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Abstract

In this paper, we propose a novel programmable func-
tional unit (PFU) to accelerate general purpose applica-
tion execution on a modern out-of-order x86 processor in
a complexity-effective way. Code is transformed and in-
structions are generated that run on the PFU using a co-
designed virtual machine (Cd-VM). Groups of frequently
executed micro-operations (micro-ops) are identified and
fused into a macro-op (MOP) by the Cd-VM. The MOPs
are executed on PFU.

Results presented in this paper show that this HW/SW
co-designed approach produces average speedups in per-
formance of 17% in SPECFP and 10% in SPECINT, and
up-to 33%, over modern out-of-order processor. Moreover,
we also show that the proposed scheme not only outper-
forms dynamic vectorization using SIMD accelerators but
also outperforms an 8-wide issue out-of-order processor.

1 Introduction

Modern microprocessor designs have shown significant
performance improvements over the last decades by exploit-
ing instruction level parallelism (ILP). However, exploiting
this ILP came with the addition of complex hardware struc-
tures that lead to prohibitive power consumption and de-
sign complexity [13]. It is widely known that increasing
the width of the processor provides significant speedups as
demonstrated in [16]. On the other hand, due to recent ad-
vancement in process technology, transistors in a die are
fairly abundant. In this scenario, we argue that special-
ized hardware and accelerators is a promising alternative
to harness both the abundance of transistors and the poten-
tial of a wider machine. These performance improvements
are achieved under a reasonable power budget and design
complexity.

Single-instruction multiple-data (SIMD) accelerators are
commonly used in current microprocessors to accelerate
the execution of multimedia applications. These accelera-
tors perform the same computation on multiple data items
using a single instruction. Intel’s SSE [1] and AMD’s
3DNow![12] extensions are examples of such instructions
for the x86 ISA. Although, SIMD accelerators provide sig-
nificant performance gains in multimedia applications at
low cost and energy overheads, they are not good enough
for general purpose applications.

More recently, several multiple-instruction multiple data
(MIMD) accelerators have been proposed that range from
programmable to specialized functions [17, 18, 3, 8]. Due to
design complexity and lack of compiler and code generation
techniques, in order to leverage the accelerators efficiently,
these accelerators have not yet been implemented.

Introducing such hardware accelerators needs to be sup-
ported by extending the ISA. Applications need to be re-
compiled to the new ISA in order to use these hardware ac-
celerators. A co-designed virtual machine (Cd-VM), how-
ever, solves this problem by transparently recompiling the
application binary to the host ISA. Transmeta Crusoe [11, 5]
is a commercial example of a Cd-VM based processor.

In this paper, we propose a novel programmable func-
tional unit (PFU) to accelerate general purpose application
execution, in a complexity-effective way. We leverage the
fact that reducing the execution latency and increasing the
width of the processors leads to a performance improve-
ment. We use a HW/SW co-designed approach to build
a out-of-order x86 processor by transparently optimizing
applications, and improve performance, without increasing
the width of the processor.

In the proposed scheme, the PFU is programmed using a
Cd-VM. This software layer dynamically profiles the appli-
cation code, and identifies frequently executed regions. It
then optimizes these regions by fusing a sequence of micro-
ops into a macro-operation (MOP). This transformed code



is stored in a concealed memory and is executed instead of
the original code. We also propose dynamic compilation
techniques required in order to achieve this.

Results presented in this paper show that the use of
a PFU provides a significant average speedup of 17% in
SPECFP and 10% in SPECINT, and speedup of up-to 33%
for some benchmarks, over current out-of-order processor.
Moreover, we also show that the proposed scheme not only
outperforms SIMD accelerators when they are dynamically
managed by the Cd-VM, but also outperforms an 8-wide
issue out-of-order processor.

The key contributions of this paper are as follows:

• We propose a novel Programmable Functional Unit,
along with a novel split-MOP execution model. We
also discuss the microarchitectural changes required in
order to incorporate the PFU in a complexity-effective
manner.

