
JIT Compilation Policy on

Single-Core and Multi-core Machines

Prasad A. Kulkarni and Jay Fuller

Department of Electrical Engineering and Computer Science

University of Kansas, Lawrence, KS

{prasadk, jfuller8}@ku.edu

Abstract

Dynamic or Just-in-Time (JIT) compilation is crucial to

achieve acceptable performance for applications written in

traditionally interpreted languages, such as Java and C#.

Such languages enable the generation of portable applica-

tions that are written and compiled once, and can be ex-

ecuted by a virtual machine on any supported architecture.

However, by virtue of occurring at runtime, dynamic compi-

lation adds to the overall execution time of the application,

and can potentially slow down program execution if per-

formed injudiciously. Selective compilation is a technique

that was developed for single-core architectures to manage

the compilation overhead by dynamically determining and

compiling only the most critical program regions.

Current processors have evolved from single-core ma-

chines to those supporting multiple tightly-integrated cores.

Consequently, research is needed to explore the best JIT

compilation policy on multi-core machines with several

concurrent compiler threads. In this paper, we present

novel experimental configurations to understand the ben-

efits of dynamic compilation, and find the best JIT compila-

tion policies on single and multi-core machines. Our results

validate earlier claims that compiling a small percentage of

methods has an inordinately large impact on performance.

We show that spawning a greater number of simultaneous

compiler threads can achieve better program performance

on single-core machines. Our results also reveal that more

than an increase in compiler aggressiveness, a small in-

crease in the number of compiler threads achieves the best

application performance on multi-core machines.

1. Introduction

Managed languages such as Java [8] and C# [22] sup-

port the ‘compile-once, run-anywhere’ model for code gen-

eration and distribution. This model allows the generation

of programs that can be portably distributed and executed

on any device equipped with the corresponding virtual ma-

chine (VM). The portability constraint limits the format of

the distributed program to a form that is independent of any

specific processor architecture. Since the program binary

format does not match the native architecture, VMs have to

employ either interpretation or dynamic compilation before

executing the program. Additionally, interpreted execution

is inherently slow, which makes dynamic or Just-in-Time

(JIT) compilation essential to achieve efficient runtime per-

formance for such applications.

However, by operating at runtime, JIT compilation con-

tributes to the overall execution time of the application and,

if performed injudiciously, may result in further worsen-

ing the execution or response time of the program. Se-

lective compilation is a technique that was invented by

researchers to address this issue with dynamic compila-

tion [13, 24, 19, 3]. This technique is based on the obser-

vation that most applications spend a large majority of their

execution time in a small portion of the code [15, 5, 3]. Se-

lective compilation uses online profiling to detect this subset

of hot methods to compile at program startup, and thus lim-

its the overhead of JIT compilation while still deriving the

most performance benefit at runtime.

Thus, dynamic JIT compilation attempts to improve pro-

gram efficiency, while minimizing application pause times

(interference). Most of the theory substantiating the best JIT

compilation policies was developed for VMs with a single

compiler thread running on single-processor machines. Dy-

namic compilation policies in such environments are nec-

essarily conservative. However, modern hardware archi-

tectures now integrate multiple cores on a single processor

die. Moreover, hardware researchers and processor manu-

facturers expect to continuously scale the number of cores

available in future processor generations [1]. Thus, modern

architectures allow the possibility of running the compiler

thread on a separate core to minimize interference with the

application thread. At the same time, recent state-of-the-art

virtual machines also provide support for multiple compiler



threads to be active at the same time. Such evolution in the

hardware and VM contexts may demand different compi-

lation strategies to be most effective on both multi-core, as

well as single-core machines.

