
 
THE FLORIDA STATE UNIVERSITY 

 
COLLEGE OF ARTS AND SCIENCES 

 
 
 

APPLICATION CONFIGURABLE PROCESSORS 
 
 

By 
 

CHRISTOPHER J. ZIMMER 
 
 
 

A Thesis submitted to the 
Department of Computer Science 

In partial fulfillment of the 
Requirements for the degree of 

Master of Science  
 
 
 

Degree Awarded: 
Fall Semester, 2006  



 ii

 

The members of the Committee approve the Thesis of Christopher Zimmer 
defended on November 20, 2006. 

 
  
 David Whalley  

 Professor Co-Directing Thesis 
 
 Gary Tyson 
 Professor Co-Directing Thesis 
 

 Robert van Engelen 
 Committee Member 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Office of Graduate Studies has verified and approved the above named 
committee members. 



 iii

 

This is dedicated to everyone who has ever helped me.



 iv

 

ACKNOWLEDGEMENTS 
 

I would like to thank my co-advisors Dr. David Whalley and Dr. Gary Tyson for 
helping me through this process. 

I acknowledge Antonia Emperato for her support and help during the writing of 
this thesis.



 v

 

TABLE OF CONTENTS 
 
 
 
List of Tables  ....................................................................................  Page VI 
 
List of Figures  ....................................................................................  Page VII 
 
Abstract  ..........................................................................................  Page IX 
 
1.  Introduction ....................................................................................   Page 1 
  
2.  Experimental Framework  ................................................................  Page 3 
 
3.  Application Configurable Architecture  .............................................  Page 7 
 
4.  Recurrence Elimination using Register Queues................................  Page 15 
 
5.  Register Allocation for Application Configurable Processors  ...........  Page 20 
 
6.  Software Pipelining  ..........................................................................  Page 24 
 
7.  Experimental Results  ......................................................................  Page 33 
 
8.  Related Work  ..................................................................................  Page 38 
 
9.  Future Work   ....................................................................................  Page 40 
 
10.  Conclusions  ...................................................................................  Page 41 
 
REFERENCES  ....................................................................................  Page 42 
 
BIOGRAPHICAL SKETCH ....................................................................  Page 43 



 vi

 

LIST OF TABLES 
 
 
 
Table 2.1: DSP Benchmarks for Testing ................................................  Page 5 

 
Table 7.1: Scaling Load Latency: Register Requirement Increase.........  Page 34 



 vii

 

LIST OF FIGURES 
 
 
 
Figure 1.1: Compiler Generate Arm Code..............................................  Page 2 
 
Figure 3.1: Customized Register File Access ........................................  Page 9 
 
Figure 3.2: Non Destructive Read Queue Behavior ..............................  Page 10 
 
Figure 3.3: Destructive Read Queue Behavior.......................................  Page 10 
 
Figure 3.4: Circular Buffer Read Behavior..............................................  Page 11 
 
Figure 3.5: Modifying Stack Values........................................................  Page 12 
 
Figure 3.6: Qmapping into a Customized Register Structure .................  Page 13 
 
Figure 4.1: Recurrence Elimination Applied to a Vector Multiply ............  Page 16 
 
Figure 4.2: Application of Register Queues to Recurrence Elimination ..  Page 17 
 
Figure 5.1: Example of Overwriting Live Ranges Using a Stack ............  Page 21 
 
Figure 5.2: Destructive Read Queue Register Allocation .......................  Page 22 
 
Figure 6.1: Stalls inserted in Loop..........................................................  Page 24 
 
Figure 6.2: Generic Pipelining Example .................................................  Page 25 
 
Figure 6.3: Applied Modulo Scheduling..................................................  Page 26 
 
Figure 6.4: Register Queue Applied to Loop ..........................................  Page 28 
 
Figure 6.5: Modulo Scheduling and Queue Mapping Algorithm .............  Page 30 
 
Figure 6.6: Customized Register Structure Unique Naming...................  Page 31 
 
Figure 7.1: Scaling Multiply Latency Results..........................................  Page 33 
 
Figure 7.2: Scaling Load Latency Results ..............................................  Page 34 
 
Figure 7.3: Superscalar 2 Issue Scaling Multiplies .................................  Page 36 



 viii

 

 
Figure 7.4: Superscalar 2 Issue Scaling Loads ......................................  Page 36 
 
Figure 7.5: Superscalar 4 Issue Scaling Multiplies ................................  Page 37 
 
Figure 7.6: Superscalar 4 Issue Scaling Loads .....................................  Page 37 
 

 

 



 ix

 

ABSTRACT 

 As the complexity requirements for embedded applications increase, the performance 

demands of embedded compilers also increase.  Compiler optimizations, such as software 

pipelining and recurrence elimination, can significantly reduce execution time for applications, 

but these transformations require the use of additional registers to hold data values across one 

or more loop iterations.  Compilers for embedded systems have difficulty exploiting these 

optimizations since they typically do not have enough registers on an embedded processor to 

be able to apply the transformations. In this paper, we evaluate a new application configurable 

processor utilizing several different register structures which can enable these optimizations 

without increasing the architecturally addressable register storage requirements.  Using this 

approach can lead to an improved execution time through enabled optimizations and reduced 

register pressure for embedded architectures. 

 



 

 1

 

CHAPTER 1 
Introduction 

As embedded systems become more complex, design time for embedded processors is 

staying the same or decreasing while demand for these systems is rising.  One method for 

reducing the design time in an embedded system is to use a general-purpose solution for the 

design of the processor.  These conventional embedded processors come with many different 

designs and extensions to make them smaller and more efficient.  The ARM processor is an 

example of such a processor; it is a 32-bit RISC processor that has 16 registers, only 12 of 

which are typically available for general use. There are several extensions for the ARM, such as 

the Thumb and Thumb2.  The ARM processor is a highly used processor in embedded systems 

and can be found in devices including Palm Pilots, cell phones, and various other electronic 

devices.  As the applications that these embedded systems support become more complex, 

performance also becomes an issue.   It is in this area where we find a need for application 

configurable processors.   Figure 1.1 shows a small example of ARM assembly code that has 

been compiled using available optimizations.  This small example is using roughly 70% of the 

available registers in the ARM instruction set.  It should be obvious from this example the 

difficulty a compiler may have applying optimizations for this type of machine. 

 

Gaining performance through code optimizations in embedded systems is often 

exhausted very early in the optimization process due to a shortage of available registers and the 

inability to perform many optimizations that would require extra registers.  Conventional 

embedded processors often have few registers to keep the encoding of the instruction set small 

and easy to decode.  Due to the limited amount of registers in conventional embedded 

processors, even simple segments of code can use all of the available registers to perform a 

given task.  There are several compiler level methods of exploiting the available registers.  

