
Implications of Program Phase Behavior on Timing Analysis

Archana Ravindar Y. N. Srikant
Department of Computer Science and Automation

Indian Institute of Science
Bangalore-560012, India

{archana,srikant}@csa.iisc.ernet.in

Abstract

Knowledge about programworst case execution
time(WCET) is essential in validating real-time systems
and helps in effective scheduling. One popular approach
used in industry is to measure execution time of program
components on the target architecture and combine them
using static analysis of the program. Measurements need to
be taken in the least intrusive way in order to avoid affect-
ing accuracy of estimated WCET. Several programs exhibit
phase behavior, wherein program dynamic execution is
observed to be composed of phases. Each phase being
distinct from the other, exhibits homogeneous behavior
with respect to cycles per instruction(CPI), data cache
misses etc. In this paper, we show that phase behavior has
important implications on timing analysis. We make use
of the homogeneity of a phase to reduce instrumentation
overhead at the same time ensuring that accuracy of WCET
is not largely affected. We propose a model for estimating
WCET using static worst case instruction counts of indi-
vidual phases and a function of measured average CPI.
We describe a WCET analyzer built on this model which
targets two different architectures. The WCET analyzer
is observed to give safe estimates for most benchmarks
considered in this paper. The tightness of the WCET
estimates are observed to be improved for most benchmarks
compared toChronos, a well known static WCET analyzer.

1. Introduction

The goal ofworst case execution time(WCET) analysis
is to compute the longest execution time of a program on
a given architecture. WCET analysis is critical in real-time
system design where programs are expected to meet strin-
gent performance goals. It is also valuable to systems that
use dynamic task scheduling; The WCET of individual pro-
cesses can be used to produce effective schedules and im-

prove resource management.SafetyandTightnessare desir-
able traits of a WCET estimate. Asafeestimate is always
greater than or equal to actual WCET. Atight estimate is
within a few percent of actual WCET.

Traditionally there have been two schools of thought re-
garding WCET analysis. Static analyzers estimate WCET
for a given architecture without actually running the
program[1]. The static analyzer intrinsically models the ef-
fect of the worst case path and architectural state and hence
can guarantee safety. However the architectural model of a
static analyzer can be quite complex to build and re-target.

Measurement based analyzers measure smaller program
components like basic blocks[2] or program segments[3] or
paths[4] etc. These measurements are methodically com-
bined to yield the final WCET. However it becomes difficult
to guarantee safety as only finite measurements are taken
and it is intractable to take into account the effect of all pos-
sible inputson all possible programpathsunder all possi-
ble architectural states. For this reason, measurement based
methods are more suited forsoft real-timesystems that do
not have hard deadlines to adhere to. Such systems are typ-
ically driven by human perception and hence can afford to
miss a few deadlines without causing noticeable change in
system behavior.

The measurements in such a system need to be made in
theleast intrusiveway in-order to avoid causing any impact
on the accuracy of estimated WCET. Achieving an accurate
estimate with less instrumentation is a non-trivial task[5].
In this paper, we propose a simple mechanism of measur-
ing programs so that the number of instrumentation points
is kept low without compromising on the accuracy of the
estimate.

Our approach is based on the observation that several
programs exhibitphase behavior[6, 7]. The dynamic be-
havior of such a program can be divided into phases during
its execution. Each phase being distinct from other, exhibits
relatively homogeneous behavior with respect to architec-
tural metrics like average cycles per instruction(CPI), L1
data cache misses, branch predictor misses amongst many

Figure 1. Variation of CPI and Program counter address
values with respect to time for a single run of Matmul PISA
binary.

others. A program likeMatmul is observed to exhibit a sin-
gle phase as shown in Figure 1.Matmul is predominantly
made of a single loop repeatedly accessing a fixed set of
data. A program likeBitcountis observed to contain a num-
ber of phases as shown in Figure 2.Bitcount is composed
of a set of functions each performing a single simple task.
These programs are described in Table 2. Figures 1 and
2 have been plotted by sampling CPI and program counter
address (masking its most significant bits), for every 1000
instructions executed.