The objective of this research is to develop, investigate,

and compare new dynamic compilation strategies to find the

most effective policy in the presence of multiple compiler

threads on single-core and multi-core machines. In this pa-

per, along with the experimental results evaluating compet-

ing JIT compilation policies, we also explain the novel con-

figurations we developed to conduct our tests. Moreover,

we not only explore the most effective dynamic compilation

policies for existing machines with a single or small number

of processor cores, but only study how such policies need to

evolve for future machines with increasing number of avail-

able cores. Thus, the major contributions of this research

work are the following:

1. We describe novel experimental configurations to

study the benefits of JIT compilation and determine

the most effective compilation policies on future multi-

core and many-core machines.

2. We illustrate how steady-state program performance

improves with increasing compiler aggressiveness.

3. We present experimental results that show the impact

of multiple compiler threads on single-core machines.

4. We explain how different JIT compilation strategies

interact on multi-core machines, with small and large

number of free available cores.

2. Background and Related Work

Several researchers have explored the effects of conduct-

ing compilation at runtime on overall program performance

and application pause times. The ParcPlace Smalltalk

VM [6] followed by the Self-93 VM [13] pioneered many

of the adaptive optimization techniques employed in cur-

rent virtual machines, including selective compilation with

multiple compiler threads. Most current VMs employ selec-

tive compilation with a staged emulation model [11]. With

this model, each method is initially interpreted or compiled

with a fast non-optimizing compiler at program start to im-

prove application response time. Later, the virtual machine

attempts to determine the subset of hot methods to selec-

tively compile, and then compiles them at higher levels of

optimization to achieve better program performance.

Unfortunately, selecting the hot methods to compile re-

quires future program execution information, which is hard

to accurately predict [23]. In the absence of any better strat-

egy, most existing JIT compilers employ a simple predic-

tion model that estimates that frequently executed current

hot methods will also remain hot in the future [9, 16, 2].

Online profiling is used to detect these current hot methods.

The most popular online profiling approaches are based on

instrumentation counters [11, 13, 16], interrupt-timer-based

sampling [2], or a combination of the two methods [9]. Pro-

filing using counters requires the virtual machine to count

the number of invocations and loop back-edges for each

method. Sampling is used to periodically interrupt the ap-

plication execution and update a counter for the method(s)

on top of the stack. The method/loop is sent for compilation

if the respective method counters exceed a fixed threshold.

Finding the correct threshold value for each compila-

tion stage is crucial to achieve good startup performance

for applications running in a virtual machine. Setting a

higher than ideal compilation threshold may cause the vir-

tual machine to be too conservative in sending methods

for compilation, reducing program performance by deny-

ing hot methods a chance for optimization. In contrast, a

compiler with a very low compilation threshold may com-

pile too many methods, increasing compilation overhead.

High compilation overhead may negatively impact overall

program performance on single-core machines. Therefore,

most performance-aware JIT compilers experiment with

many different threshold values for each compiler stage to

determine the one that achieves best performance over a

large benchmark suite.

The theoretical basis for tuning compiler thresholds is

provided by the ski-renting principle [7, 14], which states

that to minimize the worst-case damage of online compila-

tion, a method should only be compiled after it has been in-

terpreted a sufficient number of times so as to already offset

the compilation overhead [23]. By this principle, a (slower)

compiler with more/better optimization phases will require

a higher compilation threshold to achieve the best overall

program performance in a virtual machine.

Current implementations of selective compilation suffer

from several drawbacks. One major issue is the delay in

making the compilation decisions at program startup. One

component of this delay is caused by the VM waiting for

the method counters to reach the compilation threshold be-

fore deeming the method as hot and queuing it for compi-

lation. Another factor contributing to the compilation delay

occurs as each compilation request waits in the compilation

queue to be serviced by a free compiler thread. This delay in

compiling/optimizing hot methods results in poor applica-

tion startup performance as the program spends more time

executing in unoptimized code [21, 17, 10].

