Implications of Program Phase Behavior on Timing Analysis

Archana Ravindar Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science
Bangalore-560012, India
{archana,srikat@csa.iisc.ernet.in

Abstract prove resource managemegafetyandTightnessre desir-
able traits of a WCET estimate. gafeestimate is always
Knowledge about programworst case execution greater than or equal to actual WCET.tight estimate is
time(WCET) is essential in validating real-time systems within a few percent of actual WCET.
and helps in effective scheduling. One popular approach Traditionally there have been two schools of thought re-
used in industry is to measure execution time of program garding WCET analysis. Static analyzers estimate WCET
components on the target architecture and combine themfor a given architecture without actually running the
using static analysis of the program. Measurements need toprogram[1]. The static analyzer intrinsically models tfie e
be taken in the least intrusive way in order to avoid affect- fect of the worst case path and architectural state and hence
ing accuracy of estimated WCET. Several programs exhibitcan guarantee safety. However the architectural model of a
phase behavior, wherein program dynamic execution is static analyzer can be quite complex to build and re-target.
observed to be composed of phases. Each phase being Measurement based analyzers measure smaller program
distinct from the other, exhibits homogeneous behavior Components like basic b|ocks[2] or program Segment5[3] or
with respect to cycles per instruction(CPI), data cache paths[4] etc. These measurements are methodically com-
misses etc. In this paper, we show that phase behavior hagined to yield the final WCET. However it becomes difficult
important implications on timing analysis. We make use to guarantee safety as only finite measurements are taken
of the homogeneity of a phase to reduce instrumentationand it is intractable to take into account the effect of abpo
overhead at the same time ensuring that accuracy of WCETS|b|e inputson all possib|e prograrpathsunder all possi-
is not largely affected. We propose a model for estimating ple architectural states. For this reason, measuremeatibas
WCET using static worst case instruction counts of indi- methods are more suited feoft real-timesystems that do
vidual phases and a function of measured average CPI.not have hard deadlines to adhere to. Such systems are typ-
We describe a WCET analyzer built on this model which jcally driven by human perception and hence can afford to
targets two different architectures. The WCET analyzer mijss a few deadlines without causing noticeable change in
is observed to give safe estimates for most benchmarksystem behavior.
considered in this paper. The tightness of the WCET The measurements in such a system need to be made in
estimates are observed to be improved. for most benchmarkgne|east intrusiveway in-order to avoid causing any impact
compared tcChronos a well known static WCET analyzer. o, the accuracy of estimated WCET. Achieving an accurate
estimate with less instrumentation is a non-trivial ta$k[5
In this paper, we propose a simple mechanism of measur-
ing programs so that the number of instrumentation points

1. Introduction is kept low without compromising on the accuracy of the
estimate.
The goal ofworst case execution timM@/CET) analysis Our approach is based on the observation that several

is to compute the longest execution time of a program on programs exhibiphase behavig6, 7]. The dynamic be-

a given architecture. WCET analysis is critical in real¢im havior of such a program can be divided into phases during
system design where programs are expected to meet strinits execution. Each phase being distinct from other, exhibi
gent performance goals. It is also valuable to systems thatrelatively homogeneous behavior with respect to architec-
use dynamic task scheduling; The WCET of individual pro- tural metrics like average cycles per instruction(CPI), L1
cesses can be used to produce effective schedules and indata cache misses, branch predictor misses amongst many

168 [

166

Le4

162 L

CPI
16 F

158

NN TWTD

156

154

Ls2 b

os - el AR

15

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Instructions Executed (thousands)
Instructions Executed (thousands)

AN

1500 2000

Masked PC address
Masked PC address

10000 20000 30000 40000 50000 60000 70000 BOODO 90000 100000

Instructions Executed (thousands)

Instructions Executed (thousan: ds)

Figure 1. Variation of CPI and Program counter address Figure 2. Variation of CPI and Program counter address
values with respect to time for a single run of Matmul PISA values with respect to time for a single run of Bitcount PISA
binary. binary.

