
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

A STUDY ON LOOP UNROLLING AT THE ASSEMBLY CODE LEVEL

By

JOSEPH ZILONKA

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of
Master of Computer Science

2022

Copyright © 2022 Joseph Zilonka. All Rights Reserved.

Joseph Zilonka defended this thesis on July 18, 2022.

The members of the supervisory committee were:

Dr. David Whalley

Professor Directing Thesis

Dr. Grigory Fedyukovich

Committee Member

Dr. Gary Tyson

Committee Member

Dr. Soner Onder

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies

that the thesis has been approved in accordance with university requirements.

ii

ACKNOWLEDGMENTS

First and foremost, my thanks to Dr. DavidWhalley for his mentorship and encouragement through-

out this study. In addition to serving as the lead investigator for our research, he envisioned the

idea for this thesis and authored the original implementation of our loop unrolling algorithms. From

the beginning, he trusted that I could successfully pursue this thesis, and never hesitated to assist

me when problems arose. Without his guidance, this study would not have been possible.

Next, I thank Dr. Gang-Ryung Uh for his help and his many contributions to our loop unrolling

code. His code expanded the horizon of our original algorithms, and enabled us to unroll signifi-

cantly more loops than we otherwise would have. His commitment to our research and the many

hours he spent fixing bugs are profoundly appreciated by all involved in this study.

From the FSU research team, my thanks to Abigail Mortensen and Skylar Scorca, whose con-

tribution included developing a set of tools that saved us uncountable hours in finding bugs and

collecting statistics. Without their help, this study would not have been as comprehensive as it is.

Finally, I would like to thank Dr. Soner Onder and Scott Pomerville of the Michigan Tech-

nological University (MTU) research team for developing ADL and providing us with technical

assistance. Their insight and guidance allowed us to produce performance statistics for the Results

section. Without their assistance, we would not have been able to test our unrolling strategies for

correctness.

This work was supported in part by NSF grants CCF-1900788, CCF-1901005, CCF-1823398,

CCF-1823417, OISE-2103103, and OISE-2103105.

iii

TABLE OF CONTENTS

List of Figures . v

Abstract . vii

1 Introduction 1

2 Simulation and Compilation Infrastructure 4

2.1 SCALE ISAs . 4

2.2 ADL Simulation System . 5

2.3 SCALE simulators . 5

2.4 Compilation System . 6

3 Loop Unrolling Strategies 9

3.1 General unrolling strategy . 9

3.2 Unrolling with a compile-time number of iterations 12

3.3 Unrolling with an execution-time number of iterations 16

3.4 Unrolling with an unknown number of iterations

(naive loop unrolling) . 19

4 History of Our Loop Unrolling Implementation 24

5 Results 31

5.1 Loop characteristics . 31

5.2 Dynamic results . 37

6 Related Works 43

7 Conclusions 45

Bibliography . 47

Biographical Sketch . 48

iv

LIST OF FIGURES

1.1 An example of unrolling a C style for loop. 2

2.1 SCALE Code Generation Process . 7

3.1 An example of unrolling a C style for loop with bounds only known at execution time. 12

3.2 A C for loop that has been turned into MIPS assembly code by gcc. 14

3.3 Figure 3.2b unrolled with asopt by an unroll factor of 3. 15

3.4 A C function that is turned into MIPS assembly code by gcc. 17

3.5 Figure 3.4b unrolled with asopt by an unroll factor of 2. 18

3.6 Structure of a loop before and after naive loop unrolling. 21

3.7 A second C function that has been turned into MIPS assembly code by gcc. 22

3.8 Figure 3.7b unrolled with asopt by an unroll factor of 2. 23

4.1 An example of an assembly level loop using seq. 26

4.2 Figure 4.1 modified to use slt instead of seq. 26

4.3 Figure 4.1 modified to use slt, have a negative exit value, and have a negative stride. . 27

5.1 Number of innermost loops in each benchmark. 32

5.2 Average number of instructions per innermost loop. 32

5.3 Percentage of innermost loops with a constant initial value, a constant exit value, and
a constant stride. 33

5.4 Classifications of number of iterations, and different kinds of strides. 34

5.5 Percentage of loop exit amounts and whether an exit value is invariant. 35

5.6 Percentage of unroll statuses after loop unrolling. 36

5.7 Performance results from the SCALE pipeline simulator after unrolling with asopt
using an unroll factor of 2. 39

5.8 Performance results from the SCALE pipeline simulator after unrolling with asopt
using an unroll factor of 4. 39

5.9 Performance results from the SCALE superscalar simulator after unrolling with asopt
using an unroll factor of 2. 40

v

5.10 Performance results from the SCALE superscalar simulator after unrolling with asopt
using an unroll factor of 4. 40

5.11 Performance results from the SCALE VLIW simulator after unrolling with asopt using
an unroll factor of 2. 41

5.12 Performance results from the SCALE VLIW simulator after unrolling with asopt using
an unroll factor of 4. 41

vi

ABSTRACT

Loop unrolling is a compiler optimization that can improve the performance of applications without

explicit intervention from programmers. In this study, we analyze how traditional loop unrolling

techniques attempt to improve performance, and we propose new unrolling strategies that can

unroll a greater number of loops than what is usually possible.

We perform loop unrolling using our assembly optimizer, which analyzes and optimizes code at

the assembly level instead of at the compiler level. This gives us a different perspective of the code

than what a typical compiler would have, as we do not concern ourselves with the source code or

an intermediate language. We are free to make modifications at the instruction level, which allows

us to optimize large sections of code that might otherwise be impossible to work on.

The optimizer collects statistics on the loops it unrolls, some of which are shown in our Results

section. We ran our optimizer’s unrolling algorithms on the SPEC 06 benchmark suite, and present

both the statistics it generated as well as performance results from three different simulators. While

performance gains are highly dependent on the application being optimized, we have shown it is

possible to achieve considerable improvements by the use of loop unrolling.

vii

CHAPTER 1

INTRODUCTION

Loop unrolling is a code optimizing transformation that aims to improve the performance of an

application by modifying the structure of its loops. Making changes to a loop, such as removing a

branch instruction and replicating iterations inside the loop body, can reduce the overhead associ-

ated with running the loop while also creating more opportunities for the compiler or the processor

to perform instruction scheduling. When applied to applications that spend significant amounts of

time executing loops, loop unrolling can provide performance gains in terms of overall execution

time and the number of CPU cycles used.

At a high level, loop unrolling is the process of reducing the number of times a loop has to

repeat its code, or iterate. We normally think of a loop as being “rolled up,” since the loop body

only appears once in the code yet is run many times during an application’s execution. If we were

to make a copy of the loop’s code and place it inside the loop’s body, we would have “unrolled”

the loop by removing iterations and adding them to an individual iteration’s work. This reduces

the total number of iterations the loop will execute by a factor of how many times the loop body

is copied. This quantity is called the loop unroll factor.

Take for example Figure 1.1a, which is a typical C style for loop. This loop runs n times and

increases i by 1 after every iteration. Figure 1.1b represents the code in Figure 1.1a unrolled with

an unroll factor of 4. The original code is replicated 3 times inside the loop’s body, and each

replication is modified to substitute for the work of the iteration it is replacing. For this unrolled

loop, the modification necessary is to add an offset to i each time i is referenced. The increment

of i at the end of an iteration has also been adjusted. The loop should now iterate n
4 times, so i’s

increment has changed to 4 instead of 1. Assuming n is a multiple of 4, the unrolled loop will only

need 1
4 of the iterations the code in Figure 1.1a does to complete the same task. If 4 is not a factor

of n, then more code needs to be added to the loop to ensure we do not execute too many (or too

few) iterations. The solution we use to guarantee the correct number of iterations are executed will

be explained in a later section of this thesis.