Researchers have suggested strategies to address the

first delay component for online compilation. Krintz and

Calder explored mechanisms that employ offline profiling

and classfile annotation to send hot methods to compile

early [18, 17]. However, such mechanisms require an ad-

ditional profiling pass, and are therefore not generally ap-

plicable. Namjoshi and Kulkarni propose a technique that

2



can dynamically determine loop iteration bounds to predict

future hot methods and send them to compile earlier [23].

Their suggested implementation requires additional com-

putational resources to run their more expensive profiling

stage. Gu and Verbruggee use online phase detection to

more accurately estimate recompilation levels for different

hot methods to save redundant compilation overheads and

produce better code faster [10].

Researchers have also explored techniques to address the

second component of the compilation delay that happens

due to the backup and wait time in the method compila-

tion queue. IBM’s J9 virtual machine uses thread priorities

to increase the priority of the compiler thread on operat-

ing systems, such as AIX and Windows, that provide sup-

port for user-level thread priorities [27]. Another technique

attempts to increase the CPU utilization for the compiler

thread to provide faster service to the queued compilation

requests [21, 12]. However, the proposed thread-priority

based implementations for these approaches can be difficult

to provide in all existing operating systems.

Most importantly, all the studies described above have

mostly been performed on single-core machines. There ex-

ist very few studies that explore JIT compilation issues for

multi-core machines. Krintz et al. investigated the impact

of background compilation in a separate thread to reduce

the overhead of dynamic compilation [20]. However, this

technique used a single compiler thread and also employed

offline profiling to determine and prioritize hot methods to

compile. Kulkarni et al. briefly discussed performing paral-

lel compilation on multiple compiler threads to exploit the

additional processing resources available on multi-core ma-

chines, but did not provide any experimental results [21]. A

few existing virtual machines, such as Sun’s HotSpot server

VM [24] and the Azul VM (derived from HotSpot), sup-

port multiple compiler threads, but have not presented any

discussions on ideal compilation strategies for multi-core

machines. Consequently, research is sorely lacking in un-

derstanding dynamic compilation issues and evaluating po-

tential JIT compilation strategies in the presence of multi-

ple compiler threads on current and future multi-core and

many-core machines. In this paper, we investigate issues

for dynamic compilation on modern machines and compare

potential strategies with existing techniques.

3. Experimental Framework

The research presented in this paper is performed using

the server version of the Sun/Oracle’s HotSpot java virtual

machines (build 1.7.0-ea-b24) [24]. The latest development

code for the HotSpot VM is available through Sun’s Open-

JDK initiative. The HotSpot VM uses interpretation at the

start of program execution. It then employs a counter-based

profiling mechanism, and uses the sum of a method’s invo-

cation and loop back-edge counters to detect and promote

hot methods for compilation. We call the sum of these coun-

ters as the execution count of the method. Methods/loops

are determined to be hot if the corresponding method execu-

tion count exceeds a fixed threshold. The tasks of detecting

hot methods and dispatching them for compilation are per-

formed at every method call (for whole-method compiles)

and loop iteration (for on-stack-replacement compiles). The

HotSpot server VM allows the creation of an arbitrary num-

ber of compiler threads, as specified on the command-line.

The experiments in this paper were conducted using

all the benchmarks from three different benchmark suites,

SPEC jvm98 [26], SPEC jvm2008 (startup) [25] and

DaCapo-9.12-bach [4]. We employ two inputs (10 and 100)

for benchmarks in the SPECjvm98 suite, two inputs (small

and default) for the DaCapo benchmarks, and a single input

(startup) for benchmarks in the SPECjvm2008 suite, result-

ing in 56 benchmark/input pairs. Two benchmarks from the

DaCapo benchmark suite, tradebeans and tradesoap, did

not always run correctly with our version of the HotSpot

VM, so these benchmarks were excluded from our set.