Spilling values from registers to memory can reduce the register requirements for a block of 

code; however, this method of freeing registers can have a significant negative impact on 

performance.  
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Figure 1.1 Compiler Generated ARM Code 

 

 

Application configurable processors help to alleviate the shortage of registers by using 

small additional register structures to exploit register usage patterns found in code or produced 

by compiler transformations.  By identifying the exploitable patterns, the application configurable 

processor could utilize its series of customized register structures to act as an enlarged register 

mechanism which is accessible through the architected register file.  This would allow the 

compiler greater flexibility during software optimizations and greater control over the available 

registers during register allocation.  The overall impact of this approach can lead to significantly 

improved performance and a reduction in application wide register pressure as well as enable 

more aggressive compiler optimizations to be performed in areas otherwise impossible.   
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CHAPTER 2 

Experimental Framework 
 

For this research compiler we used the Zephyr portable compiler.   We utilized the 

Edison Design Group (EDG) front end to compile standard C code.  The EDG front-end is a 

high level only compilation tool that is capable of parsing many of the different C standards as 

well as C++.   We used the Very Portable Optimizer [1](VPO) backend configured to generate 

ARM code as our backend.  The VPO backend is designed to be both portable and efficient.  

This is accomplished in VPO through the use of VPO’s Register Transfer Lists (RTL).  RTL’s are 

VPO’s intermediate language that provides flexibility through being machine independent.  

Many of the optimization phases of VPO are performed on RTL’s in a machine independent 

manner.  This approach minimizes the amount of code that requires machine dependent 

information thus enabling VPO to be a portable compiler.  To complete the process we were 

able to utilize GCC-cross compiler tools in order to assemble and link our binaries. 

 

We used the Simple-Scalar [2] simulation environment to perform the evaluation and 

simulation for our research.  Our Simple-Scalar simulation environment was setup and 

configured to take a Simple-Scalar ARM binary output from VPO and simulate cycle accurate 

statistics and results.  Our research utilized two of the available simulators in the Simple-Scalar 

suite.  The Sim-Safe simulator is a functional only simulator that provides a minimum amount of 

statistics regarding the binary execution.  The functional simulator was used in creating and 

debugging the system for enabling application configurable processors.  The Simple-Scalar 

simulator is set up in a modular fashion so that architectural features may be created and 

modified in a very straight forward method.  The final simulator that we used for our experiment 

was Sim-Outorder.  The Sim-Outorder simulator is a cycle-accurate simulator that, in spite of its 

name, can be configured to run as either out-of-order or in-order processor.  Sim-Outorder also 

provide a 2-level memory system and support multiple issue widths and speculative execution.  

The Sim-Outorder simulator was utilized to provide more detailed statistical information 

regarding the application of our research to our compiled binaries. 

 

Digital Signal Processing (DSP) applications are a very common application now found 

in embedded systems.  Common examples of applications that require DSP software are mp3 

players.  The decoding of the mpeg 3 codec requires several stages and filters to be run on the 
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data as it passes through the processor.  Each of these filters or stages can be considered a 

DSP kernel at their smallest.  The worst case performance in these situations is real time 

performance.  This would not allow for any mistakes or the quality of output would not meet user 

standards.  It is often a benefit in these types of applications to exceed real time performance so 

that a buffer of calculated data can be accrued.  This benefits the processor by allowing extra 

time to provide quality of service. 

 

Several DSP applications were chosen from 2 suites of benchmarks to evaluate the 

usefulness of this experiment.  We chose DSP benchmarks because we felt they were 

representative of many of the tasks that modern embedded processors may be required to 

accomplish.  DSP benchmarks are typically short in length: typically no longer than 50 – 100 

lines of code.  However, these benchmarks are frequently required to do a large amount of 

numerical processing as well as relatively complicated calculations in the body of a loop.  It is 

becoming a common technique in embedded design to use an application specific processor to 

perform a very common task to what is being calculated in these DSP kernels.  One of the goals 

of our research is to add another solution as an alternative to the growing trend of application 

specific processors.  Our goal and reason for selecting these benchmarks is to show that our 

application configurable processor is a method that will be able to adapt to changes in 

performance needs and application complexity posed by newer embedded applications.  We 

would like to achieve this goal as well as offer the compiler more flexibility to optimize the 

applications that run on an application configurable processor.  

 

All of the DSP benchmarks that we used provided their own data sets; however, none of 

them produced output.  To verify the correctness of our solution we temporarily added output 

statements to evaluate our results versus the base compiler with no support for customized 

register structures.  When we were able to verify the result for the different machine 

configurations available to the compiler the output statements were removed.  Our primary 

experiments were focused on enhancing the optimizations that are performed on loops.  We 

found that many of the DSP benchmarks contained sufficient loops to evaluate the effectiveness 

of our method.  We selected the benchmarks on the premise that all of the performance 

measurements were gleaned from loops that had achieved a steady state.  To achieve the 

steady state the loops were run long enough to negate any cost that the start up cost of the loop 

might have required. 
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Table 2.1 DSP Benchmarks used in Testing Application Configurable Processors 

Program Description 

DSP Stone Fir2Dim 
Performs convolution on an input 

matrix 

DSP Stone N Real Updates 
Performs N Number of Updates on 

Data Arrays 

DSP Stone Matrix 
Performs a series of Matrix 

Multiplications 

DSP Stone Dot Product 
Applies a Dot Product Calculation 

Algorithm 

DSP Stone FIR 
Applies Finite Impulse Response 

Filter 

Conv 45 Performs a convolution algorithm 

Mac 
Performs a multiple multiply 

accumulate operations 

 

 

Our experimentation with application configurable processors spans a few different 

experiments to evaluate the applications which seemed feasible.  The first experiment is set up 

to test the feasibility of applying register queues to an optimization in order to exploit a 

governing characteristic and improve the performance and ability to optimize.  This experiment 

will be applied to improve the performance of loops by removing redundant loads created by 

recurrences.  The second experiment performed using application configurable processors is 

retargeting register allocation in high register pressure situations to reduce register pressure 

and better allocate the architected register file.  The final determination of this experiment is to 

show a positive reduction in the registers used in basic blocks with high register pressure.  The 

final experiment was set up to test the ways in which application configurable processors can 

aid the application in terms of performance.  In this experiment we enable software pipelining in 

a system where there is no room for optimizations due to register pressure.  Our goal in this 

experiment is to show a positive increase in the overall performance of that application as well 

as the ability to actually perform this optimization with the constrained resources.  In this 

experiment we will be measuring for cycle accurate performance improvement.  All of these 

experiments are tested and run using a base case versus the compiler optimized equivalent 

code.  All of these experiments are run through functional simulation to determine that the 

corresponding results are accurate.   
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CHAPTER 3 
Application Configurable Architecture 

 
We had several goals in the development of this system.  We wanted our mechanism of 

storage to be fast and as easily accessed as the architected register file.  We wanted our 

mechanism to act as an extension that would allow the instruction set of the architecture to 

remain the same.  These design decisions come from the need to keep code size small and to 

retain performance of our system.  To manage this, we keep the modifications to hardware and 

software as small and efficient as possible.  Several different types of register structures are 

created to aid register allocation and optimizations by reducing register pressure.  One of the 

main goals of the design of our application configurable processor is to be able to use the 

existing ISA of a conventional embedded design even with the significant modifications to the 

underlying hardware.  

