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Abstract

Accesses to shared data structures in multithreaded pro-
grams must be correctly synchronized to ensure data consis-
tency and integrity. However, this synchronization between
threads is a common source of performance problems in
multithreaded applications. Lock-free data structures are
an alternative to traditional synchronization methods that
have potential for not only better performance and scala-
bility, but better energy efficiency as well.

This paper presents a study of the relationship between
the performance and energy consumption of various lock-
free data structures based on the compare-and-swap prim-
itive. We give a head-to-head comparison of lock-free and
locking implementations of three data structures executing
set of highly contentious workloads. We compare the execu-
tion time, peak power and total energy consumption of each
and explain these results with the help of hardware perfor-
mance counters. Our results show that under these work-
loads, the lock-free variants often perform better and use
less energy then their traditional locking implementations.

1. Introduction
Data structures that are accessed by multiple threads of

execution must be correctly synchronized to ensure data
consistency and integrity. The most common technique for
ensuring synchronized access relies on the principle of mu-
tual exclusion among threads, protecting the data structure
with a lock. Threads wishing to access shared data must
first acquire the lock before access is allowed, and release
it when they are finished; only a single thread can hold the
lock at any time, and threads attempting to acquire the lock
must wait until the lock is free. This technique serializes all
access to shared data and thus tends to limit scalability with
highly contentious workloads involving multiple threads of
execution.

Alternatives to coarse-grained locking include more
complex locking protocols (e.g., a per-node lock instead of

a single lock for an entire list); reader/writer locks, which
give multiple threads read-only access to the data struc-
ture concurrently, but only allow a single thread to update
the data structure at a time; and lock-free or wait-free data
structures with more subtle implementations that do not rely
on mutual exclusion for correctness.

This paper quantifies the differences in power, perfor-
mance, and energy efficiency of lock-free and locking data
structures. We examine a simple FIFO, a double-ended
queue, and a sorted linked list. We chose to examine these
three data structures due to both their prevalence in applica-
tions and their well-established lock-free implementations.
We show that the relative performance and energy efficiency
of the lock-free implementations are highly correlated, with
better performance typically leading to lower total energy
costs. However, we find no correlation between perfor-
mance and power and thus lock-free data structures should
not be seen as a silver bullet: programmers deciding be-
tween lock-free and locking implementations must evaluate
the various trade-offs presented below to determine which
implementation strategy is best for their situation.

1.1. Motivation

Prior work in lock-free and wait-free algorithms has fo-
cused mainly on the robustness properties and performance
benefits, but few have considered the impact these lock-free
structures have on the system’s energy or power needs.

The interaction between performance, power, and energy
is often a delicate balancing act. On one hand, faster al-
gorithms tend to use more resources and thus typically in-
crease the system’s power requirements. However, how the
new algorithm’s energy requirements changes depends on
the relative changes in performance and power and can be
difficult to predict. Understanding this subtle interaction as
it relates to the lock-free data structures examined in this pa-
per can help guide software and library developers in their
decision of which implementation to pursue, based on their
energy and performance needs.



1.2. Contributions
This paper is the first, to the best of our knowledge,

to characterize the energy and power utilization of lock-
free data structures based on CAS primitives. Our results,
which were obtained from measurements on actual hard-
ware, show that a strong correlation exists between the per-
formance of a data structure and its total energy consump-
tion, and that under workloads with high contention, cer-
tain lock-free data structures offer significantly better per-
formance at a lower energy cost. Further, our power mea-
surements show that neither peak nor average power is cor-
related with the performance of the data structures. Finally,
we present a characterization of execution including cache
and branch prediction behavior as well as percentage of ex-
ecution time spent executing system code.

1.3. Overview
The rest of this paper is organized as follows. Section 2

discusses the general background of lock-free data struc-
tures and some of the problems that arise during implemen-
tation. Section 3 summarizes our implementation of three
different lock-free data structures. Section 4 presents the re-
sults of our energy and performance experiments and Sec-
tion 5 discusses these results in greater detail. Section 6
discusses related work and Section 7 concludes.