• We describe an effective algorithm to dynamically fuse
instructions using a Cd-VM. Our dynamic compila-
tion scheme handles memory and loop-carried depen-
dencies to aggressively reorder the code and generate
MOPs, appropriately.

The rest of the paper is organized as follows. In Section
2, we discuss the implementation of the baseline HW/SW
co-designed out-of-order x86 processor. In Section 3, the
proposed PFU is described along with its execution model
and microarchitecture. Dynamic compilation techniques
are discussed in Section 4. A detailed evaluation and anal-
ysis of the PFU, its design points and comparison with al-
ternate schemes is presented in Section 5. Finally, related
work is reviewed in Section 6 and we conclude in Section
7.

2 Baseline Processor

In this paper, we consider a HW/SW co-designed proces-
sor. The co-designed virtual machine (Cd-VM), virtualizes
the hardware underneath and offers an x86 ISA to the oper-
ating system and applications. The hardware implements an
internal ISA and provides support for efficient execution of
the software. In this section, we will detail the main charac-
teristics of the baseline processor implemented in a HW/SW
paradigm.

Our baseline processor is based upon a state-of-art mod-
ern out-of-order processor. A Cd-VM is added on top of
it to execute superblocks [10]. Hardware Profiling (block
and edge)[4] identifies frequently executed code. Once a
basic block is hot, superblock formation begins by follow-
ing the most frequently taken edges. The Cd-VM optimizes
superblocks and stores them in code cache.

Jump TLB (JTLB)[15] holds mapping from source pro-
gram counter (PC) to target PC for each superblock and is
accessed in parallel to the I-Cache. Code residing in the
code cache is in micro-op ISA. The proposed out-of-order
processor is able to fetch both non-optimized x86 ISA and
micro-ops from the I-cache, using dual-mode decoders [8].

Early exit branches of superblocks are converted to as-
serts to ensure atomic execution similar to [14]. There-
fore, in addition to x86-level exceptions and interrupts, su-
perblock execution rolls back whenever an assert fails. On
a rollback the whole of the superblock is discarded and un-
optimized code is fetched.

3 Proposed Microarchitecture

3.1 Split-Mop Model

A MOP like any other instruction requires inputs and
outputs to execute. However, the input and output parts
of MOP are split into several micro-ops using a split-MOP
model. Our split-MOP model consists of following micro-
ops : (1) a set of loads to provide inputs from memory (ld-
set), (2) a set of register moves to provide inputs from regis-
ter file (mv-set), (3) a computation macro-op (CMOP), and
(4) a store set (st-set). Figure 1 shows an example of split-
MOP. Note, that irf0, irf1, irf2 in Figure 1b indicates the
IRF registers.

add rdx = rcx, rax
add rsp = rbx, 1
sub rbp = rsp, rdx
st [rbp, 4], rax

ld rcx = [rax, 8]

(a) Micro-ops before fusion

cmop rdx, rsp, rbp
st [rbp, 4], rax

ld irf0, rcx = [rax,8] : ld-set

mov irf1, irf2 = rax, rbx : mv-set

irf* : Internal Register File Tag

(b) Macro-op after fusion

Figure 1: Split-MOP Model

3.1.1 Computation Macro-Op (CMOP)

CMOP consists of a unique identifier, and destination reg-
isters. Transient registers are not reflected in CMOP’s
destination register. CMOP does not contain any source
operands, because, it reads input values from the IRF, but
it writes directly to the physical register file.

The encoded data corresponding to each fused micro-op
in a CMOP is known as a configuration. Configurations are
appended to the superblock and stored in the code cache.
These configurations are located using the unique identifier
encoded in a CMOP. The unique identifier is used as an in-
dex into a configuration TLB (CTLB).
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Figure 2: Execution Pipeline

3.1.2 Execution Model

The execution pipeline of the split-MOP as described in
Figure 1 is illustrated in Figure 2. The four execution
pipelines correspond to load, mov, CMOP and store respec-
tively of 1b. The pipeline stages Eag, Eat and Emd stands
for address generation, address translation and memory dis-
ambiguation respectively.
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Figure 3: Modified Microarchitectural Block Diagram

3.2 PFU Microarchitecture

The microarchitecture that supports split-MOP execu-
tion is discussed in this section. Figure 3 shows a block-
level microarchitecture diagram, and the added components
are shown in gray. The added components are a PFU, 2
separate issue queues to facilitate PFU execution.

