarks
to analyze the gains from using thread-level parallelism with gen-
erated loops, shown in the rightmost plot in Figure 8. The version
of MATLAB used here did not use multiple threads for vector ad-
ditions and multiplications (the newer version does). These results
indicate that the more CPU intensive an operation is, the greater
the benefit of increasing the number of threads. Vector addition
and multiplication do not show much speedup as the number of
threads increases because they quickly saturate the available mem-
ory bandwidth and become bandwidth limited. In fact, vector ad-
dition shows a slowdown moving from 2 to 4 threads. However,

MATLAB Parallelization through Scalarization 6 2011/2/3

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
7

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
p

e
e

d
u

p
 o

v
e

r
M

A
T

L
A

B
 i
n

te
rp

re
te

r

Number of elements

Vector Microbenchmarks

Contiguous section from beginning

Contiguous section from end

Every other element

Every 8th element

Random permutation

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
7

1

1.5

2

2.5

3

S
p

e
e

d
u

p
 o

v
e

r
M

A
T

L
A

B
 i
n

te
rp

re
te

r

Number of elements

Matrix Microbenchmarks

Contiguous section from beginning

Contiguous section from end

Every other element

Every 8th element

Random permutation

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p
 o

v
e
r

M
A

T
L
A

B
 i
n
te

rp
re

te
r

OMP_NUM_THREADS

OMP Parallel For Microbenchmarks

Addition

Multiplication

Subscripted Addition

Subscripted Multiplication

Subscripted Division

Subscripted Sin

Subscripted Pow

Figure 8. Speedups of array microbenchmarks with varying data access patterns and various operations.

computationally expensive operations such as sin and pow show
a near-linear speedup all the way to 8 threads. It is important to
note that the MATLAB interpreter is in fact still leveraging its op-
timized libraries in the baseline results we compare our approach
to—the speed difference can be attributed to what we believe is
the MATLAB interpreter making a copy of subscripted arrays be-
fore performing the actual computation. This conclusion is derived
from the observation that the CPU utilization graph shows a pe-
riod of single-threaded activity followed by one of multi-threaded
activity, whereas the code generated by our approach immediately
shows multi-threaded behavior.

In summary, our evaluation shows that even with highly op-
timized and threaded libraries, significant performance gains are
possible with MATLAB code with compiler analysis that is aware of
more context than possible with byte-code JIT compilation. In par-
ticular, it is possible to leverage parallelism available on modern
machines at multiple levels, including on GPU accelerators. Vector
statements that abound in programs in an array language, such as
MATLAB, provide a good opportunity for this. Moreover, extend-
ing existing compiler techniques to such array statements results in
a simple and effective compiler algorithm to selectively translate
portions of MATLAB to a lower-level compiled language, such as
C++ or CUDA C. The algorithm not only exposes parallelism at
multiple levels but also reduces the memory footprint of the orig-
inal program, resulting in significant performance improvement of
the overall program. However, the translation also needs to watch
out for the pitfalls that might lead to too much data copying, nulli-
fying any performance gains.

6. Related Work
One of the earliest attempts to optimize array subscripts was by
Abrams in the context of APL, where he used a technique he called
beating and dragging along [1]. The idea was to carry the new
shape of a reshaped array, instead of creating a copy of the array,
and translate any subsequent subscript expressions such that they
would work with the original shape. The techniques presented in
this paper go beyond reshaping and apply to subscripts that may
create any arbitrary section of an array that is allowed by the
language.

Some of the early attempts to translate MATLAB programs to
a lower-level language have reported that translation to C++ is
less effective than translation for Fortran 90 [16]. We still chose
to target C++ since we believe that significant progress has been
made in C++ compilers since the 1990’s and the use of C++ gives
us convenient access to several advanced libraries, including those
written for Octave [13], and other advanced numerical libraries
such as the Matrix Template Library (MTL) [23]. Additionally,
the use of C++ makes it possible to use trampoline functions, as

explained in Section 4, to handle arbitrary subscripts while ensuring
that the common case is optimized.