2. Background
A relatively simple way to adapt a data structure for a

multithreaded environment is to protect it with a mutually-
exclusive lock: when any thread wishes to access the data
structure, it must first acquire the lock, and after it finishes
its task, it releases the lock, allowing other threads in turn to
perform their own work. Any thread attempting to acquire
the lock while it is currently held by another thread must
wait until the lock is released before it can proceed. This
policy ensures that only a single thread is modifying the
data structure at a time and that no thread observes a partial
update or some other form of inconsistent state.

Although simple, mutual exclusion can limit the scala-
bility of a data structure. An alternative design is to use
lock-free or wait-free algorithms that limit their use of syn-
chronization constructs to primitive operations provided by
the hardware, such as compare-and-swap (CAS) operations
or software-supported transactional memory.

While addressing the scalability problem mentioned
above, lock-free algorithms introduce implementation com-
plexities of their own. For instance, the ABA problem can
occur if two independent reads of a CAS target result in the
same value, even though the state of the data structure has
changed between the reads. Another difficulty is determin-
ing when it is safe to reclaim memory associated with the
data structure, since another thread that is concurrently up-
dating the data structure could still have a pointer to the data

that needs to be freed. Both of these problems can be ad-
dressed by using hazard pointers as described in [8, 10, 11].
Details of this technique are omitted here for brevity.

3. Implementation
We implemented a coarse-grained locking and a lock-

free version of a FIFO, a deque, and a sorted linked list. We
also implemented a fined-grained locking version of the list
for comparison. We expended reasonable effort minimizing
the amount of work performed by the locking implementa-
tions in their critical sections.

Our lock-free implementations are based on algorithms
described in prior work [11, 9, 2]. We adapted all imple-
mentations of the lock-free data structures to use hazard
pointers for safe memory reclamation and ABA prevention,
as described in [11].

3.1. FIFO Queue
The FIFO is implemented as a single-direction linked

list, and maintains separate head and tail pointers for
O(1) insertion and deletion. Our lock-free implementation
allows the head and tail pointers to be CAS’ed indepen-
dently, and thus two threads can operate on opposite sides of
the queue concurrently. Figure 1(a) shows our implementa-
tion diagrammatically, where each shaded boxes can be the
target of a concurrent CAS operation. Allowing both ends
of the FIFO to operated on concurrently should allow the
lock-free implementation to have a theoretical 2x speedup
compared to the locking implementation, which uses a sin-
gle lock to protect the entire data structure.

3.2. Double-Ended Queue
The double-ended queues (deques) are implemented as

bidirectional lists, with separate head and tail pointers
for O(1) insertion and deletion from either end of the queue.
Unlike the lock-free FIFO, however, the lock-free deque
packs both the head and tail pointers into a single CAS tar-
get, known as the anchor. This means both pointers must
be read or updated at the same time. Figure 1(b) shows dia-
grammatically how the lock-free version is implemented.

Because both pointers are manipulated as a single anchor
value, the anchor becomes a point of serialization among all
threads operating on the lock-free deque. Thus the deque
imposes a serial order on all operations, limiting the avail-
able inherent parallelism in this data structure.

3.3. Sorted Linked List
The sorted linked list is implemented as a list of key/-

value pairs. Each node has an integer key, and inserting
values in the list ensures nodes remain in key-increasing or-
der. In our lock-free implementation, each next pointer
within the list can be CAS’ed independently from the oth-
ers. Figure 1(c) shows the structure of the list.

We evaluate two different locking variants of the sorted
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Figure 1. Layout of lock-free structures. Shaded values are CAS targets.

linked list. The first one protects the entire list with a sin-
gle mutex, serializing all access to the data structure. The
second version implements the fine-grained hand-over-hand
locking protocol described in [3], using a separate lock for
each node in the list; this recovers more parallelism by al-
lowing multiple threads to update the data structure concur-
rently as long as they are updating disjoint parts of the list.
We also implemented a version of the list that protects the
list with a reader/writer lock. However, because this version
behaved similarly to the coarse-grained mutex implementa-
tion, it is left out of the rest of this paper.

