
On-line Trace Based Automatic Parallelization of Java Programs on Multicore
Platforms

Yu Sun and Wei Zhang
Department of ECE, Virginia Commonwealth University

wzhang4@vcu.edu

Abstract

We propose a new approach that automatically paral-
lelizes Java programs at runtime. The approach collects
on-line trace information during program execution, and
dynamically recompiles methods that can be executed in
parallel. We also describe a cost/benefit model that makes
intelligent parallelization decisions, as well as a parallel
execution environment to execute parallelized code. We im-
plement these techniques upon Jikes RVM and evaluate our
approach by parallelizing sequential benchmarks and com-
paring the performance to manually parallelized version of
those benchmarks. According to the experimental results,
our approach has low overheads and achieves competitive
speedups compared to manually parallelized code.

1 Introduction

Multi-processor has already become mainstream in both
personal and server computers. Even on embedded de-
vices, CPUs with 2 or more processors are increasingly
used. However, software development does not catch up
with hardware at this time. Designing programs for multi-
processor computers is still a difficult task and requires a lot
of experiences and skills. Besides, a big number of legacy
programs that are designed for single-processor computers
are still running and need to be parallelized for better perfor-
mance. All these facts require a good approach for program
parallelization.

In this paper, we propose an automatic parallelization ap-
proach based on Java virtual machine (JVM). Traces, which
are sequences of actually executed instructions, are used in
our approach as units of parallel execution. Furthermore,
we collect trace information on-the-fly during program ex-
ecution, so that our approach works simply with any given
Java byte code. There is no need for any source code or pro-
filing information. We also utilize some excellent existing
features in JVM, such as run-time sampling, on-demand re-
compilation and multi-thread execution. Enhanced by run-
time trace information, our experimental results show that
this approach is able to achieve competitive results of par-
allelization for Java programs, as compared to parallel code
by hand.

2 Overview

Figure 1 depicts the system that we implemented upon
Jikes RVM [9], and also the main procedure of paralleliza-
tion. There are four main components in our system, in-
cluding an on-line trace collector, a cost/benefit model, a
parallelizing compiler and a parallel execution environment.
First of all, we utilize the on-line sampling-based profil-
ing mechanism of Jikes RVM to identify “hot methods”,
which take major parts of the total execution time of Java
programs. We only consider hot methods as paralleliza-
tion candidates in order to reduce unnecessary instrument-
ing and threading overheads.

In our approach, we filter the hot methods based on sev-
eral heuristics. First, only methods from user applications
are selected. Thus Java core and VM methods are not con-
sidered in this work. Second, the length of the methods can
not be very short. Third, the methods must contain loops.
We call the hot methods satisfying these criteriagood can-
didatesfor parallelization.

After good candidates are identified, we recompile them
to insert instrumenting code. As a result, trace information
can be collected in the next execution of instrumented meth-
ods, and then it is delivered to a cost/benefit model to decide
whether the traces are profitable to be parallelized or not.
After that, those traces worthy of parallelization are passed
to a parallelizing compiler, which recompile the methods
that contain those traces. And finally, parallelized tracesex-
ecute in parallel inside the Parallel Execution Environment
(PEE). The details of these components are described in the
following sections of this paper.

3 On-line Trace Collection System

3.1 Trace Formation

A trace is defined as a sequence of unique basic blocks
which are executed in sequential order during the execution
of a program [2]. An example of trace formation is in Figure
2, which is a control flow graph of some program section.
Trace T1 is the sequence of{B1, B2, B3, B4, B6}, and T2
consists of basic blocks{B2, B3, B4, B6}. In contrast, a
sequence of basic blocks{B2, B5, B6, B2} may be executed
at run-time due to the loop structure, but it is not a trace
because B2 occurs twice in the sequence. Traces can be
collected by a trace collection system (TCS) that monitors
a program’s execution. In our particular case, we extend
trace definition to two types: Execution Trace and Memory
Access Trace.

1

Figure 1. Procedure of on-line trace based au-
tomatic parallelization

• Execution Trace
An execution trace records a sequence of executed in-
structions and basic blocks. Instrumenting code sec-
tions are injected at every jump and branch instruction,
recording their run-time targets. Similar instrumenta-
tion is applied to method calls and returns. Backward
jumps or branches are treated particularly to identify
loops and collect loop information like induction vari-
ables and loop boundaries. Time stamps are also col-
lected at instrumenting points, which is needed by fu-
ture analysis during parallelization.