others. A program likéMatmulis observed to exhibita sin- 2). Classifying the program thus, makes the phase pattern
gle phase as shown in Figure Matmulis predominantly repeat consistently across most architectures renderig t
made of a single loop repeatedly accessing a fixed set oftechnique retargetable. An important advantage of mapping
data. A program likditcountis observed to contain a num- a phase to a code region is that it is easier to come up with
ber of phases as shown in Figure Ritcountis composed a timing model for that region.
of a set of functions each performing a single simple task. We use code structural analysis [9] to mark phases in the
These programs are described in Table 2. Figures 1 andbinary. The CPI for every phase is measured by running the
2 have been plotted by sampling CPI and program counterprogram with a large number of inputs. Measurements are
address (masking its most significant bits), for every 1000 taken using the cycle accurate simula®implescalgl0].
instructions executed. The worst case CPI is defined as a function on measured
Phase behavior is used for architectural simulation effort CPI. The worst case humber of instructions that can be exe-
reduction[7, 8] apart from other applications like powedan cuted within a phase is determined by static analysis of the
energy control, memory optimization etc. Our objective is program control flow graph (CFG). The WCET of a phase
to show that phase behavior has important implications onis then computed as a product of worst case CPI and worst
program timing analysis as well. We build on the obser- case instruction count. The WCET of the whole program is
vation that program CPI remains relatively stable within a computed as sum of WCETSs of the individual phases. If the
phase. That is, the coefficient of variation(COV) of CPI program has only one phase, WCET is simply a product of
within a phase is very less as compared to the COV of CPlworst case instruction count and worst case CPI.
across phases. Hence we can measure CPI at the phase The proposed method is simple to implement and is re-
level to effectively characterize timing of program phases targetable, which makes it highly attractive to use for de-
and hence the whole program. Accounting for phase be-velopers building a large system and need a quick WCET
havior helps alleviate instrumentation overhead comparedestimate of programs on a set of architectures even if its ap-
to other measurement based approaches as phases are typiroximate. Most of the processors of today contain perfor-
cally composed of thousands of instructions. mance counters that ensure accurate measurement of sev-
A program can be classified into phases in different ways eral program metrics like CPI. In this work, programs are
depending on the parameter used for classification. In thisassumed to be single-threaded that execute without preemp-
paper, we divide the program static region into phases tak-tion. Although any general uni-processor architecture can
ing into account patterns of instruction execution[9],[8] be modeled, we target the WCET analyzer for two different
This method is in better sync with the natural period of architectures (Table 1) and test the method on a large set of
the program and more dependable as code that is executestandard WCET benchmarks(Table 2). The accuracy of the
has an important influence on architectural behavior(Fgur estimated WCET is evaluated by comparing it with a well

known static WCET analyze€hrono$11]. For most pro-
grams, the proposed method is observed to give safe esti-

Output
 —

Test

mates. On an average, the proposed estimates are observed ¥ inpus
; 0 f WCPI
to be tighter by 13% thaﬁ:hronosfor architectureA and C:od:nSDl;:;ural R ase
tighter by 196% thatChronosfor architectureB. o '
tatic WIC
Analysis A
Base configuration Issue, decode and commit width=1, RUU size=8, WCET
Instn cache 8KB L1 2-way set associative, 2 level WIC per phase

branch predictor, Fetch Queue size=4, In-order issue
Cache for Arch. A No Data cache

Cache for Arch. B Data cache 8KB L1 2-way set associative, Unified
64KB 8-way associative L2 cache

Figure 3. High level architecture of the proposed solu-

Table 1. Architectural configurations used for experimen- tion.

tation.

The remainder of this paper is organized as follows. Sec-2-1- Phase Identification
tion 2 describes the main technique followed by its evalu-
ation in Section 3. Related work is discussed in Section 4. Code structure analysis[9] takes the application binary
The conclusions and future work are discussed in Section 5.3s input and builds dynamic hierarchical call-loop graph
using profile information. A call-loop graph is a directed
. graph, whose nodes represent either a procedure call or a
2. Proposed Solution loop. It is termed hierarchical as the edges store hierar-
chical execution information along the path from call and
For a program, exhibiting predominantlysangle phase |oop nodes and are hence said to abstract path information
WCET is computed as, in some sense. This graph is analyzed to locate instruc-
WCET = (WIC) « (WCPI)) tions in the b_inary that ac_curately_ identify start_of uniq_ue
stable behaviors across different inputs. Such instrastio
WIC or Worst case instruction couns statically deter- are termed asoftware phase markers
mined by analyzing program CFG. Each loop is associated with two nodes- loop head and
WCPI or Worst case CPIs the maximum of average CPI loop body, to differentiate between loop invocation and
of a program observed across a large number of inputs. Theeach iteration of the loop respectively. Each call is as-
CPI within a phase is expected to be fairly stable, hence av-sociated with one node for non-recursive calls, two nodes
erage CPI is used in characterizing the execution time of afor recursive calls. In this work, we do not consider re-
phase for a single input. We consider the warmup CPI sep-cursive programs. Each edge stores average number of in-

arately in our calculgt_i(_)ns. _ _ structions executed along that path(A), coefficient of vari
For a program, exhibiting multiple phases, WCET is com- ation in instructions executed each time this edge was tra-
puted as, versed (COV,s¢), maximum number of instructions exe-

cuted along that path (N,.) and total number of times the
edge was traversed(C).

