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Abstract 2 Overview

; __Figure 1 depicts the system that we implemented upon
| I_We %ropose a new a?proe;ph thqlt_hautomatlcarllly pﬁlralt Jikes RVM [9], and also the main procedure of paralleliza-
elizes Java programs at runume. The approach COlleCtS 5y~ There are four main components in our system, in-
on-line trace information during program execution, and cjuding an on-line trace collector, a cost/benefit model, a
dynamically recompiles methods that can be executed InEaraIIeIizing compiler and a parallel execution environte
parallel. We also describe a cost/benefit model that makesFirst of all, we utilize the on-line sampling-based profil-
intelligent parallelization decisions, as well as a pasll  ing mechanism of Jikes RVM to identify “hot methods”,
execution environment to execute parallelized code. We imwhich take major parts of the total execution time of Java
plement these techniques upon Jikes RVM and evaluate ouprograms. We only consider hot methods as paralleliza-
approach by parallelizing sequential benchmarks and com- 40N candidates in order to reduce unnecessary instrument-

' : : ing and threading overheads.
paring the performance to manually parallelized version of ™= "7 - approach, we filter the hot methods based on sev-

those benchmarks. According to the experimental results,q 5| heyristics. First, only methods from user application
our approach has low overheads and achieves competitivegre selected. Thus Java core and VM methods are not con-
speedups compared to manually parallelized code. sidered in this work. Second, the length of the methods can
not be very short. Third, the methods must contain loops.
We call the hot methods satisfying these criteyted can-
didatesfor parallelization.
After good candidates are identified, we recompile them
) to insert instrumenting code. As a result, trace infornratio
1 Introduction can be collected in the next execution of instrumented meth-
ods, and then itis delivered to a cost/benefit model to decide
whether the traces are profitable to be parallelized or not.
After that, those traces worthy of parallelization are péss
" h readv b . inb hto a parallelizing compiler, which recompile the methods
Muu-Processor as already become mainstream in boththat contain those traces. And finally, parallelized trawes
personal and server computers. Even on embedded deacyte in parallel inside the Parallel Execution Environmen

vices, CPUs with 2 or more processors are increasingly (pEE). The details of these components are described in the
used. However, software development does not catch Upf|iowing sections of this paper.

with hardware at this time. Designing programs for multi-
p][ocessor computgrsll_s”stlllBa d_lgflcult t%s_k and rbequwfeln al

of experiences and skills. Besides, a big number of legacy _li ;

programs that are designed for single-processor computer? On-line Trace Collection System
are still running and need to be parallelized for bettergrerf

mance. All these facts require a good approach for programg 1 Tyace Formation

parallelization. )

In this paper, we propose an automatic parallelization ap- A trace is defined as a sequence of unique basic blocks
proach based on Java virtual machine (JVM). Traces, whichwhich are executed in sequential order during the execution
are sequences of actually executed instructions, are nsed iof a program [2]. An example of trace formation is in Figure
our approach as units of parallel execution. Furthermore,2 which is a control flow graph of some program section.
we collect trace information on-the-fly during program ex- Tygce T1 is the sequence fB1, B2, B3, B4, B, and T2

ecution, so that our approach works simply with any given ; .
Java byte code. There is no need for any source code or pro¢onsists of basic blocksB2, B3, B4, B§. In contrast, a

filing information. We also utilize some excellent existing sequence of basic block82, BS, B6, B2 may be executed
features in JVM, such as run-time sampling, on-demand re-at run-time due to the loop structure, but it is not a trace
compilation and multi-thread execution. Enhanced by run- because B2 occurs twice in the sequence. Traces can be
time trace information, our experimental results show that collected by a trace collection system (TCS) that monitors
this approach is able to achieve competitive results of par-a program’s execution. In our particular case, we extend
allelization for Java programs, as compared to paralleécod trace definition to two types: Execution Trace and Memory
by hand. Access Trace.