Of the three data structures examined in this paper, the
lock-free list has the most potential for better performance,
since all of the next pointers can be CAS’ed concurrently.
Thus, if n threads are all updating the list at disjoint loca-
tions, all n CAS operations could be performed in parallel,
providing a theoretical linear speedup with the number of
threads.

4. Evaluation
In this section we present the results of our experiments,

characterizing the performance and energy efficiency of
the three data structures described above. Interpretation of
these results is given in Section 5.

4.1. Methodology
All experiments were performed on an eight core Intel

Nehalem machine with 2-way hyperthreading and 8 GB of
RAM. To minimize noise in our performance and power
measurements, all tests were ran with minimal background
processes and were executed a minimum of 8 times each.
The values reported below are the average over these runs
(except for the peak power results shown in Section 4.5,
which reports the maximum value seen across all runs).

Performance was evaluated by measuring the wall-clock
execution time, as well as the percentage of time spent ex-
ecuting system code and user code, of each benchmark’s
region of interest (ROI). Wall-clock time was obtained
with the gettimeofday system call, and the system/user
times were obtained with the times system call. The ROI
of a benchmark consists only of the operations being tested,
and does not include the overhead of creating the data struc-
ture, populating it with initial data, displaying the results,

etc. In each microbenchmark, the total workload size was
kept fixed across each configuration: increasing the number
of threads decreases the amount of work any single thread
must perform, but the total work performed by all partici-
pating threads combined is kept constant.

The power of the test computer was measured with a
Watts Up PRO meter connected directly to the test com-
puter’s power supply. Previous work [14] has been success-
ful in correlating program performance and power when
the meter was used in this fashion. The power meter sam-
ples the instantaneous power draw at a frequency of 1 Hz,
and streams the timestamped samples to a second logging
computer. Using the log produced, we computed the to-
tal energy consumed by the data structure while perform-
ing the workload by integrating the individual samples over
time. Both computers synchronized their clocks via NTP
throughout the experiments to ensure timestamp consis-
tency in the logs. The clocks drifted no more than 20ms
apart, although a difference of less than 5ms was typical.

Due to the low sample frequency of the power meter, we
chose workload sizes that resulted in executions that were
at least 30 seconds of execution time. For the characteriza-
tion given in Section 4.5, we used the perfmon2 [5] perfor-
mance monitoring interface to collect data from the proces-
sor’s hardware performance counters.

4.2. Microbenchmarks
We implemented a set of microbenchmarks to simulate

highly contentious workloads for these data structures, with
very little application-level work performed for each data
structure operation.

For the FIFO and deque, our microbenchmarks include
enqueue-only workloads, where new values are added by
all threads to the same end of the queue, and producer/con-
sumer microbenchmarks where half of the threads add new
nodes on one end, and the other half remove values from the
opposite end. Because the deque implementation is sym-
metrical with respect to adding and removing elements from
either end, only one direction is shown in the results.

The sorted linked-list has an insertion-only benchmark,
consisting only of threads adding new values to the list:
because the list is sorted, each insertion also requires the
thread to search for the correct position in the list before the



insertion can occur. The keys for the newly inserted nodes
were a randomly chosen 32-bit value, similar to what would
result from a uniform hashing function.

Additionally, all data structures were also tested with a
randomized microbenchmark, where all threads randomly
chose the next operation to perform.

4.3. Performance Results
All graphs in this section show the execution times of the

lock-free implementations normalized to those of the lock-
ing implementation: values greater than 1 represent runs
where the lock-free implementation was slower than the
locking version, and values less than 1 show cases where
they were faster.