The primary benefit of unrolling a loop like this is the removal of expensive and unnecessary

operations. Every time an iteration of a rolled up loop finishes, the control flow jumps to the top

1

for (i = 0; i < n; i++) {

arr[i] = i;

}

(a) A C style for loop.

for (i = 0; i < n; i += 4) {

arr[i] = i;

arr[i+1] = i+1;

arr[i+2] = i+2;

arr[i+3] = i+3;

}

(b) Same loop after unrolling with an unroll factor of 4.

Figure 1.1: An example of unrolling a C style for loop.

of the loop and checks if the loop should continue running. These jumps and checks can add a lot

of overhead to the loop, especially if the loop will run for a long time. It does not make sense to

perform these extra operations if we know in advance that the total number of operations can be

safely reduced by some constant factor. If we can figure out that factor beforehand, we can utilize

loop unrolling to decrease the number of operations and potentially improve performance.

A secondary benefit to unrolling a loop is the new opportunities it introduces for other optimiza-

tions. Since loop unrolling adds more instructions to the code while eliminating k-1 instances of the

loop branch (where k is the loop unroll factor), an optimizing compiler or assembly optimizer may

find more occasions to perform optimizations after unrolling. Also, for architectures that support

Out-of-Order (OoO) execution or Very Long Instruction Words (VLIW), more instructions with-

out branches creates more opportunities where instruction scheduling can dynamically or statically

reorder instructions to avoid stalls.

Loop unrolling is typically done at the source or intermediate code level, as this allows the op-

timization to be performed in a machine independent manner. As shown in Figure 1.1, a high-level

programming language is sufficient for a programmer or compiler to unroll a loop and potentially

improve performance. Most of the time, the code optimizer within a compiler does the unrolling

as it is simpler for a compiler to perform the necessary safety checks.

Since C style for loops often have some counter variable that is incremented, they are sometimes

the only targets on which loop unrolling is performed. However, many loops not expressed as for

loops are also unrollable; they just require more work to safely unroll. If we do not perform loop

unrolling on the source code and instead perform it on the intermediate or assembly language, we

might be able to unroll a larger fraction of loops in a given application.

2

This study shows that, by exclusively working at the assembly level, we are able to unroll a large

fraction of the innermost loops in many applications. We have developed an assembly optimizer

that, among other things, can unroll the innermost loops of previously compiled assembly code.

Working at this level gives us detailed heuristics which can be used to determine when and how

unrolling is applied to a loop. Our optimizer contains three different strategies to unroll loops, and

each strategy’s effectiveness has been tested using several benchmarks. The performance results of

these strategies, as well as the statistics gathered about the characteristics of successfully unrolled

loops, will be presented in a later section.

We begin this study with an overview of our testing environment and our assembly optimizer.

We then go into detail about the three strategies used to unroll innermost loops, with code examples

to explain the unrolling process. Afterward, we explain which team members of our assembly

optimizer project contributed to the current unrolling implementation, and how the implementation

has improved over the course of this study. We then analyze the various loop characteristics

encountered while unrolling, and describe the performance results obtained after unrolling with all

three strategies. Finally, we present our conclusions from this study.

3

CHAPTER 2

SIMULATION AND COMPILATION

INFRASTRUCTURE

This study and the loop unrolling infrastructure created for it are part of the National Science

Foundation (NSF) Statically Controlled Asynchronous Lane Execution (SCALE) project, under

NSF grants CCF-1901005 and CCF-1900788. This project involves developing simulation and

compilation support for a set of related but distinct Instruction Set Architectures (ISAs). This

chapter begins by describing two ISAs that are part of the SCALE project. We then delineate

the simulation system used to simulate these ISAs. We next provide a detailed description of

the compilation system, which produces the files necessary to run the simulators. Of particular

importance to this study is the compilation system, as that is where loop unrolling takes place.

2.1 SCALE ISAs

Two ISAs implemented as part of the SCALE project are the SCALE base ISA and the SCALE

VLIW ISA. Both ISAs were used to obtain results for this study.

The SCALE base ISA is similar to the MIPS ISA, with some key differences to allow information

to be encoded in the instruction set. One such difference is that all load and store instructions

are only supported by a register deferred addressing mode, which means all loads and stores use

a zero displacement from the base register. This is done to decrease the number of stages in the

instruction pipeline, and to allow information supporting more advanced features to be encoded in

loads and stores. Another difference is the restriction of integer branch instructions to bnez (branch

not equal to zero) and beqz (branch equal to zero). This means each integer branch references a

single register. To support these two branch instructions, a new seq (set equal) instruction was

added which sets a destination register to 1 if the two argument registers contain the same value.

The SCALE VLIW ISA uses instructions from the SCALE base ISA, but is restricted to Very

Long Instruction Word (VLIW) execution. Code generated for this ISA is packaged into groups

of instructions that are simultaneously issued. We refer to such groups as VLIW packs and the

position of an instruction within a VLIW pack as a lane. The number of instructions in a VLIW

4

pack, as well as what kinds of instructions can go in each lane, is configurable at compile and

simulation times. The SCALE VLIW ISA also allows instructions to be placed after a branch

instruction within a VLIW pack. An instruction located after a branch is only executed if the

branch is predicted not to be taken. This lets conditional branches support a simple form of

predication in the ISA. Meanwhile, an instruction after an unconditional transfer of control (jump,

call, return) within a pack is never executed. This requires us to fill empty lanes with nop (no

operation) instructions. There can be multiple transfers of control within a VLIW pack, but only

the last one can be unconditional.

2.2 ADL Simulation System

To simulate the SCALE ISAs, we use the Architecture Description Language (ADL) simulation

system. This system takes a microarchitecture specification file written in ADL as input and

produces an assembler, linker, and disassembler for that microarchitecture [6]. The description

language provides constructs for specifying microarchitectural features such as pipelines, control,

and memory hierarchy. It also provides the ability to create new ISAs, including assembly syntax

and the corresponding binary representation. Once an architecture specification is finalized, it is

used to generate simulators that run statically linked executables created by the assembler and

linker.

The simulators produced are either functional or cycle-accurate. They perform a more realistic

simulation than many commonly used simulators, as instructions are explicitly fetched from the

instruction cache, data values are explicitly loaded from the data cache, values are explicitly for-

warded through the pipeline, and so on. This ensures that the ISAs are correctly implemented and

that the statistics generated from running simulations are reliable.

2.3 SCALE simulators

The SCALE simulators described in this section and used for this study are developed by

Dr. Soner Onder and his students at Michigan Technological University (MTU).

The SCALE base ISA was first used to create a SCALE functional simulator. The functional

simulator is the fastest of the various simulators and is only used to check if the input executable

generates the correct output. Simple measurements, such as the number of instructions executed

and the number of times memory was accessed, are logged during program execution. For this study,

5

we use the SCALE functional simulator to ensure that the transformations performed during loop

unrolling are valid and that the semantic behavior of the executable remains the same.

The SCALE base ISA was also used to create a SCALE pipelined simulator. The pipelined

simulator provides a five-stage integer pipeline, which includes the following stages: IF (Instruction

Fetch), ID (Instruction Decode), RF (Register Fetch), EX (EXecution)/MEM (MEMory access),

and WB (Write Back). The MEM stage is performed in the same cycle as the EX stage, as load

and store instructions do not have a displacement for the base register and thus do not require

the calculation of an effective address. In this study, we use the pipelined simulator as one of our

testing environments to observe the effect of loop unrolling on an executable’s performance.