Where pis the number of phases occurring during program After the graph is constructed using profile information,
execution,T; is the number of times phageccurs in the all edges whose average instruction count exceeds a pre-
worst caseWIC; is the worst case instruction count of code determined threshold are considered as candidates fer soft
region corresponding to phageWCP; is the worst case ware phase markers. This is to ensure that each phase is
CPI of phass. long enough. The phase length depends on the length of the
The phases occurring in the binary are first identified us- application itself. For programs that execute a few thodsan
ing code structural analysf8] as shown in Figure 3. Static instructions, a minimum phase length threshold of 100 in-
analysis is then performed for the code region correspond-structions could be used. Those candidate edges that also
ing to each phase to determine WI@nd T;. The cycles show minimum COV,,., finally qualify as software phase
per instruction (CPJ) for each phasgis obtained by direct markers. This means that each time, such an edge is tra-
measurement of the program with a large number of testversed, the amount of instructions hierarchically exetute
inputs on the target architecture. It is worthy to note tlsat e is more or less the same. That proves our assumption that
timation of WIC for each phase and measurement of WCPI we are seeing a faithful repetition of a phase every time we
can be done in parallel. We now describe each step in detail enter this path making it a valid software phase marker edge.
beginning with phase identification. The code region corresponding to a phpses represented

C=1, A=50085
C=1, A=88650

1
Digital Alpha LL
08 |-
COV,,,=0% SR ,¢|

C=1, A=48112
cov, =0%

6 I AL AL AL A A

CPI

C=1000, A=49653 C=1000, A=88642 C=11250, A=48000
SO =il i COV, =9.98% vcovm=o_oz%

Y A 4

loop_body

C=1000, A=39
Cov, =19.88%

Instructions Executed (thousands)

MIPS PISA (5

1
P1 P2 P3 AL AL AVAAN A [

C=1000, A=38
cov, =0%

C=1000, A=22
COV, =0%

150 2
Instructions Executed (thousands)

Figure 4. Hierarchical Call-loop graph for Bitcoun€ is

the number of times, each edge is traversids the aver-
age number of hierarchical instructions executed each time
the edge is traversed. CQY: is the hierarchical instruc-
tion count coefficient of variation. P1, P2, P3.. are phase
numbers.

Figure 5. Time varying CPI graphs with phase markers
for bitcount for an Alpha executable. The phase markers
were selected from the call loop profile graph from the Al-
pha binary, were mapped back to source code level and then
used to mark the MIPS PISA binary.

by the region between the phase marker edge afd the

phase marker edge of the following phase occurring in COde_indicating the order in which instructions belonging to-dif

ferent phases are executed. The phase sequence encoun-

A program is said to be composed otimgle phasef tered for each program considered in this work is shown in
its hierarchical call loop graph contains exactly one edge Table 2. Most of the programs considered here are simple
that satisfies these properties and that edge encompassé@$d hence exhibit only one phase sequence irrespective of
the whole program. Programs that cannot be classified intoinPut. Programs with complex structure can exhibit multi-
phases using this algorithm are also viewed as single-phas®!€ Phase sequences. In such a case, WCET is computed as
programs. However such programs depict a high degree of2d maximum of the WCETSs of all possible phase sequences.
variance in their CPI throughout executiomsch(Table 2) ~ Phase based timing analysis for complex programs is in
is an example. progress.