FIFO Queue. Figure 2(a) show the normalized runtimes
of the lock-free FIFO microbenchmarks. Considering first
the insertion-only benchmark, Figure 2(a) shows that for
less than 16 threads, the lock-free implementation performs
worse than the mutex-protected version; once the number of
threads exceeds the hardware limit of 16, however, the lock-
free implementation begins to perform better, taking about
half the time of the baseline implementation at 128 threads.
Although insertions into the lock-free FIFO have no more
inherent parallelism than insertions into the locking imple-
mentation, the OS scheduler and other factors discussed in
Section 4.5 eventually favor the lock-free version.

For the producer/consumer microbenchmark, as the
number of threads increases, the execution time of the lock-
free implementation approaches about 50% the total execu-
tion time of the locking version. This follows directly from
the amount of parallelism inherent in the lock-free imple-
mentation: because the two ends of the FIFO can be op-
erated on independently, two operations can be completed
concurrently on opposite ends of the queue, whereas these
same two operations would be serialized with the locking
version of the FIFO.

The results of the random operation benchmark are very
similar to the producer/consumer test. With a uniform ran-
dom number generator choosing to either enqueue a value
or deque a value, it is expected that roughly half of the
threads will be performing each operation at any given time
and thus this similarity is to be expected.

Double-Ended Queue. Figure 2(b) shows the runtime of
the lock-free deque normalized to the baseline locking im-
plementation. In general, this figure shows that the lock-
free deque performs worse in all microbenchmarks up to
16 threads. Beyond 16 threads, the lock-free producer/con-
sumer benchmark executed about 30% faster and the lock-
free insertion-only microbenchmark executed about 10%
faster with 128 threads. The randomized operation bench-
mark never performs better than the locking implementa-
tion, executing about 30-40% slower on average.

With no parallelism inherent in either implementation

(the lock-free version serializes all updates on a packed an-
chor value as described in Section 3.2, and the locking im-
plementation serializes all updates on the lock), there was
no expectation that the deque should outperform the base-
line. In fact, due to conflicting updates between threads, the
lock-free implementation likely contains a large amount of
redundant work due to contending updates. A possible ex-
planation for why it outperforms the baseline at high thread
counts is given later in Section 4.5.

Sorted Linked List. The runtimes for the lock-free list
normalized to the locking implementation are shown in Fig-
ure 2(c). For comparison purposes, this graph also includes
the normalized runtime of the fine-grained locking list de-
scribed previously in Section 3.3. The list implementations
each executed two benchmarks, one consisting of insertions
only, and the other consisting of random choices between
insertions, deletions and searches.

The lock-free implementation quickly outperforms the
coarse-grained locking list, demonstrating almost linear
speedup as the number of threads is increased. This level
of parallelism is due to each node in the list acting as in-
dependent CAS target, allowing any number of threads to
operate on the list concurrently, provided that each of the
threads is operating at a distinct location in the list. Be-
cause the keys are uniformly distributed 32-bit values and
number of operations performed by each thread vastly ex-
ceeds the number of threads, the probability that this occurs
frequently is quite high.

Interestingly, despite having the same inherent paral-
lelism of the lock-free implementation, the fine-grained
locking implementation only performs better than the
coarse grained locking protocol for the runs with 8 and
16 threads, and significantly worse for other thread counts.
This is likely due to the implementation overhead of the
locks used to protect the data structure. Because each node
has a separate lock, a thread traversing the list must acquire
and release significantly more locks than before: with n ele-
ments in the list, O(n) locks must be acquired and released
in the fine-grained implementation, compared to the O(1)
locks with coarse grained locking.

4.4. Energy
This section presents the results of our power tests. The

values presented here were the average of at least 8 execu-
tions of each experiment. We used the Watts Up PRO power
meter as described in Section 4.1 to sample the power draw
of the test computer once a second and used these values to
compute the total energy used during the ROI. Figures 3(a),
3(b), and 3(c) show total energy consumed by the FIFO,
deque, and list while executing each of the microbench-
marks.