In addition, the SCALE base ISA was used to create a superscalar/Out-of-Order (OoO) simula-

tor. This simulator imitates a typical OoO processor that includes in-order issue, OoO instruction

execution, and in-order commit through a reorder buffer. Like the pipelined simulator, we use the

superscalar simulator as a testing environment to scrutinize the effects of loop unrolling on an OoO

executable’s performance.

The SCALE VLIW ISA was used to create a SCALE VLIW simulator. The SCALE VLIW

simulator uses SCALE base instructions that are placed into VLIW packs. Instructions within a

VLIW pack are fetched, decoded, and executed together. If any instruction in the pack stalls, then

all instructions in the pack stall. This simulator is used as a testing environment to see the effects

of loop unrolling on a SCALE VLIW executable’s performance.

2.4 Compilation System

Our compilation system is designed to compile the Standard Performance Evaluation Corpora-

tion (SPEC) 95 and 06 benchmarks for the SCALE simulators. This system can compile the SPEC

benchmarks into low-level code for the various ISAs and perform code-improving transformations

on the code in the process.

A conventional compiler is used to transform the source code into assembly code. Figure 2.1

shows the process of generating code for the various ISAs starting from the source code. We first

use gcc to produce conventional MIPS assembly files. This allows us to compile files in a variety of

source languages, such as C, C++, and Fortran, while also leveraging code optimizations provided

by gcc. We then developed a new assembly optimizer, called asopt, that takes an assembly file as

input and produces modified assembly code as output. This optimizer can translate instructions

6

MIPS
assembly

file

MIPS

file
gkdgcc

objdump
file

inf
file

source
file

file
object
MIPS

geninf

objdump

assembly file
SCALE ...

assembly file

SCALE VLIW
assembly file

SCALE base

asopt

Figure 2.1: SCALE Code Generation Process

into new ISAs when necessary (for example, MIPS to SCALE VLIW), as well as perform a variety

of analysis and code-improving transformations on the input assembly.

To properly determine which registers are live at any given point in a function, we need to

know which registers are being passed to function calls and which registers are being used as return

values. Rather than attempting to perform interprocedural analysis to determine this information,

we gather it from a side effect of the gcc compilation process [4]. We use an option in gcc to produce

a .gkd file that contains information about each gcc RTL (instruction). This file is then used to

determine which registers are used to pass values into function calls. We also generate a MIPS

object file with symbolic debugging information, which gets passed to the Linux program objdump

to generate a .objdump file. The .objdump file contains information about each function’s return

type, including whether registers are used to store return values. Both the .gkd and the .objdump

files are then passed to a tool called geninf [4] that parses the files and condenses the necessary

information into a new .inf file. asopt then uses the .inf file to determine which registers are live

at any given point in the code.

Creating a simplified information file for use with our optimizer is helpful as sometimes asopt

needs to process assembly code written by hand. This is the case for some of the system libraries

used by our simulators. Because those files are not generated by gcc, we do not have corresponding

.gkd and .objdump files for them. Unlike .inf files, .gkd and .objdump files are large and very

difficult to write by hand. Having a simple information file that asopt can use instead allows us to

easily create the file when the previous option is impractical.

7

When asopt is run, it reads in both the .inf and MIPS-assembly files and produces a SCALE

assembly file as output. Various flags are passed to asopt to either select a code-improving trans-

formation to perform or select a target ISA for the output. For this study, we expanded the set

of flags in asopt to support different loop unrolling techniques. The techniques implemented can

unroll loops with a compile time, execution time, or an unknown number of iterations (we refer

to this last one as naive loop unrolling). More details on these techniques will be discussed in the

next section of this thesis.

Before code-improving transformations take place, asopt reads in a function of the input file

instruction by instruction. It identifies the type of each instruction, determines which registers are

set and used by an instruction, and builds a control flow graph for the function. It then translates

each MIPS instruction into a corresponding SCALE instruction if that MIPS instruction is not

compatible with SCALE. MIPS pseudo instructions are expanded at this step so that each under-

lying operation has a one-to-one mapping with a SCALE instruction. This expansion is necessary

when performing some low-level code-improving transformations, such as scheduling instructions

into VLIW packs. Putting instructions into VLIW packs requires us to package a specific number

of machine instructions together at compile time, which causes a problem when using pseudo in-

structions. Pseudo instructions are expanded by the assembler, so there is no way to guarantee a

pseudo instruction will not overflow a VLIW pack after expansion.

After translation into SCALE compatible instructions, asopt performs the code-improving trans-

formations. This step is where loop unrolling takes place. Other transformations, such as accumu-

lator expansion and elimination of true dependencies, are also performed at this point if enabled

by command-line arguments or configuration files. If code is generated for SCALE VLIW, asopt

schedules instructions into VLIW packs immediately after performing these transformations. The

VLIW scheduling itself performs other code-optimizing transformations, such as register renaming

and scheduling instructions across basic block boundaries.

After code-improving transformations are complete, asopt prints the resulting SCALE code

from the previously read-in function to standard output. It then moves on to the next function

in the input file, as asopt can only process one function at a time. The steps outlined above

are repeated for each function until the end of the MIPS assembly file is reached and the entire

SCALE assembly output is produced. After all assembly files that comprise a program have been

processed, the output is passed to the ADL assembler and linker to generate an executable for an

ADL simulator.

8

CHAPTER 3

LOOP UNROLLING STRATEGIES

This chapter goes over the loop unrolling techniques we researched for this study. We begin with a

discussion of the general strategy used to unroll a loop, along with explanations of the terminology

used to describe the unrolling process. We then cover the three techniques implemented in asopt

to perform loop unrolling, along with code examples to show what loops look like before and after

unrolling.

3.1 General unrolling strategy

The typical starting point when unrolling a loop is to look for a basic induction variable in the

loop’s exit condition. A basic induction variable is a variable in the loop that is either increased

or decreased by some constant during each iteration. If a basic induction variable is used in the

loop’s exit condition, then the constant changing the variable is referred to as the loop’s stride. If

the exit condition is testing the basic induction variable against some limit to determine if the loop

should continue, we may be able to modify the stride to prepare for removing some of the loop’s

iterations.

There is one requirement a basic induction variable must meet in order for it to be usable

for loop unrolling: the value it is testing against in the exit condition must be loop invariant,

which means it remains constant during the loop’s execution. This allows an unrolling algorithm

to calculate the number of iterations the loop will execute at run time, which is used to ensure no

iterations are added or removed during unrolling.

Going back to Figure 1.1a, it is easy to see that this for loop meets this requirement. The

variable i is a basic induction variable in the loop and is used in the loop’s exit condition. The

loop’s stride is 1 since i is increased by 1 after every iteration. The exit condition tests i against n

every iteration, and n’s value is loop invariant.

Once a suitable basic induction variable is found, the next step is to start replicating the loop’s

code inside of the loop’s body. To obtain the desired unroll factor, we make unroll factor minus 1

9

replications of the loop body. Depending on whether the loop’s code is contiguous, we may be able

to copy the loop’s code as-is and append it to the original body.

A loop is considered contiguous if all basic blocks between the top and bottom blocks are part

of the loop. If the loop is contiguous, we can copy the body however many times are necessary to

match the unroll factor. If the loop’s code is not contiguous, a choice must be made as to whether

to try and reorganize the loop into a contiguous form. Our assembly optimizer attempts to do this,

but not all loops can safely be modified into a contiguous form. If the reorganization fails or is too

difficult for asopt to perform, then the loop is marked as not unrollable and the algorithm moves

on without unrolling it.