3.2.1 Programmable Functional Unit

We propose a PFU which has two major components: 1)
Distributed Internal Register File (IRF), and (2) a grid of
Processing Elements (PE). Data flows from one row to the
following in the grid of PEs as shown in Figure 4, an orga-
nization similar to [3]. Note, that there are no latches be-
tween the PEs of two different rows. The effects of varying
the grid size and PFU execution latency is studied and dis-
cussed in Section 5. The inputs required by each micro-op
in the grid of PEs is provided by the IRF.

RF setRF
PE

Distributed Internal Register File Grid of PEs

Programmable Functional Unit

Per Row
RF

Figure 4: Programmable Functional Unit overview

3.2.2 Distributed Internal Register File

The proposed PFU with six (2 columns, 3 rows) PEs re-
quires up to twelve read ports to execute all the micro-ops of
CMOP simultaneously. Providing so many read ports to the
physical register file is certainly not complexity-effective.
Hence, in order to deal with this, we propose a separate reg-
ister file contained in the PFU.
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Figure 5: Processing Element

This internal register file is distributed in order to pro-
vide sufficient bandwidth, as shown in Figure 4. IRF con-
tains multiple register file sets, each of which is allocated
to a MOP in the dispatch stage. A register file set contains
replicated copies of register file, one copy corresponding to
each row. Each register file has 4 entries and has 4 read
ports and 4 write ports. Recollect, that the CMOP writes to
the physical register file. Hence, the write ports on IRF are
used by the ld-set and mv-set only.

There are 5 different register file sets, so inputs for 5 dif-
ferent MOPs can be stored at the same time. Hence, the total
size of this IRF is 60 (number of entries per RF*number of
rows*number of RF sets = 4*3*5). Dispatch stalls in case a
register file set cannot be allocated to the MOP. It is obvious
from such a distributed organization that a PE could access
only the register file of the row that it belongs to and to that
of the MOP that is currently being executed. The values
in the IRF are discarded only when CMOP is successfully



executed.

3.2.3 PE and Configuration Cache

Figure 5 provides a deeper look into the PE. Each PE con-
tains 1) an ALU, which is connected to the ALUs of follow-
ing rows, and 2) a configuration cache. Configuration cache
holds configuration of 5 CMOPs in a distributed manner.
The configuration contains pre-decoded control signals of
all the fused micro-ops pertaining to the CMOP as shown
in the Figure 6. Configurations are 32 bytes long and is
equal to half of L1 I-cache line size. The lower 16 bytes
contains opcode and source operand information of all the
fused micro-ops, and the upper 16 bytes holds the immedi-
ate operand values.
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CS 0

Operand 1Opcode Operand 2

8 bits 6 bits 6 bits

CS 1 4 immediate operands

20 bits

Control Signal
per micro-op

CS 5

15 byte control signals of a cmop 16 byte

32 byte configuration line

Figure 6: Configuration Line

A direct access is made to the L1 I-cache to read in the
configuration line corresponding to a CMOP. The config-
uration line is then distributed to all the PEs. Each PE
contains also a line buffer to store the configuration line.
The PE then selects the appropriate micro-op control signal
and immediate operand, if any, from the configuration line
buffer. The control signals are stored in the configuration
cache.

3.2.4 Bypass Network

To support back-to-back execution, all the 6 PEs should
receive source operands from the bypass. The PEs, how-
ever, receive inputs only from the 2 load units (LDUs) and
2 ALUs. In the evaluation Section 5, we however show that
not all the 6 PEs need the source operands to be bypassed.
For a 2x3 grid a bypass network to 4 PEs is more than suf-
ficient.

