
A Constraint Programming Approach for
Instruction Assignment

Mirza Beg
David R. Cheriton School of Computer Science

University of Waterloo, Canada
mbeg@cs.uwaterloo.ca

Peter van Beek
David R. Cheriton School of Computer Science

University of Waterloo, Canada
vanbeek@cs.uwaterloo.ca

Abstract
A fundamental problem in compiler optimization, which has in-
creased in importance due to the spread of multi-core architectures,
is to find parallelism in sequential programs. Current processors
can only be fully taken advantage of if workload is distributed
over the available processors. In this paper we look at distribut-
ing instructions in a block of code over multi-cluster processors,
the instruction assignment problem. The optimal assignment of in-
structions in blocks of code on multiple processors is known to
be NP-complete. In this paper we present a constraint program-
ming approach for scheduling instructions on multi-cluster systems
that feature fast inter-processor communication. We employ a prob-
lem decomposition technique to solve the problem in a hierarchical
manner where an instance of the master problem solves multiple
sub-problems to derive a solution. We found that our approach was
able to achieve an improvement of 6%-20%, on average, over the
state-of-the-art techniques on superblocks from SPEC 2000 bench-
marks.

1. Introduction
Modern architectures feature multiple processors and can only be
fully taken advantage of if the compiler can effectively utilize the
available hardware parallelism. Traditionally, instruction schedul-
ing has been employed by compilers to exploit instruction level
parallelism in straight-line code in the form of basic blocks [6, 8,
15, 16, 21, 25, 32, 33] and superblocks [7, 13, 17, 19, 26, 31]. A ba-
sic block is a sequence of instructions with a single entry point and a
single exit. A superblock is a sequence of instructions with a single
entry point and multiple possible exits. The idea behind instruction
scheduling is to minimize the runtime of a program by reorder-
ing instructions in a block given the dependencies between them
and the resource constraints of the architecture for which the pro-
gram is being compiled. This stage of compilation is all the more
important for in-order processors as they strictly follow the sched-
ule suggested by the compiler. Almost all current architectures are
based on the chip multi-processor model, a trend which necessi-
tates changes in compiler design to make better use of the available
resources.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
INTERACT-15, February 2011.
Copyright c© 2011 ACM . . . $10.00

Current processors communicate with each other using shared
memory where the communication latency can be as low as 14 cy-
cles. Luo et al. [24] describe an approach to lower the cost of com-
munication between processor cores by communicating through the
memory hierarchy. Recent trends in architecture research places an
extra emphasis on designing and developing on-chip networks for
inter-processor communication. Bjerregaard and Mahadevan [5]
conducted a survey of different designs and implementations of
on-chip networks. Owens et al. [27] delve into the design of infras-
tructure support for on-chip networks and the research challenges
for implementing them on multi-cores. It is expected that these net-
works will provide fast communication between cores which will
facilitate parallelization of programs.

The primary goal of parallelization is to identify parts of the
program which can be executed concurrently on different proces-
sors. Previous work has proposed heuristic approaches to parti-
tion straight-line regions of code for multi-cluster (see [1] and the
references therein) architectures (for some recent work, also see
[9, 14, 22, 23, 28]). Ellis [14] gives a greedy approach to assign
instructions on processors in a clustered VLIW architecture known
as BUG. This approach proceeded by assigning instructions on the
critical path to the same processor. Lee et al. [23] present conver-
gent scheduling as a combined method for assigning and schedul-
ing instructions on clustered VLIW architecture. Chu et al. [9] de-
scribe a hierarchical approach to find balanced partitions of a given
dependence graph for a block. This technique is known as RHOP.
RHOP is the state-of-the-art in terms of parallelizing local blocks
of code for multiple processors.

In this paper, we present a constraint programming approach to
instruction assignment on clustered processors that is robust and
optimal. In a constraint programming approach, a problem is mod-
eled by stating constraints on acceptable solutions, where a con-
straint defines a relation among variables, each taking a value in a
given domain. The constraint model is usually solved using back-
tracking search. The novelty of our approach lies in the decomposi-
tion of the problem and our improvements to the constraint model,
which reduces the effort needed in the search for the optimal so-
lution. Our approach is applicable when larger compile times are
acceptable. In contrast to previous work we assume a more real-
istic instruction set architecture containing non-fully pipelined and
serializing instructions. It is worth noting that on the PowerPC 15%
of the instructions executed by the processor are serializing instruc-
tions.