• Memory Access Trace
A memory access trace is a sequence of read and write
operations to the memory, including variables, fields
and array references. It is collected for data depen-
dence analysis during parallelization. As the actual
memory addresses can be collected by on-line TCS,
it is now possible to perform much more accurate de-
pendence analysis compared to static approaches, es-
pecially for class fields and array accesses. To re-
duce memory space overheads, continuous memory
addresses are combined to one entry, and only a lim-
ited number of entries are kept in one trace. Our study
shows this approach works well with regular loop-
carried dependencies.

These two types of traces are bound so that each execu-
tion trace has only one memory trace. And the boundaries
of traces are determined by specific types of instructions at
run-time. A trace starts upon detecting one of two possible
trace entry points:

• First instruction of an instrumented method,

• Exit points of another traces.

On the other hand, traces end at several other program
points:

Figure 2. Traces in a program section

• Backward jumps/branches,

• Last instruction (usually return instruction) of an in-
strumented method,

• points where length of a trace exceeds a given thresh-
old, i.e. 128 bytecode instructions in this study, which
is rare to be reached based on our experiments.

Based on the conditions described above, traces are con-
structed and stored as objects in the JVM. Also, addi-
tional information such as execution count of traces is also
recorded and saved within the trace objects. As a result,
the hot methods that are potential targets for parallelization
can be split into multiple traces. For example, a single level
loop without any branch can be normally divided into three
traces: one is the first iteration with some instructions be-
fore the loop; another trace is the loop body that may be
executed many times; and the last one is the last iteration
that jumps out of the loop and continues executing follow-
ing instructions.

3.2 Trace Collection

There are several ways to implement a TCS, such as a
hardware profiler and a machine code recorder in an inter-
preting VM. However, our choices are narrowed down by
the unique constraints that our on-line TCS needs to satisfy.

• Low overheads
As our TCS is on-line, any overhead introduced here
is counted towards the final performance of whole sys-
tem. Hence, the time spent on TCS must be kept as
little as possible. In addition, trace information col-
lected by on-line TCS is stored inside of JVM’s run-
time heap together with the executing program. As
a result, we also need to control space overheads of
TCS to avoid unnecessary GC, which may harm per-
formance and complicate dependence analysis.

• Detail and accuracy
On the other hand, on-line TCS is expected to provide
detailed and accurate trace information of parallelizing
candidates. The parallelizing system relies on this in-
formation for the following tasks, including decision
making, dependence analysis and final parallelizing

2

compilation. At least, all branch/call targets must be
recorded, as well as memory accesses to variables and
arrays.

Due to the two requirements and the fact that Jikes RVM
is compilation based, we choose to enhance Jikes RVM’s
baseline compiler with the ability of inserting instrument-
ing code into generated machine code. Instrumenting code
is executed when certain points in program execution is
reached. At that time, useful run-time information like reg-
ister values and memory addresses is sent to trace collec-
tor running in VM. In order to minimize overhead while
recording detailed and accurate data, we make the TCS se-
lectively work on different detail levels for various partsof
a program. Specifically, there are three levels in trace col-
lection.

• Level 0 - The lowest trace collection level where only
records of method calls and returns are kept. This level
is applied on most methods that are not hot.

• Level 1 - In this level, full execution traces are
recorded, while no memory access trace is kept. This
level is used for the non-loop sections in hot methods.

• Level 2 - The highest level that records both execution
and memory access traces. The most detailed and ac-
curate information is provided by this level for future
analysis and parallelization. Only loops in hot meth-
ods, which are best parallelizing candidates, can trig-
ger level 2 trace collection.

Hence, only a small but frequently executed part of a
program is fully instrumented. Overheads are significantly
reduced while most useful traces still have detailed and ac-
curate information. Besides, after being recompiled and in-
strumented, the methods execute only once to collect trace
information. Upon finishing a method’s profiled execution,
trace information is passed to the cost/benefit model for
making parallelization decisions. Then the method is either
parallelized or recompiled into plain machine code with-
out any instrumenting code. No matter what decision is
made, there is no more trace collection overhead after re-
compilation. Because of all the efforts described above, the
overhead of our on-line TCS is acceptable. On the other
hand, most executions of a method have very similar be-
haviors even though they have different parameters. Fur-
thermore, trace collection occurs after warm-up stage of the
Java programs, which makes the execution behavior rather
stable. Thus the trace information is accurate enough for
parallelization.