A key enabling technology in our compiler is automatic type in-
ference. Type inference as a general topic is widely studied in pro-
gramming languages theory, especially in the context of ML [18].
The earliest documented work on type inference in the context of
MATLAB is by de Rose and Padua for their FALCON project [21].
They used a traditional bidirectional data-flow based technique
to infer types. However, their inference was restricted to two-
dimensional matrices and to standard MATLAB procedures. FAL-
CON’s approach cannot handle recursive procedures or even be
applied directly to the newer versions of MATLAB. Subsequently,
the MaJIC Just-In-Time compiler by Almási and Padua built on
FALCON and performed limited type inference [3]. Unfortunately,
due to the non-availability of a working version of FALCON, we
are unable to compare our findings directly with it. Nevertheless,
our approach has drawn several lessons from FALCON, including
the overall formulation of types.

Our type inference algorithm uses staging, which enables stag-
ing of any optimizations we perform, including optimizing sub-
scripts and loops. The notion of optimizing a program in steps, as
more information becomes available, has been used in a version of
ML, called MetaML, where it is called multi-staging [24]. Since
then, “staging” has been applied in several other contexts for grad-
ual optimization of code as more information becomes available.

Type inference has also been used to optimize dynamic dispatch
in the context of object-oriented languages [12, 15].

Belter et al. presented a technique to optimize linear algebra
kernels specified in MATLAB syntax using loop fusion [5]. Our ap-
proach of forward substitution is reminiscent of their technique of
inlining loops and fusing them aggressively. However, it differs in
three important ways. First, we do not explicitly fuse loops, since
forward substitution gives us an equivalent and simpler transforma-
tion, because our operations are vectorized to start with. Second,
we focus only on linear (level-1, in BLAS terminology) operations
since we would like to leverage the effort gone into developing op-
timized libraries for operations with greater computational com-
plexity that are difficult to replicate automatically. Finally, we han-
dle general array subscripts including those that refer to potentially
non-contiguous array sections, which is not a concern in the study
by Belter et al.

In addition to compiling to lower-level languages, source-level
techniques for optimizing MATLAB have also been proposed [9, 14,
17]. However, the performance improvements with purely source-
level approaches are usually somewhat lower than those achievable
through translation to lower-level languages.

MATLAB Parallelization through Scalarization 7 2011/2/3

7. Conclusion and Future Work
In this paper we have motivated the need to identify and optimize
two related and critical types of code sections in MATLAB, array
expressions involving non-scalar subscripts and sequences of re-
lated array statements. By avoiding the creation of many unneces-
sary temporaries introduced by the interpreter, we greatly reduce
memory pressure, which is a huge bottleneck on today’s machines.
We chose to generate C++ loops to leverage several modern nu-
merical libraries that are often written in C++. The choice of C++
also lets us generate simpler generic code for subscripted accesses,
while aggressive inlining by modern C++ compilers eliminates the
overheads in common cases.

We described an algorithm for partitioning and scalarizing array
statements with integrated fusion, scalar replacement, and scalar
privatization to directly generate parallel loops. Our algorithm
leverages automatic type inference that we have implemented in
our MATLAB compiler. We implemented the algorithm in our com-
piler that is capable of generating C++ as well as CUDA C code.
We evaluated our algorithm on a diverse set of benchmarks on
multi-core machine as well as a GPU card.

Future work, in progress, includes developing automatic tech-
niques to avoid pitfalls arising out of too much data copying.

8. Acknowledgements
This material is based upon work supported by the National Science
Foundation under Grant No. CCF-0811703.

References
[1] Philip S. Abrams. An APL Machine. Doctoral dissertation, Stanford

University, Stanford Linear Accelerator Center, Stanford, California,
USA, February 1970.