Qualitatively, these graphs are almost identical in shape
to the execution time graphs shown previously in Sec-
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Figure 2. Runtime of the lock-free implementations, normalized to the locking implementations. The linked-list
graph shows both the lock-free (lf) implementation and the fine-grained locking (fg) implementation.
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Figure 3. Total energy consumed by the lock-free implementations normalized to the locking implementations.
The linked-list graph shows both the lock-free (lf) and the fine-grained locking (fg) implementations.

tion 4.3, and thus are not described in detail again. In
fact, computing the Pearson correlation coefficient be-
tween benchmark execution time and total energy con-
sumed yields a value that is always larger than 0.98, in-
dicating a strong linear relationship between the two val-
ues: longer executions used more energy than shorter exe-
cutions.

Despite attempting to put contending threads to sleep
in the locking implementation, we did not observe re-
duced CPU utilization or lower energy consumption. Con-
versely, the speculative abort-and-retry methodology of the
lock-free implementations did not require more energy,
even though competing threads were never removed from
the scheduling queues, thereby increasing CPU contention.
Possible explanations for this non-intuitive result are pre-
sented in Section 4.5.

4.5. Characterization
This section provides the reader with a characterization

of the dynamic behavior of each data structure implementa-
tion as they execute the various microbenchmarks described
above. Its purpose is to provide an understanding of the
other architecturally visible differences in the implementa-

tions and to provide a possible explanation of why the lock-
free variants often perform better at high thread counts, even
if no inherent parallelism exists within the data structure.

The characterization data is shown in Table 1. The data
are shown in pairs: for each measurement, the column la-
beled as MX is the absolute value of the baseline, locking
implementation, and the column labeled as LF(x) is the
lock-free implementation’s value normalized to the corre-
sponding value in the MX column.

Instruction Counts. The dynamic instruction counts of
the two implementations are shown in columns 4 and 5 of
the table. Even though the total amount of application-
level work is fixed across the different thread counts, the
queue and deque execute more instructions as the number
of threads is increased. One explanation for this is based
on how the pthreads library implements the mutexes we
used for synchronization. pthreads mutexes rely on fu-
texes, the userspace mutex implementation in the Linux ker-
nel. Each contended mutex acquire and release invokes the
sys futex system call, and this system call performs the
requested operation, either a wait or a signal. However, the
in-kernel futex state is itself protected with a spinlock, and



Num Instr. Cnt. % Sys. Time L1 Miss % Br. Mispred. Avg. power Peak power
Struct Bench Th. MX LF(x) MX LF(x) MX LF(x) MX LF(x) MX LF(x) MX LF(x)

queue

Inserts
1 98 B 1.1 14% 0.84 < 1% 0.8 0.049% 0.95 171.0 1.0 178.1 1.0
8 323 B 0.6 87% 0.01 11% 1.0 0.626% 3.81 191.2 1.0 206.0 1.0
64 564 B 0.3 92% 0.19 23% 0.7 0.465% 3.63 168.5 1.0 192.8 0.9

Pro/Con
1 99 B 1.1 13% 0.88 < 1% 0.8 0.049% 0.95 168.4 1.0 177.1 1.0
8 362 B 0.4 86% 0.01 13% 0.8 0.632% 2.97 192.9 1.0 204.8 1.0
64 520 B 0.3 92% 0.18 21% 0.8 0.387% 6.07 179.6 1.0 219.2 0.9

Random
1 56 B 1.6 < 1% < 0.01 < 1% 4.5 1.332% 0.49 168.3 1.0 176.0 1.0
8 359 B 0.4 87% 0.01 12% 0.9 0.843% 3.03 194.0 1.0 206.0 1.0
64 987 B 0.2 95% 0.01 39% 0.8 0.210% 18.54 216.7 1.0 219.9 1.0

deque

Inserts
1 98 B 1.5 12% 0.58 < 1% 0.6 0.048% 0.81 167.4 1.0 177.5 1.0
8 368 B 1.3 87% 0.01 12% 0.7 0.632% 3.99 191.3 1.0 206.2 1.0
64 637 B 0.5 92% 0.08 23% 0.7 0.464% 4.27 168.4 1.0 178.8 1.0