In our experiments we evaluated our approach on the SPEC
2000 integer and floating point benchmarks, using different archi-
tectural models. We compared our results against RHOP using the
same communication cost as in [9]. We found that in our experi-
ments we were able to improve on RHOP up to 79% depending on
the architectural model. Also in our experiments we were able to

solve a large percentage of blocks optimally with a ten minute time
limit for each block. This represents a significant improvement over
existing solutions.

The rest of the paper is organized as follows. Section 2 gives an
overview of the related work. An overview of the background ma-
terial is given in Section 3. Section 4 gives details of our approach
and improvements to the model. Section 5 describes the experimen-
tal setup and results. Section 6 discusses and analyzes the approach
given in this paper. Finally, the paper concludes with Section 7.

2. Related Work
In this section we review the different approaches towards solving
the instruction assignment problem.

Lee et al. [23] present a multi-heuristic framework for schedul-
ing basic blocks, superblocks and traces. The technique is called
convergent scheduling. The scheduler maintains a three dimen-
sional weight matrix Wi,c,t, where the ith dimension represents
the instructions, c spans over the number of processors and t spans
over possible time slots. The scheduler iteratively executes multi-
ple scheduling phases, each one of which heuristically modifies the
matrix to schedule each instruction on a processor for a specific
time slot, according to a specific constraint. The main constraints
are pre-placement, communication minimization and load balanc-
ing. After several passes the weights are expected to converge. The
resultant matrix is used by a traditional scheduler to assign in-
structions to processors. The framework has been implemented on
two different spatial architectures, Raw and clustered VLIW. The
framework was evaluated on standard benchmarks, mostly the ones
with dense matrix code. An earlier attempt was made by the same
group for scheduling basic blocks in the Raw compiler [22]. This
technique iteratively clustered together instructions with little or no
parallelism and then assigned these clusters to available processors.
A similar approach was used to schedule instructions on a decou-
pled access/execute architectures [28].

The most well known solutions to the assignment problem are
greedy and hierarchical partitioning algorithms which assign the in-
structions before the scheduling phase in the compiler. The bottom-
up greedy, or BUG algorithm [14] proceeds by recursing depth first
along the data dependence graph, assigning the critical paths first. It
assigns each instruction to a processor based on estimates of when
the instruction and its predecessors can complete execution at the
earliest. These values are computed using the resource requirement
information for each instruction. The algorithm queries this infor-
mation before and after the assignment to effectively assign instruc-
tions to the available processors.

Chu et al. [9] describe a region-based hierarchical operation par-
titioning algorithm (RHOP), which is a pre-scheduling method to
partition operations on multiple processors. In order to produce a
partition that can result in an efficient schedule, RHOP uses sched-
ule estimates and a multilevel graph partitioner to generate clus-
ter assignments. This approach partitions a data dependence graph
based on weighted vertices and edges. The algorithm uses a heuris-
tic to assign weights to the vertices to reflect their resource us-
age and to the edges to reflect the cost of inter-processor com-
munication in case the two vertices connected by an edge are as-
signed to different processors. In the partitioning phase, vertices
are grouped together by two processes called coarsening and re-
finement [18, 20]. Coarsening uses edge weights to group together
operations by iteratively pairing them into larger groups while tar-
geting heavy edges first. The coarsening phase ends when the num-
ber of groups is equal to the number of desired processors for the
machine. The refinement phase improves the partition produced by
the coarsening phase by moving vertices from one partition to an-
other. The goal of this phase is to improve the balance between
partitions while minimizing the overall communication cost. The

moves are considered feasible if there is an improvement in the gain
from added parallelism minus the cost of additional inter-processor
communications. The algorithm has been implemented in the Tri-
maran framework. Subsequent work using RHOP partitions data
over multi-core architectures with a more complex memory hierar-
chy [10, 11].

3. Background
This section provides the necessary background required to under-
stand the approach described in the rest of the paper. It also gives
a statement of the problem that this paper solves along with the
assumptions and the architectural model.

For the purpose of this paper the following architectural model
is assumed. We consider a clustered architecture, which has a small
number of processors and data values can be transferred between
clusters over a fast interconnect using an explicit move operations.
In general, the following holds for our architecture model.

• Clusters are homogeneous. This means that all processors have
the same number of identical functional units, with the same
issue-width.