Figure 4 depicts a part pf the dynamic hierarchicall call 2 o Context Sensitivity
loop graph constructed fditcountthat is run for 1000 it-
erations. The edge marked with an asterisk indicates thatit A program analysis is termed as context sensitive if it
satisfies the condition of a large enough average instmuctio differentiates two instances of a procedure occurring at tw
count and small enough coefficient of variation in CPl and different contexts. In this work, we perform procedure
hence has been selected as a valid software phase mark&toning and treat each call instance as a separate call. This
edge. The phase marker edges picked by the algorithmmight cause the algorithm to assign different phase num-
for one input are observed to work well for other inputs as bers to two call instances of the same procedure even if their
well[9]. The number of phase marker edges defipes CPI behavior is similar. This has an effect of increasing the
Equation (2). number of phases but has no bearing on correctness of the

Phase markers are typically edges representing call-loopsubsequent timing analysis. Examp@rc has two phases,
boundaries and hence can be easily mapped on to binariene for each clone and average CPI for each phase is about
Since phases are marked based on instruction execution pathe same.
terns, we can see thphase markers obtained by analyzing
alpha binaries with ATOM[12] hold good for MIPS R3K 2.3. Estimating WIC
PISA binariesas shown in Figure 5. We modify the original
algorithm that identifies instructions where a phase change This section describes the computation of worst case in-
is likely to occur, to also number phases as they occur. Exe-struction count of a phase which is done by a static anal-
cution of a program thus marked produces a phase sequencgsis of the program CFG pertaining to the code region of

a phase. We formulate an integer linear programming(ILP) ire testint x, int 2)
problem for this purpose. ILP is used by many static WCET 3* 2%,
analyzers to estimate WCET[1]. Each basic bl&ck the cree Y
CFG is associated with an integer variahlg, denoting to- i€ (2 < 50)
tal execution count of basic blodk The static worst case else :

sum = sum + z;

instruction count of the CFG is then given by the linear ob- it x> 20)

sum = sum + x; (n5)
sum=z

jective function, etee pum=sum + 2| (16)
o 07)
Maximize Xyp, (Np*Wp) 3 ’ BB Conflicts T £
. . . l> 2’ 7_ 8 sum=sum+x sum=sum - X
Where, W is a constant denoting the number of instruc- = n w8 o | | | | 9
tions of a basic block. The linear constraints op Aire de- o, e S
veloped from flow equations based on the CFG. Thus for
basic blockB,
Yp—~p (Ep—B) = Np= Yp_.p(Ep_p) (4) _ _ _
])) Figure 6. lllustration of Branch-Branch (BB) conflicts,
Where, B _.p (Ep—p») is an ILP variable denoting Assignment-Branch (AB) conflicts.

number of times control flows through the CFG edges:B’

B (B — B"). If an edge happens to reside within a loop, the
loop iteration bound (L) limits the number of times an edge
can execute. The bounds can either be got by automati

loop bound detection techniques [13] or provided manually) i . o
by an expert. For this work, we assume iteration bounds This section describes estimation of worst case CPI of

are given for all loops in the CFG. The corresponding linear & Phase by measurement. The CPI of a phase is measured
constraint is specified as follows. by sampling the phase at large intervals of instructions and
averaging the samples. The samples for a phase are mea-

2.5. Estimating WCPI

Ei.j<=1L (5) sured when the code region corresponding to that phase is
. executed. If the COV of CPI is very less within a phase,
2.4. Infeasible Paths we can afford to take fewer samples without affecting the

))))) accuracy[8]. Which means, very less instrumentation is re-

An infeasible path is one which can never occur in any quired within such a phase. Worst case CPI (WCPI) is de-
valid execution of the program. Weeding out infeasible fineq a5 a function of measured per-phase CPI. For single-
paths helps compute a much tighter WCET estimate. Wephase programs, WCPI is computed as a maximum of the

follow the approach used in Vivy et al[14] and identify ,pserved overall program CPI across a large number of in-
branch-branch conflict pairs and assignment-branch conflic puts,i. For programs containing multiple phasps

pairs. A branch-branch(BB) conflict pair is a set of branch
induced paths that can never occur together. Similarly an For each p, WCPI, = Max v;(CPI,) (8)
assignment-branch(AB) conflict pair is an assignment and a
branch path that can never occur together. Figure 6 shows a Warmup is an essential component of program execu-
Simp|e examp|e of an AB and a BB conflict that can occur. tion that refers to the initial stage when all the architegku
Infeasible paths are modeled as additional linear edgestructures get filled in. The warmup CPl is typically higher
constraints and are added to our linear system of equationsthan the stable program CPI. For programs executing mil-
(3),(4) and (5). Two branch edges that figure in a BB pair, lions of instructions, the effect of warmup can be ignored.
say, E_; and E,_.,, have a linear constraint as shown in The dynamic instruction count of the programs considered
Equation (6) S|m||ar|y an assignment (node) and a branchin this work range from a few thousand up to few millions.
edge that figures in an AB pair have a linear constraint as Hence for single-phase programs, CPI calculation consid-

shown in Equation (7). ers the warmup stage as well. For multi-phase programs, we
i consider the warmup as a special phase and add the warmup
BB conflict: Ei—j + Epn—n =1 (6) cycles separately to our estimated program execution time.
AB conflict: Ng+ E;_,; =1 @)