 

With the intentions of keeping our mechanism fast we designed our structures to be a 

minimally invasive change to the access of the current architected register file.  This design 

decision would allow a minimally invasive hardware addition and allow us to only have to modify 

the architected register file itself in order to add the register file extensions.  The other portions 

of the pipeline which must be modified to enable application configurable processors are the 

register dependence calculations performed during decode and writeback.  With the additions 

that we add to our system the calculation of data hazards becomes slightly more difficult and 

will be discussed later in this paper. 

 

The first system designed to enable the application configurable extension was the value 

mapping table.   The concept of the mapping table in our work is very similar to the map table 

that can be found in many out-of-order processor implementations. Using a similar concept to 

the ideas in the Register Connection approach [3], this table provides a register look up and 

corresponding data structure from which to attain the value.  This structure is a very quick 

access map table and is the only redirection required to implement this system.  This map table 

is modified and set as the first logic that must occur during every access to the architected 

register file.  The size of the table in our set up was limited to the amount of registers available 

in the architected register file, but could even be made smaller and faster to access by removing 

special purpose registers.  
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The implementation of this map is such that the lookup is based on the address of the 

register itself. The table will then provide a value which corresponds from which register file the 

value must be retrieved.  If there is no value set in the table, then the value will be retrieved from 

the architected register file.  The alternate register files in our design are set up to be number 

ordered and grouped by type for easy compiler identification.  This map table allows the system 

to use the specifier of an architected register file to access one of the customized register 

structures.  By using the already existing register specifiers we are able to integrate this 

research into an already exisiting instruction set without having to completely rewrite it.  The use 

of the map table is able to provide us with the full benefit of the already existing instruction set 

and our new customized register files. 

 

The most important addition to the decode stage are the customized register files.  Our 

customized register files can be defined as a fast access memory structure that is large enough 

to hold multiple values, but enforces a reading and writing semantic to all of the values in it.   

The reading and writing semantic is used to exploit identifiable reference patterns that can be 

found in code or caused by the process of optimizations.  We have implemented several 

different customized register files which mimic these behaviors.  Figure 3.1 shows the 

modifications to an access to the architected register file during either the decode stage or 

writeback during the pipeline. The map check occurs anytime there is a register file access.  

From this figure it can be determined that there is no mapping between R1 and any of the 

customized register structures.  If the value contained in register R1 was needed in the next 

stage of the pipeline, the map table looks up the mapping and the processor accesses the value 

from the architected register file.  However this table also shows us that a mapping instruction 

for a mapping between R6 and Q1 has occurred.  This mapping means that when any set or 

use request comes into the decode stage of the pipeline for R6; it will be accessing the 

customized register structure Q1.  Though the specifier is used for R6 the register queue 

enables a single specifier to store significantly more values than previously.  The different 

register structures are accessed and passed differently but are all available in order to exploit a 

given reference behavior of a set of registers and map them into one register. 
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Figure 3.1 Customized Register File Access 

 

In this section we will be discussing the architecture and behavior of the different 

customized register files that we have experimented with so far.   

 

Register queues are the main type of the customized register file that we have used so 

far in our research.  The FIFO reference behavior is an identifiable pattern found in many 

aspects of computer architecture and code generation.  Register queues in our terms refer to a 

customized register file that can hold multiple data items at once using a single FIFO register 

and when the structure is referenced the oldest data item is the value that is returned.  In our 

implementation of register queues we found it necessary to create different semantics for 

certain types of queues that allow us greater flexibility when using them in different scopes.  We 

have so far experimented with destructive and non-destructive read queues.  First, let us define 

the applications of our register queue files.  The register queue files are preset to a certain size 

that is specified in an instruction.  This preset size is the point at which all data will be retrieved 

from this instance of the register queue.  In the non-destructive register queues [Figure 3.2] 

when data is read from the queue the values in the queue are not pushed forward.  In a 

destructive read queue [Figure 3.3] the values are pushed forward whenever a read occurs.   



 

 9

 

These different queue types lend themselves well to two different types of reference behaviors 

that the compiler can exploit.   In both types of register queues the values stored in them will be 

pushed forward when a set to the register file occurs.   Queues so far have shown to be the 

most common type of customized register file to be needed by application configurable 

processors.  Several optimizations create a FIFO reference behavior as well as being a 

naturally common reference behavior regardless of the optimizations which have been 

performed.     

 
Figure 3.2 Non Destructive Read Queue Behavior 

 

 
Figure 3.3 Destructive Read Queue Behavior 

 

Circular buffers are another type of customized register structure used to hold a set of 

values reference in a repeated manner.  In many loops that occur in embedded programs the 

compiler often finds it necessary to use registers to hold the address of values that are loaded 

or stored.  This can often use several different registers to store these values.  A circular buffer 

can be used to store these values and advance as the loop iterates.  The circular buffer register 

file is just this, a storage mechanism very similar to the destructive read queue.  When a read 
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occurs in this register file the value will be passed and then the read position will be 

incremented to read the next value.  When the read position has reached the end it will loop 

back to the beginning of the structure and begin providing the value from that point.  Circular 

buffer register files are a successful mechanism for storing all of the loop invariant values and 

providing correct data throughout the loop.    Figure 3.4 shows the destructive read nature of the 

customized circular buffer.   

 

 
Figure 3.4 Circular Buffer Read Behavior 

 

Stacks enable the application configurable processor to exploit any last-in first-out 

reference patterns that might occur in code.  The customized register stack uses a destructive 

read method of modifying the read position into the array to mimic a stack.  However, a set to 

the customized register stack also modifies the read position of the array to enable the last in 

first out semantic.  Figure 3.5 shows a stack with a read position set after two reads from the 

stack had already occurred.  Figure 3.5 shows the modified position of the read pointer when a 

new value is set to the top of the stack.  This depicts the read position being incremented in the 

stack and the value being updated.  
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Figure 3.5 Modifying Stack Values 

 

The modifications to the instruction set architecture were designed so that no changes to 

the registers or instructions themselves were made.  Application configurable processors 

require only one addition to the existing ISA: an instruction which controls both the mapping and 

unmapping of a customized register structure.  To accomplish this task, it is assumed that the 

semantics of the instruction can take on different meanings depending on what structure it is 

referencing.  This instruction is the qmap instruction which we added to the ARM ISA.  This 

instruction contains three pieces of information and performs all of its tasks in the decode stage 

of the pipeline.  The qmap instruction is laid out as follows: 

 

• qmap <register specifier> , <mapping semantic> , <register structure> 

• <register specifier>  The register specifier in this situation refers to the register 

from the architected register file which will point to a customized register 

structure. 

• <mapping semantic>  The mapping semantic refers to the set up information for 

the customized register structure.  In the case of non-destructive read queues, 

this sets the position at which a value will run off of the queue.   