Phase behavior is used for architectural simulation effort
reduction[7, 8] apart from other applications like power and
energy control, memory optimization etc. Our objective is
to show that phase behavior has important implications on
program timing analysis as well. We build on the obser-
vation that program CPI remains relatively stable within a
phase. That is, the coefficient of variation(COV) of CPI
within a phase is very less as compared to the COV of CPI
across phases. Hence we can measure CPI at the phase
level to effectively characterize timing of program phases
and hence the whole program. Accounting for phase be-
havior helps alleviate instrumentation overhead compared
to other measurement based approaches as phases are typi-
cally composed of thousands of instructions.

A program can be classified into phases in different ways
depending on the parameter used for classification. In this
paper, we divide the program static region into phases tak-
ing into account patterns of instruction execution[9],[8].
This method is in better sync with the natural period of
the program and more dependable as code that is executed
has an important influence on architectural behavior(Figure

Figure 2. Variation of CPI and Program counter address
values with respect to time for a single run of Bitcount PISA
binary.

2). Classifying the program thus, makes the phase pattern
repeat consistently across most architectures rendering the
technique retargetable. An important advantage of mapping
a phase to a code region is that it is easier to come up with
a timing model for that region.

We use code structural analysis [9] to mark phases in the
binary. The CPI for every phase is measured by running the
program with a large number of inputs. Measurements are
taken using the cycle accurate simulator,Simplescalar[10].
The worst case CPI is defined as a function on measured
CPI. The worst case number of instructions that can be exe-
cuted within a phase is determined by static analysis of the
program control flow graph (CFG). The WCET of a phase
is then computed as a product of worst case CPI and worst
case instruction count. The WCET of the whole program is
computed as sum of WCETs of the individual phases. If the
program has only one phase, WCET is simply a product of
worst case instruction count and worst case CPI.

The proposed method is simple to implement and is re-
targetable, which makes it highly attractive to use for de-
velopers building a large system and need a quick WCET
estimate of programs on a set of architectures even if its ap-
proximate. Most of the processors of today contain perfor-
mance counters that ensure accurate measurement of sev-
eral program metrics like CPI. In this work, programs are
assumed to be single-threaded that execute without preemp-
tion. Although any general uni-processor architecture can
be modeled, we target the WCET analyzer for two different
architectures (Table 1) and test the method on a large set of
standard WCET benchmarks(Table 2). The accuracy of the
estimated WCET is evaluated by comparing it with a well

known static WCET analyzer,Chronos[11]. For most pro-
grams, the proposed method is observed to give safe esti-
mates. On an average, the proposed estimates are observed
to be tighter by 13% thanChronosfor architectureA and
tighter by 196% thanChronosfor architectureB.

Base configuration Issue, decode and commit width=1, RUU size=8,
Instn cache 8KB L1 2-way set associative, 2 level
branch predictor, Fetch Queue size=4, In-order issue

Cache for Arch. A No Data cache
Cache for Arch. B Data cache 8KB L1 2-way set associative, Unified

64KB 8-way associative L2 cache

Table 1. Architectural configurations used for experimen-
tation.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the main technique followed by its evalu-
ation in Section 3. Related work is discussed in Section 4.
The conclusions and future work are discussed in Section 5.

2. Proposed Solution

For a program, exhibiting predominantly asingle phase,
WCET is computed as,

WCET = (WIC) ∗ (WCPI) (1)

WIC or Worst case instruction countis statically deter-
mined by analyzing program CFG.
WCPI or Worst case CPIis the maximum of average CPI
of a program observed across a large number of inputs. The
CPI within a phase is expected to be fairly stable, hence av-
erage CPI is used in characterizing the execution time of a
phase for a single input. We consider the warmup CPI sep-
arately in our calculations.
For a program, exhibiting multiple phases, WCET is com-
puted as,

WCET = Σ(j∈1 .. p) (Tj ∗ WICj ∗ WCPIj) (2)

Where,p is the number of phases occurring during program
execution,Tj is the number of times phasej occurs in the
worst case,WICj is the worst case instruction count of code
region corresponding to phasej, WCPIj is the worst case
CPI of phasej.
The phases occurring in the binary are first identified us-
ing code structural analysis[9] as shown in Figure 3. Static
analysis is then performed for the code region correspond-
ing to each phase to determine WICj and Tj . The cycles
per instruction (CPIj) for each phasej is obtained by direct
measurement of the program with a large number of test
inputs on the target architecture. It is worthy to note that es-
timation of WIC for each phase and measurement of WCPI
can be done in parallel. We now describe each step in detail,
beginning with phase identification.