Alternatively, WIC can be estimated statically by view- 3. EXperimental Evaluation
ing the CFG as a weighted directed graph with basic blocks
as nodes, W as edge weights and computing weighted = We perform our experiments for a large set of bench-
longest path in the graph. marks (Table 2) taken frorMibencH15] and Malardalen
WCET benchmarks7]. All programs are compiled to

Benchmark and Description Number of Inputs Phase Sequence
Bezier pe3: Draws a set of 200 lines of 4 reference points on a 800X6GREN 500 sets of lines P1P2

Bitcount (itc): Performs bit operations on a 1K bit-vector, 1000 time§[15 500 vectors P1 P2 P3P4P5P6
Binary Searchlf9): Search for a key in a 10K number vector[17]. 20K (key, vector) combinations | single

Bubble sortub): Sort an array of size 3K[17]. 500 vectors single

CRC (crc): Cyclic redundancy check on a 16KB char vector[17]. 500 vectors P1P2

CNT (cnt): Counts positive numbers in a 200X200 matrix[17]. 500 matrices P1P2

Dijkstra (dij): Finds 100 shortest paths in a graph of 200 vertices usikgtdd’s algorithm[15]. [| 500 graphs single

EDN (edn): Implements set of signal processing algorithms[17]. 500 signals P1 P2 P3 P4 P5P6 PY
FIR (fir): Finite impulse response filter over a signal of size 40D[17 500 signals single

FFT (fft): Fast fourier transform on a wave of size 16K[15]. 500 signals P1P2

Insertion Sortifs): Sort a 3K number vector[17]. 500 vectors single
Jannecomplex {an): A a nested loop prograna, b are input parameters 500 combinations aé,b single

LMS (Ims): adaptive signal enhancement[17]. 500 signals single

LUD (lud): LU decomposition algorithm for a 200X200 matrix[17]. 500 matrices P1P2P3P4
Matmul (maf): Matrix multiplication of two 200X200 matrices[17]. 500 matrices single

Nsch fisch: Simulates an extended petrindummy is an input parameter[17]. dummy = 32, 500 starting stateq single

Table 2. Benchmarks and their inputs.

MIPS PISA binaries with -O2 -static flags. We uSén- 12
plescalar v3.(10] for measuring CPI of programs across a
large number of inputs. The inputs are chosen so as to sat
isfy wide coverage at the level of statements, decisions, co
ditions and modified condition/decisions [18]. Invalid in-
puts and inputs that produce very short sequence of instruc-
tions are pruned away from calculations. We test the WCET
analyzer for two different architectures, shown in Table 1.
We sample programs at every phase marker instruction in
addition to sampling every 1K instructions within a phase O g Bs DI Fr e Jan Lrme Mat Nec
to note CPIl. We have experimentally verified that the sam-
pling interval within a phase can be varied arbitrarily with
out causing any impact on WCPI of the phaSarono$11],

a well known static WCET analyzer also models the MIPS
architecture and is hence chosen for comparison purposes.
aiT[16] is a commercial static WCET analyzer widely used

in the industry. Currently, we are in the process of modify-) _
ing Simplescalato work with ARM7 which is one of the 1S this property of low variance in CPI that ensures accuracy
targets supported biT. of estimated WCET using the proposed method.

I Arch A
[JArchB

Percentage co-efficient of variation in CPI

Figure 7. Percentage coefficient of variation of CPI for
single-phase programs during execution on both architec-
tures.