The output of trace collection is a data structure named
Trace Graph. In a Trace Graph, the nodes are the traces
and the edges describe the control flow dependence among
traces. For example, if a trace T2 starts right after another
trace T1 exits, a directional edge will be created from T1 to
T2. Each edge has a weight that records how many times
the edge is passed. A full example is shown in Figure 3(a).

4 Dependence Analysis

Given different memory access patterns, traces may be
data dependent on each other. In order to resolve the de-
pendence among traces, we utilize the memory access trace
information collected by our on-line TCS. There are two
types of dependencies that we deal with: local variables,
and arrays. They are processed separately based on mem-
ory access traces.

For the local variables in a trace, we generate both read
and write lists from the corresponding memory access trace.
Since local variables are stored in JVM run-time stack and
represented by unique integer values in Java byte codes,
read/write lists are sequences of integers. We first simplify
the lists of a trace according to in-trace dependence, then
calculate inter-trace dependencies with other traces.

Arrays have to be carefully managed because they are
in the heap and the only way to access an array element
is through its memory address. Our memory access trace
records the actual memory addresses accessed by the traces
during the instrumenting execution. When an instrumented
method executes, its load and store instructions, as well
as their memory addresses, are monitored and stored in its
memory access traces. Then we perform a similar analysis
like what is done for the local variables. The only concern is
memory usage of storing those addresses. To deal with this
problem, we compact one section of continuous addresses
into one data record that stores a range of memory addresses
instead of a single address. This compaction is able to save
a lot of memory spaces as observed in our experiments.

We also try to simplify dependence analysis by introduc-
ing dependent section, which is a section in a trace contain-
ing all instructions dependent to another trace. For instance,
a single loop has 100 instructions and the 80th and 90th in-
structions carry dependence between loop iterations. In this
case the dependent section of loop body trace is 80 to 90
after dependence analysis. Dependent section is used based
on the observation that in most cases only a small section
of instructions in a trace carries dependencies. Besides, us-
ing single dependent section for each trace greatly reduces
synchronization/lock overheads in the busy-waiting mode,
which is used in our parallel execution model.

5 Cost/Benefit Model

After collecting trace information for hot methods and
analyzing dependencies between traces, our approach then
decides whether it is worthy or not to parallelize them. We
introduce a cost/benefit model inspired from the one used in
Jikes RVM’s adaptive optimization system [1]. This model
calculates the estimated time of both sequential and parallel
execution of a parallelizing candidate with its trace infor-
mation and some constants. Parallelization is performed if
the following inequality is satisfied.

TEP < TE × f (1)

Here,TEP is the estimated time of parallel execution of
a trace or a group of traces, including the overheads due to
trace collection and parallelization;TE represents the esti-
mated time of sequential execution; andf denotes a control
factor which is a constant 1 and can be tuned. For exam-
ple, if we want to parallelize only the methods that bring
high benefit after parallelization, f can be set to 0.8 or 0.7
in order to filter others out. Because estimation is made on-
the-fly during run-time, we have no idea of the exact future
execution time for a given section of code. We thus use the
same heuristic as the one in Jikes RVM’s AOS model, that
is, future execution time is equal to the execution time in
the past. This assumption works well with AOS, as well as
our approach.

TE = TP = S ×Q (2)

In Equation 2,TP is the execution time in the past,
calculated by number of samplesS and sampling interval
Q. Furthermore, the estimated time of parallel execution
can be calculated by the Equation 3, whereTW is wait-
ing/idle time during parallel execution,Toverhead represents

3

the time spent on parallelizing and other overheads, and N
is the number of available processors (cores).

TEP =
TE

N
+ TW + Toverhead (3)

In Equation 4,TW can be roughly estimated withα, the
ratio of the execution time of a dependent section to the total
execution time of the whole program.α is calculated using
recorded execution time of both the instrumented method
and its dependent sections. The timing information is col-
lected during trace collecting instrumentation. When this
ratio is small enough,TW can be even 0. The formal equa-
tion to calculateTW is as follows.