Figure 3. High level architecture of the proposed solu-
tion.

2.1. Phase Identification

Code structure analysis[9] takes the application binary
as input and builds adynamic hierarchical call-loop graph
using profile information. A call-loop graph is a directed
graph, whose nodes represent either a procedure call or a
loop. It is termed hierarchical as the edges store hierar-
chical execution information along the path from call and
loop nodes and are hence said to abstract path information
in some sense. This graph is analyzed to locate instruc-
tions in the binary that accurately identify start of unique
stable behaviors across different inputs. Such instructions
are termed assoftware phase markers.

Each loop is associated with two nodes- loop head and
loop body, to differentiate between loop invocation and
each iteration of the loop respectively. Each call is as-
sociated with one node for non-recursive calls, two nodes
for recursive calls. In this work, we do not consider re-
cursive programs. Each edge stores average number of in-
structions executed along that path(A), coefficient of vari-
ation in instructions executed each time this edge was tra-
versed (COVinstn), maximum number of instructions exe-
cuted along that path (Nmax) and total number of times the
edge was traversed(C).

After the graph is constructed using profile information,
all edges whose average instruction count exceeds a pre-
determined threshold are considered as candidates for soft-
ware phase markers. This is to ensure that each phase is
long enough. The phase length depends on the length of the
application itself. For programs that execute a few thousand
instructions, a minimum phase length threshold of 100 in-
structions could be used. Those candidate edges that also
show minimum COVinstn finally qualify as software phase
markers. This means that each time, such an edge is tra-
versed, the amount of instructions hierarchically executed
is more or less the same. That proves our assumption that
we are seeing a faithful repetition of a phase every time we
enter this path making it a valid software phase marker edge.
The code region corresponding to a phasep, is represented

Figure 4. Hierarchical Call-loop graph for Bitcount:C is
the number of times, each edge is traversed.A is the aver-
age number of hierarchical instructions executed each time
the edge is traversed. COVinst is the hierarchical instruc-
tion count coefficient of variation. P1, P2, P3.. are phase
numbers.

by the region between the phase marker edge ofp and the
phase marker edge of the following phase occurring in code.

A program is said to be composed of asingle phaseif
its hierarchical call loop graph contains exactly one edge
that satisfies these properties and that edge encompasses
the whole program. Programs that cannot be classified into
phases using this algorithm are also viewed as single-phase
programs. However such programs depict a high degree of
variance in their CPI throughout execution.nsch(Table 2)
is an example.

Figure 4 depicts a part of the dynamic hierarchical call
loop graph constructed forBitcountthat is run for 1000 it-
erations. The edge marked with an asterisk indicates that it
satisfies the condition of a large enough average instruction
count and small enough coefficient of variation in CPI and
hence has been selected as a valid software phase marker
edge. The phase marker edges picked by the algorithm
for one input are observed to work well for other inputs as
well[9]. The number of phase marker edges definesp in
Equation (2).

Phase markers are typically edges representing call-loop
boundaries and hence can be easily mapped on to binaries.
Since phases are marked based on instruction execution pat-
terns, we can see thatphase markers obtained by analyzing
alpha binaries with ATOM[12] hold good for MIPS R3K
PISA binariesas shown in Figure 5. We modify the original
algorithm that identifies instructions where a phase change
is likely to occur, to also number phases as they occur. Exe-
cution of a program thus marked produces a phase sequence

Figure 5. Time varying CPI graphs with phase markers
for bitcount for an Alpha executable. The phase markers
were selected from the call loop profile graph from the Al-
pha binary, were mapped back to source code level and then
used to mark the MIPS PISA binary.

indicating the order in which instructions belonging to dif-
ferent phases are executed. The phase sequence encoun-
tered for each program considered in this work is shown in
Table 2. Most of the programs considered here are simple
and hence exhibit only one phase sequence irrespective of
input. Programs with complex structure can exhibit multi-
ple phase sequences. In such a case, WCET is computed as
a maximum of the WCETs of all possible phase sequences.
Phase based timing analysis for complex programs is in
progress.