All our experiments were performed on a cluster of 8-

core Intel Xeon 2.833GHz processors. All machines use

Fedora Linux as the operating system. We disable seven of

the eight available cores (including hyperthreading) to run

our single-core experiments. Our multi-core experiments

utilize all available cores. More specific variations made

to the hardware configuration are explained in the respec-

tive sections. Each benchmark is run in isolation to prevent

interference from other user programs. Finally, to account

for inherent timing variations during the benchmark runs,

all the performance results in this paper report the average

over 10 runs for each benchmark-configuration pair.

4. Measuring Benefit of Dynamic Compilation

Dynamic just-in-time compilation and optimization is

known to generate code that results in significantly im-

proved program performance over VM interpretation or ex-

ecution in unoptimized code. The potential of JIT compi-

lation to improve application performance is directly pro-

portional to the fraction of total program methods that are

compiled. Thus, JIT compilation of all program meth-

ods should potentially achieve the most efficient application

performance. However, this efficiency in program perfor-

mance will likely come at a prohibitively high compilation

cost in most cases. At the same time, based on their ex-

ecution frequencies, compilation of different methods will

contribute differently to performance improvement. As ex-

plained earlier, selective compilation uses this principle to

only compile methods that are likely to contribute most

to improving program efficiency. In this section we study

the potential of different selective compilation thresholds in

3



(a) (b)

Figure 1. Understanding the effect of JIT compilation on program performance

improving steady-state program performance. Steady-state

performance is measured after all methods with execution

counts above the selected threshold have finished compila-

tion, thus discounting the compilation overhead. This in-

formation may enable dynamic compilers to make a more

informed decision regarding the fraction of total methods to

compile based on available computational resources.

We constructed a novel experimental setup to collect

these performance measurements. Our experimental con-

figuration conducts an initial offline run to collect the indi-

vidual method execution counts for every benchmark in our

set. The methods in every benchmark are then sorted based

on their execution counts. Each of our three benchmark

suite provides the ability to execute several iterations of

any given benchmark program in a single VM run. We ex-

ploit this ability to run each benchmark over several stages,

with a few benchmark iterations per stage. Each succes-

sive stage in our modified HotSpot VM lowers the compi-

lation threshold and compiles additional methods (over the

previous stage) with progressively lower execution counts.

Thus, the first stage compiles no methods, and all methods

are compiled by the final stage. Each intermediate stage

compiles successively more program methods. We disable

background compilation, allowing the first iteration of every

stage to immediately finish all sent compilations. The final

iteration in each stage provides a measure of the benchmark

performance at the end of that stage.

Figure 1(a) shows the average improvement in program

performance over interpreted execution across all bench-

marks at each configuration stage. The X-axis indicates

the compile threshold used at each configuration stage. At

each stage, methods that have an execution count greater

than the stage compile threshold (during the offline run) are

sent for compilation. Figure 1(b) shows the percentage of

methods compiled at each stage, averaged over all bench-

marks in our set. Thus, we can see that JIT compilation

of all program methods achieves a dramatic performance

improvement over interpretation, achieving program execu-

tion in less than 10% of the interpretation time, on aver-

age. At the same time, it is interesting to see that most of

the performance gain is obtained by compiling a very small

fraction of the total executed methods. This observation is

important because JIT compilation not only consumes com-

putational resources, but also generates native code that in-

creases memory pressure and garbage collection overheads,

and may also increase non-determinism due to the pause

times associated with garbage collections. Thus, these re-

sults show that, even with practically unlimited computa-

tional resources, it might still be beneficial to limit the num-

ber of methods compiled at runtime.

5. JIT compilation on Single-Core Machines

The execution time for managed language applications

on single-core machines is the sum of the run-times of each

individual VM component. The application and compiler

threads are the most prominent VM components that con-

tribute to the overall program execution time. These two

components share a complex relationship, in the sense that

just decreasing the compilation time (by reducing the num-

ber of methods compiled) may not produce a comparable

effect on the overall execution time. Instead, compiling

fewer methods may produce a bigger increase in the ap-

plication thread time due to the resultant program executing

in poorer quality code. Therefore, the compiler thresholds

need to be carefully tuned to achieve the most efficient av-

erage program execution on single-core machines over sev-

eral benchmarks.