TW =

{

0 if α ≤ 1

N

αTE − TE

N
if α > 1

N

(4)

And Toverhead consists of two components. One is the
compilation time of parallelizing compiler, which can be es-
timated by the byte code length and compiler’s compilation
speed. The other comes from parallel execution environ-
ment and can be represented as a constant. As a result, we
have the final equation of future parallel execution time.

TEP =

{

TE

N
+ Toverhead if α ≤ 1

N

αTE + Toverhead if α > 1

N

(5)

After TE andTEP are calculated respectively in (2) and
(5) by the cost/benefit model, inequality (1) is applied to
make the final decision. Obviously, parallelization is more
likely to be performed when dependence is not intensive,
i.e. α is a small value.

6 Parallelizing Compiler

Parallelizing candidates that pass the check in
cost/benefit model described above are sent to the
parallelizing compiler. One candidate is then compiled
to N new methods, whereN is the number of available
processors (or cores). For now, our parallelization approach
does not consider the underlying hardware features except
the number of processors. TheseN new methods can be
divided into two types: a master that runs on the main
thread as a part of original sequential execution; and slaves
that only executes parallelized tasks and are destroyed at
the end of parallel execution. The main workload in the
original method, which consists of repetitively executed
traces, is partitioned in the unit of trace and assigned evenly
to both master and slave methods. A general description
of our trace parallelization approach is given in Algorithm
1, where functionFindCircle looks for circles in a
Trace Graph and functionFindOutMostLoop returns
the outermost loop that contains a given trace circle.

Figure 3 illustrates an example of parallelizing traces
from Figure 2 on a dual-core machine, in which we as-
sume that only four traces T1, T2, T3 and T4 are collected
at run-time, and their relationship is described by a Trace
Graph shown in Figure 3(a). These assumptions are made
to simplify the example, because traces and their relation-
ship may be changed completely if inputs are different. We
also assume the loop in Figure 2 iterates 100 times, and
there is no data dependence. Parallelizing compiler looks
into Trace Graph for circles, which is T2 and T3 in Fig-
ure 3(a), because repetitively executed traces usually have
good parallelism. After checking data dependence of the

Algorithm 1 : Trace Parallelization
input : TG - Trace Graph
input : BC - Byte code of parallelized method
input : N - Number of parallel threads
output: Compiled master and slave methods

C← FindCircle(TG);1
while C 6= NULL do2

L← FindOutMostLoop(C,BC);3
CreateN − 1 worker classes with slave methods;4
Copy traces inL to every slave methods;5
Insert dependence guards for dependent sections;6
Change induction variable ofkth thread toi×N + k;7
Add code to master method that invokes slaves and waits for them;8
TG← TG−{All Traces inL };9
C← FindCircle(TG);10

end11

Figure 3. An example of trace parallelization

traces in a circle, parallelizing compiler construct both mas-
ter and slave methods, as shown in Figure 3(b). Loop induc-
tion variables in both methods are configured based on ex-
ecution frequencies (edge weights in Figure 3(a)) in Trace
Graph. Iterationi × NumberOfCores + k is assigned
to the kth core so that workloads are evenly dispatched,
wherei = 0, 1, 2, Also, some maintenance code seg-
ments are inserted into the master method in order to man-
age the multi-threaded execution. Its details are discussed
later in this paper. As a result, the theoretical speedup after
parallelization in this example is approximately 2, if we ig-
nore all the overheads of parallelization and multi-threaded
execution.

Moreover, Figure 4 depicts the details of code generated
by a parallelizing compiler. Several special code segments
are inserted into both the original method and parallelized
new methods. They are:

• Code preparing parallel execution: Pass variables and
invoke parallel execution.

• Code for dependency guards: Obtain and release locks.

• Code of modified induction/reduction: Used for paral-
lelized loop iterations.

• Code finalizing parallel execution: Pass variables back
and clear the scene.