3.1. Percentage COV of CPI 3.2. Accuracy of WCET Estimation

A good phase is said to exhibit minimum variance in To evaluate the WCET analyzer, we compare estimated
CPI. The percentage COV of CPI for most of the single- WCET with maximum observed cyclelsl, got by running
phase programs is observed to be within 4% as shown inthe program with a large number of inputs that ensure high
Figure 7 for both architectures. These programs are dom-path coverage. Estimated WCET is said to be safe if the
inated by loops that exhibit repetitive behavior resulting ratio WCET/M is always greater than or equal to 1. The
the CPI becoming stableischis dominated by execution closer the ratio is to 1, tighter is the estimated WCET.
of a large number of branches that results in alarge COV in The proposed method splits WCET into two factors-
instructions executed and hence makes phase identificatioWIC and WCPI. Worst case IC that is estimated stati-
difficult. The per-phase COV of CPI for most multi-phase cally, SWIC, could intrinsically be associated with a cirta
programs is observed to rarely exceed 2% as shown in Fig-amount of pessimism. This is especially true for programs
ure 8. Had these programs not been classified into phasesnvolving complex control flow, conditions driven by values
they would exhibit much higher variance in CPI (shown as computed at runtime etc. We can thus compute a softer esti-
No phasgin the same figureEdnexhibits highesNo phase ~ mate by using maximum observed instruction count, MIC,
variation in CPI as it is composed of seven phases, each exinstead of SWIC in such cases. The second factor, WCPI is
hibiting a different average CPI. Similarly the variance in the maximumCPI observed across all inputs. There might
per-phase COV of CPI reduces after phase classification forbe programs in which WCPI and WIC might not occur at
programs on architecture B and hence not illustrated here. | the same time in any run. In such cases, a much softer esti-

0 increase in estimated WCET. Other programs that exhibit
distinct phaseshez cnt, crc, edn fft, andlud show a very
marginal increase in the WCET estimate when compared

60 [

50 [

;% — to architecture A. Just as in case of dij, ins and nsch

5 a0f = are estimated better with MIC. Similarlyitc andbub are

£ 20| | | e estimated better using ACPI instead of WCPI.

5 | — o phase It can be observed that the gap betw&&and estimated

WCET increases in case Ghronoson architecture B. This
or I I mﬂ is due to the address analysis method use@hgpnosfor
R TR LS "fudl modeling data cache misses. Most of the programs under
consideration involve vectors. During static WCET estima-
tion, all addresses of a vector can equally reside in the data
.) cache at any given point of time hence one has to conserva-

CPI of multi-phase programs on architecture A. (percentage . L . .

- S PRSI tively assume accesses resulting in misses in absence of any
coefficient of variation of CPI when phase classification is inf i bout ii behavior. The effect i
not made is also shown, &k phasg: information about runtime behavior. The effect is more so
if vector size is large as that will increase the number of ad-
dressesChronosgoes out of memory while analyzingc,
dij, fft andnschfor architecture B.

Figure 8. Per-phase percentage coefficient of variation of

mate can be got by considering ACBlerall averageCPI Assuming WCET is used, on an average, the proposed
observed across all inputs. For multi-phase programs with method produces estimates that are tighter by 13% com-
p phases, run with different inputs, pared toChronosfor architecture A and by 196% compared

to Chronosfor architecture B.
For each p, ACPI, = Avg Vi(CPI,) 9

, _ 4. Related Work
Depending on which of SWIC, MIC, WCPI, ACP} are
used in timing equations (1) and (2), we have four formulae One of the earliest attempts in WCET analysis that uses

to estimate WCET as follows. performance counters was by Corti et al [19]. An analyt-
ical model is proposed that estimates execution time of a
WCPI = WCPI WCPI = ACPI . . .
WiC =SWIC WCET; WCET, basic block using values of several important performance
WIC =MIC WCET; WCET, counters in the processor. The analytical equation isdichit

[WCET, >= {WCET,, WCETs, WCET, }, WCET; >= WCET, | by availability of performance counters for various events

Unlike [19] we measure only CPI.

The safest formula would be WCETwith WCET, be- Most existing measurement based analyzers partition
ing the softest. If tightness is desired, either WGEF the program into smaller components like basic blocks[2],
WCETS; can be used. set of instructions[20], segments[3] or paths[4] to mitega