After replication, references to the basic induction variable in the loop are updated as needed.

We see an example of this in Figure 1.1b. Since the unroll factor in that example is 4, the loop

body is replicated 3 times. Each reference to i in the unrolled loop is then offset in increments of 1.

Finally, the stride of i is changed to 4 to remove the iterations that are covered by the replications

of the original loop’s body.

Not all loops follow the structure of the loop in Figure 1.1, and as such they may not require

any adjustments to references of their basic induction variables. An example of this is when the

basic induction variable is updated mid-iteration and its new value is used in that same iteration.

This is common in C style while loops, where updates of the basic induction variable tend to be

within the body instead of at a dedicated position like in for loops. The replication of the loop’s

body copies all updates to the basic induction variable such that, after replication, the number of

updates to the variable per iteration reflects the desired unroll factor. Therefore, in these cases, no

adjustments to the variable are needed after the replication stage.

The last step in the general strategy is to ensure that the unrolled loop does not execute too

many or too few iterations. This step is less straightforward than the previous ones, as it depends on

the unrolling strategy being used. We end this section with a high-level overview of what happens

in this step, and leave the specifics of each strategy to the next sections of this chapter.

To guarantee the loop does not iterate too many times, we first check if the basic induction

variable can exceed the exit value while running the unrolled loop. This is done by calculating the

number of iterations the unrolled loop will execute at run time. The number of iterations the loop

will run is equal to | exit value − init value
stride |. Taking the absolute value of this calculation is necessary

as the initial value, the exit value, and the stride can be positive or negative. We check that the

10

sign of the stride makes sense when using this formula (i.e., the stride is positive when the exit

value is larger than the initial value).

If the starting value and exit value are known at compile time, we may have a stride that causes

the basic induction variable to match the exit value at the end of the loop. A good example of

this is if the value of n in Figure 1.1b is equal to 20. Since 20 is divisible by 4, i equals 20 after 5

iterations. The unrolled loop thus updates arr exactly n times, and ends after the nth update. In

cases like this, where there is no remainder, no further changes are needed so the unrolling process

is complete.

Many unrolled loops do not work out this nicely, so we must deal with the cases where the basic

induction variable is off by some amount. If we know the exact start and end values of the loop in

advance, we can produce extra iterations before or after the unrolled loop to compensate for those

the unrolled loop would miss. Looking at Figure 1.1b again, consider if n equals 21. If we leave the

unrolled loop as is, we will execute 3 extra iterations and add 3 extra values to arr. To fix this, we

can replace n in the unrolled loop with the constant value 20 and replicate one iteration outside of

the loop, right after it ends. We then add a new increment of i after the extra iteration.

When the start or end values are unknown at compile time, we are unable to determine whether

the loop will execute too many iterations. This situation requires us to do more work in advance

to safely unroll the loop. The way asopt approaches this problem is shown in Figure 3.1, which

has been written in C and slightly modified for the sake of example. As a reminder, asopt does not

work at the source code level, so the use of C code and constructs such as goto are only meant to

visualize what is taking place at the assembly level.

Figure 3.1 is similar to Figure 1.1, except that the start and end values are not known until

execution time and the unroll factor has changed to 2. In Figure 3.1b, we begin unrolling by pulling

out the assignment of start to i from the for loop’s header. This is done so we can apply the if

statement, which is a safety check guarding against entering the unrolled loop. We check if adding

the stride (2 in this case) to i exceeds the limit n. If this sum exceeds n, then entering the unrolled

loop will execute too many iterations. To avoid this, an alternate path is provided for the control

flow to take when the unrolled path is not safe.

Our alternate path is a virtually identical copy of the original loop, placed right after the

unrolled loop’s body. If the unrolled loop is unsafe to enter, the control flow jumps to this copy of

the loop and executes it instead. Since the only difference between this copy of the loop and the

original loop is the removal of the initial assignment statement, this copy produces the same effect

11

for (i = start; i < n; i++) {

arr[i] = i;

}

(a) A C style for loop.

i = start;

if (i + 2 > n) {

goto rolled_loop;

}

unrolled_loop:

for (; i < n - 1; i += 2) {

arr[i] = i;

arr[i+1] = i+1;

}

rolled_loop:

for (; i < n; i++)

arr[i] = i;

(b) Same loop after unrolling with asopt ’s method by an unroll
factor of 2. The label above the unrolled loop is for visual pur-
poses only.

Figure 3.1: An example of unrolling a C style for loop with bounds only known at execution time.

as the original loop. Conveniently, the positioning of this copy also helps the unrolled loop execute

the correct amount of iterations. Notice in Figure 3.1b’s unrolled loop that the exit condition exits

the loop when i is greater than or equal to n - 1. This change is made to address the case where

the basic induction variable is off by some amount if the unrolled loop is executed. Since we do

not know whether extra iterations need to be run, we shorten the length of the unrolled loop by

the unroll factor minus 1 as a precaution. The control flow then falls into the rolled loop once the

unrolled loop ends, which executes any leftover iterations.

This completes the general description of how we perform loop unrolling. We now discuss the

details of how unrolling is implemented at the assembly level in asopt.

3.2 Unrolling with a compile-time number of iterations

The first strategy we use to unroll loops in asopt is to try to unroll them with bounds we find at

compile time. Before unrolling begins, we run an analysis that checks if the loop meets the various

requirements for unrolling and calculates the number of iterations the loop will execute at run

time. If a constant initial value and a constant exit value are found by the analysis stage and the

12

loop satisfies the other requirements for unrolling, then the loop is unrolled using our compile-time

number of iterations strategy.

This strategy first determines if any iterations need to be replicated outside of the loop to

address the case where the basic induction variable is off by some amount. If iterations need to be

added, then the exit value in the unrolled loop is replaced with a smaller value that is calculated

to be reached by the basic induction variable during the unrolled loop’s execution. The unroll

process then continues by replicating the loop’s body, fixing the control flow to branch to the

correct locations if the unrolling process moves basic blocks around, and adding iterations outside

of the loop.

We will work through an example starting from C code and ending with a final unrolled loop

at the assembly level. Figure 3.2 shows a loop in C that was compiled by gcc into MIPS assembly

code. The code before location $L2 in Figure 3.2b (which is called the loop preheader) sets up the

variables used during the loop, and the code between $L2 and the bottom of the figure is the loop

itself. $16 is the register representing the basic induction variable i in Figure 3.2a. $16 first gets

assigned the value of 0, and is passed to printf as a parameter after the loop begins. $16 is then

increased by 1 in the addiu instruction toward the end of the figure. It is finally used in the bne

(branch not equal) instruction at the bottom of the figure, which branches back to $L2 if the value

of $16 does not equal the value of $17. $17 is assigned the value of 80 before the start of the loop,

so $17 represents the exit value of the loop. The other registers are used to facilitate calling printf.

It should be apparent that the code in Figure 3.2b is a few steps removed from a direct trans-

lation of Figure 3.2a. During compilation, gcc performs a number of optimizations on the source

code to transform it into efficient assembly code. One such transformation is the removal of the

initial instruction that checks if the control flow should enter the loop. With an initial value known

to be smaller than the exit value, it is obvious that the loop should be entered. gcc notices this

and removes the unnecessary check guarding entry into the loop. Another such transformation

is the combination of comparison and branch instructions into one instruction that can do both

operations. Because the loop’s stride is 1, we can use a branch if not equal instruction to exit the

loop when the basic induction variable reaches the limit. In this example, we want to branch back

to the top of the loop when the basic induction variables does not equal the limit. To facilitate

this, gcc replaces the less than comparison and branch instructions with a single bne.