2.2. Context Sensitivity

A program analysis is termed as context sensitive if it
differentiates two instances of a procedure occurring at two
different contexts. In this work, we perform procedure
cloning and treat each call instance as a separate call. This
might cause the algorithm to assign different phase num-
bers to two call instances of the same procedure even if their
CPI behavior is similar. This has an effect of increasing the
number of phases but has no bearing on correctness of the
subsequent timing analysis. Example:Crc has two phases,
one for each clone and average CPI for each phase is about
the same.

2.3. Estimating WIC

This section describes the computation of worst case in-
struction count of a phase which is done by a static anal-
ysis of the program CFG pertaining to the code region of

a phase. We formulate an integer linear programming(ILP)
problem for this purpose. ILP is used by many static WCET
analyzers to estimate WCET[1]. Each basic blockB in the
CFG is associated with an integer variableNB , denoting to-
tal execution count of basic blockB. The static worst case
instruction count of the CFG is then given by the linear ob-
jective function,

Maximize Σ∀B, (NB ∗ WB) (3)

Where, WB is a constant denoting the number of instruc-
tions of a basic block. The linear constraints on NB are de-
veloped from flow equations based on the CFG. Thus for
basic blockB,

ΣB′→B (EB′→B) = NB = ΣB→B”(EB→B”) (4)

Where, EB′→B (EB→B”) is an ILP variable denoting
number of times control flows through the CFG edges B’→
B (B → B”). If an edge happens to reside within a loop, the
loop iteration bound (L) limits the number of times an edge
can execute. The bounds can either be got by automatic
loop bound detection techniques [13] or provided manually
by an expert. For this work, we assume iteration bounds
are given for all loops in the CFG. The corresponding linear
constraint is specified as follows.

Ei→j <= L (5)

2.4. Infeasible Paths

An infeasible path is one which can never occur in any
valid execution of the program. Weeding out infeasible
paths helps compute a much tighter WCET estimate. We
follow the approach used in Vivy et al[14] and identify
branch-branch conflict pairs and assignment-branch conflict
pairs. A branch-branch(BB) conflict pair is a set of branch
induced paths that can never occur together. Similarly an
assignment-branch(AB) conflict pair is an assignment and a
branch path that can never occur together. Figure 6 shows a
simple example of an AB and a BB conflict that can occur.

Infeasible paths are modeled as additional linear edge
constraints and are added to our linear system of equations-
(3),(4) and (5). Two branch edges that figure in a BB pair,
say, Ei→j and Em→n have a linear constraint as shown in
Equation (6). Similarly an assignment (node) and a branch
edge that figures in an AB pair have a linear constraint as
shown in Equation (7).

BB conflict: Ei→j + Em→n = 1 (6)

AB conflict: NB + Ei→j = 1 (7)

Alternatively, WIC can be estimated statically by view-
ing the CFG as a weighted directed graph with basic blocks
as nodes, WB as edge weights and computing weighted
longest path in the graph.

Figure 6. Illustration of Branch-Branch (BB) conflicts,
Assignment-Branch (AB) conflicts.

2.5. Estimating WCPI

This section describes estimation of worst case CPI of
a phase by measurement. The CPI of a phase is measured
by sampling the phase at large intervals of instructions and
averaging the samples. The samples for a phase are mea-
sured when the code region corresponding to that phase is
executed. If the COV of CPI is very less within a phase,
we can afford to take fewer samples without affecting the
accuracy[8]. Which means, very less instrumentation is re-
quired within such a phase. Worst case CPI (WCPI) is de-
fined as a function of measured per-phase CPI. For single-
phase programs, WCPI is computed as a maximum of the
observed overall program CPI across a large number of in-
puts,i. For programs containing multiple phases,p,

For each p, WCPIp = Max ∀i(CPIp) (8)

Warmup is an essential component of program execu-
tion that refers to the initial stage when all the architectural
structures get filled in. The warmup CPI is typically higher
than the stable program CPI. For programs executing mil-
lions of instructions, the effect of warmup can be ignored.
The dynamic instruction count of the programs considered
in this work range from a few thousand up to few millions.
Hence for single-phase programs, CPI calculation consid-
ers the warmup stage as well. For multi-phase programs, we
consider the warmup as a special phase and add the warmup
cycles separately to our estimated program execution time.