Pro/Con
1 98 B 1.5 12% 0.58 < 1% 0.7 0.048% 0.80 167.3 1.0 175.2 1.0
8 360 B 1.1 87% < 0.01 12% 0.6 0.649% 4.16 193.2 1.0 206.0 1.0
64 583 B 0.5 93% 0.12 26% 0.6 0.325% 7.40 186.2 0.9 218.4 0.9

Random
1 66 B 1.8 < 1% 1.10 < 1% 36.4 1.268% 0.75 166.2 1.0 200.4 0.9
8 434 B 1.0 81% 0.05 14% 0.6 1.138% 2.84 200.0 0.9 209.2 1.0
64 984 B 0.8 93% 0.07 32% 1.0 0.334% 10.74 219.7 1.0 221.1 1.0

list

Inserts
1 96 B 2.2 < 1% 1.23 14% 1.1 0.003% 0.57 167.2 1.0 194.9 1.1
8 80 B 2.2 1% 0.08 15% 1.2 0.013% 0.12 164.5 1.3 173.5 1.3
64 81 B 2.2 1% 0.29 15% 0.9 0.018% 0.28 164.7 1.4 173.1 1.4

Random
1 18 B 2.2 < 1% < 0.01 15% 1.0 0.012% 0.41 166.5 1.0 172.9 1.3
8 18 B 2.2 5% 0.05 15% 1.0 0.048% 0.12 165.6 1.4 166.9 1.4
64 18 B 2.2 5% 0.31 15% 0.7 0.040% 0.21 163.6 1.4 169.1 1.5

Table 1. Characterization of the data structures. The MX columns are absolute results for the locking implemen-
tations and the LF(x) columns are for the lock-free implementations relative to the locking implementation.

as the number of threads is increased, contention on this in-
ternal spinlock is increased. Under these microbenchmarks,
the additional spinning due to this growing contention is
enough to significantly impact the total instruction count
as shown. Thus, as the number of threads increases, the
relative instruction count of the lock-free implementations
decreases.

The instruction count for the sorted linked list behaves
fundamentally different from those of the queue and deque.
This is due to the difference in average cost of an update to
these data structures. The queue and deque can each insert
or remove an element with O(1) work. The list, however,
requires a traversal in order to maintain sorted order, and
thus its updates require O(n) work. This means the rela-
tive overhead of acquiring the mutex compared to the work
performed while holding the mutex is significantly less than
it is for the two previous data structures. As a result, both
the absolute number of instructions executed by the locking
list and the relative number of instructions performed by the
lock-free list remains approximately constant as the number
of threads is increased.

User vs. System. Columns 6 and 7 show the percentage of
execution time spent executing system code. For all of the
microbenchmarks (although much more so for the queue
and deque than for the list), the percentage of time spent in
the system increases with the number of threads. This is di-
rectly explained by the implementation of the mutexes dis-
cussed above: more time is spent spinning on the internal
spinlock protecting futex state due to contention between

threads trying to acquire or release the lock. The lock-free
implementations, which do not use mutexes, spend much
less time executing system code. The small percentage of
system code executed by the lock-free implementations is
due to the memory management performed by the bench-
marks.

Further, because each contended operation on the lock
results in a system call, the mutex protected data structures
perform more context switches than the lock-free variants.
Although not quantified in the table above, this additional
overhead can also be a contributor to the poor performance
of the locking data structures at high thread counts.

Cache Behavior. The L1 cache miss rate for the mi-
crobenchmarks is shown in columns 8 and 9 of the table.
In general, the miss rates of the lock-free implementations
grow with the number of threads at approximately the same
rate as the locking implementations, although the lock-free
implementations tended to have a lower miss rate in abso-
lute value.