Hot Methods
C ot > 81
Trace Compiler Regular Methods \
Good Candidate Bad Candidates T V' B2 '-\
Instrumented /A//
Methods B3 B5 \
# Execution Trace \
) # Load Trace [y 2
Trace Information # Store Trace \ T
B4
| Cost/Benefit Model |—>| Regular Compiler | \ -— ! T4
Cost >= Benefit X L/
Cost < Benefit ; B6
Parallelizing Compiler Regular Methods v
B7 ¥

Parallelized Methods

{PETS Figure 2. Traces in a program section

# Variable Passing
# Dependency Guards
# Inter-thread Synchronization

Parallel Execution
Environment

. . Backward jumps/branches,

Figure 1. Procedure of on-line trace based au- * Jump

tomatic parallelization e Last instruction (usually return instruction) of an in-
strumented method,

e points where length of a trace exceeds a given thresh-
old, i.e. 128 bytecode instructions in this study, which
is rare to be reached based on our experiments.

e Execution Trace . i

An execution trace records a sequence of executed in- Based on the conditions described above, traces are con-
structions and basic blocks. Instrumenting code sec-structed and stored as objects in the JVM. Also, addi-
tions are injected at every jump and branch instruction, tional information such as execution count of traces is also
recording their run-time targets. Similar instrumenta- recorded and saved within the trace objects. As a result,
tion is applied to method calls and returns. Backward the hot methods that are potential targets for parallétinat
jumps or branches are treated particularly to identify can be split into multiple traces. For example, a singlelleve
oops and collect loop information like induction vari-~ loop without any branch can be normally divided into three
ables and loop boundaries. Time stamps are also col-traces: one is the first iteration with some instructions be-
lected at instrumenting points, which is needed by fu- fore the loop; another trace is the loop body that may be

ture analysis during parallelization. executed many times; and the last one is the last iteration
that jumps out of the loop and continues executing follow-
e Memory Access Trace Ing Instructions.

A memory access trace is a sequence of read and write
operations to the memory, including variables, fields 3.2
and array references. It'is collected for data depen-**
dence analysis during parallelization. As the actual ]
memory addresses can be collected by on-line TCS, There are several ways to implement a TCS, such as a
it is now possible to perform much more accurate de- hardware profiler and a machine code recorder in an inter-
pendence analysis compared to static approaches, egpreting VM. However, our choices are narrowed down b
pecially for class fields and array accesses. To re-the unique constraints that our on-line TCS needs to sat|s¥y
duce memory space overheads, continuous memory
addresses are combined to one entry, and only a lim- ¢ | ow overheads
ited number of entries are kept in one trace. Our study  As our TCS is on-line, any overhead introduced here
shows this apzj)roa_ch works well with regular loop- is counted towards the final performance of whole sys-
carried dependencies. tem. Hence, the time spent on TCS must be kept as
little as possible. In addition, trace information col-
~ These two types of traces are bound so that each execu- lected by on-line TCS is stored inside of JVM's run-
tion trace has only one memory trace. And the boundaries time heap together with the executing program. As
of traces are determined by specific types of instructions at a result, we also need to control space overheads of
run-time. A trace starts upon detecting one of two possible TCS to avoid unnecessary GC, which may harm per-

Trace Collection

trace entry points: formance and complicate dependence analysis.
e Firstinstruction of an instrumented method, e Detail and accuracy
o On the other hand, on-line TCS is expected to provide
e EXxit points of another traces. detailed and accurate trace information of parallelizing

candidates. The parallelizing system relies on this in-
On the other hand, traces end at several other program  formation for the following tasks, including decision
points: making, dependence analysis and final parallelizing



compilation. At least, all branch/call targets must be  For the local variables in a trace, we generate both read

recorded, as well as memory accesses to variables andnd write lists from the corresponding memory access trace.

arrays. Since local variables are stored in JVM run-time stack and
represented by unique integer values in Java byte codes,

Due to the two requirements and the fact that Jikes RvM read/write lists are sequences of integers. We first signplif
is compilation basea, we choose to enhance Jikes RvM'sthe lists of a trace according to in-trace dependence, then
baseline compiler with the ability of inserting instrument —calculate inter-trace dependencies with other traces.