3. Experimental Evaluation

We perform our experiments for a large set of bench-
marks (Table 2) taken fromMibench[15] andMälardalen
WCET benchmarks[17]. All programs are compiled to

Benchmark and Description Number of Inputs Phase Sequence
Bezier (bez): Draws a set of 200 lines of 4 reference points on a 800X600 image. 500 sets of lines P1 P2
Bitcount (bitc): Performs bit operations on a 1K bit-vector, 1000 times[15]. 500 vectors P1 P2 P3 P4 P5 P6
Binary Search (bs): Search for a key in a 10K number vector[17]. 20K (key, vector) combinations single
Bubble sort (bub): Sort an array of size 3K[17]. 500 vectors single
CRC (crc): Cyclic redundancy check on a 16KB char vector[17]. 500 vectors P1 P2
CNT (cnt): Counts positive numbers in a 200X200 matrix[17]. 500 matrices P1 P2
Dijkstra (dij): Finds 100 shortest paths in a graph of 200 vertices using dijkstra’s algorithm[15]. 500 graphs single
EDN (edn): Implements set of signal processing algorithms[17]. 500 signals P1 P2 P3 P4 P5 P6 P7
FIR (fir): Finite impulse response filter over a signal of size 400[17]. 500 signals single
FFT (fft): Fast fourier transform on a wave of size 16K[15]. 500 signals P1 P2
Insertion Sort (ins): Sort a 3K number vector[17]. 500 vectors single
Jannecomplex (jan): A a nested loop program,a, b are input parameters 500 combinations ofa,b single
LMS (lms): adaptive signal enhancement[17]. 500 signals single
LUD (lud): LU decomposition algorithm for a 200X200 matrix[17]. 500 matrices P1 P2 P3 P4
Matmul (mat): Matrix multiplication of two 200X200 matrices[17]. 500 matrices single
Nsch (nsch): Simulates an extended petrinet,dummyi is an input parameter[17]. dummyi = 32, 500 starting states single

Table 2. Benchmarks and their inputs.

MIPS PISA binaries with -O2 -static flags. We useSim-
plescalar v3.0[10] for measuring CPI of programs across a
large number of inputs. The inputs are chosen so as to sat-
isfy wide coverage at the level of statements, decisions, con-
ditions and modified condition/decisions [18]. Invalid in-
puts and inputs that produce very short sequence of instruc-
tions are pruned away from calculations. We test the WCET
analyzer for two different architectures, shown in Table 1.
We sample programs at every phase marker instruction in
addition to sampling every 1K instructions within a phase
to note CPI. We have experimentally verified that the sam-
pling interval within a phase can be varied arbitrarily with-
out causing any impact on WCPI of the phase.Chronos[11],
a well known static WCET analyzer also models the MIPS
architecture and is hence chosen for comparison purposes.
aiT[16] is a commercial static WCET analyzer widely used
in the industry. Currently, we are in the process of modify-
ing Simplescalarto work with ARM7 which is one of the
targets supported byaiT.

3.1. Percentage COV of CPI

A good phase is said to exhibit minimum variance in
CPI. The percentage COV of CPI for most of the single-
phase programs is observed to be within 4% as shown in
Figure 7 for both architectures. These programs are dom-
inated by loops that exhibit repetitive behavior resultingin
the CPI becoming stable.nschis dominated by execution
of a large number of branches that results in a large COV in
instructions executed and hence makes phase identification
difficult. The per-phase COV of CPI for most multi-phase
programs is observed to rarely exceed 2% as shown in Fig-
ure 8. Had these programs not been classified into phases,
they would exhibit much higher variance in CPI (shown as
No phase) in the same figure.Ednexhibits highestNo phase
variation in CPI as it is composed of seven phases, each ex-
hibiting a different average CPI. Similarly the variance in
per-phase COV of CPI reduces after phase classification for
programs on architecture B and hence not illustrated here. It

Bub Bs Dij Fir Ins Jan Lms Mat Nsc
0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 c

o−
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
in

 C
PI

Arch A
Arch B

Figure 7. Percentage coefficient of variation of CPI for
single-phase programs during execution on both architec-
tures.

is this property of low variance in CPI that ensures accuracy
of estimated WCET using the proposed method.