In two of the benchmarks, the relative miss rate of
the lock-free implementation is rather large: 4.5x for the
single-threaded random queue test, and 36.4x for the single-
threaded random deque test. However, the difference be-
tween the locking and lock-free implementations in these
cases were only 0.2% and 1.3%, respectively, and were not
considered to be significant.

Branch Mispredictions. The branch misprediction rates
are given in columns 12 and 13. Because branch mispre-
dictions may involve costly pipeline flushes, high mispre-



diction rates can significantly hurt performance. The table
shows that the locking benchmarks had high branch predic-
tion accuracy, with the most having misprediction rates less
than 0.5%, with a peak at 1.3%.

Compared to the baseline implementations, the lock-free
queue and deque tend to do worse in this regard. Even
though these benchmarks had slightly lower misprediction
rates at a single thread, as the number of threads increased,
the misprediction rates tended to grow as well. This is likely
due to competing updates from multiple threads: if a thread
observes a change in shared state after completing partial
work, it must discard this work and try again. As the num-
ber of threads increases, the probability that a conflicting
update will occur grows as well. Because the CAS opera-
tions are almost always used as the conditional expression
in a branch statement, these nondeterministic branch condi-
tions becoming more difficult to predict.

This trend is not evident in the linked list, however.
There are two reasons for this. First, because updates from
different threads are distributed across the list, the proba-
bility of conflicting updates is significantly lower than with
the queue or deque, in which all threads are attempting to
update only one or two different values. The second rea-
son is that a nontrivial amount of execution time is spent
traversing the linked list in a highly regular loop. As a re-
sult of these two factors, there is relatively little change in
the misprediction rate as the number of threads grow.

Power. The average power and peak power for these
benchmarks are shown in columns 12-13 and columns 14-
15 respectively. Because the mutex implementation even-
tually puts threads waiting for a lock to sleep, the lock-
ing implementations should intuitively have a lower aver-
age power consumption than the lock-free implementations,
which maintain high CPU utilization with speculative work
rather than sleeping.

For the sorted linked-list, this intuition appears correct:
the lock-free list imposes about a 40% overhead in the av-
erage power, and up to a 50% increase in peak power. For
the lock-free queue and deque, however, the spinning in the
futex implementation prevents these threads from being put
to sleep, keeping CPU utilization high. Further, the critical
sections for the queue and deque are so short that once a
thread does go to sleep, the effect on the computer’s power
draw is likely minimal. Threads blocked on the list’s mu-
tex, however, are removed from the scheduling queues long
enough to reduce the system’s power draw, due to the sig-
nificantly larger critical sections.

It was previously shown in Section 4.4 that the total en-
ergy consumption was linearly correlated with the execu-
tion time of the microbenchmarks. Based on the average
and peak power values in this table, it is clear that the en-
ergy savings of the lock-free data structures is directly at-
tributable to their shorter execution times. For the queue

and deque, the locking and lock-free implementations re-
quired the same power resources, but the lock-free struc-
tures simply required them for less time. The lock-free list,
which required significantly more power than the locking
list, was able to compensate by executing for a significantly
shorter duration.

5. Discussion

Power and Performance. In many domains there is a
trade-off between power and performance: optimizations
that lower power requirements will usually lower perfor-
mance as well. Conversely, higher performing implemen-
tations usually come at the cost of higher power and energy
due to the increased use of system resources. However,
when comparing lock-free data structure implementations
with their locking counterparts, we did not find such a clear
trade-off.

The lock-free linked list behaved like a typical optimiza-
tion in this regard. As the number of threads grew, the lock-
free list saw a linear speedup; however, it need about 40%
more power on average when compared with the baseline
locking implementation. The lock-free FIFO, on the other
hand, typically saw about a 2x performance improvement
over the locking implementation, but did so with almost
identical power requirements and thus required about half
the energy to perform the same amount of work.