• <Register Structure Specifier>  The register structure specifier itself is numbered 

similarly to the numbers in the architected register file. 

 

This instruction can have a different meaning for the customized register structure 

depending on whether or not it is mapped.  Therefore the same instruction is used to map and 

unmap a customized register structure.  This works by determining that if there is no mapping in 

the map table between a register from the architected register file and a customized register file, 
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it will insert a mapping, using the field from the instruction for setting up the structure.  If there is 

a mapping that exists when this instruction is called, it will remove the mapping from the table.   

 

Other customized register structures are available in the application configurable 

processor mainly for the purpose of reducing register pressure.  They succeed in consuming 

many of the different reference patterns found in the loops, and though they provide no 

performance gain from their existence, they do reduce register pressure significantly in these 

register restricted environments.  Figure 3.6 gives an example of a qmap instruction being used 

on a loop and mapping the values into a customized register stack.  The qmap instruction in the 

example below creates a mapping between the register specifier r1 and creates a mapping to 

the customized register file q1.  In this example the customized register file at q1 enforces a 

stack-based reference behavior for the code produced.  By enabling these live ranges to be 

written into a stack, we have produced two additional free registers that can be used to enable 

more optimizations to reduce the numbers of spills to memory that could occur in similar basic 

blocks. 

 

 
Figure 3.6 Qmapping into a Customized Register Structure 

 

By combining these different resources together we are able to introduce an application 

configurable processor; a processor which can be easily tailored to perform machine specific 
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optimizations on an application to enable better performance.  By utilizing the different register 

structures together and separately we are able to exploit patterns that occur naturally in code 

and generate a better solution than existed previously.  The next three sections of this thesis 

present three extremely viable mechanisms of use for application configurable processor that 

will hopefully illustrate the ease of use and adaptability of this mechanism to new and better 

designs. 
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CHAPTER 4 

Recurrence Elimination Using Register Queues 
 

The first experiment was designed to test the feasibility of an application configurable 

processor using register queues and optimizations that have not been applied in previous work.  

This evaluation would enable us to determine the effect that the increased register pressure 

situations that occur in embedded processors have on an optimization in a embedded compiler.  

Application configurable processors were originally targeted at enabling more aggressive 

optimizations, but it became readily apparent that an increase in registers could help any 

optimizations, that exhibited a reference behavior post-optimization. 

 

Recurrence elimination is one of the set of loop optimizations found in our experimental 

compiler VPO.  Recurrence elimination is an optimization that can increase performance of a 

loop by reducing the cycles required to accomplish each iteration of the loop.  A recurrence 

relation in math is an equation which defines a sequence recursively, where each term in the 

sequence is defined as a function of the prior terms.  In computer science this can refer to a 

calculation that uses a value previously calculated and stored in a data structure that is being 

accessed in the current iteration of a loop.  Common recurrences can be found in a variety of 

code involving arrays where an lower indexed element was set earlier in a loop but referenced 

in the current iteration.   This value being referenced from a previous iteration often will occur as 

a load from an array in code, this load must occur on every iteration of the loop.  Recurrence 

elimination identifies the recurrences and replaces the load in the loop with a series of moves to 

pass the value from iteration to iteration to save the cycles that the load would require.  The 

series of moves are used because in theory a series of moves might require less cycles to 

perform than a load.  Figure 4.1 shows an example of a vector multiply which has been 

compiled down to ARM assembly using VPO.  The same code is then optimized using 

recurrence elimination and the load caused by the recurrence is removed from the loop in an 

attempt to reduce the cycles required during each iteration of the loop.   
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Figure 4.1 Recurrence Elimination Applied to a Vector Multiply 

 

 

Recurrence elimination suffers from several drawbacks when the compiler is limited to 

using only an architected register file.  The main drawback to using the architected register file 

during recurrence elimination is an increase in the storage requirements that occur when the 

loads are replaced with the series of moves.  The extra storage requirements are a forced 

consequence of the needed registers to store a value from each iteration of the loop within the 

recurrence. As the size of the recurrence grows, so does the need for additional resources, 

which can significantly impact the size of the recurrences that can be removed as there may not 

be enough registers to perform this task.  The next area of concern in recurrence elimination is 

the fact that the additional moves added are not at all free.  At a certain point for each machine, 

the latency for the additional moves added will outweigh the latency for the load that was 

previously used.  This extra latency significantly limits the size of recurrences to which this 

optimization may be applied.   

 

Application configurable processors can aid recurrence elimination in a couple of ways.  

The first method addresses the first problem area that occurs due to using an architected 
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register to mask the recurrence.  The access patterns of the recurrences to arrays are by design 

performed in a first-in first-out reference pattern.  By determining the size of the recurrence 

being applied in the calculation prior to mapping, the values may be mapped into a customized 

register queue with a read position set accordingly.  By performing this task the additional 

registers needed to store the values of the recurrence from previous iterations can be 

completely alleviated.  The reduction of this register pressure can enable the optimization to be 

performed on recurrences of a greater size.  Another additional side effect provided by this 

mapping is the complete removal of the original load and any additional moves that might have 

been caused by recurrence elimination.  The removal of these instructions completely removes 

the latency provided by the original load instead of just a fraction of the latency.  Which, give the 

recurrence elimination optimization more opportunities to improve the quality of the code.  By 

performing this optimization using register queues, the optimized code has the potential to have 

greater all around savings including performance, code size, and register usage.  Figure 4.2 

shows the application of register queues to the example from Figure 4.1.  This shows the 

complete removal of any needed moves without the need of any additional registers to enable 

this optimization.   The registers r4, r2, and r5 are used as loop invariant registers and were all 

set prior to the execution of this loop. 

 

 
Figure 4.2 Application of Register Queues to Recurrence Elimination 

This experiment required the addition of a new optimization to VPO to propagate 

induction variables across the body of a loop.  The goal of this induction variable substitution 
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phase was to actually help the existing optimization find more recurrences.  This optimization 

required analyzing the different induction variables and mapping them back to their original sets.  

If we could determine that two different induction variables were originally set from the same 

data, then we could rename them to the same registers and modify the offset.  By doing so, 

recurrence elimination would have an easier time finding the recurrences that occur.  Some of 

the difficulties in applying this method consisted in simplifying the original set of the induction 

variable. The instruction references different registers we needed to follow multiple register 

lifetimes back to originating values to determine if they were the same. 

 

In order for the optimization to remain the same as it was previously, the application of 

register queues to this optimization was performed after the optimization phase had already 

occurred.  Our recurrence analysis function would determine the size of the recurrence based 

off of the moves present in the applied code.  It would then analyze the registers used to apply 

the recurrence calculation and determine the best mapping pattern using the fewest registers to 

apply this calculation using queues.  The next phase of the optimization would then remove the 

series of moves applied by the recurrence elimination algorithm and map the applied registers 

into a queue.  This transformation often occurred as a mapping of two registers to one queue.  