• The processor model is realistic in the sense that the instruction
set may contain non-pipelined instructions as well as serializ-
ing instructions. These are instructions which may disrupt the
instruction pipeline of superscalar architectures.

• Clusters can communicate with each other with a constant cost
of c cycles. After the result of an instruction is available, it
would take c cycles to transfer the resultant value on a different
cluster where it is needed. We use c = 1 as in RHOP for our
experiments.

The assumptions given above are similar to those used to test
RHOP [9] with the difference being that RHOP does not assume
homogeneous processors and does not consider non-pipelined or
serializing instructions which are a common feature in realistic
instruction set architectures.

We use the standard directed graph (DAG) representation for
the basic blocks and superblocks. A basic block is a sequence of in-
structions with a single entry point and a single exit. A superblock
is a sequence of instructions with a single entry point and multiple
possible exits. Each vertex in the DAG corresponds to an instruc-
tion and there is an edge from vertex i to vertex j labeled with a
non-negative integer l(i, j) which represents the delay or latency
between when the instruction is issued and when the result is avail-
able for the other instructions on the same cluster. Exit vertices are
special nodes in a DAG representing branch instructions. Each exit
vertex i is associated with a weight w(i) representing the prob-
ability that the flow of control will leave the block through this
exit point. These have been calculated through profiling. See Fig-
ure 1(a) for a DAG representing a superblock.

With the given architectural model and the dependency DAG
for a basic block or a superblock, the assignment problem can be
described as an optimization problem where each instruction has to
be assigned to a clock cycle and also assigned to a cluster such that
the latency and resource constraints are satisfied.

Definition 3.1 (Schedule). The schedule S for a block is a mapping
of each instruction in a DAG to a time cycle.

Definition 3.2 (Schedule Length). The length of a schedule for a
basic block is the cycle in which the last instruction in the block is
issued.

Definition 3.3 (Weighted Completion Time). The weighted com-
pletion time for a superblock schedule is

Pn
i=1 w(i)S(i), where n

Figure 1. (a) Graph representation of a superblock: G and H are branch instructions with exit probabilities of 0.2 and 0.8 respectively. B is a
serializing instruction and C is a non-piplined instruction. (b) A possible schedule for the superblock given in (a) for a single-cluster which is
dual-issue and has two functional units. One functional unit can execute clear instructions and the other can execute shaded instructions. The
weighted completion time for the schedule is 9×0.2 + 10×0.8 = 9.8 cycles. (c) A possible schedule for the same superblock for a dual-cluster
where the processors can communicate with unit cost and each processor is the same as the single-cluster in (b) The assignment of C, E and
G to cluster c1 and the rest of the instructions to c0 results in a schedule with weighted cost of 6×0.2 + 8×0.8 = 7.6 cycles.

is the number of exit nodes, w(i) is the weight of exit i and S(i) is
the clock cycle in which i is issued in a schedule.

Given the definition of schedule length and weighted comple-
tion time, which applies to basic blocks and superblocks respec-
tively, the assignment problem can be stated as follows.

Definition 3.4 (Assignment). The assignment A for a block is a
mapping of each instruction in a DAG to a cluster.

Definition 3.5 (Instruction Assignment Problem). Given the de-
pendence graph G = (V, E) for a basic block or a superblock and
the number of available clusters k in a given architectural model,
the instruction assignment problem is to find an assignment A and
a schedule S such that A(i) ∈ {1, . . . , k} for each instruction i in
the block and start time S(i) ∈ {1, . . . ,∞} for all the instructions
i ∈ V that minimizes the schedule length of the basic block or the
weighted completion time in case of superblocks.

Instruction scheduling on realistic multiple issue processor is
known to be a hard problem and compilers use heuristic approaches
to schedule instructions. Instruction assignment can be simply
stated as scheduling instructions on multiple processors. The idea
would be to partition the DAG and schedule each partition on a
processor.

Definition 3.6 (Graph Partitioning). The graph partitioning prob-
lem consists of dividing a graph G into k disjoint parts while satis-
fying some balancing criterion.

When k = 2, the problem is also reffered to as the graph
bisection problem. Balanced graph partitioning problem is known
to be NP-hard for k ≥ 2 [2]. The assignment problem described
above can be harder than balanced graph partitioning because the
feasible partitions of the DAG can also be fewer than k (so it would
need to consider solutions with number of partitions from 2 to k).
We use constraint programming to model and solve the instruction
assignment problem.