We now discuss results for architecture A. Programs measurement overhead. They measure the execution time
bs fir, jan, Ims mat exhibit a single homogeneous phase of these smaller components on the target architecture. Fi-
throughout execution with little variation seen in instioo nally these execution times are combined taking the pro-
count and CPI across different inputs. Hence the resultinggram structure into account to give the final WCET esti-
estimates using any of the four formulae are quite close tomate. The proposed method also partitions the programs
M and are tighter than their correspondiDigronoscounter- into components called phases. But the partitioning isdbase
parts. Programbez bitc, cnt, crc, edn fft, andlud exhibit on observed instruction execution patterns and the irgenti
distinct phases during execution and perform as well as oris to group instructions exhibiting repetitive behaviotan
better than Chronoditc, bubare overestimated compared phases. This results in homogeneous behavior of the pro-
to Chronoswith the usage of WCPI(WCET WCET;) but gram within the phase. The phase change boundaries act as
better estimated with ACPI(WCETWCET,). dij, ins, lud primary locations of instrumentation points. The homogen-
and nschare overestimated tha@hronoswith the usage ity of a phase allows us to place instrumentation points at
of SWIC(WCET;, WCET,) and but estimated better with arbitrarily large intervals within the phase thus helpirgy u
MIC(WCETs;, WCET,y). build a least intrusive measurement based WCET analyzer.

We now discuss results for architecture B. Progrdngs Due to the non-availability of the measurement based tools
fir, jan, Ims matexhibit similar behavior on architecture B, in the public domain, we are not able to provide quantitative
hence the resulting WCET estimate using all four formulae comparisons with our proposed method.
are close taM. Programs likebitc, bub that display high Kumar et al[21] apply a modified version of the struc-
variation in CPI across inputs, also show a correspondingtural analysis algorithm[9] to identify program execution

‘ ‘| WCET /M [[WCET2/M [[WCETs/M [[WCET4/M [[Chronos/M i
[A [B LA [B LA [B A [B A [B I
bez 1.02525 1.022601 || 1.009366 | 1.007426 || 1.025170 | 1.022521 || 1.009287 | 1.007348 || 1.017806 | 1.442967
bitc 1.130792 | 1.176671 || 1.059946 | 1.040402 || 1.075727 | 1.121183 || 1.008257 | 0.991226 || 1.067949 | 1.056883
bs 1.024415 | 1.012289 || 1.00011 1.000376 || 1.024415 | 1.012289 || 1.00011 1.000376 || 1.018388 | 1.266322
bub 1.087442 | 1.134203 || 1.024356 | 1.018872 || 1.073948 | 1.120129 || 1.011645| 1.006229 || 1.0347 2.828077
cnt 1.00027 1.037123 || 1.002633 | 1.045158 || 0.972994 | 1.029021 || 0.952365 | 1.036927 || 1.072939 | 6.465426
crc 1.03839 1.031823 | 1.037938| 1.031823 | 1.006924 | 1.001553 || 1.006495| 1.001553 || 1.056714 | out of memory
dij 5.325616 | 5.343056 || 5.325616 | 5.343056 || 1.030021 | 0.951454 || 1.030021 | 0.951454 || 5.20885 out of memory
edn 1.06132 1.00012 1.027345 | 0.976902 || 1.06132 1.00012 1.027345 | 0.976902 || 1.071338 | 1.28467
fft 1.013292 | 1.013729 || 1.013292| 1.013729 || 0.999191 | 0.999414 || 0.999191 | 0.999414 || 1.036276 | out of memory
fir 1.061563 | 1.061614 || 1.061205| 1.059632 || 0.999972 | 1.000017 || 0.999632 | 0.998152 || 1.188546 | 2.140695
ins 3.313866 | 3.392809 || 3.248790 | 3.345844 || 0.999757 | 0.993932 || 0.981754 | 0.980939 || 3.253679 | 10.576999
jan 0.999182 | 0.999365 || 0.999182 | 0.999365 || 0.999199 | 0.999381 || 0.999199 | 0.999381 || 1.001164 | 1.025573
Ims 1.000110 | 1.011009 || 1.000063 | 1.000063 || 0.999021 | 1.009957 || 0.999021 | 0.999021 || 1.036911 | 2.030692
lud 5.441254 | 5.461342 || 5.431489 | 5.431267 || 1.231167 | 1.215432 || 1.200245| 1.200065 || 6.061123 | 5.443267
mat 0.999986 | 0.999983 || 0.999986 | 0.999983 || 0.999984 | 0.999981 || 0.999984 | 0.999981 || 1.000535| 7.590843
nsch || 3.469862 | 6.311587 || 2.58134 4.431003 || 0.9511967 | 0.942345 || 0.921990 | 0.931256 || 4.970352 | out of memory