As shown in Figure 4.2, by mapping a register to the first position in the queue, the compiler is 

able to set the value of the queue and read the value just set as well as using the second 

register to read the value set from two iterations ago. 

 

To test the correctness of this experiment we applied a functional simulation to provide a 

validity check.  The functional Simple-Scalar simulator was first modified with a table and a table 

lookup for each set or read from a general purpose registers.  The qmap instructions were 

added to the ARM instruction set as described above and the simple scalar simulator was 

modified to be able to decode the new instruction.  When successful table look-ups occur the 

result of the look up could then be routed out of the appropriate customized register file.  For the 

purpose of recurrence elimination we found it necessary to implement non-destructive read 

register queues, since we can determine the value of the queue is going to be set upon every 

iteration of the loop.  The destructive read register queues were added to the simulator.  

 

 

The analysis of this work has demonstrated to us that there are opportunities in enabling 

compilers to better perform and consume less available register space.  By applying register 

queues to the result of a function optimized using the recurrence elimination optimization, we 
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were able to increase the size of the recurrences and remove the moves required to perform 

this optimization.  No performance metrics were collected regarding this improvement to the 

optimization, as it was designed to test the feasibility of applying customized register files to 

optimizations that had not been retargeted previously. 
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CHAPTER 5 
Register Allocation for Application Configurable Processors 

 
Register allocation in embedded systems can be difficult in areas of high register 

pressure.  Compilers often must spill values to memory and use many more memory operations 

to successfully hold all of the values of data being utilized.  Situations like this occur frequently 

enough where this pressure can affect optimization stages from very early in the compilation 

process.  While designing the customized register structures to enhance the reference pattern 

of certain code optimizations, we identified that our customized register files could significantly 

reduce register pressure in general register allocation.  Similar to the concept of over writing the 

uses of all the loop invariant registers with a circular buffer and a single register specifier, we 

began finding different patterns in basic blocks that would allow us to significantly reduce 

register pressure.  The compiler could benefit from reduced register pressure to reduce spills to 

memory and to offer more flexibility to compiler optimizations. 

 

Customized register structures can be utilized in register allocation to identify specific 

patterns of register use and replace several overlapping registers with a single register 

structure.  When this method is applied to general block allocation then suitable live ranges can 

be mapped.  This method can significantly reduce the allocable registers needed to perform the 

tasks within the basic block.  Reduced register pressure in this situation, if provided early 

enough, could also increase the chances that an optimization might improve the quality of the 

code.   

 

The stack register structures are commonly exploited patterns that are referenced 

frequently when using customized register structures.  Register stacks are one of the common 

live range patterns identified.  These are identified in many basic blocks as a large one-set, one-

use live range, containing subsequently smaller one-set, one-use live ranges.   These live 

ranges are identified during register allocation and their pattern can be over written with a single 

register specifier mapped into a register stack.  The register stacks in the application 

configurable processor simply act as a last-in, first-out data structure that only requires a 

mapping.  The mapping semantic for a register stack is not needed for this specific structure.  

The reference patterns of the stacks that we identified force all of the sets to occur in code 

before any uses occur in the instructions.  To accomplish this we must enforce a destructive 

read policy for our register stacks.  Similar to the circular register buffers, when a read occurs in 
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a register stack, the read position is decremented to the next earlier element.  Figure 5.1 shows 

an example that might commonly be seen in applications where arrays are being filled with 

values for later use.  In this example the three identified live ranges use three different register 

specifiers to set and use the values for the three live ranges.  By mapping the replacing the 

three different registers specifier with a single specifier mapped into a queue, we are able to 

reduce the registers used by this series of instructions. 

 

 
Figure 5.1 Example of Overwriting Live Ranges Using a Stack. 

 

 

Destructive register queues are another identifiable register structure that can aid in 

reducing register pressure during general register allocation.  The reference pattern that is 

identified for these structures are one-set, one-use patterns that overlap with the set of the next 

live range contained in the previous live range, but the use must occur after the previous live 

range has ended.  To exploit this reference pattern, we use a register structure which will only 

pop data off of the queue when it is read.  All sets to the queue have no effect on which value 

will be read.  This is so that the live range sizes do not have to be symmetric to exploit the 

reference behavior.  These are a destructive read and non-destructive set register structure, the 
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read position is always set to the first value added and decrement only upon a use from this 

register structure.  As with the register stacks, the mapping semantic for the destructive read 

register queues contain no mapping information. 

 

 
Figure 5.2 Destructive Read Queue Register Allocation 

 

 

The modifications made to VPO to support this optimization was applied after original 

register allocation had already occurred.  We added the analysis to enable register allocation 

using customized register files at this point so that we could provide more accurate live range 

analysis without having to completely rewrite register allocation in VPO.  The analysis stage first 

detects only basic blocks that have a relatively large amount of register pressure.  The blocks 

are then analyzed to determine if any of the live ranges contained portray any exploitable 

reference behavior.  When these types of live ranges occur they can be over-written to the 

specified customized register file and a pattern list will be stored to the basic block structure 

itself.  The registers used in the live ranges are then replaced with a customized register type.  

Once this has occurred VPO is then allowed to continue applying optimizations and code 
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generation continues with break points inserted after other optimization phases to determine 

whether the organization of the reference behavior that was over- written is still being exhibited.  

If it is found that the reference behavior has been changed by another optimization, we are able 

to modify the mapping to the new reference behavior or revert to code used prior to mapping 

and rerun the optimization phases.  At the end of the optimization process before the assembly 

or object code is written out the custom register specifiers used are replaced by a standard 

register specifier and the mapping is created. 
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CHAPTER 6 
Software pipelining 

Software pipelining [4] is an aggressive loop optimization that can be applied to loops in 

an attempt to free each iteration of the loop from stalls incurred by dependencies involving high 

latency operations.  Software pipelining performs this method by laying out the kernel of a loop 

iteration by iteration with stalls incurred.  By laying out the kernel of this loop in such a manner 

and setting an iteration interval eventually a software pipelined kernel will be created and the 

preceding information will become the prologue of the software pipelined loop and the 

instructions following the loop will become the epilogue of the software pipelined loop.  By 

applying this procedure, the compiler is able to remove a large portion of the latency incurred 

and fill it in with independent instructions.  Figure 6.1 displays an original loop kernel with stalls 

included. These stalls flow through the pipeline upon every iteration of the loop, significantly 

increasing the cycles per instruction for the body of loop.  Figure 6.2 shows the software 

pipelining method described above with the generated kernel code shown in bold in the figure. 