3.2. Accuracy of WCET Estimation

To evaluate the WCET analyzer, we compare estimated
WCET with maximum observed cycles,M, got by running
the program with a large number of inputs that ensure high
path coverage. Estimated WCET is said to be safe if the
ratio WCET/M is always greater than or equal to 1. The
closer the ratio is to 1, tighter is the estimated WCET.

The proposed method splits WCET into two factors-
WIC and WCPI. Worst case IC that is estimated stati-
cally, SWIC, could intrinsically be associated with a certain
amount of pessimism. This is especially true for programs
involving complex control flow, conditions driven by values
computed at runtime etc. We can thus compute a softer esti-
mate by using maximum observed instruction count, MIC,
instead of SWIC in such cases. The second factor, WCPI is
themaximumCPI observed across all inputs. There might
be programs in which WCPI and WIC might not occur at
the same time in any run. In such cases, a much softer esti-

Bez Bit Cnt Crc Edn Fft Lud
0

10

20

30

40

50

60

70

Pe
rce

nta
ge

 co
eff

ici
en

t o
f v

ar
iat

ion
 in

 C
PI

P1
P2
P3
P4
P5
P6
P7
No phase

Figure 8. Per-phase percentage coefficient of variation of
CPI of multi-phase programs on architecture A. (percentage
coefficient of variation of CPI when phase classification is
not made is also shown, asNo phase).

mate can be got by considering ACPI-Overall averageCPI
observed across all inputs. For multi-phase programs with
p phases, run with different inputs,i,

For each p, ACPIp = Avg ∀i(CPIp) (9)

Depending on which of{SWIC, MIC, WCPI, ACPI} are
used in timing equations (1) and (2), we have four formulae
to estimate WCET as follows.

WCPI = WCPI WCPI = ACPI
WIC = SWIC WCET1 WCET2

WIC = MIC WCET3 WCET4

WCET1 >= {WCET2, WCET3, WCET4}, WCET3 >= WCET4

The safest formula would be WCET1, with WCET4 be-
ing the softest. If tightness is desired, either WCET2 or
WCET3 can be used.

We now discuss results for architecture A. Programs
bs, fir, jan, lms, mat exhibit a single homogeneous phase
throughout execution with little variation seen in instruction
count and CPI across different inputs. Hence the resulting
estimates using any of the four formulae are quite close to
M and are tighter than their correspondingChronoscounter-
parts. Programsbez, bitc, cnt, crc, edn, fft, andlud exhibit
distinct phases during execution and perform as well as or
better than Chronos.bitc, bubare overestimated compared
to Chronoswith the usage of WCPI(WCET1, WCET3) but
better estimated with ACPI(WCET2, WCET4). dij, ins, lud
and nschare overestimated thanChronoswith the usage
of SWIC(WCET1, WCET2) and but estimated better with
MIC(WCET3, WCET4).

We now discuss results for architecture B. Programsbs,
fir, jan, lms, matexhibit similar behavior on architecture B,
hence the resulting WCET estimate using all four formulae
are close toM. Programs likebitc, bub that display high
variation in CPI across inputs, also show a corresponding

increase in estimated WCET. Other programs that exhibit
distinct phases,bez, cnt, crc, edn, fft, andlud show a very
marginal increase in the WCET estimate when compared
to architecture A. Just as in case of A,dij, ins and nsch
are estimated better with MIC. Similarlybitc andbub are
estimated better using ACPI instead of WCPI.

It can be observed that the gap betweenM and estimated
WCET increases in case ofChronoson architecture B. This
is due to the address analysis method used byChronosfor
modeling data cache misses. Most of the programs under
consideration involve vectors. During static WCET estima-
tion, all addresses of a vector can equally reside in the data
cache at any given point of time hence one has to conserva-
tively assume accesses resulting in misses in absence of any
information about runtime behavior. The effect is more so
if vector size is large as that will increase the number of ad-
dresses.Chronosgoes out of memory while analyzingcrc,
dij, fft andnschfor architecture B.