On the other hand, a significant fraction of execution
cycle of an ALU in a modern out-of-order processor is
consumed by the destination operand forwarding [7, 13].
Hence, in order to support a PFU that collapses three ALUs
and execute with low latency, we remove the forwarding
logic from PFU to other ALUs, and dedicate this fraction of
execution cycle completely to execution. Our studies indi-
cate that such a constraint has negligible impact on perfor-
mance.

3.2.5 Pipeline Stages

• Rename The width of a typical out-of-order processor
determines the number of micro-ops that could be re-
named. For instance, a 4-wide machine could rename
up to four micro-ops per cycle. However, in MOP
model we constrain renaming to the number of regis-
ters and not to the micro-ops. So, if a CMOP has four
destination registers then only the CMOP is renamed
in that cycle. However, if a CMOP requires two des-
tination registers, two other micro-ops can be renamed
in the same cycle.

• Dispatch Loads of the ld-set go to the traditional Issue
queue, and an entry in the control issue queue is al-
located for each ld-set. The control issue queue entry
contains issue queue tags of all the loads in the ld-set.
The same holds true for all the moves in the mv-set.
This hierarchical issue queue model is described be-
low, and illustrated in Figure 7.

ld irf0, rcx = [rax, 8]
mov irf1, irf2 = rax, rbx
cmop rdx, rsp, rbp
st [rbp, 4], rax

: ld1
: mv1
: cmop

Lds Mvs

Cmop Issue Queue

ld1
mv1

Control Issue Queue

rax

rax rbx

Load Issue Queue

Integer Issue Queue

Figure 7: Hierarchical Issue Queue Model

The labels against each issue queue entry indicates the
issue queue tag associated with the entry. For instance,
Ld1 is the tag associated with the first load in the load
set. Control issue queue entry corresponding to tag
Lds depends upon both the Ld1 and Ld2 issue queue
entries. Similarly, CMOP depends upon the Lds and
Mvs control issue queue entry tags. Ld1 and Ld2 is-
sue queue tags are broadcast to the control issue queue
and Lds issue queue tag is broadcasts to CMOP issue
queue, where CMOPs are held. CMOP’s dependence
with ld-set and mv-set entry is built at runtime using
information encoded in the CMOPs. Such a model en-
sures that CMOP issues only when both the ld-set and
the mv-set have issued, without having the need of ex-
plicit source operand encoding in a CMOP.

4 Code Generation

Co-designed virtual machine (Cd-VM) plays an impor-
tant role in dynamically optimizing the code for an efficient
use of the Programmable Functional Unit (PFU). Hardware



assisted block and edge profiling [4] is performed while run-
ning the application. Once a particular basic block becomes
hot, the Cd-VM is invoked. The Cd-VM then creates a su-
perblock, optimizes the code in the superblock, and finally
stores the generated code in the code cache. Figure 8 shows
the flow chart of the whole process.

keep MOPdiscard MOP

micro-ops
left ?

micro-ops
left ?

Register Allocation
No No

Dataflow Graph Generation

Superblock Formation

Code Optimization

Pre-scheduling

Macro-op Fusion

Measurement
Performance

YesYes

improves

performanceperformance

degrades

Figure 8: Code Generation Flow Chart

Few of the code generations steps, such as superblock
formation, code optimization, dataflow graph generation
and register allocation, are standard steps in most dynamic
compiling systems. Hence, we will discuss only the steps
that we have introduced in the code generation process.

4.1 Pre-Scheduling

The pre-scheduling step helps in aggressively reordering
micro-ops, including load and stores, and thus, it creates
more opportunities for the algorithm that combines micro-
ops into MOPs.

4.2 Macro-op Fusion

After pre-scheduling the code, the Cd-VM traverses the
dataflow graph in the pre-scheduled program order to select
appropriate micro-ops to be combined into complex macro-
ops. While traversing the code, micro-ops are fused into
the CMOP. In particular, a micro-op is placed such that its
predecessors are always placed in rows above it. The pro-
posed schemes tries to fit a MOP with as many micro-ops
as possible.