 

 
Figure 6.1 Stalls inserted in loop. 
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Figure 6.2 Generic Pipelining Example 

 
 

Modulo scheduling [5] is an optimized method of software pipelining that enables the 

compiler to determine the pipelined loop body through simpler mechanisms.  Software 

pipelining, as described previously, requires methods of storing the unrolled and iterated loop 

body several times over.  Modulo scheduling provides a resource constrained method of 

pipelining the dependencies in a loop through a simpler scheduling mechanism.  Modulo 

scheduling takes into account dependence and resource constraint and schedules the loop 

instruction by instruction.  The prologue and epilogue code are generated after the kernel is 

created in modulo scheduling.  Our method of software pipelining requires first creating 

dependence graphs between the instructions.  By creating dependence graphs and analyzing 

them we are able to assign a priority to instructions.  By using a highest priority first function we 

schedule each instruction one at a time.  For each instruction to be scheduled we calculate an 

earliest start and a maximum time so that the instruction is not scheduled ahead of any 

instructions which it might be dependent on.  The maximum time can be several iterations away 
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from a prior dependence for a long latency operation.  If an instruction cannot be scheduled in 

the allotted time it is scheduled at the first available time and all instructions that have a 

dependence node with this scheduled instruction are invalidated and added back to the “to be 

scheduled” list.  This method suffers from one drawback. It is unable to schedule cyclic loop 

carried dependences.  Figure 6.3 (a) Shows the original vector multiply loop with the latencies 

of the dependent operation shown.  By applying the modulo scheduling algorithm to this 

example we organize a loop shown in the scheduled kernel in Figure 6.3 (b) that eliminates a 

majority of the cycles wasted due to stalls.  When we create a modulo scheduled loop we store 

an iteration value for each scheduled instruction.  This iteration value can be later used to 

determine the instructions that need to be extracted to the prologue and the epilogue to create 

correct code.  Figure 6.3 (b) shows the extracted prologue and epilogue and the modified kernel 

put together to enable this modulo scheduling. 

 
Figure 6.3 Applied Modulo Scheduling. 

 

One of the primary reasons that software pipelining isn’t performed in many machines 

with a reduced register set is because software pipelining causes a significant increase in 
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register pressure to the optimized loop.  Using modulo scheduling we are able to more 

accurately identify an optimal kernel which reduces typical software pipelining register pressure, 

but not enough to make it feasible.  The reason for the increase in register pressure is because 

of the extracted loop iterations moved into the prologue and epilogue.  When instructions are 

duplicated and moved to the prologue to enable an early start for the high latency instructions it 

requires register renaming to keep the values correct.  In the small example above, we would 

have to rename approximately three registers and add moves to insure correct values across 

the extracted iterations.  One method previously presented to target this specific problem with 

software pipelining was the rotating register file which adapted a special set of registers to be 

able to perform the renaming and passing of the values automatically [6].  Rotating registers 

require that each register used in the rotating register file be accessible in the instruction set.  

This method of handling the extra registers would require a significant addition to, not only the 

hardware, but the instruction set as well.   

 

Application configurable processors and the customized register structures can enable 

software pipelining for architectures where it had been previously infeasible.  The extra registers 

required for software pipelining are similar to storing the values from previous iterations as they 

occur in recurrence elimination.  These loop carried values have a FIFO reference behavior 

which can be exploited and mapped into a register queue.  By identifying the loop carried values 

forced by software pipelining during the scheduling process, we are able to create a mapping of 

live range into a queue that will provide us with the extra storage space to enable software 

pipelining.  A requirement of this application of register queues is that the register specifier for 

the register queue is live across the prologue, epilogue, and body of the loop.  The enforcement 

of this requirement can make it difficult to apply register queues to loops that already have 

extremely high register pressure.  To provide our register queues with every opportunity to 

optimize, we are able to use other customized register structures to reduce register pressure 

within the loop. Using these structures can free up available registers to allocate across our 

increased loop body.  One method of reducing inner loop register pressure is applying a register 

circular buffer to the loop to consume the invariant registers that are used within the loop.  By 

mapping the pattern of values into a circular buffer, we may be able to free up values throughout 

the entire loop.  This register savings allow us to perform software pipelining with register 

queues in higher register pressure situations.  Figure 6.4 shows our previously modulo 

scheduled example utilizing register queues to contain the loop carried value.  This small 

example when extracted would require a few extra registers to store values generated during 

the prologue of the newly formed loop.  As the example shows, during the execution of the 
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prologue two values are written into the queue mapped to register r0.  When register r0 is 

accessed in the body of the loop, it will get the value from the second position inside of the 

queue.   Each subsequent iteration of the loop will push the values of the queue forward 

allowing the store to attain the correct value during each iteration.  This small example can be 

scaled many times than what is shown and contain many more live ranges.  This flexibility 

allows us to employ software pipelining in reduced register environments.  By applying software 

pipelining in this example we were able to remove the 10 stalls shown in Figure 6.3 completely 

from the loop.  When the comparison and increment are looked at we can see that this loop 

iterates 1000 times.  By applying modulo scheduling to this small example we were able to 

roughly reduce the execution of this loop by 10,000 cycles. 

 

 

 
Figure 6.4 Register Queue Applied to Loop. 

 

 

We used the VPO compiler to enable this research.  The compiler at the time of the 

research was without any type of software pipelining implementation.  We used the Modulo 

Scheduling algorithm to implement our software pipelining method.  To enable modulo 
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scheduling we add dependence graphs to VPO, and the ability to calculate height based priority 

as explained in the Modulo Scheduling paper [5].  We added software pipelining to the group of 

loop optimizations.    Adding this optimization here meant that aggressive register allocation had 

already occurred.  This often meant to that the same registers specifiers could potentially be 

used to specify different live ranges within the same loop block to reduce register pressure.  The 

reuse of these specifiers could create difficult mapping situations for the queues and to 

overcome these issues a new register type was added to the compiler.  The new register type 

was a q specifier that would only be used during the compilation process. 

 

The algorithm we applied first identifies suitable loops for software pipelining that are 

identified as matching specific criteria.  Two renaming phases were used in determining which 

live ranges would be mapped into a register queue.  The first renaming sequence was 

performed prior to modulo scheduling.  A backup copy of the loop was created and any 

instructions that had latency greater than the iteration interval of the loop would have its live 

range renamed to our new register type.  This new register type would disable the compilers 

register analysis optimizations from incorrectly identifying our modified RTL’s as dead and 

remove them. The second renaming occurs after scheduling has been applied and the rest of 

the newly formed loop carried dependencies could be identified to be promoted to a queue.  