The analysis stage of asopt reads this code and realizes that 0 is the initial value of the basic

induction variable and 80 is the exit value of the loop. It then determines that $16 is a valid

13

for (i = 0; i < 80; i++) {

printf("%d\n", i);

}

(a) A C for loop before compilation.

move $16,$0 # $16 = 0

la $18,$LC0 # $18 = &LC0

li $17,80 # $17 = 80

$L2:

move $5,$16 # $5 = $16

move $4,$18 # $4 = $18

jal printf # call printf()

addiu $16,$16,1 # $16 += 1

bne $16,$17,$L2 # goto $L2 if

$16 != $17

(b) Same loop after compilation into MIPS assembly code.

Figure 3.2: A C for loop that has been turned into MIPS assembly code by gcc.

basic induction variable and $17 is both the exit value of the loop and is loop invariant. Using the

formula for a positive stride mentioned previously, it calculates the total number of iterations to be

80 and marks the number of iterations as known at compile time. This satisfies the requirements

for unrolling a loop with the compile-time number of iterations strategy, so the analysis stage ends

and the algorithm for the compile-time strategy begins.

The next step depends on what unroll factor was specified to asopt before unrolling began. If

the unroll factor evenly divides 80, then the unrolling process does not create extra iterations as the

basic induction variable reaches the value of 80 by running the unrolled loop. If the unroll factor

does not evenly divide the limit, however, the process needs to add iterations after the unrolled

loop’s body. We have chosen an unroll factor of 3 for this example to demonstrate how extra

iterations are added after an unrolled loop.

The result of unrolling Figure 3.2b is shown in Figure 3.3. Blank lines are inserted to visu-

ally divide the sections of the loop. The main body of the loop is replicated twice, and each

copy of the body is placed directly after the previous copy. The branch instruction after the

original body is replaced by comparison and branch instructions put at the end of the third

copy of the body. After this comparison and branch, the body is replicated two more times in

the section labeled $L2 DUP1. These are the extra iterations asopt found the loop needed for

our chosen unroll factor. After $L2 DUP1’s section, the control flow falls through to the next

part of the program and ends the loop. While $L2 DUP1’s iterations are necessary to ensure

proper execution of the loop, the actual unrolled loop is contained between $L2 and $L2 DUP1.

14

move $16,$0

lalui $18,$LC0

laori $18,$18,$LC0

addiu $17,$0,78

$L2:

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

slt $1,$16,$17

bnez $1,$L2

$L2_DUP1:

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

Figure 3.3: Figure 3.2b unrolled
with asopt by an unroll factor of 3.

The exit value $17 is changed to 78 instead of 80 in the

loop preheader to support the new unrolled loop body.

3 does not evenly divide 80, so asopt calculates the last

multiple of 3 before 80 to use instead. The unrolled loop

iterates 26 times, incrementing the basic induction vari-

able by one 3 times after each iteration and stopping when

the basic induction variable equals 78. At iteration 26,

the slt stores 0 in register $1 causing the branch instruc-

tion to fall through and exit the unrolled loop. The con-

trol flow then enters $L2 DUP1’s section, which contains

two more copies of the loop body. These two iterations

call printf two more times and bring the basic induction

variable’s value up to 80, completing all of the work the

original loop needs to do. When this code is run instead

of the original loop’s code, it only requires 26 iterations

to produce the same effect as 80 iterations of the original

loop. That means 54 branch instructions were removed

from this loop, which can lead to a savings in CPU cycles

used.

Note that some instructions in this output have

changed from one form to another after being run through

asopt. Instructions like lalui (load address load upper

immediate) and laori (load address or immediate) are

SCALE ISA instructions that are direct translations of

incompatible instructions from the MIPS ISA. The slt

and bnez instructions are also translated from MIPS to SCALE, however they were translated to

be seq and beqz instructions at first. This is because the loop’s original branch instruction is bne,

which directly translates to a set equal instruction followed by a branch if equal to zero instruction.

The reason these instructions changed into slt and bnez is that we have a restriction in asopt that

all branches used for exit conditions in loop unrolling must be slt. This decision was made early

on in the project, as it was deemed necessary at the time. This requirement is no longer necessary

15

for the compile-time strategy, as using seq would work fine. However, for compability reasons with

the execution-time method, this condition remains in place. We hope to remove it in the future.

3.3 Unrolling with an execution-time number of iterations

The second strategy we use to unroll loops is to try to unroll them with the execution-time

number of iterations method shown in Figure 3.1b. During the analysis stage, asopt first checks if

it can unroll a loop with the compile-time number of iterations method. If the loop does not meet

the requirements for unrolling with this method, a second set of checks are run to see if the loop

can be unrolled with the execution-time strategy. The requirements for using this method are more

relaxed than the compile-time number of iterations strategy, since the initial value or exit value do

not have to be known during unrolling.

Figure 3.4a shows a C function that takes an integer n as a parameter and a for loop that uses

n as its exit value. The resulting MIPS code after compiling with gcc is shown in Figure 3.4b. The

lines with 3 dots represent load and store instructions modifying the stack, and they are added to

the figure to simplify the code. This output is very similar to the one seen in Figure 3.2b, with a

couple of exceptions. The first change is the blez (branch if less than or equal to zero) instruction

at the beginning of the function. This branch jumps to $L6 (which skips running the loop) if n,

whose value is initially in $4, is less than or equal to zero. The value of n must be in $4 because

the MIPS calling convention requires the caller to place the first function argument into $4. The

second change is the move instruction moving the value of $4 into $17. $4 is overwritten when

calling printf later in the code, since printf is expecting arguments. $17 is not being used to store

other values in the function, so it gets used to store the exit value and free up $4. The rest of the

code works the same way as in Figure 3.2b.

When asopt reads this code, the loop does not pass the checks of the compile-time number of

iterations strategy since the exit value is not known at compile time. The loop does, however, pass

the checks for the execution-time strategy since the exit value is loop invariant. The basic induction

variable is again $16 and, like in the previous example, is usable for loop unrolling. Likewise, $17

is again the exit value for the loop and is usable for unrolling since it is loop invariant. Because

the exit value is not known at compile time, the total number of iterations equals | exit valuestride |, which

simplifies to the value in $17 since the stride is 1.

Unlike the compile-time number of iterations method, where the unrolled loop may or may not

need additional iterations, the execution-time method always needs additional iterations outside of

16

void printnums(int n)

{

for (int i = 0; i < n; i++) {

printf("%d\n", i);

}

}

(a) A C function before compilation.

printnums:

blez $4,$L6 # goto $L6 if

$4 <= 0

...

move $17,$4

move $16,$0

la $18,$LC0

$L3:

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

bne $17,$16,$L3

...

$L6:

jr $31 # return

(b) Same function after compilation into MIPS assembly code.

Figure 3.4: A C function that is turned into MIPS assembly code by gcc.

the unrolled loop. This is because we cannot know whether the unrolled loop by itself covers all

iterations. As we saw with Figure 3.1b, this is done by making a copy of the original loop and

placing it after the unrolled loop’s body.