Table 3. Accuracy of WCET estimate got by the proposed method@menoson architectures A and B.

contexts that has highest influence on the soft real-time be-References

havior of an application. Specifically, they identify those
contexts that vary the most, across different inputs by ob- [1]
serving variance in number of instructions executed got by
profiling. However the proposed method uses phases ofj
a program to decide instrumentation points and estimates
WCET of the whole program by summing the estimated
WCET of individual phases. Gl

[4]
5]
This paper demonstrates that program phase behavio

has important implications on timing analysis. The homo-
geneity of a phase allows us to instrument programs at theyy;
phase level and at arbitrarily large intervals within a phas
without compromising on the accuracy of WCET. The pa- [€l
per proposes a model to estimate WCET as the sum of
WCET of individual phases. The WCET of each phase is o
computed as a product of static worst case instruction count,,
and a function of average CPI. Compare€toonos a well
known static WCET analyzer, the proposed method on an[lZ]
average, is observed to give WCET estimates that are 13%
tighter on an architecture without a data cache and 196%y3
tighter on an architecture with a L1 data cache and L2 uni-
fied cache.

As part of future work, we intend to modify the phase
classification algorithm in order to be able to give bounds on (15
the variation of CPI within a phase and hence on estimated
WCET. We also intend to modify the algorithm to detect
infeasible paths that can cut across phases.

5. Conclusions and Future Work

[14]

16
17
[18

]
]
]
]

6. Acknowledgements [19]

The authors would like to thank Matthew Jacob
Thazhuthaveetil, Kapil Vaswani and Rupesh Nasre for their
valuable suggestions on the initial drafts of this paper. We [21]
would also like to thank the anonymous reviewers for their
helpful comments and feedback.

[20]

R. Wilhelm et al.The Worst-Case Execution Time Problem - Overview of Meth-
ods and Survey of Tool8CM Transactions on Embedded Computing Systems,
7(3), April 2008.

G. Bernat, A. Colin and S. PettersWCET: a Tool for Probabilistic Worst Case
Execution Time Analysis of Real-Time Systefashnical Report YCS-2003-
353, University of York, England, UK.

I. Wenzel, R. Kirner, B. Rieder and P. Puschrideasurement-Based Worst-
Case Execution Time AnalysiSEUS 2005.

S. A. Seshia and A. Rakhlitsame-Theoretic Timing Analysi€CAD 2008.

A. Betts and G. Bernaffree-Based WCET Analysis on Instrumentation Point
Graphs.ISORC’06.

A. Dhodapkar and J.E. SmitiManaging multi-configuration hardware via dy-
namic working-set analysisSCA 2002.

T. Sherwood, E. Perelman, G. Hamerly and B. Caldertomatically charac-
terizing large scale program behavigxSPLOS 2002.

W. Liu and M. C. Huang. EXPERT: Expedited Simulation Eoigihg Program
Behavior Repetition. ICS 2004.

J. Lau, E. Perelman and B. Cald8electing software phase markers with code
structure analysisCGO 2006.

http://ww. si npl escal ar. com

11] http://ww. conp. nus. edu. sg/ ~r penbed/ chr onos/ downl oad. ht ni

A. Srivastava and A. EustacATOM: A System for building customized pro-
gram analysis toolsPLDI 1994.

C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. vangiem. Support-
ing timing analysis by automatic bounding of loop iteragoReal-Time Sys-
tems(18).

V. Suhendra, T. Mitra, A. Roychoudhry and T. Chéifficient Detection and
Exploitation of Infeasible Paths for Software Timing ArssdyDAC’06.

http://eul er.slu.edu/ ~fritts/ medi abench
http://ww. absi nt.com
http://ww. nrtc. ndh. se/ proj ect s/ wcet/ benchmar ks. ht m

A. Dupuy and N. Levensoin Empirical Evaluation of the MC/DC Coverage
Criterion on the HETE-2 Satellite Softwal2ASC 2000.

M. Corti, R. Brega and T. Grosépproximation of Worst-Case Execution Time
for Preemptive Multitasking Systenhi<CTES 2000.

A. Betts and N. Merriam and G. Bernalybrid measurement-based WCET
analysis at the source level using object-level trat®¥€ET 2010.

T. Kumar, R. Cledat, J. Sreeram and S. Pamdlerofile-driven statistical
analysis framework for the design optimization of soft Reale applications.
ESEC/FSE 2007.