The next step uses iteration calculations that were determined during the scheduling of the loop 

to generate a prologue and epilogue for the newly formed kernel.  Having previously replaced 

the loop carried live ranges with our own custom register type; we are then able to identify 

registers to map into queues to contain the reference behaviors.  The pseudo code for applying 

registers queues to modulo scheduling is provided in Figure 6.5.  One area of interest shown in 

the algorithm presented in Figure 6.5 are the issues of memory addresses.  Aliasing and 

recurrences can make software pipelining infeasible, if the number of iterations extracted are 

greater than the size of the recurrences.  Fortunately we can use the analysis and optimization 

performed in recurrence elimination to enable us to detect these types of cases and avoid 

generating incorrect code.  When we detect an alias or or overlapping memory address might 

occur that could create incorrect code, the software pipelining is abandoned and the original 

loop is restored.  
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Figure 6.5 Modulo Scheduling and Queue Mapping Algorithm 

 

By applying a new register type to the VPO compilation environment, we had to 

overcome many challenges to insure proper compilation.  Live and dead variable analysis are 

functions in VPO which determine the live ranges of variables and determine which RTL’s can 

be removed.  By allocating the same register specifier to point to either the architected register 

file or a customized register structure, we confused VPO’s concept of a register.  A register 

located in the architected register file cannot be set twice in two consecutive instructions and 

still contain both values.  This type of situation would cause assignment elimination to remove 

the first set of the two consecutive sets.  When the same register specifiers are mapped into 

queues for software pipelining, this situation becomes quite common.  We had to get around 

this problem when the mappings were final by designating a special RTL template that would 

stop dead variable elimination from removing the mapped registers specifiers live range. 

 

Another issue when employing software pipelining when using register queues is in the 

dependence calculation inside of the simulator itself.  When a dependence is calculated in the 

simulator it will check the register specifier to determine if the current instruction is dependent 

on an instruction already being passed through the pipeline.  By employing a method of 

obfuscating the register specifier we are no longer able to determine if a dependence occurs 

with determining whether the register specifier is mapped into a customized register file.  The 

method we used to solve this is a tiered dependence check.  The only addition to dependence 



 

 30

 

checks for the architected register file are a map table check to provide whether or not the 

specifier is actually in the architected register file.  If the specifier is not mapped to the 

architected register file, then each unique position within the customized register files resolve to 

a unique address which can then be used to determine a dependence in the customized 

register structures.  This situation does not arise very frequently, in that the compiler typically 

will not schedule customized register files in situations that these dependences can occur.  

Figure 6.6 shows the code from our previous example and where a dependence appears to 

have occurred.  There is actually no dependence between these two instructions because the 

specifier read in by the store in a queue resolves to specifier 18 while the set in the previous 

multiply is actually setting the specifier at 17. 

 
Figure 6.6 Customized Register Structure Unique Naming
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CHAPTER 7 
Results 

Using the simple scalar simulation environment we were able to conduct our 

experiments using several different processor setups with varying latencies.  The results were 

collected using the simple scalar cycle accurate simulator sim-outorder.  For our software 

pipelining experiment, sim-outorder was run in-order with varying functional unit latency for the 

different runs of the benchmarks.  This experiment was run using the VPO [1] compiler backend 

ported for the ARM ISA.  The compiler had to be modified to be able to support the use of 

different register types.   

 

We modified the machine design in (Simple-Scalar) to be able to support the different 

designs that we identified as being useful.  These were the destructive and non-destructive read 

queues, stacks and circular buffers for our work so far.  Each of these structures was 

implemented as a circular buffer that would behave differently when a set or use occurred and 

also performed different tasks depending on the instruction mapping semantic explained in the 

ISA support description previously.  Our preliminary tests were performed on a simple in-order 

ARM processor with added feature support for our customized register structures and the added 

instruction to map and unmap these structures.   

 

We took our first group of results using several DSP benchmark kernels. We measured 

the steady state performance of the loops.  Figure 6 depicts the percent difference in 

performance from software pipelining with register queues vs. the base line loop which could 

not be pipelined without queues because of register pressure.  Our preliminary results showed 

us in Figure 7.1 that as the latency grows for multiplies, we are able to successfully pipeline the 

benchmarked loops and realize up to a 60% improvement in performance.  The increase in the 

multiply latency is a realizable factor in low power embedded design.  Many low power 

multipliers trade off extra cycles in order to obtain considerable savings in power.  These 

improvements do come at the cost of increased code size of the loop of up to roughly 300% in 

some cases, but this is due to the prologue and epilogue code needed by software pipelining to 

align the loop iterations.  Figure 7.2 shows the performance savings as the load latencies rise.  

These loops often provide more high latency instructions to schedule out of the loop.  In many 

of the lower latency tests, iterative modulo scheduling was able to generate a loop that did not 

need a prologue or epilogue.  In many of our benchmarks we found that by applying software 
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pipelining with register queues, we are able to circumvent increasing register pressure in many 

simple cases by as much as 50% for the ARM.  This means that software pipelining would 

require 50% of the usable registers for the ARM in order to even be applied.  The performance 

loss in fir in Figure 7.1 is due to the scheduling of a loop carried inter-instruction dependency.  

This is the main drawback of using a modulo scheduling algorithm.  When these dependencies 

occur, the algorithm is unable to schedule other dependent instruction in a manner to consume 

the latency.  In this example the best effort was made to consume the cost of the multiply by 

scheduling the loads, however the jump in latency from 16 to 32 was unable to completely 

remove the cost of that specific multiply.  Table 7.1 show an relationship between the original 

number of registers found in a few of the loops which we software pipelined and the number of 

registers needed to pipeline the loops using our customized register structures.  The final 

column in the table shows the number of registers which the customized register structures 

consumed.  This table should make it fairly obvious that the number of registers consumed by 

the customized register structures is able to take a great deal of pressure off of the architected 

register file.  One special consideration displayed in the table is in regards to the Mac 

benchmark.  The original loop used 10 architected registers for the storage requirements for the 

loop.  When this loop is scheduled we are able to apply our circular buffers to this loop and 

consume some of the loop invariant registers.  This shows that even after we’ve applied modulo 

scheduling to the loop we are able to reduce register pressure within the loop. 
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Figure 7.1 Scaling Multiply Latency Results 
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Figure 7.2 Scaling Load Latency Results 

 
 

Table 7.1:  Scaling Load Latency: Register Requirement Increase 

 

 

Benchmark AR in Original Loop AR needed to Pipeline AR contained in customized structures
N Real Updates 10 10 6
Dot Product 9 9 4
Matrix Multiply 9 9 4
Fir 6 6 4
Mac 10 8 10
Fir2Dim 3 Similar 10 10 4

N Real Updates 10 10 6
Dot Product 9 9 4
Matrix Multiply 9 9 4
Fir 6 6 4
Mac 10 8 12
Fir2Dim 10 10 4

N Real Updates 10 10 9
Dot Product 9 9 8
Matrix Multiply 9 9 8
Fir 6 6 12
Mac 10 8 18
Fir2Dim 10 10 8

Loads 16x4 Register Savings Using Register Structures

Loads 32x4 Register Savings Using Register Structures

Loads 8x4 Register Savings Using Register Structures
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Our results are very consistent with the general results of software pipelining.  This 

optimization provides significant cycle savings due to the reduction of stalls per loop.  One of 

the important issues that are not shown in our figures is that as our cycle latency for our 

operations grow, software pipelining will find it necessary to extract more iterations of the loop to 

the prologue in order to absorb the large cycle latency.  For example the DSP Matrix kernels 

that we used as a benchmark primarily absorbs the cycles caused by the large multiply latency.  