Once a MOP is formed, the performance of the actual
state of the generation is estimated. The performance func-
tion model is based on a scheduling step that estimates the
number of cycles of the code prior to the inclusion of the
current MOP and compares it with the code after the MOP
is included. In particular, every time a MOP is formed, the
MOP and the remaining code is scheduled. If the current
MOP degrades performance, the MOP is discarded. The
algorithm then reiterates over the remaining micro-ops and
exits when all the micro-ops have been considered.

5 Performance Evaluation

5.1 Experiment Methodology

We have implemented the proposed PFU model includ-
ing the Cd-VM in a modified version of PTLSim[19]. The
simulated processor is a modern 4-way out-of-order proces-
sor. Table 1 provides detailed information of the microar-
chitecture of the simulated processor and the proposed PFU
configuration.
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Figure 9: Impact of grid size

Common Parameters
I-Cache 16 KB, 4-way, 64 B line, 2 cycle access
Branch Predictor Combined Predictor 64 K

16-bit history 2-level,
64 K bi-modal, 1K RAS

Fetch Width 4 micro-ops / x86 instructions up-to
16 bytes long

Issue Width 4 (2 loads, 2FP, 2 INT, 2 st, 1 CMOP)
L1 Data Cache 32 KB, 4-way, 64 B line, 2 cycles
L2 Cache 256 KB, 16-way, 64 B line, 6 cycles
L3 Cache 4 MB, 32-way, 64 B line, 14 cycles
Main Memory 154 cycles

Out-of-order Parameters
Rename 8 source, 4 destination operands
Issue Queue 16 entry FP, Int, Mem,

CMOP and Control
Functional Units 2 LDU, 2 ALU, 2 AGU, 2 FPU, 1 PFU
Register File 128 entry INT RF, 128-entry FP RF,

4 write ports each
ROB 128 entry
LSQ 80 entry (48 loads + 32 stores)
Load Fill Request Queue 8 entry
Miss Buffer 8 entry

PFU Parameters
Grid size 2 columns, 3 rows
Internal Register File 5 RF sets, 3 RFs per set,

4 entries per RF,
4 read and 4 writer ports per RF

Configuration Cache 5 (7 byte) entries per PE
Execution Latency 1 or 2 cycles

Table 1: Baseline processor configuration

We have evaluated the proposed scheme using the
SPEC2000 benchmark suite. These benchmarks have been
compiled with gcc version 4.1.3 using -O3. Using the de-
veloped infrastructure, we have simulated the benchmarks



for 100 million x86 instructions after the initialization and
a cache warm-up period of 2 million x86 instructions.

In this evaluation we have studied the performance of the
proposed PFU using different PFU configurations: varying
the grid size, and constraining the number of PEs that could
receive data from the bypass network. We have also studied
the impact of code optimization heuristics on performance.
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Figure 10: Impact of varying PFU latency

5.2 Impact of Microarchitectural Con-
straints

PFU as described earlier is a grid of PEs. We try to vary
the number of columns in the grid from 1 to 4, but keeping
the number of rows fixed to 3 as shown in Figure 9. In
SPECINT the 2x3 grid is the best performing configuration.
For SPECFP, the 2x3 grid provides performance close to
that provided by a 4x3 grid. Therefore, we choose 2x3 grid
configuration for PFU.

Note, however, that in some cases increasing the number
of columns in the grid (e.g. wupwise, applu, twolf) results
in a lower performance improvement. The main reason for
this is the fact that the heuristic for fusion, fuses as many
micro-ops possible. Thus, in some cases, micro-Ops that
are independent are also fused,and so delay in input for one
micro-op delays the execution of the CMOP.

To support back-to-back execution of CMOP, register
operands should be bypassed to each of the PEs of PFU.
This bypass however is needed only from the ALUs in
which the mv-set executes and from the LDUs where the
loads execute. A fully connected bypass network, where
data is bypassed to all the PEs of PFU is not complexity-
effective. Our simulation results suggests a design point
with both the PE in the first row and 1 PE each in the sec-
ond and the third row provide performance within 0.5% of a
configuration where all the PEs are connected to the bypass.