Assuming WCET1 is used, on an average, the proposed
method produces estimates that are tighter by 13% com-
pared toChronosfor architecture A and by 196% compared
to Chronosfor architecture B.

4. Related Work

One of the earliest attempts in WCET analysis that uses
performance counters was by Corti et al [19]. An analyt-
ical model is proposed that estimates execution time of a
basic block using values of several important performance
counters in the processor. The analytical equation is limited
by availability of performance counters for various events.
Unlike [19] we measure only CPI.

Most existing measurement based analyzers partition
the program into smaller components like basic blocks[2],
set of instructions[20], segments[3] or paths[4] to mitigate
measurement overhead. They measure the execution time
of these smaller components on the target architecture. Fi-
nally these execution times are combined taking the pro-
gram structure into account to give the final WCET esti-
mate. The proposed method also partitions the programs
into components called phases. But the partitioning is based
on observed instruction execution patterns and the intention
is to group instructions exhibiting repetitive behavior into
phases. This results in homogeneous behavior of the pro-
gram within the phase. The phase change boundaries act as
primary locations of instrumentation points. The homogen-
ity of a phase allows us to place instrumentation points at
arbitrarily large intervals within the phase thus helping us
build a least intrusive measurement based WCET analyzer.
Due to the non-availability of the measurement based tools
in the public domain, we are not able to provide quantitative
comparisons with our proposed method.

Kumar et al[21] apply a modified version of the struc-
tural analysis algorithm[9] to identify program execution

WCET1/M WCET2/M WCET3/M WCET4/M Chronos/M
A B A B A B A B A B

bez 1.02525 1.022601 1.009366 1.007426 1.025170 1.022521 1.009287 1.007348 1.017806 1.442967
bitc 1.130792 1.176671 1.059946 1.040402 1.075727 1.121183 1.008257 0.991226 1.067949 1.056883
bs 1.024415 1.012289 1.00011 1.000376 1.024415 1.012289 1.00011 1.000376 1.018388 1.266322
bub 1.087442 1.134203 1.024356 1.018872 1.073948 1.120129 1.011645 1.006229 1.0347 2.828077
cnt 1.00027 1.037123 1.002633 1.045158 0.972994 1.029021 0.952365 1.036927 1.072939 6.465426
crc 1.03839 1.031823 1.037938 1.031823 1.006924 1.001553 1.006495 1.001553 1.056714 out of memory
dij 5.325616 5.343056 5.325616 5.343056 1.030021 0.951454 1.030021 0.951454 5.20885 out of memory
edn 1.06132 1.00012 1.027345 0.976902 1.06132 1.00012 1.027345 0.976902 1.071338 1.28467
fft 1.013292 1.013729 1.013292 1.013729 0.999191 0.999414 0.999191 0.999414 1.036276 out of memory
fir 1.061563 1.061614 1.061205 1.059632 0.999972 1.000017 0.999632 0.998152 1.188546 2.140695
ins 3.313866 3.392809 3.248790 3.345844 0.999757 0.993932 0.981754 0.980939 3.253679 10.576999
jan 0.999182 0.999365 0.999182 0.999365 0.999199 0.999381 0.999199 0.999381 1.001164 1.025573
lms 1.000110 1.011009 1.000063 1.000063 0.999021 1.009957 0.999021 0.999021 1.036911 2.030692
lud 5.441254 5.461342 5.431489 5.431267 1.231167 1.215432 1.200245 1.200065 6.061123 5.443267
mat 0.999986 0.999983 0.999986 0.999983 0.999984 0.999981 0.999984 0.999981 1.000535 7.590843
nsch 3.469862 6.311587 2.58134 4.431003 0.9511967 0.942345 0.921990 0.931256 4.970352 out of memory

Table 3. Accuracy of WCET estimate got by the proposed method andChronoson architectures A and B.

contexts that has highest influence on the soft real-time be-
havior of an application. Specifically, they identify those
contexts that vary the most, across different inputs by ob-
serving variance in number of instructions executed got by
profiling. However the proposed method uses phases of
a program to decide instrumentation points and estimates
WCET of the whole program by summing the estimated
WCET of individual phases.