As described in Algorithm 1, our approach is a hybrid of
trace and loop parallelization. The reason of not using pure

4

Figure 4. Code generated by parallelizing
compilation

trace based parallelization is a limitation of on-line trace
collection. Due to existence of branches, a program may
have different traces given different inputs, and on-line trace
collection does not guarantee to cover all possible traces at
run-time. As a result, some execution paths may be missing
in parallelized code if pure trace based parallelization isap-
plied. In order to resolve this problem, we combine trace
and loop parallelization together. Loop bodies that con-
tain traces are detected and parallelized instead of traces.
Hence, all possible paths are covered, and the control flow
among traces is taken care of by branches in the loop bod-
ies, which simplifies the code generation for multiple traces.
Also, the hybrid approach utilizes more run-time trace in-
formation for loop parallelization compared to traditional
static loop-based approaches, which provides chances to
perform more aggressive and accurate parallelization. A
major advantage of our hybrid approach is that data de-
pendence analysis, which is based on run-time trace infor-
mation as described in Section IV, is much more accurate
than what can be done in static loop-based parallelization.
For instance, if basic block B3 in Figure 2 accesses some
data stored in the heap, it is hard and sometimes impossi-
ble for a static loop-based parallelization approach to deter-
mine whether this memory access is safe to be parallelized
or not. But it becomes much easier in our hybrid approach
because the actual memory addresses are recorded during
trace collection stage, and thus the memory access pattern
of B3 can be constructed and used for parallelization. How-
ever, the hybrid approach introduces branches into paral-
lelized code, which may reduce pipeline and cache perfor-
mance compared to pure trace-based parallelized code that
is completely sequential. Besides, dependent sections may
increase because more instructions are compiled into the
parallelized code. And memory spaces may be wasted for
those instructions that will actually never be executed.

7 Parallel Execution Environment

Parallel Execution Environment (PEE) is implemented
upon Jikes RVM’s multi-thread execution functionality.
PEE contains one or more Parallel Execution Threads
(PETs), manages copies of local variables passed between
the main thread and PETs, and maintains the dependence

Figure 5. Parallel Execution Environment

guards wrapped to the dependent sections in the code. Gen-
erally speaking, PEE takes care of executable code gener-
ated by the parallelizing compiler, and makes sure they are
executed correctly. Figure 5 demonstrates how PEE works
with a parallelized code section onN processors.

7.1 Parallel Execution Threads

As shown in Figure 5, PETs are separately assigned to
multiple processors. Normally, one PET does not travel be-
tween processors to reduce overhead. PETs and daemon
threads that start running right after VM is booted. How-
ever, PETs stay in the idle state before any parallel execu-
tion method is dispatched. PETs may be waken up by the
main thread, and it can only be waken by the main thread.
After executing the given parallel execution method, a PET
goes back to idle and waits for next invocation from the
main thread.

There are several benefits by using the wake-up/sleep
mechanism instead of creating new threads every time for
parallel execution, though the later approach is easier for
implementation. First, using a fixed number of threads
greatly reduces the pressure on memory usage during run-
time. Second, it makes the scheduler more extendable for
other advanced scheduling policies.

7.2 Variable Passing

It is necessary to make copies of local variables, which
are shared across PETs, and pass them safely to other
threads outside of the main thread. We use arrays to do
this job. Each parallelized code section keeps its own vari-
able passing array, which is pre-allocated at the compilation
stage. The array is filled with local variable values before
waking up PETs, so that at the beginning stage of each par-
allel executed method, those values can be read correctly
from the array. Similarly, writing back to this array is the
last job of a parallel executed method. And the main thread
restores local variables from the arrays before moving on to
the next instruction. This procedure is also shown in Figure
5.

5

Benchmarks Execution Time(s) Input Size Description
BASE OPT

crypt 2.73 1.38 3,000,000 IDEA Encryption
Java Grande lufact 2.72 0.27 500 LU Factorisation

Section 2 series 6.99 5.11 10,000 Fourier Coefficient Analysis
smm 3.96 0.71 50,000 Sparse Matrix Multiplication

Java Grande moldyn 33.42 2.80 2,048 Molecular Dynamics simulation
Section 3 montecarlo 10.35 4.10 2,000 Monte Carlo simulation

raytrace 35.97 4.03 150 3-D Ray Tracer

Table 1. Description of benchmarks

Figure 6. Percentage of hot traces in total ex-
ecution time

7.3 Dependence Guards

Dependence guards are implemented with Java thread
synchronization mechanism, particularly, locks. During
parallelizing compilation, dependent code sections are iden-
tified based on trace information, and then wrapped up with
two special code segments called dependence guards. First
code segment is inserted before a dependent section to ac-
quire a lock, and the other one is right after that dependent
section to release the lock. To reduce the complexity and
synchronization overhead, each parallelized section holds
only one lock object. This means all dependent instructions
have to share one lock, and consequently the dependent sec-
tion is the union of all individual dependent instructions.
Although this approach increasesα value and thus may de-
crease speedup after parallelization, we believe it is a simple
and fair solution to avoid too many locks and high synchro-
nization overhead.