On the other hand, PFU execution latency also is another
important factor that contributes to performance gain. After
all, fusing a chain of micro-ops and executing them in fewer
cycles have been shown to provide benefit [3, 8, 17, 18]. In-
terlock collapsing ALUs [8] collapses two ALUs and exe-

cute in a single cycle. Moreover, as mentioned in Section
3.2.4, we do not introduce forwarding logic from PFU to
other ALUs is removed. Based on the above observations,
we consider two PFU execution latencies of 1 cycle or 2
cycles.

Figure 10 shows the effect of execution latency on a 2x3
and 3x3 grid configuration. SPECINT is particularly sensi-
tive to this increase in latency. Mesa, however, shows a re-
verse trend, recollect that our code fusion algorithm tracks
the performance of fusion by scheduling the generated in-
structions. If the fused MOP degrades the performance it
is discarded. This results in few MOPs being generated,
which provides better performance than aggressively fused
MOP.

5.3 Impact of Code Optimization Schemes

In a HW/SW co-designed processor Cd-VM plays an im-
portant role in improving performance as well. This impact
in performance due to code optimization is clearly visible in
all the benchmarks as shown in Figure 11. In many bench-
marks, such as lucas, fusion without optimization actually
slows down the application. Recollect that our MOP-fusion
algorithm tries to fit in as much micro-ops as possible. As
a result of which artificial dependencies are created. This
results in delaying the critical path of the application and
causing a slowdown.
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Figure 11: Impact of Code Optimization

As mentioned in Section 4, performance of fusion is
evaluated using an objective function based on a scheduler.
However, the scope of this monitoring is limited to the su-
perblock. Getting a global scope for all superblocks is a
cumbersome task, however, in case of superblocks that are
loops its fairly possible. Hence, in order to get a semi-global
scope in case of superblocks with loops multiple iterations
of the superblocks are scheduled. The impact of this op-
timization can be seen from Figure 11 by the bar with tag
loop scheduling. Notice the gain in performance in wup-
wise, mgrid and applu which have many superblocks that
are loops.



As discussed earlier in Section 4, fusion is preceded by
pre-scheduling. Superblocks are aggressively reordered in
the pre-scheduling phase and a new program order is ob-
tained. The impact of pre-scheduling step can also be seen
from Figure 11 in the third bar with tag loop scheduling +
pre-scheduling. This aggressive re-ordering can have nega-
tive impact when some store instructions are pushed down
as evident in ammp, apsi and bzip2.

5.4 Comparison with alternate designs

As mentioned earlier chaining of FUs has been shown to
provide performance benefits[3, 8]. Also at the same time
vector functional units increases performance[1, 12]. Our
proposal tries to leverage these two facts in a more efficient
way with little change over the baseline architecture.

First, we dynamically create SIMD instructions using
similar code generation heuristics as discussed earlier. The
SIMD instructions considered are SSE2 and hence act upon
4 32-bit operands in parallel. The impact of SIMD units on
performance is shown in Figure 12 by the bar with dynamic
SIMD tag.
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Figure 12: Comparison with SIMD and 8-way out-of-order

Wider machines are known to exploit the inherent
ILP and provide performance benefits. Code-optimization
heuristics like code reordering as well exploit this inherent
ILP by generating code with data parallel instructions be-
ing executed together. Hence, we compare our PFU based
proposal to two variants of 8-wide machine.

A 2x3 PFU grid adds 6 ALUs to the baseline processor.
Hence, in the first 8-wide issue variant as shown in Figure
12, by the bar 8-wide ALU, we add 6 more ALUs to the
baseline processor and increase the issue width from 4 to 8.
Clearly, a HW/SW co-designed approach outperforms an 8-
wide issue machine. Note that, in this 8-wide issue variant
the bypass is provided from all the FUs to all the newly
added ALUs. Whereas in our model we provide a limited
bypass as evaluated in the section 5.2.