5.1. Compilation Threshold with Single
Compiler Thread

VM developers select the compile threshold by experi-

menting with several different threshold values on their set

of benchmark programs to find the one that achieves the best

overall performance. We performed a similar experiment

4



(a) (b)

Figure 2. Effect of different compilation thresholds on average benchmark performance on single-

core processors

to determine the ideal compilation threshold with a single

compiler thread on our set of benchmarks. These results are

presented in Figure 2(a), which plots the ratio of the average

overall program performance at different compile thresh-

olds compared to the average program performance at the

threshold of 10,000. The threshold value of 10,000 is se-

lected as our baseline for comparison because that is the de-

fault compilation threshold used by the HotSpot server VM.

Not surprisingly, we can see this default threshold (10,000)

performs very well on our set of benchmarks, but a slightly

higher compile threshold of 15,000 achieves the best overall

performance for our benchmark set.

Figure 2(b) shows the break-down of the overall program

execution time in terms of the ratios of the application and

compiler thread times at different thresholds to their respec-

tive times at the compile threshold of 10,000, averaged over

all benchmark programs. As expected, the compiler thread

times increase with lower compilation thresholds as more

methods are sent for compilation. However, the behavior

of the application thread times is less intuitive. A compi-

lation policy with high thresholds (25,000) compiles fewer

methods and results in poorer-quality code, causing higher

application thread times. By contrast, policies with lower

thresholds send more methods to compile. However, this

increase also grows the length of the compilation queue and

delays the compilation of the most important methods, re-

sulting in the non-intuitive degradation in application thread

performance observed in Figure 2(b). Due to its superior

performance, we select the compile threshold of 15,000 as

the baseline for our remaining experiments in this paper.

5.2. Effect of Multiple Compiler Threads

Several virtual machines now provide the capability of

spawning multiple compiler threads. However, to the best

of our knowledge, the effect of multiple compiler threads on

overall program performance on a single-core machine has

never been previously discussed. In this section we conduct

such a study and present our observations.

For each compilation threshold, a separate plot in Fig-

ure 3(a) compares the average overall program performance

with multiple compiler threads to the average performance

with a single compiler thread at that same threshold. Intu-

itively, a greater number of compiler threads should be able

to reduce the method compilation queue delay, which is the

time spent between sending a method to compile and gen-

erating optimized code. Indeed, we notice program perfor-

mance improvements for small number of compiler threads

(2–4), but the benefits do not seem to hold with increas-

ing number of such threads (>4). For the larger compile

thresholds (15,000–10,000), the performance degradations

with more compiler threads are very small, and may be due

to added application interference or noise. For the smaller

compile thresholds, we notice an increase in the overall

compiler thread times with more compiler threads. This

increase suggests that several methods that were queued for

compilation, but never got compiled before program termi-

nation with a single compiler thread are now compiled as

we provide more resources to the VM compiler component.

Unfortunately, many of these methods contribute little to

improving application performance. At the same time, the

increased compiler activity increases compilation overhead

and results in lowering overall program performance.

Figure 3(b) compares the average overall program per-

formance in each case to our baseline average performance

with a single compiler thread at a threshold of 15,000.

These results reveal the best compiler policy on single-core

machines with multiple compiler threads. The results indi-

cate that there may be no need to change compiler thresh-

olds with more compiler threads. However, a small increase

in the number of compiler threads generally improves per-

formance by reducing the compilation queue delay.

5



(a) (b)

Figure 3. Effect of multiple compiler threads on single-core program performance

6. JIT Compilation on Multi-Core Machines

Dynamic JIT compilation on single-processor machines

has to be conservative to manage the compilation overhead

at runtime. Multi-core machines provide the opportunity

to spawn multiple compiler threads and move these threads

to different (free) cores so as to not interrupt the applica-

tion threads. As such, it is generally believed that dynamic

compilation on multi-core machines should be made more

aggressive to achieve better application thread and overall

program performance.