ing code into generated machine code. Instrumenting code  Arrays have to be carefully managed because they are
is executed when certain points in program execution isin the heap and the only way to access an array element
reached. At that time, useful run-time information IikeJreﬁ is through its memory address. Our memory access trace
ister values and memory addresses is sent to trace collectecords the actual memory addresses accessed by the traces
tor running in VM. In order to minimize overhead while during the instrumenting execution. When an instrumented
recording detailed and accurate data, we make the TCS semethod executes, its load and store instructions, as well
lectively work on different detail levels for various pads as their memory addresses, are monitored and stored in its

a program. Specifically, there are three levels in trace col-Memory access traces. Then we perform a similar analysis
lection. like what is done for the local variables. The only concern is

merglory usage of storing those _addrtfesses_. To dealdv(\j/ith this
) ; roblem, we compact one section of continuous addresses
* Lovel 0 e lowest ace collecton leyel whete o1l nto one aarecord hat stores  range of memory adresses
is apblied on most methods that are not hgt' instead of a single address. This compaction is able to save
PP ' a lot of memory spaces as observed in our experiments.
. : ~ We also try to simplify dependence analysis by introduc-

e Level 1 - In this level, full execution traces are jngdependent section, which is a section in a trace contain-
recorded, while no memory access trace is kept. Thising |l instructions dependent to another trace. For ircgan
level is used for the non-loop sections in hot methods. 3 single loop has 100 instructions and the 80th and 90th in-

i . structions carry dependence between loop iterations.idn th

e Level 2- The highest level that records both execution case the dependent section of loop body trace is 80 to 90
and memory access traces. The most detailed and acafter dependence analysis. Dependent section is used based
curate information is provided by this level for future on the observation that in most cases only a small section
analysis and parallelization. Only loops in hot meth- of instructions in a trace carries dependencies. Besides, u
ods, which are best parallelizing candidates, can trig- ing single dependent section for each trace greatly reduces
ger level 2 trace collection. synchronization/lock overheads in the busy-waiting mode,

which is used in our parallel execution model.

Hence, onI?/ a small but frequently executed part of a

program is fully instrumented. Overheads are significantly .

reduced while most useful traces still have detailed and ac-5 Cost/Benefit Model

curate information. Besides, after being recompiled and in
strumented, the methods execute only once to collect trace

information. Upon finishing a method’s profiled execution, _After collecting trace information for hot methods and
trace information is passed to the cost/benefit model for 2nalyzing depengenmes between traces, our approach then

i i7ati isi is e decides whether it is worthy or not to parallelize them. We
gﬁgﬁe igé‘ga'c',?"é%tc',%‘p‘i',ee‘gsi'r?tgsbgi‘r? rllr;[gghrir;]eghc%%:as \‘fv'lttrr']e introduce a cost/benefit model inspired from the one used in
out any instrumenting code. No matter what decision is JIkes RVM'S adaptive optimization system [1]. This model
made, there is no more trace collection overhead after re-Calculates the estimated time of both sequential and péarall

N ati : execution of a parallelizing candidate with its trace infor
833} g%t(ljogf Eﬁf%lf_‘ﬁn(g %Ié:tgei'segg(r:tg dtggfer!b%jnat%%\%tﬁgrmation and some constants. Parallelization is performed if
hand, most executions of a method have very similar be-the following inequality is satisfied.
haviors even thouRh they have different parameters. Fur- T T 1
thermore, trace collection occurs after warm-up stageef th Ep <Tpx [ @)
Java programs, which makes the execution behavior rather  Here 77,5 is the estimated time of parallel execution of
stable. Thus the trace information is accurate enough fora trace or a group of traces, including the overheads due to
parallelization. o trace collection and parallelizatiofi; represents the esti-
The output of trace collection is a data structure named mated time of sequential execution; afidenotes a control
Trace Graph. In a Trace Graph, the nodes are the trace$acior which is a constant 1 and can be tuned. For exam-
and the edges describe the control flow dependence amonEle, if we want to parallelize only the methods that bring
traces. For example, if a trace T2 starts right after another igh benefit after parallelization, f can be set to 0.8 or 0.7
trace Tlﬁx'g& ac irectional ﬁd%e will be greﬁted from T1 10 in"order to filter others out. Because estimation is made on-
12- Each edge has a welg tt alt recorcs how marny limesthe-fly during run-time, we have no idea of the exact future
the edge is passed. A full example is shown in Figure 3(a). execqtion time for a given section of code. We thus use the
same heuristic as the one in Jikes RVM’s AOS model, that
is, future execution time is equal to the execution time in

4 Dependence Analysis the past. This assumption works well with AOS, as well as
our approach.
Given different memory access patterns, traces may be Te=Tp=S8x%xQ 2)

data dependent on each other. In order to resolve the de- . ] . .