The result of unrolling Figure 3.4b is shown in Figure 3.5. We use an unroll factor of 2 in this

example to keep the figure all on one page. This output is quite different from the one seen in the

compile-time number of iterations strategy. The first key difference is that the unrolled loop has an

exit value of $19 and not $17. This is seen by looking at the second to last slt instruction before the

$L3 DUP1 section of the code. Since $17’s value is unknown to asopt at compile time, guarding in-

structions are added to the loop’s preheader to check if entering the unrolled loop will cause the basic

induction variable to exceed $17. The addiu instruction after the lalui/laori pair adds the unroll

factor to the initial value of 0, and stores the result in $19. $19 is not used in the original function,

so asopt allocates and uses it as a temporary storage location for this sum. The following slt instruc-

tion checks if this sum exceeds the limit. If it does exceed the limit, the control flow jumps over the

unrolled loop to $L3 DUP1, which is the copy of the original loop that comes after the unrolled loop.

If the sum does not exceed the limit, then the control flow falls through the branch and subtracts 1

from the exit value. This is the precautionary measure that ensures the unrolled loop never executes

17

too many iterations. We store this result in $19 since its previous value is no longer needed. $19 is

now the limit of the unrolled loop, and the loop runs until $16 becomes greater than or equal to $19.

printnums:

slt $1,$0,$4

beqz $1,$L6

...

move $17,$4

move $16,$0

lalui $18,$LC0

laori $18,$18,$LC0

addiu $19,$0,2

slt $1,$19,$4

beqz $1,$L3_DUP1

addiu $19,$17,-1

$L3:

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

slt $1,$16,$19

bnez $1,$L3

slt $1,$16,$17

beqz $1,$L_SPLIT2

$L3_DUP1:

move $5,$16

move $4,$18

jal printf

addiu $16,$16,1

slt $1,$16,$17

bnez $1,$L3_DUP1

$L_SPLIT2:

...

$L6:

jr $31

Figure 3.5: Figure 3.4b unrolled
with asopt by an unroll factor of 2.

The second key difference is the two instructions after the

comparison and branch that check $16 against $19. These

instructions are not part of the unrolled loop and only ex-

ecute when the unrolled loop is finished. They check if the

unrolled loop has completed all of the required iterations

by comparing the basic induction variable to the original

exit value $17. If the unrolled loop has completed all re-

quired iterations, then we are done executing the loop and

jump over the copy of the original loop into $L SPLIT2’s

section. This section contains the code that needs to ex-

ecute after the loop is finished. Before unrolling, it was

only accessible from the original loop by falling through

the exit branch. The control flow now needs to be able

to branch to this code, so asopt creates a label for this

section and updates the branch instruction after the loop

to jump to this new label.

The final difference is the copy of the original loop,

which is either jumped into from the branch before the

loop or fallen into after the unrolled loop finishes. This

loop is virtually identical to the loop in Figure 3.4b, with

the exception of the comparison and branch instructions

translated from MIPS to SCALE. This loop will either

run when the unrolled loop is not safe to enter, or when

the unrolled loop has leftover iterations that need to be

completed.

Before ending this section, we discuss another solu-

tion to unrolling loops with execution-time bounds that

requires the use of a modulo operation. This solution first

calculates a value from the formula number of iterations

% unroll factor. If the result is not 0, then there are left-

18

over iterations the loop will miss if we only run the unrolled loop’s body. To address this problem,

the code first enters a sub-loop that takes the result of the modulo operation and executes that

number of iterations. After this completes, the control flow falls into the unrolled loop and executes

the remaining number of iterations.

While this solution requires less instructions than the execution-time number of iterations

method previously presented, we believe our solution is superior due to the use of cheaper opera-

tions like addition and subtraction and the problems modulo has with negative operands. Modulo

operations require dividing the operands, which is an expensive instruction that usually is not fully

pipelined. Using a modulo operation would thus take away some of the benefits of performing loop

unrolling. The definition of the modulo operation is also ambiguous when one of the operands is

negative, which can lead to strange behavior depending on the compiler in use or the underlying

architecture. Our solution avoids both of these problems by only using addition and subtraction,

which are cheap and fast instructions, and have no issues with negative strides or negative initial

and exit values.

3.4 Unrolling with an unknown number of iterations
(naive loop unrolling)

Up to this point, we have enforced a strict set of requirements to determine what loops are

eligible for unrolling. Any loops that do not meet our criteria are rejected and no further attempt

is made to unroll them. With traditional unrolling techniques that rely on basic induction variables,

not much more can be done to expand the scope of loops that are able to be unrolled. Removing

or relaxing the requirements mentioned in previous sections will jeopardize the safety guarantees

that ensure loops continue to execute correctly. However, we might be missing an opportunity to

further improve performance if we simply dismiss rejected loops as not unrollable.

Modern CPUs are designed to fetch and execute groups of sequential instructions instead of one

instruction at a time. If the code to be executed is sequential, then the CPU fetches a group of

instructions in one operation and begins executing them as soon as possible. For CPUs that support

executing multiple instructions during one cycle, this technique keeps the time spent on fetching

instructions low. However, transfers of control counteract this by making the code non-sequential.

Because the next instruction to be executed following a transfer of control is probably not in the

previously fetched group of instructions, the CPU spends a cycle going to the target location and

fetching the next set of instructions.

19

While we cannot avoid using transfers of control in our code, we can decrease the distance

between a transfer of control and its target. If the distance between the two is made small enough,

then the next instruction to be executed might have already been fetched. The CPU will then be

able to skip fetching new instructions and instead continue to execute the instructions it already

fetched. For a transfer of control that executes a lot of times (such as a loop branch), moving

the target location closer to the preceding code can reduce the number of cycles spent fetching

instructions.

To test this out, we have developed a new loop unrolling strategy that replicates loop bodies

sequentially without removing branch instructions. We call this strategy naive loop unrolling, due

to the relatively simple way in which the loop is unrolled. A diagram showing how naive loop

unrolling changes a loop is presented in Figure 3.6. The loop starts out as a contiguous set of

basic blocks that has at least one branch instruction deciding whether to exit the loop or jump

back to the top. After unrolling with naive loop unrolling using an unroll factor of 2, Figure 3.6b

shows that the resulting loop has two copies of the body and two loop branch instructions. Body

1 is identical to the original loop body, except for the exiting branch instruction. The branch is

modified to either exit the unrolled loop, or fall into body 2. Body 2 is also an identical copy of the

original body, however its exiting branch instruction remains the same as the original loop branch

instruction.

The idea behind these changes is that some of the loop’s iterations will be located at a fall

through block, instead of at the branch target. If the fall through block’s instructions have already

been fetched and the branch will not be taken, then the CPU can continue executing instructions

sequentially and avoid another instruction fetching operation. While the CPU still has to fetch

new instructions when branching out of the loop or to the top of the loop, the naively unrolled loop

should reduce the overall amount of instruction fetching operations that need to occur.

This strategy is not intended as a replacement for the unrolling strategies previously discussed.

Compared to unrolling with compile and execution-time bounds, naive unrolling should result in

worse performance since no branch instructions are removed during unrolling. Rather, this is

intended for loops that do not pass the previously described unrolling criteria of the analysis stage.

Because all branch instructions are kept in the loop, we are guaranteed to always execute the correct

number of iterations. This allows us to unroll loops with any exit conditions whatsoever, since we

do not have to proactively calculate the number of iterations the loop will run. The exit condition

can be testing a value from memory, a basic induction variable, or a value that’s recalculated every

20

Loop body

Code after
loop

Code before
loop

(a) A loop before naive loop unrolling.