In this section we present our results that show the effect

of increased compiler aggressiveness on application perfor-

mance for multi-core machines with a small and large num-

ber of free available cores. Although architects and chip

developers are planning a continuously increasing number

of cores for future chips, processors with a large number of

cores (many-cores) are not easily available just yet. There-

fore, in order to investigate JIT compilation strategies on

such future many-core machines, we have constructed a

unique experimental configuration for our experiments in

this section. Our setup achieves simulation of multi/many-

core VM behavior using a single processor/core. To con-

struct this setup, we first updated our HotSpot VM to re-

port the category of each operating system thread that it

creates (application, compiler, garbage-collector, etc.). We

then modified the benchmark harness of all our bench-

mark suites to not only report the overall program execu-

tion time, but to also provide a break-down of the time

consumed by each VM thread. Finally, we employed the

thread-processor-affinity interface methods provided by the

Linux OS to enable our VM to choose the set of processor

cores that are eligible to run each VM thread.

Our experimental setup to evaluate the behavior of multi-

core application execution on a single-core machine is il-

lustrated in Figure 4. Figure 4(a) shows a snapshot of

one possible VM execution order with multiple compiler

threads, with each thread running on a distinct core of a

A A A A A A A A A

C1 C1 C1 C1 C1

C2

C3

C2 C2

A C1 A C1 C2 C3 A C1 C2 A A A C1 C2 A A C1 A

Core1

Core1

Core2

Core3

Core4

(b) Single−core simulation of multi−core execution

(a) Multi−core execution

Application

Thread

Compiler

Thread
A C

Figure 4. Simulation of multi-core VM execu-

tion on single-core processor

multi-core machine. Our experimental setup employs the

OS thread affinity interface to force all application and com-

piler threads to run on a single core, and relies on the OS

round-robin thread scheduling to achieve a corresponding

thread execution order that is shown in Figure 4(b). Thus,

JIT compilations in both the original multi-core and our

simulated single-core execution orders occur at about the

same time relative to the application thread. Later, we use

our ability to precisely measure individual thread times to

realistically simulate an environment where each thread has

access to its own core. Thus, this framework allows us to

study the behavior of different JIT compilation strategies

with any number of compiler threads running on separate

cores on future many-core hardware.

6.1. Effect of Aggressive Compiler Thresh-
olds with a Single Compiler Thread

One approach of increasing compiler aggressiveness is

to lower the compilation threshold, which is the minimum

6



(a) (b)

Figure 5. Effect of multiple compiler threads on multi-core application performance

execution count needed to send a method to compilation.

Lowering the compilation threshold can benefit program

performance in two ways: (a) by compiling a greater per-

centage of the program code, and (b) by sending methods

to compile early. Both these effects can potentially enable

more efficient program execution by allowing the program

to spend more time running in optimized code. However,

as seen from Figure 2(b) and discussed in Section 5, sim-

ply lowering the compile threshold with a single compiler

thread does not produce better application thread perfor-

mance. Our analysis of this behavior indicates that the ad-

ditional compiles caused by lowering the compile threshold

delays compilation of the more important methods, degrad-

ing application thread (and overall program) performance.

6.2. Effect of More Compiler Threads

On multi-core machines it is more interesting to study

the impact on application performance of multiple compiler

threads running on distinct processor cores. Figures 5(a)

and (b) show the results of our experiments exploring the

effect of multiple compiler threads on application perfor-

mance. For each indicated compile threshold, a plot in Fig-

ure 5(a) shows the ratio of the application thread perfor-

mance with different number of compiler threads to the ap-

plication thread performance with a single compiler thread.