Constraint programming is a methodology for solving hard
combinatorial problems, where a problem is modeled in terms of
variables values and constraints (see [30]). Once the problem has

been modeled in which the variables along with their domains have
been identified and the constraints specified, backtracking over the
variables is employed to search for an optimal solution.

4. Constraint Programming Approach
In this section we present a constraint model for the instruction
assignment problem.

Each instruction is represented by a node in the basic block
dependency graph. Each node i in the graph is represented by two
variables in the model, xi and yi. The variable xi ∈ {1, . . . ,∞} is
the cycle in which the instruction is to be issued. The upper-bound
to these variables can be calculated using a heuristic scheduling
method. The variable yi ∈ {1, . . . , k} identifies the cluster to
which instruction i is assigned. The key is to scale up to large
problem sizes. In developing an optimal solution to the assignment
problem we have applied and adapted several techniques from
the literature including symmetry breaking, branch and bound and
structure based decomposition techniques.

The main idea is to solve the two stage problem of assignment
and scheduling. The idea was inspired by integer programming,
Benders [4] and Dantzig-Wolfe [12] decomposition techniques, to
decompose the problem into master-slave. We model the assign-
ment problem as master which models and solves multiple slave
problems to schedule instructions for a given assignment at each
stage.

4.1 Symmetry Breaking
Symmetry can be exploited to reduce the amount of search needed
to solve the problem. If the search algorithm is visiting the equiva-
lent states over and over again then excluding these states such that
equivalent states are not visited multiple times as the result in all
cases is the same.

Using this technique we aim to remove provably symmetric as-
signments to instructions. An example would be the first instruc-
tion being assigned to the first cluster and thus discarding all the
solutions where the first instruction is on any other cluster, while
preserving at least one optimal assignment.

Our approach to symmetry breaking is to reformulate the prob-
lem such that it has a reduced amount of symmetry. We model the
problem such that each edge in the DAG is represented by a vari-
able zij ∈ {=, 6=}. Our model inherently breaks symmetry by us-
ing backtracking search to assign values to the z variables, which
represent the edges in the blocks. For a variable zij assigned a value
= means that variables yi and yj will take the same values and
vice versa for 6=. Once the variables zij ∈ {=, 6=} are set, an as-
signment to all instructions can be determined, i.e. values can be
uniquely assigned to all variables yi for i ∈ {1, .., n}. Once the
assignment to all instructions is available the existing optimal in-
struction scheduler [26] can be used to compute the schedule length
or the weighted completion time for the block for the given assign-
ment. The backtracking algorithm continues exhaustively, updat-
ing the minimum cost as it searches the solution space. In the case
where an assignment is not possible for the given values of z vari-
ables, a conflict is detected.

4.2 Branch and Bound

Figure 2. An example of inconsistent assignment to z variables for
which valid values cannot be assigned to the y variables.

During the search for a solution the backtracking algorithm can
determine a complete assignment at the leaf nodes of the search
tree. But certain branches of the search tree can be pruned if it can
be guaranteed that all of the leaf nodes in that branch can be safely
eliminated without eliminating at least one optimal solution. There
are two cases in which an internal node of the search tree can be
labeled as such. The first case: if an assignment to the y variables
is not possible for the partial assignment to the z variables. This
can be detected if even one of the y variables cannot be assigned
a value in {1, ..., k} without violating the constraints given by the
z variables. An example of such a violation is given in Figure 2.
The second case: if the partial assignment to the y variables can
be proven to result in a partial schedule with a cost greater than
the established upper bound. The search space can be reduced by
eliminating all such assignments containing this sub-assignment.
In both the above mentioned cases the backtracking algorithm does
not descend further in the search tree. This is done continuously
during the algorithm as upper-bounds are improved upon.

4.3 Connected Sub-structures
The amount of search done by the algorithm can be reduced if it can
be pre-determined that certain instructions are strongly connected
and would be assigned to the same cluster in at-least one optimal
solution to the assignment problem. To this end we define the con-
nected sub-structure as follows. Some examples of connected sub-

Figure 3. Examples of connected sub-structures in blocks. Each of
them is marked by bounding box. Chains like the ones given in (a)
and (b) form connected sub-structures in all architectures where as
complex connected sub-structures may also exist like in (c) where
the connectedness is conditional upon the types of instructions
and/or the architecture of the processor the code is being compiled
for.

structures are given in Figure 3. For the purpose of the experiments
we only consider chains as connected sub-structures.