Loop body #1

Code after
loop

Code before
loop

Loop body #2

(b) Same loop after naive loop unrolling with an unroll
factor of 2.

Figure 3.6: Structure of a loop before and after naive loop unrolling.

iteration; naive loop unrolling can handle all these cases since all branch instructions are preserved.

The only real requirement to unroll a loop using naive loop unrolling is that the loop is contiguous.

We now work through an example starting from C code and ending with the output after

unrolling using the naive unrolling method. Figure 3.7a shows a function adapted from a loop

found in the 400.perlbench benchmark of SPEC 06. This loop iterates through a C string and

returns a pointer to the position of the null terminator. The number of iterations cannot be

determined at either compile time or execution time, since the string is arbitrarily long. If we try

unrolling this loop with either of the previously mentioned algorithms, asopt will reject it on the

basis of being unable to figure out the total number of iterations.

Figure 3.7b shows the resulting MIPS code after compilation with gcc. str is the only function

argument, so it is initially stored in $4. The code copies $4 into $2, despite the fact that $4 is not

overwritten anywhere in find nullterm. This instruction was added because gcc decided to use $2

as both the basic induction variable and the return value. $2 is a special register in MIPS used

to return values from functions, so find nullterm will eventually need to assign its return value

21

char *find_nullterm(char *str)

{

while(*str) {

str++;

}

return str;

}

(a) A C function before compilation.

find_nullterm:

move $2,$4 # $2 = str

lb $3,0($4) # $3 = *str

beq $3,$0,$L2 # goto $L2 if

*str == \0

$L3:

addiu $2,$2,1 # str++

lb $3,0($2) # $3 = *str

bne $3,$0,$L3 # goto $L3 if

*str != \0

$L2:

jr $31

(b) Same function after compilation into MIPS assembly code.

Figure 3.7: A second C function that has been turned into MIPS assembly code by gcc.

to $2. Using $2 as the basic induction variable allows the function to skip that step and return

immediately, since the value is ready to be returned.

The code then checks if the first character of str is the null terminator. If it is, we jump to

$L2 and exit the function. $2 already contains the first position of str, so no extra instructions are

needed to set up the return value. If the first character is not the null terminator, we enter the

loop. The loop advances one character at a time through the string and falls through to $L2 when

the null terminator is reached.

When asopt reads this code, it is unable to find an invariant end value that it can use to

calculate the number of iterations. If naive loop unrolling is not enabled, then the analysis stage

stops here and gives up on unrolling this loop. With naive unrolling enabled, the analysis stage

marks this loop as unrollable via naive unrolling. When the actual unrolling algorithms begin, it

sees that this loop is marked for naive unrolling so it attempts to unroll it using the naive unrolling

strategy.

The result of unrolling the code in Figure 3.7b is shown in Figure 3.8. As we can see, not much

changes between the two figures. The loop’s body is replicated once, and the original loop branch is

modified to either branch out of the loop or fall through to the new body. The second loop branch

remains the same as the original branch.

Because naive unrolling is intended for loops that cannot be unrolled with other methods, we

designed asopt to combine naive unrolling with our compile and execution-time number of iterations

22

find_nullterm:

move $2,$4

lb $3,($4)

beqz $3,$L2

$L3:

addiu $2,$2,1

lb $3,($2)

beqz $3,$L2

$L3_DUP1:

addiu $2,$2,1

lb $3,($2)

bnez $3,$L3

$L2:

jr $31

Figure 3.8: Figure 3.7b unrolled with asopt by an unroll factor of 2.

techniques. asopt first tries to unroll all loops using the compile-time method. If it cannot use

the compile-time method, it then tries the execution-time method. Finally, if that fails and naive

unrolling is enabled, it tries to unroll with naive unrolling.

23

CHAPTER 4

HISTORY OF OUR LOOP UNROLLING

IMPLEMENTATION

Loop unrolling was first added to asopt by Dr. David Whalley and Dr. Gang-Ryung Uh. Dr. Whal-

ley began writing the loop unrolling code by taking some unrolling algorithms created for a previous

project and porting them to asopt. His contributions included, but were not limited to, finalizing

the design of the compile and execution-time strategies. Dr. Uh worked on multiple features in our

loop unrolling algorithms, such as copying a loop body, making a loop contiguous, and rotating a

loop’s blocks so that the block with the exit branch is placed at the bottom of the loop. Some of

Dr. Uh’s code was sourced from a previous project, however most of it was changed by him over

the course of this study.

I (Joseph Zilonka) joined the SCALE project before the SCALE ISA simulators were working,

so my first task was to find and report bugs in asopt. I checked the output by hand until the

simulators were ready for use, and tested for runtime errors such as segmentation faults. Since I

was new to the codebase, I reported all issues I found to Dr. Whalley and Dr. Uh.

Once the simulators were working, I was tasked with running the SPEC benchmarks through

asopt to see if the code produced could be used with the simulators. Many issues were encountered

at this point, so most of my time was spent reporting bugs. The loop unrolling code proved to be

particularly problematic as the benchmarks revealed several edge cases we had not yet addressed.

Ultimately, asopt underwent many changes before reaching a working state.

When we finally got our optimizer to work properly, we checked the results of the unrolling

algorithms and found that only a small amount of loops were being unrolled. The performance

improvements were marginal for most benchmarks, with a ≤ 0.1% decrease in total cycles taken

after enabling loop unrolling. This motivated Dr. Whalley to research how our unrolling methods

could be expanded. He drafted up a set of changes we would make to asopt that formed the

beginnings of this study and the topic of my thesis.

asopt was unrolling fewer loops than expected due to small deviations in the structure of

excluded loops. These differences were not recognized by our analysis stage, so it flagged the loops

as ineligible for unrolling. The cause of these structural differences turned out to be gcc’s method

24

of converting source code into MIPS assembly. Because gcc is generating code intended to run on

actual MIPS hardware, it is likely producing code that is optimized for that hardware.

One behavior of gcc is that it uses branch on not equal instructions as loop exit branches.

Despite some source code explicitly using less/greater than operations, gcc translates these exit

conditions into bne instructions whenever it can. This is probably due to a performance gain on

MIPS hardware from using these instructions over branch on less/greater than pseudo instructions,

since those expand to two instructions when run through the assembler. However, seq (the first

of two instructions asopt transforms bne into) may not work for our execution-time method since

it is possible for an unrolled loop’s basic induction variable to never match the exit value during

execution. Since keeping seq instructions could allow unrolled loops to execute past their limit,

they needed to be replaced with something else.

Initially, asopt did not attempt unrolling loops with seq exit conditions because of this problem.

We assumed seq was infrequent and that we could come back later to add support for loops that

used it. However, gcc introduces seq instructions so often that the amount of loops the execution-

time method did not unroll was unacceptably high. Upon finding this out, I was tasked with

devising a way to replace all seq instructions in these loops.

Dr. Whalley proposed that I change seq instructions into slt, as slt was an exit condition for

which asopt already had unrolling support. The problem with doing this is that the result of the

comparison becomes dependent on the ordering of the arguments. When using seq, the result is

0 whenever the arguments do not match. When using slt, the result can be 1 or 0 depending on

which argument comes first. The sign of the loop’s stride also comes into play when the instruction

is changed.

Take for example Figure 4.1, which is a simple assembly level loop that is supposed to run for

5 iterations. The seq instruction stores 0 in $1 until $2 equals 5, so the branch instruction needed

to make this loop work is a beqz. In its current state, the loop takes 5 iterations for $2 to reach the

value of 5. If we swap the arguments of the seq, the loop’s behavior does not change and we still

execute the correct number of iterations. If we also change the value of $3 to -5 and subsequently

change the stride to be -1, the loop’s behavior remains correct. This illustrates that seq is not

dependent on either the ordering of the comparison’s arguments or the stride of the loop.