8 Evaluation Methodology

We implemented our approach described in Section 2 to
7 as an extension on Jikes RVM version 3.1.0. The code
is compiled with Sun JDK version 1.5.019 and GCC ver-
sion 4.3.3. We use a dual-core Dell Precision 670 with 2
Intel Xeon 3.6 GHz processors and 2 GB DDR RAM to run
the experiments. The operating system on that machine is
Ubuntu Linux with kernel version 2.6.28. Each processor
has an 8 KB L1 data cache and a 1024 KB L2 cache.

The benchmarks that are used in our experiments are
from Java Grande benchmark suite [10, 12]. We use two
groups of benchmarks. The first group consists of four
benchmarks fromsection2: crypt, lufact, series

Figure 7. Speedup of trace and manual par-
allelization (baseline and optimized, respec-
tively)

andsmm. They are short codes that carry out specific op-
erations frequently used in grande applications. Group 2
contains three benchmarks:moldyn, montecarlo and
raytrace from section3, which is a group of large-scale
application tackling real-world problems. These bench-
marks all exhibit good data-level parallelism. Another rea-
son of choosing them is that their manually parallelized ver-
sions are also provided in Java Grande benchmark suite,
which we can directly compare our approach with. We use
the small input size in order to make it easier to observe im-
pacts of our approach sdand all kinds of overheads. Bench-
mark details such as sequential execution time (baseline and
optimized) and input size are described in Table 1.

9 Experimental Result

We first measure the fraction of trace execution time
to justify whether it is worthy or not to parallelize traces.
Then we evaluate our approach by two metrics: speedup
and overhead. Speedup is defined as the ratio of sequential
(base) execution time to parallel execution time. We mea-
sure the speedup for both our automatic parallelized ver-
sion and the manual parallelized version provided by Java
Grande benchmark suite. Overhead is defined as the time
spent on trace collection and recompilation.

9.1 Trace Execution Fraction

We first measure the execution time of traces by instru-
menting baseline compiled benchmark programs. We only
keep hot traces that execute more than 100 times in the re-
sults, because frequently executed traces are potential tar-

6

Figure 8. Overhead of compilation and trace
collection

gets for parallelization. The results are shown in Figure
6. The execution time spent on frequently executed traces
ranges from 74.60% to 89.71%, indicating that the ma-
jor part of program execution is taken by those hot traces.
Hence, decent speedup can be expected if the hot traces are
well parallelized.

9.2 Speedup

The speedups of all 7 benchmarks are shown in Figure 7,
whereSEQ represents sequential execution,TP stands for
trace parallelization, andMP represents manual paralleliza-
tion. We also measure the speedup with and without opti-
mization of Jikes RVM, which are represented asBASE and
OPT respectively. With our approach, all seven benchmarks
achieve obvious speedups with and without optimization.
The average speedups are 1.38 (baseline) and 1.41 (opti-
mized) on two processors, as shown in Figure 7.

On a dual-core machine without optimization, the first
group of four benchmarks shows fair speedups around
1.4. Among other three benchmarks fromsection3of Java
Grande benchmarks suite,moldyn gains the least speedup
with our approach while doing the best with manually par-
allelized version. The reason is that theα ratio of dependent
section to whole parallelized code section inmoldyn’s
only hot methodparticle.force() is high. There is
relatively heavy loop-carried dependence in that code sec-
tion. Our approach can only automatically insert depen-
dence guards that make parallel threads work in the busy-
wait mode. Thusmoldyn shows lower speedup than other
two benchmarks, which have smallerα values in their par-
allelized code sections.

In the beginning of experiments, we do not allow any
optimizing recompilation to be done during program execu-
tion. The purpose is to study our approach without any pos-
sible interference. However, Jikes RVM provides power-
ful adaptive optimization system (AOS) that boosts perfor-
mance of Java programs. Hence, we also study the impacts
of optimizations on speedup. The results in Figure 7 indi-
cate that our automatic parallelization still works well with
Jikes RVM’s AOS. The average speed up is 1.41, which is
similar to the result in section 7.1 and competitive to man-
ual parallelization with an average speedup of 1.63. Jikes
RVM’s AOS and our approach integrate naturally because
good parallelizing candidates are usually also good targets
for optimization, and our framework is capable to exploit
the optimization compiler during parallelization.