Definition 4.1 (Connected Sub-structure). A connected sub-structure
in the DAG is a set of instructions with a single entry instruction
into the structure and a single exit from the structure and can be
executed on a single processor in the early start time of the last
instruction with respect to that structure.

Theorem 4.2. A chain of size at least three is a connected sub-
structure.

Proof: On the contrary, assume that two or more instructions in the
chain are assigned to different clusters. Every edge that is cut will
incur an additional penalty of the communication cost. Hence the
length of path from the source to the sink of the connected sub-
structure increases by that amount. �

Theorem 4.3. All instructions in a connected sub-structure can
be assigned to the same processor without eliminating at-least one
optimal assignment of the instructions to clusters.

Proof: A connected sub-structure cannot be scheduled more effi-
ciently on multiple processors as compared to a single one. It is
possible however to distribute the instructions of a connected sub-
structure over multiple processors without increasing the schedule
length of the sub-structure. Thus the assignment of all instructions
in the sub-structure to the same processor would result in a sched-
ule with the same cost as any other optimal schedule where the
instructions of the sub-structure are not on the same processor. �

Lemma 4.4. All instructions in a chain of size at least three can be
assigned to same cluster without eliminating all optimal solutions
to the assignment problem.

Proof: Follows from the theorems above. �

4.4 Solving an Instance
Solving an instance of the instruction assignment problem proceeds
with the following steps. First, a constraint model for edge assign-
ment is constructed. The lower-bound and the upper-bound on the
cost of the schedule on the given number of clusters is established.

Figure 4. Average speedups of superblocks in SPEC 2000 for a 4-cluster 2-issue architecture.

The lower bound is computed using an extension of the optimal
scheduler [26] for multi-cluster architecture. To compute the lower-
bound we assume a communication cost of zero and no serializ-
ing instructions. The upper-bound is initially established using an
extension to the list-scheduling algorithm [3]. These bounds are
passed on to the backtracking algorithm along with the constraint
model.

The backtracking search interleaves propagation of branch and
bound checks with branching on the edge variables. During con-
straint propagation the validity check of an assignment at each
search node is enforced. Once a complete assignment can be com-
puted, it is passed on to the optimal instruction scheduler to de-
termine the cost of the block. If the cost is equal to the lower-
bound then a solution is found. On the other hand if the cost is
better than the existing upper-bound, the upper-bound as well as
the upper-bound assignment is updated. This is repeated, until the
search completes. The returned solution is the final upper-bound as-
signment. If the algorithm terminates, a provably optimal solution
has been found. If, instead, the time limit is exceeded, the existing
upper-bound solution is returned as the best result. Consistency and
bounds checks are intended to prune the search tree and save search
time. An outline of our solution to the instruction assignment prob-
lem is given as Algorithm 1.

5. Evaluation
We evaluated our solution to the instruction assignment problem
on the SPEC 2000 integer and floating point benchmarks, as all of
the superblocks from these benchmarks were readily available to
us. The benchmark suite consists of source code for software pack-
ages chosen to represent a variety of programming languages and
types of applications. The results given in this paper are for su-
perblocks. The benchmarks were compiled using the IBM Tobey
compiler targeted towards the IBM PowerPC processor, and the su-
perblocks were captured as they were passed to Tobey’s instruction
scheduler. The compilations were done using Tobey’s highest level
of optimization, which includes aggressive optimization techniques
such as software pipelining and loop unrolling. The Tobey compiler
performs instruction scheduling once before global register alloca-
tion and once again afterward. The results given are for the most
frequently executed superblocks in the benchmarks but previous
experiments have shown that the overall result of experiments re-
main the same in general.

We conducted our evaluation using four realistic architectural
models given in Table 1. In these architectures, the functional units

Algorithm 1 Instruction Assignment (DAG G)
1: ub← Establish upper bound using list-scheduler extension
2: lb← Establish lower bound using ext. optimal scheduler
3: E ← set of edges in G with domain{=, 6=}
4: find connected sub-structures set edges to {=}
5: backtrack on edges e ∈ E
6: for each node n of the search tree do
7: if n is an internal node of search tree then
8: consistency check (n)
9: bounds check (n)

10: if any of the checks fail, discard subtree rooted at n
11: end if
12: if n is a leaf node of search tree then
13: A← generate assignment for n
14: S ← determine schedule for assignment A
15: ub← update ub using S
16: end if
17: if ub = lb then
18: return solution
19: end if
20: end for
21: return ub as solution

are not fully pipelined, the issue width of the processor is not
equal to the number of functional units, and there are serializing
instructions. We assume homogeneous clusters; i.e., all processors
are considered to be the same. Additionally we also assume that
clusters can communicate with each other with a latency of one
cycle.

architecture int. func. mem. branch floating
(issue width) units units units pt. units
1-issue (1) 1
2-issue (2) 1 1 1 1
4-issue (4) 2 1 1 1
6-issue (6) 2 2 3 2

Table 1. Architectural models.