pendence among traces, we utilize the memory access trace In Equation 2,7p is the execution time in the past,
information collected by our on-line TCS. There are two calculated by number of samplé&sand sampling interval
types of dependencies that we deal with: local variables, ). Furthermore, the estimated time of parallel execution
and arrays. They are processed separately based on mencan be calculated by the Equation 3, whétg is wait-

ory access traces. ing/idle time during parallel executioff,, ¢, ,cqq represents



the time spent on parallelizing and other overheads, and N Ajgorithm 1: Trace Parallelization
is the number of available processors (cores).

input : TG - Trace Graph
input : BC - Byte code of parallelized method

T : :
_ & input : N - Number of parallel threads
Tpp = N +Tw + Tovernead (3) output: Compiled master and slave methods

. . . 1 C«~FindCGrcle(TqG),
In Equation 4Ty, can be roughly estimated witl, the 2 while C # NULL do
ratio of the execution time of a dependent section to thé tota 3 L + Fi ndout Most Loop( C,BC) ;
execution time of the whole program.is calculated usin 4 CreateN — 1 worker classes with slave methods
recorded execution time of both the instrumented method > Copy traces irl. to every slave methols _
and its dependent sections. The timing information is col- g 'é‘ﬁiﬁgie.ﬂiﬂiﬁﬂﬁevit‘.iﬁi Q{hdaﬁgggfg: iecjsofk_
lected during trace collecting instrumentation. When this . A
ratio is smal?enoughfw can be even 0. The formal equa- g ?dg COdje“th;TaAsltle‘F methc_)sthz?\t invokes slaves and waits for them
tion to calculatelyy is as follows Al ek
w . 10 C«FindCrcle(TG);
11 end
0 if o <+
Tw = Ty . _ Jf (4)
ol — N if a > ~ Master Slave
Method .Method .
ANd T,,pcrhead CONSISts of two components. One is the T T
compilation time of parallehzm% compiler, which can be es ’ I
timated by the byte code length and compiler’s compilation Iteration
speed. The other comes from parallel execution environ- 49 24,..,24
ment and can be represented as a constant. As a result, we S T3 ‘ i
have the final equation of future parallel execution time. \\ig/ veration T3 ] T3
1 1,3,..,25 } }
T : 1 T2 T2
T . {]\? + Toverhead if S N (5) l |
EP — . 1 T4
Finalize Parallel Execution
After Tr andT'r p are calculated respectively in (2) and
(5) by the cost/benefit model, inequality (1) is applied to T4
make the final decision. Obviously, parallelization is more () Trace Graph (b) Parallelized Traces

likely to be performed when dependence is not intensive,

i.e. ais a small value. . o
Figure 3. An example of trace parallelization

6 Parallelizing Compiler

o . . traces in a circle, parallelizing compiler construct botsm
Parallelizing candidates that pass the check in ter and slave methods, as shown in Figure 3(?. Loop induc-
cost/benefit model described above are sent to thetion variables in both methods are configured based on ex-
parallelizing compiler. One candidate is then compiled ecution frequencies (edge weights in Figure 3(a)) in Trace

to N new methods, wheréV is the number of available Graph. lterationi x NumberO fCores + k is assigned

processors (or cores). For now, our parallelization apgroa o the kth core so that workloads are evenly di
. g _ y dispatched,
does not consider the underlying hardware features excepf,o.a." — 0,1.2..... Also, some maintenance code seg-

the number of processors. TheSenew methods can be ments are inserted into the master method in order to man-

divided into two types: a master that runs on the main : ; : .
e ; Lo age the multi-threaded execution. Its details are discusse
thread as a part of original sequential execution; and slave fer in this paper, As a result, the theoretical speedugy aft

that only executes parallelized tasks and are destroyed a arallelization in this example is approximately 2, if we '3

the end of parallel execution. The main workload in the g -
original method, which consists of repetitively executed g%%&lilotrr:e overheads of parallelization and multi-thegh

traces, is partitioned in the unit of trace and assignedlgven Moreover, Figure 4 depicts the details of code generated

to both master and slave methods. A general desc”ﬁtr'r?nby a parallelizing compiler. Several special code seﬁments

of our trace parallelization approach is given in Algorit / 0% ;
D d : : are inserted into both the original method and parallelized
1, where functionFi ndCi r cl e looks for circles in a new methods. They are:

'I;]race Graph ?nd anCtiOIFi ndCut Mbst Loop .reicurns
the outermost loop that contains a given trace circle. : - ;
Figure 3 illustrates an example of parallelizing traces *® ﬁ%\c;glt(aeprg;r)gwerll%)eeaéalliglnexecutlon. Pass variables and
from Figure 2 on a dual-core machine, in which we as- P '

sume that only four traces T1, T2, T3 and T4 are collected o Code for dependency guards: Obtain and release locks
at run-time, and their relationship is described by a Trace ' '
Graph shown in Figure 3(a). These assumptions are made e Code of modified induction/reduction: Used for paral-
to simplify the example, because traces and their relation- lelized loop iterations.

ship may be chan(]:;ed completely if inputs are different. We

allqlso assumg thed oop gw igureIzDZ it”erlz_;\tes 100 ti(r|1es|, ar|2d . Coglelfinaliﬁing parallel execution: Pass variables back
there is no data dependence. Parallelizing compiler looks and clear the scene.

into Trace Graph f(g)r circles, which is T2 gnd T3 in Fig-

ure 3(a), because repetitively executed traces usually hav  As described in Algorithm 1, our approach is a hybrid of
good parallelism. After checking data dependence of thetrace and loop parallelization. The reason of not using pure
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Figure 5. Parallel Execution Environment

trace based parallelization is a limitation of on-line &ac

collection. Due to existence of branches, a program may ) ]

have different traces given different inputs, and on-laeé guards WraEped to the dependent sections in the code. Gen-

collection does not guarantee to cover all possible traces aerally speaking, PEE takes care of executable code gener-

run-time. As a result, some executiondpaths may be missingated by the parallelizing compiler, and makes sure they are

in parallelized code if pure trace based parallelizaticapis ~ ~executed correctly. Figure 5 demonstrates how PEE works

plied. In order to resolve this problem, we combine trace with a parallelized code section dvi processors.

and loop parallgllzatloratoggther. ”Lloopdbodlesdtha%t con-

tain traces are detected and parallelized instead of trace .

Hence, all possible paths are covered, and the control flow?1 Parallel Execution Threads

amonﬂ_traces is taken care of by branches in the loop bod- o )

ies, which simplifies the code generation for multiple tsace As shown in Figure 5, PETs are separately assigned to

Also, the hybrid approach utilizes more run-time trace in- multiple processors. Normally, one PET does not travel be-

formation for IOOJ) parallelization compared to traditibna tween processors to reduce overhead. PETs and daemon

static loop-based approaches, which provides chances tdhreads that start running right after VM is booted. How-

perform more aggressive and accurate parallelization. Aever, PETs stay in the idle state before any parallel execu-

major advantage of our hybrid a%proach is that data de-tion method is dispatched. PETs may be waken up by the

pendence analysis, which is based on run-time trace infor-main thread, and it can only be waken by the main thread.

mation as described in Section IV, is much more accurateAfter executing the given parallel execution method, a PET

than what can be done in static loop-based parallelization.goes back to idle and waits for next invocation from the

For instance, if basic block B3 in Figure 2 accesses somemain thread. , )

data stored in the heap, it is hard and sometimes impossi- There are several benefits by using the wake-up/sleep

ble for a static loop-based parallelization approach tedet mechanism instead of creating new threads every time for

mine whether this memory access is safe to be parallelizedparallel execution, though the later approach is easier for

or not. But it becomes much easier in our hybrid approachImplementation. First, using a fixed number of threads

because the actual memory addresses are recorded duringreatly reduces the pressure on memory usage during run-

trace collection stage, and thus the memory access patterime. Second, it makes the scheduler more extendable for

of B3 can be constructed and used for parallelization. How- other advanced scheduling policies.