We also consider a more aggressive design of 8-wide is-
sue machine, in which all the FUs are doubled, including
memory and complex FUs eg: FPDIV. Such an 8-wide issue

machine performs better in case of SPECINT and is evident
in Figure 12 by the 8-wide double FUs bar. Adding more
store and load units has a stronger impact in performance
in SPECINT. However, our proposal outperforms in case of
SPECFP without doubling any memory or complex FUs.

5.5 Overhead of Co-designed Virtual Ma-
chine

To measure the overhead of Super Block Translation we
used estimates provided in [9, 6]. DAISY [6] reported an
estimate of nearly 4000 source instructions to optimize a
single source instruction. They however, mention that this a
very conservative estimate and quote a reasonable estimate
to be 1000 instructions. S. Hu [9] measured the overhead to
be 1000 x86 instructions per x86 instruction.

We used this esmtimate to measure the startup overhead
of Superblock translation and optimization. This overhead
turned out to be very low less than 1 percent in our case.
Note that, the overhead related to cold code translation is
removed due to the use of dual-mode decoders in the fron-
tend.

6 Related Work

6.1 Dynamic Optimization

Performing dynamic optimization in a user transparent
manner is not new. Several hardware approaches have been
considered [14]. The main difference between our scheme
and theirs is that a co-designed approach uses a software
layer to perform these optimizations. This has several ad-
vantages including flexibility to perform different optimiza-
tions and analysis with reduced hardware complexity.

The concept of a co-designed VM is also used by Trans-
meta Crusoe [11, 5] processors to execute x86 code on top
of a VLIW processor, and by IBM DAISY [6] to execute
PowerPC code on top of a VLIW processor. There are two
main differences between these schemes and the one de-
scribed in our proposal. First, we eliminate start-up over-
heads by eliminating the interpretation/translation step of a
typical co-designed VM. Secondly, prior projects assume a
VLIW target processor, while we target an x86 processor
out-of-order design.

6.2 Accelerators

Many different types of fine-grained accelerators [3, 18,
17, 8] have been proposed to improve performance in a
complexity-effective way. Some of them [3, 17] are de-
signed requiring changes to the ISA and they are pro-
grammed using a static code generation scheme. This, in



contrast to our approach demands an effort in forward com-
patibility. Applications evolve and so, accelerators may re-
quire some changes from generation to generation. There-
fore, adding instructions at ISA level may pose important
constraints for future processor generations.

Dynamic and transparent management of these accelera-
tors have been studied in the past. Most of the works [3, 18]
have focused on managing accelerators with hardware-
based dynamic optimizers. A more limited amount of work
has considered the use of co-designed VM for assigning in-
structions to an accelerator. However, their work focused on
using a 3-1 ALU [8]. In contrast, in this paper we focus on
exploiting the benefits of a larger and powerful accelerator
over larger regions.

On the other hand a recent work have considered the ben-
efits of using a co-design virtual machine to deal with the
changes on the SIMD vector ISA from generation to gener-
ation [2]. In contrast, in this paper we proposed a new PFU
and we show that this scheme outperforms SIMD-based ac-
celerators. As far as we know this is the first work where
these alternatives are compared.

7 Conclusions

A HW/SW co-designed approach is a complexity-
effective way of providing high performance for general
purpose application. A Cd-VM reorders a superblock and
fuses a sequence of micro-ops to generate a MOP. The fu-
sion is done by taking into account the existing microarchi-
tectural resources and performance of fusion is monitored.
A split-MOP model allows inputs to be provided both from
memory and conventional register file.

A novel PFU executes the CMOP design is proposed
which exploits both ILP and chaining to gain performance.
We obtain average speedups of 17% in SPECFP and 10% in
SPECINT. We also obtain speedups of up-to 33 % is some
benchmarks.

We measure the impact of various microarchitectural
constraints on performance. We also demonstrate that, by
introducing some code generation scheme performance is
improved. We also show that our split-MOP model outper-
forms not only a dynamic SIMD machine but also 8-wide
issue machine. Hence, we conclude that a new generation of
out-of-order processors can be co-designed for higher per-
formance in a complexity-effective way.
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