Thus, we can see that increasing the number of compiler

threads improves application performance. Moreover, con-

figurations with more aggressive compilation thresholds de-

rive a greater benefit in application performance from more

compiler threads. However, the relative gain in application

performance does seem to taper off with each additional

compiler thread. Also, higher compilation thresholds need

fewer compiler threads to reach their maximum achievable

application performance.

Figure 5(b) is more important to determine the best JIT

compilation policy to adopt on multi/many-core machines.

Here, we compare all the application thread performances

(with different number of compiler threads) to a single base-

line application thread performance. The selected baseline

is the application thread performance with a single com-

piler thread at the threshold of 15,000. Remember, this is

the compiler thread configuration that achieved the best effi-

ciency on single-core machines (with one compiler thread).

It is very interesting to note that although performance im-

proves with increasing compiler threads, higher compiler

aggressiveness seems to offer little additional benefit over

the baseline compile threshold that is employed on a single-

core machine. Thus, increasing the number of spawned

compiler threads by a small amount is more beneficial to

performance than increasing compiler aggressiveness by

lowering compilation thresholds for modern machines.

7. Future Work

This work presents several interesting avenues for future

research. First, we will conduct similar experiments in other

virtual machines to see if our conclusions from this work

hold across different classes of VMs. Second, the HotSpot

VM only provides one compilation level, which restricted

this study to only explore one direction of increasing com-

piler aggressiveness, that is reducing compilation threshold.

In the future, we will explore the other aspect of increasing

compiler aggressiveness by optimizing at higher compila-

tion levels in a VM that provides more robust support for

tiered compilation, such as JikesRVM or IBM’s J9. Third,

we will study the impact of different compiler aggressive-

ness on memory consumption and garbage collection over-

head on devices with different memory configurations, from

embedded devices to high-performance servers. Finally, our

goal is to develop an adaptive cross-VM compilation policy

that will automatically employ the ideal compilation strat-

egy based on available processor and memory resources.

7



8. Conclusions

In this work we presented several novel experimental

configurations that we constructed to explore the impact of

different dynamic JIT compilation policies with different

compiler aggressiveness and different number of compiler

threads on single-core, existing multi-core, and future

many-core machines. Our results validate and quantify

previous claims that a small fraction of compiled methods

can accomplish most of the program performance gains

at runtime. On single-core machines, our experiments

show that the same compilation threshold achieves the best

overall program performance with a single and multiple

compiler threads. On multi-core machines, we observed

that more than increasing compiler aggressiveness, spawn-

ing multiple compiler threads is the best approach to

derive greater program performance benefits. Thus, as we

enter the new era of multi-core and many-core machines

with increasing number of cores with every processor

generation, we expect this research to assist VM developers

to make more informed compilation policy decisions for

their virtual machines to achieve the best application

performance.

9. Acknowledgments

We thank the anonymous reviewers for their constructive

comments and suggestions. This research was supported in

part by NSF grant CNS-0953268.

References

[1] International technology roadmap for semiconductors. accessed from

http://www.itrs.net/Links/2009ITRS/Home2009.htm, 2008-09.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive op-

timization in the jalapeno jvm. In Proceedings of the 15th ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and appli-

cations, pages 47–65, 2000.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey of adap-

tive optimization in virtual machines. Proceedings of the IEEE, 92(2):449–

466, February 2005.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,

A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss, A. Phansalkar, D. Ste-

fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The dacapo

benchmarks: java benchmarking development and analysis. In Proceedings

of the 21st annual ACM SIGPLAN conference on Object-oriented program-

ming systems, languages, and applications, OOPSLA ’06, pages 169–190,

2006.

[5] D. Bruening and E. Duesterwald. Exploring optimal compilation unit shapes

for an embedded just-in-time compiler. In 3rd ACM Workshop on Feedback-

Directed and Dynamic Optimization, pages 13–20, 2000.

[6] L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-

80 system. In POPL ’84: Proceedings of the 11th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, pages 297–302, New

York, NY, USA, 1984. ACM.