[2] John R. Allen and Ken Kennedy. Optimizing Compilers for Modern
Architectures: A Dependence-Based Approach. Morgan Kaufmann
Publishers Inc., San Francisco, California, USA, 2001.

[3] George Almási and David Padua. MaJIC: Compiling MATLAB for
Speed and Responsiveness. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implemen-
tation, pages 294–303, June 2002.

[4] David H. Bailey, Eric Barszcz, John T. Barton, David S. Browning,
Russell L. Carter, Leonardo Dagum, Rod A. Fatoohi, Paul O. Fred-
erickson, Thomas A. Lasinski, Rob S. Schreiber, Horst D. Simon,
V. Venkatakrishnan, and Sisira K. Weeratunga. The NAS Parallel
Benchmarks. International Journal of High Performance Computing
Applications, 5(3):63–73, 1991.

[5] Geoffrey Belter, E. R. Jessup, Ian Karlin, and Jeremy G. Siek. Au-
tomating the Generation of Composed Linear Algebra Kernels. In
Proceedings of the Conference on High Performance Computing, Net-
working, Storage and Analysis (SC), 2009.

[6] L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven
Hamarling, Greg Henry, Michael Heroux, Linda Kaufman, Andrew
Lumsdaine, Antoine Petitet, Roldan Pozo, Karin Remington, and
R. Clint Whaley. An Updated Set of Basic Linear Algebra Sub-
programs (BLAS). ACM Transactions on Mathematical Software
(TOMS), 28(2):135–151, June 2002.

[7] Benot Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont
de Dinechin, and Christophe Guillon. Revisiting Out-of-SSA Transla-
tion for Correctness, Code Quality and Efficiency. In Proceedings of
the International Symposium on Code Generation and Optimization,
2009.

[8] Arun Chauhan. Telescoping MATLAB for DSP Applications. Doc-
toral dissertation, Rice University, Department of Computer Science,
Houston, Texas, December 2003.

[9] Arun Chauhan and Ken Kennedy. Reducing and Vectorizing Proce-
dures for Telescoping Languages. International Journal of Parallel
Programming, 30(4):291–315, August 2002.

[10] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan
Kaufmann, December 2003.

[11] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 13(4):451–490, Octo-
ber 1991.

[12] Jeffrey Dean, Craig Chambers, and David Grove. Selective Special-
ization for Object-Oriented Languages. In Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design and
Implementation (PLDI), pages 93–102, 1995.

[13] John W. Eaton. GNU Octave Manual. Network Theory Limited, 2002.
[14] Daniel Elphick, Michael Leuschel, and Simon Cox. Partial Evaluation

of MATLAB. In Proceedings of the 2nd International Conference on
Generative Programming and Component Engineering (GPCE), vol-
ume 2830/2003, pages 344–363. Springer Verlag, 2003. DOI http://
dx.doi.org/10.1007/978-3-540-39815-8_21 not functional.

[15] Urs Hölzle and David Ungar. Reconciling Responsiveness with Per-
formance in Pure Object-Oriented Languages. ACM Transactions
on Programming Languages and Systems (TOPLAS), 18(4):355–400,
July 1996.

[16] Bret Andrew Marsolf. Techniques for the Interactive Development
of Numerical Linear Algebra Libraries for Scientific Computation.
Doctoral dissertation, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 1997.

[17] Vijay Menon and Keshav Pingali. A Case for Source-Level Transfor-
mations in MATLAB. ACM SIGPLAN Notices, 35(1):53–65, January
2000.

[18] François Pottier and Didier Rémy. The essence of ML typing. In Ben-
jamin C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–490. The MIT Press, Cambridge,
Massachusetts, 2005.

[19] Shankar Ramaswamy, Eugene W. Hodges IV, and Prithviraj Banerjee.
Compiling MATLAB Programs to ScaLAPACK: Exploiting Task and
Data Parallelism. In Proceedings of the 10th International Parallel
Processing Symposium (IPPS), pages 613–619, 1996.