Futexes. In our study, we observed that the locking data
structures were often unsuccessful putting threads to sleep
due to contention on a kernel spinlock in the futex imple-
mentation. Although designing energy-aware locking prim-
itives is beyond the scope of this work, we hypothesize
that a different implementation of the mutex we used could
change the results we observed: if threads were able to be
removed from the scheduling queues more aggressively, it
might make enough difference to reduce the power and en-
ergy costs of the locking implementations. However, due to
the maturity of the Linux kernel, and in particular the spin-
lock implementation, we speculate that further optimization
of the futex implementation would be non-trivial, and was
not considered further in this study.

6. Related Work
Lock-free data structures have been an active area of re-

search for over a decade [2, 9, 15, 1]. Most of this prior
work, however, has focused on the correctness of the imple-
mentation or demonstrating improved performance or re-
liability compared to prior implementations: they do not
generally consider the effect on the power and energy re-
quirements of the computer running them. This work shows
that even though power and energy were not first class de-
sign constraints in the development of these lock-free algo-
rithms, these existing implementations can lead to a signifi-



cant reduction in the energy costs of the data structure.
Energy efficiency in general is also an active area of re-

search, and now even more so than ever, due to the increas-
ing growth of mobile computing and large data centers.
Systems like those described by Merkel et al. [7] and Singh
et al. [14] propose energy-aware scheduling techniques.

However, as many-core devices become increasingly
popular, understanding the energy costs of synchronization
in shared-memory multiprocessor environments is of grow-
ing importance important. Li et al. [6] examine the isolated
case of reducing the energy consumed by an application
due to barrier synchronization imbalance: by predicting the
amount of time a thread will need to wait at a barrier, rather
than simply spinning, the processor can transition to an ap-
propriate low-power processor state to decrease amount of
energy expended while the thread waits.

Moreshet et al. [13, 12] advocate hardware transactional
memory as an energy efficient way of implementing lock-
free data structures. Through simulation, Moreshet et al.
show up to 90% reduction in energy is possible in some sit-
uations. However, because hardware transactional memory
support is not currently available on commodity processors,
this approach doesn’t provide a solution today. Although
software only implementations of transactional memory do
exists today, Klein et al. [4] demonstrate that software im-
plementations typically lead to energy inefficiencies when
subjected to high contention workloads. The present paper
focuses instead on the energy efficiency of lock-free data
structures using atomic primitives readily available on com-
mercial processors, rather than relying on hardware or soft-
ware support for transactional memory.

7. Conclusions
With growing use of parallel and concurrent software in

energy-constrained devices, it is becoming more important
to understand the energy and power efficiency of synchro-
nization primitives. In workloads with contended shared
data, the choice of synchronization techniques can have a
significant impact on both the performance and energy ef-
ficiency of applications. Traditional methods of protecting
data structures with coarse-grained, mutual-exclusion locks
are easy for programmers to understand and implement, but
suffer from scalability issues due to serialization.

In this work, we have shown that lock-free data struc-
tures can not only provide significant performance improve-
ments in many situations, but also that this increase in per-
formance can improve the data structure’s energy efficiency
as well. Further, we’ve shown that the increase in per-
formance does not necessarily come with an increase in
peak power, an important observation in the context of low-
power devices.

As application and library developers choose implemen-
tations for their data structures, it is becoming more im-

portant to consider factors other than just correctness and
performance. Energy and power constrained devices such
as cell-phones and embedded systems are becoming more
pervasive and developers should choose implementations
according to their power, energy and performance needs.
For instance, because the lock-free linked list uses more
power than the locking implementation, it may not be a vi-
able alternative low-power situations. However, the lock-
free FIFO, which uses the same power but performs better
would be useful since performance and battery life could be
extended. Thus, while lock-free data structures are not nec-
essarily a silver bullet, its important to consider the various
costs and benefits of lock-free alternatives when choosing
implementations for data structures. This paper presented
the types of information that system or library programmers
can use when making this decision for their particular situ-
ation.
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