We evaluated our instruction assignment algorithm with respect
to how much it improves on previous approaches. The state-of-the-
art instruction assignment algorithm for instruction assignment is
a hierarchical graph partitioning technique known as RHOP [9]

Figure 5. Average speedups of superblocks in SPEC 2000 for a 8-cluster 1-issue architecture.

4-cluster-2-issue 8-cluster-1-issue
benchmark rhop-ls rhop-opt rhop-ls rhop-opt
ammp 14.6% 12.9% 35.6% 31.9%
applu 21.1% 18.7% 62.8% 35.2%
apsi 22.8% 20.7% 79.9% 36.7%
art 3.0% 3.0% 8.1% 7.5%
bzip2 7.6% 5.7% 17.6% 16.4%
crafty 9.0% 7.6% 23.0% 19.4%
eon 12.5% 10.7% 22.0% 19.7%
equake 15.4% 13.8% 24.9% 21.9%
facerec 15.2% 10.9% 25.8% 17.2%
fma3d 3.9% 2.7% 18.0% 14.4%
galgel 7.6% 6.9% 19.2% 15.2%
gcc 4.8% 3.6% 16.9% 15.2%
gzip 5.2% 4.0% 18.4% 16.2%
lucas 0.8% 0.8% 10.5% 9.8%
mcf 4.6% 4.2% 15.7% 15.4%
mesa 8.1% 7.4% 17.3% 16.3%
mgrid 11.6% 10.2% 31.8% 27.3%
parser 7.0% 5.1% 21.4% 18.8%
perlbmk 6.1% 4.6% 18.0% 15.9%
sixtrack 12.4% 11.3% 35.8% 28.3%
swim 6.0% 4.9% 32.5% 17.3%
twolf 10.0% 9.1% 22.8% 21.0%
vortex 6.7% 5.6% 17.3% 15.7%
vpr 8.7% 7.0% 23.7% 20.1%
wupwise 11.4% 10.8% 20.2% 19.3%
AVERAGE 7.0% 6.3% 22.3% 21.3%

Table 2. The percentage improvement of our technique over rhop-
ls and rhop-opt for SPEC 2000 benchmarks on 4-cluster-2-issue
and 8-cluster-1-issue architectures.

which uses coarsening and refinement to partition the dependency
graph for multiple processors. Once the partitions are formed our
simulation uses a list scheduler (using dependence height and spec-
ulative yield (DHASY) heuristic, which is also the default heuristic
in the Trimaran compiler) to determine the schedule for the su-
perblocks. To determine the effectiveness of our partitions the re-
sults are also reported for RHOP-OPT where the schedule for the
given partitions is determined by an optimal scheduler [26]. The
performance improvements are measured over the list scheduling
algorithm for a single cluster architecture. For running our algo-
rithm we used a timeout of ten minutes for each superblock. A ten

minute timeout on each superblock allows an entire benchmark to
be compiled in a reasonable amount of time.

1-cluster 2-clusters 4-clusters 8-clusters
1-issue 96% 79% 71% 29%

apsi 2-issue 97% 80% 69% 38%
4-issue 95% 80% 70% 40%
6-issue 96% 83% 79% 67%
1-issue 94% 92% 86% 61%

mgrid 2-issue 96% 92% 86% 64%
4-issue 96% 92% 86% 64%
6-issue 100% 100% 98% 89%
1-issue 100% 100% 98% 30%

lucas 2-issue 100% 100% 100% 46%
4-issue 100% 100% 100% 51%
6-issue 100% 100% 100% 94%

Table 3. The percentage of superblocks solved optimally for each
benchmark for different architectural models.