When the latency is four the optimization extracts two iterations and detects two instances of 

loop carried dependencies that need to be mapped into a register queue.  In a conventional 

ARM this would increase the needed registers by 25%.  As the cycle latency for these 

instructions rise, the numbers of registers needed to absorb the extracted iterations increase to 

well over 300% of the available registers for the machine.   

 

These series of results show how a superscalar implementation of our experiment could 

provide even greater performance benefit.  Superscalar issue is a possible method of increasing 

instruction level parallelism in modern computers.  Applying superscalar implementation to 

reduced register architectures can effectively increase the latency of dependent instructions 

though the increase in ILP can often improve performance.  By applying software pipelining to a 

situation which might potentially increase dependencies we are able to reduce the increase in 

latency significantly.   Figure 7.3 and 7.4 shows a scaling multiply latency for both superscalar 

issue 2 and issue 4.  The savings in cycle reduction increase as the issue levels increase.  

Figure 7.5 and 7.6 show scaling load on a superscalar implementation with issues of 2 and 4. 

These results shows us that in many situations it is preferable to focus modulo scheduling on 

loads to provide greater savings.   Loads may often have more opportunities to be scheduled 

because in our experiments the load instructions were far more frequent than the higher latency 

multiplies.  As with Fir from the in-order single issue results, N Real Updates also has a point in 

it at which modulo scheduling is unable to completely remove the latency from the loop.  In this 

situation modulo scheduling simply schedules the best within its ability given the modulo 

scheduling budget constraints.    The examples below show results that are very consistent with 

the results we obtained from a single issue in-order pipeline. 
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Figure 7.3 Superscalar 2 Issue Scaling Multiplies 
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Figure 7.4 Superscalar 4 Issue Scaling Multiplies 
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Figure 7.5 Superscalar 2 Issue Scaling Load Latency 
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Figure 7.6 Superscalar 4 Issue Scaling Load Latency 

 

  The results show a reduction in performance and also a reduction in the number of 

registers needed by an optimization that significantly increases register pressure.  The results 

shown are for loops that contain high latency operations are still relatively simple.  One of the 

problems that currently restrict this research is that to effectively gain the savings in software 

pipelining using register queues, the mapping must exist over the entire range of the prologue 

loop and epilogue code.  In loops of extremely high register pressure, where many of the 

registers are used in very complicated live range sets, finding an available register to map 

across the entire scope of this software pipelined loop can often be a limiting factor.  However, it 

is often the innermost loops that are doing the most complicated and time consuming work of 
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the application.  This means that even though we are limited to which loops we can apply this 

technique, the cycle savings are significant enough to warrant these extensions in many cases.   
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CHAPTER 8 
Related Work  

 

There have been several approaches for reducing the register pressure caused by 

software pipelining.  These methods for reducing register pressure work under similar 

constraints, as our register queues; however, register queues offer much more flexibility without 

the cost of significantly modifying the ISA. 

 

The WM machine [8] is a completely different concept of the traditional machine that 

utilizes FIFO queues that operate independently and asynchronously to manage the many 

different aspects of the traditional pipeline.  This system is designed as a series of connected 

queues that manage the different functions of the pipeline.  This paper introduced the concept 

of using queues in place of registers as a quick storage mechanism. 

 

The register connection [3] approach introduced the idea of adding an extended set of 

registers to an ISA as a method of reducing register pressure in machines with a limited number 

of registers.  This method employed a mapping table to associate a register in the register file 

with one of the extended registers.  Each change in the mapping required the execution of an 

instruction.  The map table used a one to one mapping for each register in the extended set.  

The register connection approach worked well for remapping scalars and various other data, but 

the overhead of mapping became expensive when using arrays and other large data structures. 

 

Register queues [7] is the approach that is most similar to ours.  Using register queues 

to exploit reference behaviors found in software pipelining showed that this method is effective 

in aiding the application of these optimizations.   Exploiting the FIFO reference behavior that is 

caused by software pipelining, register queues was an effective means of holding the extra 

values across iterations and this significantly reduced the need to rename registers.  However, 

this method limits the types of loops that can be effectively software pipelined because of 

constraints set by the reference behavior of the queues themselves.  Our method described in 

this paper is an automation of this system with the addition of several tools which aid us in 

employing register queues to software pipelined loops. 

 

Rotating registers [6] is an architectural approach for more effectively using registers to 

hold loop-carried values than simple register renaming.  A single register specified can 
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represent a bank of registers which will act as the rotating register base.  Use of rotating 

registers is similar to the renaming that would typically occur in software, but instead is all 

accomplished in the hardware.  This method requires that each of the registers in the rotating 

bank be an accessible register, which in a conventional embedded architecture would require a 

larger specifier for a register that may not be possible in the given ISA.  Application configurable 

processors provide much of the flexibility of the rotating register file, with only a small added 

cost for each access. 
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CHAPTER 9 

Future Work 
Using customize register structures to enhance optimization phases in a compiler has so 

far proven to be a successful mechanism in gaining several types of benefits.  Some possible 

future work would be to analyze the different optimizations that are common throughout 

compilers and figure out the structures and ways that they could be enabled to perform better 

using an application configurable processor.  VPO contains many different optimizations that 

could potentially be analyzed and matched with some sort of customized register structure to 

enable a level of optimization.  Future work would also include adding from scratch more 

aggressive optimizations similar to the work we did for software pipelining.  By applying many 

more aggressive optimizations and exploiting them using customized register files, it could be 

possible to see even greater improvements in application performance on embedded 

processors. 

 

We have currently only experimented with a few customized register structures and have 

found success in the few we have tested.  However, the applications for what other customized 

register structures could do is also a very fascinating area of research.  One possible structure 

is similar to content addressable memory and utilizing a structure that could have multiple 

mappings and employ its own data management similar to cache, but allowing for much faster 

access times.  By employing this as another customized register file we could use our ability to 

map several register specifiers into the same customized register and increasing the value 

storage ability for the general architected register file.  A simple way this could work is by having 

the multiple specifiers mapped into a customized register file, we could employ a method of 

storing a cam tag in the architected register file itself and use that tag to provide a lookup for a 

value that we might find in a customized register cam.  Since these customized register files are 

self regulated they could be designed with their own replacement algorithm and effectively 

create a cache-like system that could be accessed extremely quickly.  
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Chapter 10 

Conclusion 
Our work has shown that using an Application Configurable Processor can greatly 

reduce the register restrictions that inhibit many compiler optimizations in embedded systems.  

By reducing this pressure in our work with software pipelining we’ve seen some very good 

performance increases for our benchmarks.   We have shown that these modifications allow the 

performance enhancing optimizations to occur and require very little change to the ISA itself 

and only minor hardware modification. Our research has demonstrated that it is possible to 

modify compiler optimizations to automate the allocation and modification of these customized 

register structures to make existing optimizations more effective.  Our future work with 

application configurable processors will be using the different customized register files to exploit 

other identifiable reference behaviors caused by code optimizations and to aid the compiler in 

identifying these situations for the optimizations which are available.  
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