5. Conclusions and Future Work

This paper demonstrates that program phase behavior
has important implications on timing analysis. The homo-
geneity of a phase allows us to instrument programs at the
phase level and at arbitrarily large intervals within a phase
without compromising on the accuracy of WCET. The pa-
per proposes a model to estimate WCET as the sum of
WCET of individual phases. The WCET of each phase is
computed as a product of static worst case instruction count
and a function of average CPI. Compared toChronos, a well
known static WCET analyzer, the proposed method on an
average, is observed to give WCET estimates that are 13%
tighter on an architecture without a data cache and 196%
tighter on an architecture with a L1 data cache and L2 uni-
fied cache.

As part of future work, we intend to modify the phase
classification algorithm in order to be able to give bounds on
the variation of CPI within a phase and hence on estimated
WCET. We also intend to modify the algorithm to detect
infeasible paths that can cut across phases.

6. Acknowledgements

The authors would like to thank Matthew Jacob
Thazhuthaveetil, Kapil Vaswani and Rupesh Nasre for their
valuable suggestions on the initial drafts of this paper. We
would also like to thank the anonymous reviewers for their
helpful comments and feedback.

References

[1] R. Wilhelm et al.The Worst-Case Execution Time Problem - Overview of Meth-
ods and Survey of Tools.ACM Transactions on Embedded Computing Systems,
7(3), April 2008.

[2] G. Bernat, A. Colin and S. Petters.pWCET: a Tool for Probabilistic Worst Case
Execution Time Analysis of Real-Time Systems.Technical Report YCS-2003-
353, University of York, England, UK.

[3] I. Wenzel, R. Kirner, B. Rieder and P. Puschner.Measurement-Based Worst-
Case Execution Time Analysis., SEUS 2005.

[4] S. A. Seshia and A. Rakhlin.Game-Theoretic Timing Analysis.ICCAD 2008.

[5] A. Betts and G. Bernat.Tree-Based WCET Analysis on Instrumentation Point
Graphs.ISORC’06.

[6] A. Dhodapkar and J.E. Smith.Managing multi-configuration hardware via dy-
namic working-set analysis.ISCA 2002.

[7] T. Sherwood, E. Perelman, G. Hamerly and B. Calder.Automatically charac-
terizing large scale program behavior.ASPLOS 2002.

[8] W. Liu and M. C. Huang. EXPERT: Expedited Simulation Exploiting Program
Behavior Repetition. ICS 2004.

[9] J. Lau, E. Perelman and B. Calder.Selecting software phase markers with code
structure analysis.CGO 2006.

[10] http://www.simplescalar.com

[11] http://www.comp.nus.edu.sg/∼rpembed/chronos/download.html

[12] A. Srivastava and A. Eustace.ATOM: A System for building customized pro-
gram analysis tools.PLDI 1994.

[13] C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. van Englen. Support-
ing timing analysis by automatic bounding of loop iterations. Real-Time Sys-
tems(18).

[14] V. Suhendra, T. Mitra, A. Roychoudhry and T. Chen.Efficient Detection and
Exploitation of Infeasible Paths for Software Timing Analysis.DAC’06.

[15] http://euler.slu.edu/∼fritts/mediabench

[16] http://www.absint.com

[17] http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[18] A. Dupuy and N. Levenson.An Empirical Evaluation of the MC/DC Coverage
Criterion on the HETE-2 Satellite Software.DASC 2000.

[19] M. Corti, R. Brega and T. Gross.Approximation of Worst-Case Execution Time
for Preemptive Multitasking Systems.LCTES 2000.

[20] A. Betts and N. Merriam and G. Bernat.Hybrid measurement-based WCET
analysis at the source level using object-level traces.WCET 2010.

[21] T. Kumar, R. Cledat, J. Sreeram and S. Pande.A profile-driven statistical
analysis framework for the design optimization of soft Real-Time applications.
ESEC/FSE 2007.