F\i_er, c}he (51ybri<|j1 _approach cijntrodu_ce? bran((:jhes irr]1to pafral—

elized code, which may reduce pipeline and cache perfor- : :

mance comlpared to pure trace-based paralielized code thaf -2 ~ variable Passing

is completely sequential. Besides, dependent sections may , ) )

increase because more instructions are compiled into the It is necessary to make copies of local variables, which

parallelized code. And memory spaces may be wasted forare shared across PETs, and pass them safely to other

those instructions that will actually never be executed. threads outside of the main thread. We use arrays to do
this job. Each parallelized code section keeps its own vari-
able passing array, which is pre-allocated at the compiiati

7 Parallel Execution Environment stage. The array is filled with local variable values before
waking up PETS, so that at the beginning stage of each par-
allel executed method, those values can be read correctly

Parallel Execution Environment (PEE) is implemented from the array. Similarly, writing back to this array is the

upon Jikes RVM's multi-thread execution functionality. last job of a parallel executed method. And the main thread

PEE contains one or more Parallel Execution Threadsrestores local variables from the arrays before mowng.on to

(PETs), manages copies of local variables passed betweethe next instruction. This procedure is also shown in Figure

the main thread and PETs, and maintains the dependencé.



Benchmarks Execution Time(s) | Input Size | Description
BASE OPT
crypt 2.73 1.38 3,000,000 | IDEA Encryption
Java Grande| Tufact 2.72 0.27 500 LU Factorisation
Section 2 series 6.99 5.11 10,000 Fourier Coefficient Analysis
smm 3.96 0.71 50,000 Sparse Matrix Multiplication
Java Grande| moldyn 33.42 2.80 2,048 Molecular Dynamics simulation|
Section 3 montecarlo | 10.35 4.10 2,000 Monte Carlo simulation
raytrace 35.97 4.03 150 3-D Ray Tracer

Table 1. Description of benchmarks
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Figure 7. Speedup of trace and manual par-

Figure 6. Percentage of hot traces in total ex- allelization (baseline and optimized, respec-
ecution time tively)
7.3 Dependence Guards andsmm They are short codes that carry out specific op-

erations frequently used in grande applications. Group 2

Dependence guards are implemented with Java threadontains three benchmarksol dyn, nont ecar | o and
synchronization mechanism, particularly, locks. During T aytrace from section3 which is a group of large-scale
parallelizing compilation, dependent codé sections ae-id ~ application tackling real-world problems. These bench-
tified base on trace information, and then wrapped u W|t.h marks all eXthIt good_ data-leve parallelism. Anot.her-rea
two spec|a| Coqe segments called dependence guards. Firgon of choosmg them IS th_at their manuaIIy parallehzed ver
code segment is inserted before a dependent section to agions are also provided in Java Grande benchmark suite,
quire a lock, and the other one is right after that dependentwhich we can directly compare our approach with. We use
section to release the lock. To reduce the complexity andthe small input size in order to make it easier to observe im-
synchronization overhead, each parallelized sectionshold pacts of our approach sdand all kinds of overheads. Bench-
only one lock object. This means all dependent instructions mark details such as sequential execution time (baselitie an
have to share one lock, and Qonseguently the dependent se@ptimized) and input size are described in Table 1.
tion is the union of all individual dependent instructions.

Although this approach increasesralue and thus may de- .
crease speedup after parallelization, we believe itisaleim 9  Experimental Result
and fair solution to avoid too many locks and high synchro-

hization overhead. We first measure the fraction of trace execution time

tTohjustify whelther it is worthy orh nbot to parallelize trace(sj.

i en we evaluate our approach by two metrics: speedu

8 Evaluation Methodology and overhead. Speedup is defined as the ratio of sequent%l
(base) execution time to parallel execution time. We mea-

We implemented our approach described in Section 2 tosure the speedup for both our automatic parallelized ver-
7 as an extension on Jikes RVM version 3.1.0. The codesion and the manual parallelized version provided by Java
is compiled with Sun JDK version 1.519 and GCC ver-  Grande benchmark suite. Overhead is defined as the time
sion 4.3.3. We use a dual-core Dell Precision 670 with 2 spent on trace collection and recompilation.

Iﬂtel Xeon 3.6 GngﬁroceSSO(s and 2 GB DDﬁ RAM t(ﬁ_run.

the experiments. The operating system on that machine i . .