Figures 4 and 5 compare the performance of a 4-cluster dual
issue architecture using our algorithm(opt), RHOP (rhop-ls) and
RHOP-OPT (rhop-opt) with the performance of 8-cluster single
issue architecture. For the 4-cluster architecture our algorithm
achieves improvements from 0.8% (lucas) upto 22.8% (apsi) over
rhop-ls and from 0.8% upto 20.7% over rhop-opt. On average we
improved over the previous techniques by 6%-7% for the 4-cluster
configuration. In the case of the 8-cluster configuration our al-
gorithm improves over the rhop-ls by 22% and over rhop-opt by
21% on average. These results are given in Table 2. These results
show that our algorithm scales better with the number of proces-
sors which is because RHOP sometimes partitions the blocks more
aggressively than necessary which results in slowdowns instead of
speedups. Also note that the results for RHOP reported here are
giving higher speedups than those reported by Chu et al. [9]. This
is because we were unable to incorporate the effect of inter-block
dependencies which would also incur a penalty if they are across
partitions assigned to different clusters.

We also evaluated our optimal assignment algorithm to see how
it scales with varying issue width for different number of proces-
sors. Figures 6, 7 and 8 give the performance of our algorithm com-
pared to rhop-ls and rhop-opt for various configurations. The im-
provements for lucas benchmark are moderate but for mgrid our al-
gorithm gives good improvements. The results show that speedups
from our algorithm increase with the number of processors and de-
crease with increasing issue-width. It is worth noting that our algo-

Figure 6. Average speedups of superblocks for the apsi SPEC benchmark for different architectures.

Figure 7. Average speedups of superblocks for the mgrid SPEC benchmark for different architectures.

Figure 8. Average speedups of superblocks for the lucas SPEC benchmark for different architectures.

rithm does not give slowdowns in any case where as RHOP regu-
larly dips below the 1.0 line as the number of processors increase.

We also evaluated our algorithm to see what percentage of su-
perblocks it can solve optimally. Table 3 summarizes the percent-
age of superblocks solved optimally within the set timeout for three
benchmarks; apsi, mgrid and lucas. The results show that our algo-
rithm finds it harder to solve for large number of processors with
small issue-width and hence times out more often.

6. Discussion
The application of constraint programming to the instruction as-
signment problem has enabled us to solve the problem optimally
for a significant number of code blocks. Solving the assignment
problem optimally has an added value over heuristic approaches in
instances where longer compilation time is tolerable or the code-
base is not very large. This approach can be used in practice for
software libraries, digital signal processing or embedded applica-

tions. The optimal assignment can also be used to evaluate the per-
formance of heuristic approaches.

The optimal solution also gives the added performance benefits
by distributing the workload over processors and the ability to
utilize resources that might otherwise remain idle.

7. Conclusions
This paper presents a constraint programming approach to the in-
struction assignment problem for taking advantage of the paral-
lelism contained in local blocks of code for multi-cluster architec-
tures. We found that our approach was able to achieve an improve-
ment of 6%-20%, on average, over the state-of-the-art techniques
on superblocks from SPEC 2000 benchmarks.

References
[1] A. Aleta, J. M. Codina, J. Sanchez, A. Gonzalez and D. Kaeli.

AGAMOS: A graph-based approach to modulo scheduling for clustered
microarchitectures. IEEE Transactions on computers, vol. 58, no. 6, June
2009.

[2] K. Andreev and H. Räcke. Balanced graph partitioning. In Proceedings
of the Sixteenth annual ACM symposium on Parallelism in Algorithms
and Architectures, pages 120-124, 2004.

[3] M. Beg. Instruction scheduling for multi-cores. Student Research
Competition at the Conference on Programming Language Design and
Implementation, 2010.

[4] J. F. Benders. Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik 4, 238-252, 1962.

[5] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of network-on-chip. ACM Computing Surveys, 38(1), 1-51, 2006.

[6] C. M. Chang, C. M. Chen and C. T. King. Using integer linear program-
ming for instruction scheduling and register allocation in multiple-issue
processors. Computers and Mathematics with Applications 34(9):1-14.
1997.

[7] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Rau and
M. Schlansker. Profile-driven instruction level parallel scheduling
with application to superblocks. In Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 58-
67, 1996.

[8] H. C. Chou and C. P. Chung. An optimal instruction scheduler for
superscalar processors. IEEE Transactions on Parallel and Distributed
Systems, 6(3):303-313, 1995.

[9] M. Chu, K. Fan and S. Mahlke. Region-based hierarchical operation
partitioning for multicluster processors. PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 300-311, 2003.