[20] Luiz Antônio De Rose. Compiler Techniques for MATLAB Programs.
Doctoral dissertation, University of Illinois at Urbana-Champaign,
Department of Computer Science, Urbana, Illinois, USA, 1996.

[21] Luiz De Rose and David Padua. Techniques for the Translation of
MATLAB Programs into Fortran 90. ACM Transactions on Program-
ming Languages and Systems, 21(2):286–323, March 1999.

[22] Chun-Yu Shei, Arun Chauhan, and Sidney Shaw. Compile-time
Disambiguation of MATLAB Types through Concrete Interpretation
with Automatic Run-time Fallback. In Proceedings of the 16th an-
nual IEEE International Conference on High Performance Computing
(HiPC), 2009.

[23] Jeremy G. Siek and Andrew Lumsdaine. The Matrix Template Li-
brary: Generic Components for High-Performance Scientific Comput-
ing. Computing in Science and Engineering, 1(6):70–78, November
1999.

[24] Walid Taha. Multi-Stage Programming: Its Theory and Applications.
Doctoral dissertation, Oregon Graduate Institute of Science and Tech-
nology, Department of Computer Science and Engineering, Portland,
Oregon, USA, November 1999.

[25] Remko van Beusekom. A Vectorizer for Octave. Masters thesis,
technical report number INF/SRC 04 53, Utrecht University, Center
for Software Technology, Institute of Information and Computing
Sciences, Utrecht, The Netherlands, February 2005.

[26] Yuan Zhao and Ken Kennedy. Scalarization Using Loop Alignment
and Loop Skewing. The Journal of Supercomputing, 31(1):5–46,
January 2005.

MATLAB Parallelization through Scalarization 8 2011/2/3

http://doi.acm.org/10.1145/512529.512564
http://doi.acm.org/10.1145/512529.512564
http://dx.doi.org/10.1177/109434209100500306
http://dx.doi.org/10.1177/109434209100500306
http://doi.acm.org/10.1145/1654059.1654119
http://doi.acm.org/10.1145/1654059.1654119
http://doi.acm.org/10.1145/567806.567807
http://doi.acm.org/10.1145/567806.567807
http://doi.ieeecomputersociety.org/10.1109/CGO.2009.19
http://doi.ieeecomputersociety.org/10.1109/CGO.2009.19
http://hdl.handle.net/1911/18729
http://dx.doi.org/10.1023/A:1019804013080
http://dx.doi.org/10.1023/A:1019804013080
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/207110.207119
http://doi.acm.org/10.1145/207110.207119
http://portal.acm.org/citation.cfm?id=954207
http://portal.acm.org/citation.cfm?id=954207
http://dx.doi.org/10.1007/978-3-540-39815-8_21
http://dx.doi.org/10.1007/978-3-540-39815-8_21
http://doi.acm.org/10.1145/233561.233562
http://doi.acm.org/10.1145/233561.233562
http://doi.acm.org/10.1145/331963.331972
http://doi.acm.org/10.1145/331963.331972
http://doi.ieeecomputersociety.org/10.1109/IPPS.1996.508120
http://doi.ieeecomputersociety.org/10.1109/IPPS.1996.508120
http://doi.acm.org/10.1145/316686.316693
http://doi.acm.org/10.1145/316686.316693
http://dx.doi.org/10.1109/HIPC.2009.5433203
http://dx.doi.org/10.1109/HIPC.2009.5433203
http://dx.doi.org/10.1109/HIPC.2009.5433203
http://doi.ieeecomputersociety.org/10.1109/5992.805137
http://doi.ieeecomputersociety.org/10.1109/5992.805137
http://doi.ieeecomputersociety.org/10.1109/5992.805137
http://people.cs.uu.nl/visser/ftp/Beu05.pdf
http://dx.doi.org/10.1023/B:SUPE.0000049323.47732.02
http://dx.doi.org/10.1023/B:SUPE.0000049323.47732.02