Ubuntu Linux with kernel version 2.6.28. Each processorsg'1 Trace Execution Fraction

has an 8 KB L1 data cache and a 1024 KB L2 cache. _ o _

The benchmarks that are used in our experiments are We first measure the execution time of traces by instru-
from Java Grande benchmark suite [10, 12]. We use twomenting baseline compiled benchmark programs. We only
groups of benchmarks. The first group consists of four keep hot traces that execute more than 100 times in the re-

enchmarks fronsection2 crypt, [ufact, series sults, because frequently executed traces are potential ta



B Parallelizing Time [ Trace Time Benchmarks | Par. Methods| Par. Time | Trace Time

crypt 1 0.20% 0.60%
lufact 3 0.61% 0.73%

° series 1 0.02% 0.15%

E smm 1 0.03% 0.20%

5 moldyn 1 0.01% 0.06%

"§ montecarlo 6 0.12% 0.31%

2 raytrace 2 0.01% 0.01%

w

5 [ AVERAGE | - [ 014% | 030% |

) [ GEO-MEAN | - | 005% | 017% |

©

€

g

[}

o

Table 2. Overheads of parallelization

Compared to manually parallelized version of all seven
Figure 8. Overhead of compilation and trace benchmarks, our approach shows less speedup. The reason
collection is that manual parallelization applies more aggressive par
allelizing techniques, while our approach uses simple ones
For example, a reduction instruction like= a+1 in a loop
can be parallelized manually without waiting for previous
iterations, by calculating separate sums on each thread and
o o add them together after parallel execution. However, our
gets for parallelization. The results are shown in Figure approach does not apply this kind of "clever” paralleliza-
. The execution time spent on frequently executed tracestion. Instead, we insert locks for variableand make par-
ranges from 74.60% to 89.71%, indicating that the ma- allel threads wait until previous value is written to memory
ﬁr part of program execution is taken by those hot traces. This gap between our approach and manually parallelized

ence, decent speedup can be expected if the hot traces arde may be filled by equiﬁping our approach with better
well parallelized. parillehzmg techniques, which will be part of our future
work.

9.2 Speedup 9.3 Overhead

The speedups of all 7 benchmarks are shown in Figure 7, : . . .
where S represents sequential executidi stands ?(_)I’ - t‘!'lhezovedrklge.ads |gtr_?ﬂuced In our .apprloach 'ﬂfShOW” in
trace parallelization, antiP represents manual paralleliza- /@Rl £and rigure o. They are surprisingly smat 1or a Sys-
tion. We also measure the speedup with and without opti- €M with on-line instrumenting and dynamic recompilation.
mization of Jikes RVM, which are represente®#SEand  AS described in Section 2, we put a lot of work on trace
OPT respectively. With our approach, ail seven benchmarks collection to reduce overheads. By limiting high-levetea
achieve obvious speedups with and without optimization. InStrument to hot methods and executing instrumented code

The average speedups are 1.38 (baseline) and 1.41 (opt@nly once, the time overhead of trace collection is quite sat
mized) on ?wo Srocesgorsl as shovgm in Figu)re 7. (op Isfying, only 0.30% on average. On the other hand, compi-
On a dual-core machine without optimization, the first lation overhead is also small. This is because of the baselin
roup of four benchmarks shows fair speedups aroundcompiler that we use for both instrumenting and paralleliz-
4. Among other three benchmarks freection3of Java  iInd. Although generating non-optimized machine code, the
Grande benchmarks suitepl dyn gains the least speedup baseline compller is the fastest comﬂler p_rowde((j) by Jikes
with our approach while doing the best with manually par- RYM. The average compilation overhead is 0.14%. How-
allelized version. The reason is that theatio of dependent ~ €ver, higher compilation overhead can be expected if op-
section to whole parallelized code sectionrinl dyn’s tFI)irlrg?mg compiler takes the place of current baseline com-
only hot methodparti cl e. force() is high. There is " . .
relatively heavy loop-carried depenc?ence in that code sec-, It is also shown in Table 2 that overhead is related

i ; i _to the number of parallelized methods. We divide all 7
ggﬂbe%lfjra?é)sp{ﬂgf trwngektg 82%%ﬂoh';rggc'j%a\l,l\}/omsiﬁrgh%egﬁ n _benchmarks into two groups based on their total execution

sy-v . !
i time, where group 1 has higher overheads because of their

nw,\%tgg?%ﬁi,ng:ﬁgmv\lmdigﬁ hsellw\%/vssnl%\/lvlgrr\lg fgsd#]pt}]g?rnp%p_er shorter running time. In the group of first four benchmarks,