Benchmarks Par. Methods Par. Time Trace Time
crypt 1 0.20% 0.60%
lufact 3 0.61% 0.73%
series 1 0.02% 0.15%
smm 1 0.03% 0.20%

moldyn 1 0.01% 0.06%
montecarlo 6 0.12% 0.31%
raytrace 2 0.01% 0.01%

AVERAGE - 0.14% 0.30%
GEO-MEAN - 0.05% 0.17%

Table 2. Overheads of parallelization

Compared to manually parallelized version of all seven
benchmarks, our approach shows less speedup. The reason
is that manual parallelization applies more aggressive par-
allelizing techniques, while our approach uses simple ones.
For example, a reduction instruction likea = a+1 in a loop
can be parallelized manually without waiting for previous
iterations, by calculating separate sums on each thread and
add them together after parallel execution. However, our
approach does not apply this kind of ”clever” paralleliza-
tion. Instead, we insert locks for variablea and make par-
allel threads wait until previous value is written to memory.
This gap between our approach and manually parallelized
code may be filled by equipping our approach with better
parallelizing techniques, which will be part of our future
work.

9.3 Overhead

The overheads introduced in our approach in shown in
Table 2 and Figure 8. They are surprisingly small for a sys-
tem with on-line instrumenting and dynamic recompilation.
As described in Section 2, we put a lot of work on trace
collection to reduce overheads. By limiting high-level trace
instrument to hot methods and executing instrumented code
only once, the time overhead of trace collection is quite sat-
isfying, only 0.30% on average. On the other hand, compi-
lation overhead is also small. This is because of the baseline
compiler that we use for both instrumenting and paralleliz-
ing. Although generating non-optimized machine code, the
baseline compiler is the fastest compiler provided by Jikes
RVM. The average compilation overhead is 0.14%. How-
ever, higher compilation overhead can be expected if op-
timizing compiler takes the place of current baseline com-
piler.

It is also shown in Table 2 that overhead is related
to the number of parallelized methods. We divide all 7
benchmarks into two groups based on their total execution
time, where group 1 has higher overheads because of their
shorter running time. In the group of first four benchmarks,
lufact has 3 methods parallelized while others have only
one, thus its parallelizing and trace overheads are both high-
est in this group. In the second group,montecarlo
has 6 methods parallelized, and consequently its overhead
(0.43%) is much higher thanmoldyn (1 method, 0.07%)
andraytrace (2 methods, 0.02%). Additionally, size of
accessed memory is another factor that affects trace collec-
tion overhead, which is the reason ofmoldyn’s trace col-
lection overhead overrunningraytrace’s.

10 Related Work

Some work has been done on trace based automatic par-
allelization [4, 3]. This work performs an additional exe-
cution to collect trace information off-line. Besides, only

7

simple loop induction/reduction dependency is considered
in this work. In contrast, we use on-line trace collection
to avoid the expensive profiling execution, and introduces
more advanced dependency analysis in order to deal with
more complicated Java programs.

In the past two decades, a number of parallelizing com-
pilers are developed. Most of them are designed for static
high level programming language, like C and Fortran. Some
examples are SUIF [8] and Rice dHPF compiler [6]. All
these works focus on convert source code into high quality
parallel executable code. In another word, source code is
required for these approaches. In contrast, our work does
not need any source code.

There are also some researches utilizing JVM for par-
allelization. Chan and Abdelrahman [5] proposed an ap-
proach for the automatic parallelization of programs that
use pointer-based dynamic data structures, written in Java.
Tefft and Lee [13] use Java virtual machine to implement
an SIMD architecture. Zhao et. al. [14] developed an on-
line tuning framework over Jikes RVM, so that a loop-based
program can be parallelized and tuned at runtime, with ac-
ceptable overheads, increasing the performance when com-
pared to traditional parallelization schemes. The core of
their work is a loop parallelizing compiler which detects
parallelism in loops, divides loop iterations and creates par-
allel threads. None of these work utilizes trace information
in their systems.