[7] M. X. Goemans. Advanced algorithms. Technical Report MIT/LCS/RSS-27,

1994.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java(TM) Language Speci-

fication (3rd Edition). Prentice Hall, third edition, June 14 2005.

[9] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundaresan. Java

just-in-time compiler and virtual machine improvements for server and mid-

dleware applications. In Proceedings of the conference on Virtual Machine

Research And Technology Symposium, pages 12–12, 2004.

[10] D. Gu and C. Verbrugge. Phase-based adaptive recompilation in a jvm. In

Proceedings of the 6th IEEE/ACM symposium on Code generation and opti-

mization, CGO ’08, pages 24–34, 2008.

[11] G. J. Hansen. Adaptive systems for the dynamic run-time optimization of

programs. PhD thesis, Carnegie-Mellon Univ., Pittsburgh, PA, 1974.

[12] T. Harris. Controlling run-time compilation. In IEEE Workshop on Program-

ming Languages for Real-Time Industrial Applications, pages 75–84, Dec.

1998.

[13] U. Hölzle and D. Ungar. Reconciling responsiveness with performance in

pure object-oriented languages. ACM Transactions on Programming Lan-

guage Systems, 18(4):355–400, 1996.

[14] R. M. Karp. On-line algorithms versus off-line algorithms: How much is

it worth to know the future? In Proceedings of the IFIP World Computer

Congress on Algorithms, Software, Architecture - Information Processing, Vol

1, pages 416–429, 1992.

[15] D. E. Knuth. An empirical study of fortran programs. Software: Practice and

Experience, 1(2):105–133, 1971.

[16] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and

D. Cox. Design of the java hotspotTMclient compiler for java 6. ACM Trans.

Archit. Code Optim., 5(1):1–32, 2008.

[17] C. Krintz. Coupling on-line and off-line profile information to improve pro-

gram performance. In CGO ’03: Proceedings of the international symposium

on Code generation and optimization, pages 69–78, Washington, DC, USA,

2003.

[18] C. Krintz and B. Calder. Using annotations to reduce dynamic optimization

time. In Proceedings of the ACM SIGPLAN 2001 conference on Programming

language design and implementation, pages 156–167, 2001.

[19] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead of

dynamic compilation. Software: Practice and Experience, 31(8):717–738,

December 2000.

[20] C. J. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the overhead

of dynamic compilation. Software Practice and Experience, 31(8):717–738,

2001.

[21] P. Kulkarni, M. Arnold, and M. Hind. Dynamic compilation: the benefits of

early investing. In VEE ’07: Proceedings of the 3rd international conference

on Virtual execution environments, pages 94–104, 2007.

[22] Microsoft. Microsoft C# Language Specifications. Microsoft Press, first edi-

tion, April 25 2001.

[23] M. A. Namjoshi and P. A. Kulkarni. Novel online profiling for virtual ma-

chines. In VEE ’10: Proceedings of the 6th ACM SIGPLAN/SIGOPS interna-

tional conference on Virtual execution environments, pages 133–144, 2010.

[24] M. Paleczny, C. Vick, and C. Click. The java hotspottm server compiler.

In JVM’01: Proceedings of the 2001 Symposium on JavaTM Virtual Machine

Research and Technology Symposium, pages 1–12, Berkeley, CA, USA, 2001.

USENIX Association.

[25] SPEC2008. Specjvm2008 benchmarks. http://www.spec.org/jvm2008/.

[26] SPEC98. Specjvm98 benchmarks. http://www.spec.org/jvm98/.

[27] V. Sundaresan, D. Maier, P. Ramarao, and M. Stoodley. Experiences with

multi-threading and dynamic class loading in a java just-in-time compiler. In

Proceedings of the International Symposium on Code Generation and Opti-

mization, CGO ’06, pages 87–97, 2006.

8