[10] M. Chu and S. Mahlke. Compiler-directed data partitioning for
multicluster processors. In CGO ’06: Proceedings of the International
Symposium on Code Generation and Optimization. pp 208–220, 2006.

[11] M. Chu, R. Ravindran and S. Mahlke. Data access partitioning
for fine-grain parallelism on multicore architectures. In MICRO ’07:
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture. pp 369–380, 2007.

[12] G. B. Dantzig and P. Wolfe. Decomposition principle for linear
programs. Operations Research 8, pages 101-111, 1960.

[13] A. E. Eichenberger and W. M. Meleis. Balance scheduling:weighting
branch tradeoffs in superblocks. In Proceedings of the 32nd Annual
IEEE/ACM International Symposium on Microarchitecture, 1999.

[14] J. R. Ellis. Bulldog: a compiler for VLSI architectures. MIT Press.
Cambridge, MA, USA, 1986.

[15] S. Haga and R. Barua. EPIC instruction scheduling based on optimal
approaches. In Workshop on Explictly Parallel Instruction Computing
Architectures and Compiler Technologies, 2001.

[16] M. Heffernan and K. Wilken. Data-dependency graph transformations
for instruction scheduling. Journal of Scheduling, 8:427-451, 2005.

[17] M. Heffernan, K. Wilken and G. Shobaki. Data-dependency graph
transformations for superblock scheduling. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture,
pages 77-88, 2006.

[18] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partition-
ing Graphs. In Supercomputing ’95: Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing. pp 28, 1995.

[19] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R.
A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,
J. G. Holm and D. M. Lavery. The superblock: An effective technique
for VLIW and superscalar compilation. The Journal of Supercomputing,
7(1), 229-248, 1993.

[20] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing.
201:359–392, 1998.

[21] D. Kastner and S. Winkel. ILP-based instruction scheduling for IA-
64. In LCTES ’01: Proceedings of the ACM SIGPLAN workshop on
Languages, compilers and tools for embedded systems pp. 145-154,
2001.

[22] W. Lee, R. Barua, M. Frank, D.Srikrishna, J. Babb, V. Sarkar and S.
Amarasinghe. Space-time scheduling of instruction-level parallelism
on a RAW machine. In ASPLOS-VIII: Proceedings of the eighth
international conference on Architectural support for programming
languages and operating systems. pp 46–57, 1998.

[23] W. Lee, D. Puppin, S. Swenson and S. Amarasinghe. Convergent
scheduling. In MICRO 35: Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture. pp 111–122, 2002.

[24] C. Luo, Y. Bai, C. Xu and L. Zhang. FCCM: A novel inter-core
communication mechanism in multi-core platform. In Proceedings of
International Conference on Science and Engineering, 215-218, 2009.

[25] A. M. Malik, J MacInnes and P. van Beek. Optimal basic block
instruction scheduling for multiple-issue processors using constraint
programming. International Journal on Artificial Intelligence Tools,
17(1):37-54.

[26] A. M. Malik, M. Chase, T. Russell and P. van Beek. An application
of constraint programming to superblock instruction scheduling.
Proceedings of the Fourteenth International Conference on Principles
and Practice of Constraint Programming. 97–111, 2008.

[27] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler and
L. Peh. Research challenges for on-chip interconnection networks. IEEE
Micro, 27(5), pages 96-108, 2007.

[28] K. Rich and M. Farrens. Code partitioning in decoupled compilers.
In Euro-Par ’00: Proceedings from the 6th International Euro-Par
Conference on Parallel Processing. pp 1008–1017, 2000.

[29] T. Russell, A. Malik, M. Chase, and P. van Beek. Learning heuristics
for the superblock instruction scheduling problem. IEEE Transactions
on Knowledge and Data Engineering, 21(10):1489-1502, 2009.

[30] F. Rossi, P. van Beek and T. Walsh (Ed). Handbook of Constraint
Programming. Elsevier 2006.

[31] G. Shobaki and K. Wilken. Optimal superblock scheduling using enu-
meration. In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 283-293, 2004.

[32] P. van Beek and K. Wilken. Fast optimal instruction scheduling
for single-issue processors with arbitrary latencies. Proceedings of
the Seventh International Conference on Principles and Practice of
Constraint Programming, pages 625-639, 2001.

[33] K. Wilken, J. Liu and M. Heffernan. Optimal instruction scheduling
using integer programming. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 121-133,
2000.