Another interesting research area is thread-level specu-
lating. Pickett [11] apply speculative multithreading to se-
quential Java programs in software to achieve speedup on
existing multiprocessors. Also, Java runtime parallelizing
machine (Jrpm) [7] is a complete system for parallelizing
sequential Java programs automatically. It is based on a
chip multiprocessor (CMP) with thread-level speculation
(TLS) support. However, speculation always requires addi-
tional hardware support. In contrast, our approach is purely
software fully implemented inside of Jikes RVM, without
any hardware requirement.

11 Conclusion

In this paper, we have introduced a novel approach of
automatic parallelization for Java programs at runtime. It
is a pure software-based online parallelization built upon
Java virtual machine. The parallelization can be done with-
out any source code or profiling execution. Our experimen-
tal result indicates that good speedup can be achieved for
real-world Java applications that exhibit data parallelism.
All benchmarks are accelerated and the average speedup is
1.38. While this is less than an ideal speedup on a dual-core
processor (i.e. 2), it is not too far away from the speedup of
even manually parallelized version of those Java programs,
considering that the parallelization is done automatically at
runtime by the compiler. Also, we observe very small over-
head, only 0.44% on average, is introduced by our approach
during trace collection and recompilation. To conclude, our
on-line trace based parallelization can efficiently parallelize
Java programs.

Acknowledgement

This work was funded in part by NSF grants CCF
0914543 and CNS 0720502.

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive optimiza-
tion in the jalape no jvm. InOOPSLA ’00: Proceedings of the 15th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and
applications, pages 47–65, New York, NY, USA, 2000. ACM.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. InPLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation, pages 1–12,
New York, NY, USA, 2000. ACM.

[3] B. J. Bradel and T. S. Abdelrahman. Automatic trace-based parallelization of
java programs. InICPP ’07: Proceedings of the 2007 International Conference
on Parallel Processing, page 26, Washington, DC, USA, 2007. IEEE Computer
Society.

[4] B. J. Bradel and T. S. Abdelrahman. The potential of trace-level parallelism in
java programs. InPPPJ ’07: Proceedings of the 5th international symposium
on Principles and practice of programming in Java, pages 167–174, New York,
NY, USA, 2007. ACM.

[5] B. Chan and T. S. Abdelrahman. Run-time support for the automatic paral-
lelization of java programs.J. Supercomput., 28(1):91–117, 2004.

[6] D. Chavarria-Miranda and J. Mellor-Crummey. An evaluation of data-parallel
compiler support for line-sweep applications.Parallel Architectures and Com-
pilation Techniques, 2002. Proceedings. 2002 International Conference on,
pages 7–17, 2002.

[7] M. K. Chen and K. Olukotun. The jrpm system for dynamically parallelizing
java programs. InISCA ’03: Proceedings of the 30th annual international
symposium on Computer architecture, pages 434–446, New York, NY, USA,
2003. ACM.

[8] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, and E. Bu.
Maximizing multiprocessor performance with the suif compiler.Computer,
29(12):84–89, Dec 1996.

[9] IBM. Jikes research virtual machine.http://jikesrvm.org/, 2009.

[10] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and develop-
ment of java grande benchmarks. InJAVA ’99: Proceedings of the ACM 1999
conference on Java Grande, pages 72–80, New York, NY, USA, 1999. ACM.

[11] C. J. F. Pickett. Software speculative multithreading for java. InOOPSLA
’07: Companion to the 22nd ACM SIGPLAN conference on Object oriented
programming systems and applications companion, pages 929–930, New York,
NY, USA, 2007. ACM.

[12] L. A. Smith, J. M. Bull, and J. Obdrźalek. A parallel java grande benchmark
suite. InSupercomputing ’01: Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM), pages 8–8, New York, NY, USA, 2001. ACM.

[13] R. Tefft and R. Lee. Reduction of complexity and automation of parallel execu-
tion through loop level parallelism.Quality Software, 2007. QSIC ’07. Seventh
International Conference on, pages 304–308, Oct. 2007.

[14] J. Zhao, M. Horsnell, I. Rogers, A. Dinn, C. Kirkham, and I. Watson. Opti-
mizing chip multiprocessor work distribution using dynamic compilation. In
Euro-Par 2007 Parallel Processing, pages 258 – 267. Springer, 2007.

8