allelized code sections | uf act has 3 methods parallelized while others have only
In the beginning of 'experiments we do not allow any One. thus its parallelizing and trace overheads are boti hig

optimizing recompilation to be done during program execu- €St 10 this group. In the second grouppnt ecar | o
tign. The%urposepis to study our approacﬁ \I/)vitk(iqout any pOS_has 60methods parallelized, and consequently its ov(()arhead
sible interference. However, Jikes RVM provides power- (0-33 %) is muchzhlgh?]r ;‘jha'“é)log(};” (idnc]'eth()dl’l 0.07 /O)f
ful adaptive optimization s%i'stem (AOS) that boosts perfor- andr ayt r ace (2 methods, 0.02%). itionally, size o
mance of Java programs. Hence, we also study the impact ccesse% memory. 15 anorgher factor thlat affects trace eI:ollec
of optimizations on speedup. The results in Figure 7 indi- |'°”. over e%d, ‘(’j" ich is the reasonral dyn’s trace col-
cate that our automatic parallelization still works welthvi  '€Ction overhead overrunningayt races.
Jikes RVM’s AOS. The average speed up is 1.41, which is
similar to the result in section 7.1 and competitive to man- 10 Related Work
ual parallelization with an average speedup of 1.63. Jikes
RVM'’s AOS and our approach integrate naturally because )

ood parallelizing candidates are usually also good target ~ Some work has been done on trace based automatic par-
or optimization, and our framework is capable to exploit allelization [4, 3]. This work performs an additional exe-
the optimization compiler during parallelization. cution to collect trace information off-line. Besides, ynl



simple loop induction/reduction dependency is consideredReferences

in this work. In contrast, we use on-line trace collection

to avoid the e>§jpen3|vedproflllng execution, and introduces
more advanced dependency analysis in order to deal with [
more complicated Java programs.

_In the past two decades, a number of parallelizing com-
ﬁglers are developed. Most of them are designed for static

igh level programming language, like C and Fortran. Some 2
examples are SUIF [8% and Rice dHPF compiler [ﬁ]. All
these works focus on convert source code into high quality
parallel executable code. In another word, source code is
required for these approaches. In contrast, our work does [3]
not need any source code.

There are also some researches utilizing JVM for par-
allelization. Chan and Abdelrahman [5] proposed an ap-
proach for the automatic parallelization of programs that 4
use pointer-based dynamic data structures, written in. Java
Tefft and Lee [13] use Java virtual machine to implement
an SIMD architecture. Zhao et. aI.NH14] developed an on-
line tuning framework over Jikes RVM, so that a loop-based
program can be parallelized and tuned at runtime, with ac-
ceptable overheads, increasing the performance when com-
pared to traditional parallelization schemes. The core of
their work is a loop dparallelizing_ compiler which detects
parallelism in loops, divides loop iterations and creatss p
allel threads. None of these work utilizes trace infornatio
in their systems.

Another interesting research area is thread-level specu-
lating. Pickett [11] apply speculative multithreading & s
quential Java programs in software to achieve speedup on
existing multiprocessors. Also, Java runtime parallefizi
machine SJr m) [7] is a complete system for parallelizing [8]
sequential Java programs automatically. It is based on a
chip multiprocessor (CMP) with thread-level speculation
(TLS? support. However, speculation always requires addi-
tional hardware support. In contrast, our approach is gurel
software fully implemented inside of Jikes RVM, without
any hardware requirement.

[6]

[71

[9]
[20]

_ [11]
11 Conclusion

In this paper, we have introduced a novel approach of 12
automatic parallelization for Java programs at runtime. It
is a pure software-based online parallelization built upon
Java virtual machine. The parallelization can be done with- |13
out any source code or profiling execution. Our experimen-
tal result indicates that good speedup can be achieved for
real-world Java applications that exhibit data paraltelis
All benchmarks are accelerated and the average speedup i$4
1.38. While this is less than an ideal speedup on a dual-core
processor (i.e. 2), it is not too far away from the speedup of
even manually parallelized version of those Java programs,
considering that the parallelization is done automatjcail
runtime by the compiler. Also, we observe very small over-
head, only 0.44% on average, is introduced by our approach
during trace collection and recompilation. To conclude, ou
on-line trace based parallelization can efficiently paiaé
Java programs.
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