Now let us change the comparison instruction to slt. If all else remains the same, the loop is

only going to execute one iteration. When the first comparison instruction executes, the slt stores

the value 1 in register $1. This causes the control flow to fall through the branch, rendering the

25

move $2,$0 # $2 = 0

li $3,5 # $3 = 5

$count_to_five:

addiu $2,$2,1 # $2 += 1

seq $1,$2,$3 # $1 = ($2 == $3)

beqz $1,$count_to_five # goto $count_to_five

if $1 == 0

Figure 4.1: An example of an assembly level loop using seq.

loop meaningless. The way to fix this situation is to reverse (change to its inverse) the branch

to bnez, so the value of 1 causes the control flow to jump back to the top of the loop. No other

changes are necessary, as the loop will run for 5 iterations and stop when $2 equals 5. Figure 4.2

shows how Figure 4.1 would need to change to use slt as its comparison instruction.

move $2,$0 # $2 = 0

li $3,5 # $3 = 5

$count_to_five:

addiu $2,$2,1 # $2 += 1

slt $1,$2,$3 # $1 = ($2 < $3)

bnez $1,$count_to_five # goto $count_to_five

if $1 != 0

Figure 4.2: Figure 4.1 modified to use slt instead of seq.

If we keep the comparison as slt and swap its arguments, we can avoid having to reverse the

branch. Because $3 is initially greater than $2, slt produces the same result as seq every iteration

by setting $1 to 0. This does not entirely fix the loop, as the slt will also set $1 to 0 when $2

equals 5. That causes the loop to execute 6 iterations instead of 5. We can compensate for this by

establishing a new exit value that is 1 less than the original, so the slt produces a value of 1 when

$2 equals 5.

Finally, if we make the exit value -5 and the stride -1 while keeping the comparison as slt, we

run into the same situation as before where the loop executes 1 iteration too many. And if we

swap the arguments on top of changing those values, we will run into the situation where the loop

becomes useless. This demonstrates that the behavior of slt is dependent on the ordering of the

arguments and on the stride of the loop.

26

To address these issues when swapping seq for slt, we assume that the basic induction variable

is always the second argument and the exit value is always the third. Before attempting unrolling,

asopt checks if the exit’s branch instruction will continue to work after changing the comparison

instruction or if it needs to be reversed. The branch is reversed if necessary, and the optimizer then

moves on to checking if the loop will now execute an extra iteration. If it determines the loop will

execute an extra iteration, we create a new exit value that is one less than the original.

Figure 4.3 shows how Figure 4.1 would be modified by asopt to work with slt, an exit value of

-5, and a stride of -1. The basic induction variable is already the second argument and the exit

value is already the third, so the arguments do not need to be swapped. However, the loop will

execute an extra iteration if we do not modify the exit value to be one less than the original. Since

$3’s value is not used anywhere else, it can safely get changed to -4. The loop will now execute

the correct number of iterations, and end up with the value of -5 in $2. If we did not want to

change $3’s value, we could instead substitute the slt for an slti instruction and have -4 be the

third argument.

move $2,$0 # $2 = 0

li $3,-4 # $3 = -4

$count_to_five:

addiu $2,$2,-1 # $2 += -1

slt $1,$2,$3 # $1 = ($2 < $3)

beqz $1,$count_to_five # goto $count_to_five

if $1 != 0

Figure 4.3: Figure 4.1 modified to use slt, have a negative exit value, and have a negative stride.

These changes would suffice if gcc followed our assumption about the ordering of the comparison

instruction’s arguments. Unfortunately, it has no rule about how seq ’s arguments are ordered likely

due to the commutative property of the equality operator. Once we found this out, we made it

a rule in asopt to always order the basic induction variable as the second argument and the limit

as the third. During unrolling, we check the ordering of the arguments in the exit condition’s

comparison instruction and swap them if necessary. The stride is then checked to ensure that the

branch instruction will still work when the comparison is modified.

Another behavior of gcc is that it sometimes relocate values from their original registers. A

relocation happens when a register containing an important value will be overwritten by a future

27

section of code, so the value is preserved by copying it to another register. This is less of an

optimization and more of a consequence of the MIPS calling convention, since a relocation usually

happens when a special register needs to be freed. The issue with relocations is that they can

introduce complexity into a compiler’s optimization algorithms, as many optimizations need to

keep track of where values are set and used. Loop unrolling is among these optimizations because

it has to find where the initial and exit values are set.

The obvious location to start looking for the initial and exit values is the loop’s exit instructions.

We can then scan backward through the code to find where the two registers are first set, and retrieve

any constant values. The problem is that a constant might be more than one instruction removed

from the instruction that sets a register used in the loop. While a human can easily scan the code

and see that a constant value has been relocated, an analysis stage must be programmed to expect

this and preemptively search backward.

asopt originally did not search for values that appear before relocation instances. If a relocation

set the initial or exit value register, the value was marked as not known at compile time. Because our

compile-time method requires both values to be constant, loops with a known value and a relocated

value were being unrolled using the execution-time method. Unrolling with this method is still a

potential improvement over not unrolling at all, and the performance difference of choosing one

method over the other is minimal. For classification purposes, however, the loop is a compile-time

number of iterations loop and should be marked as such. So, we decided to modify our optimizer

to look backward and search for constant values.

A large percentage of these relocations were only one instance away from the constant value,

so I initially added a quick fix to search backward one relocation for a value. As we looked over

more loops, it dawned on us that we needed a more robust solution to track down values that were

previously set. Dr. Whalley had already written code that did most of the necessary work, so I

adapted it for our implementation of loop unrolling. This replaced my initial quick fix.

One particular benefit brought by Dr. Whalley’s solution was the ability to go backward through

transfers of control to find where values were coming from. My quick fix could only go back through

sequential blocks, which would give incorrect results if the blocks did not sequentially execute. An

example of this is having two consecutive blocks, where the first one ends with an unconditional

jump to a later section of code. The second block would never be accessed directly after the first

one got executed, so searching for a value going up from the second block will skip checking any

intervening blocks.

28

In addition, this change allowed us to expand the set of instructions for which asopt could search

through to find values. My fix only worked for move instructions and assumed that addiu and li

(load immediate) were the only instructions setting registers to constants. The new solution added

support for instructions like ori (or immediate), andi (and immediate), sll (shift left logical), and

others that could also relocate constants to registers.

These were the most significant changes we made to asopt to work around some of the obstacles

introduced by gcc. There are other edge cases for which we added solutions, but they are so small

and appear so rarely that it is not worth describing them in this thesis. Our fixes increased the

amount of loops we were able to unroll, and gave us some insight as to how gcc generates MIPS

assembly.

Despite our considerable progress thus far, we were still not done increasing the scope of loops

that could be unrolled. A particular kind of loop ignored by asopt had been on our radar since the

beginning of the study, and after some of the gcc edge cases were resolved we decided it was time

to tackle unrolling those loops. Up to that point, asopt could only unroll loops that had one exit

condition. This covers many of the loops we encounter in the benchmarks, but not all of them.

The loops we were ignoring had multiple exit conditions, or more than one instruction that may

terminate the loop.

Loops with multiple exits can easily be unrolled by only eliminating one exit branch in the

loop. If a single exit meets the requirements for unrolling, we can treat the others as just part of

the loop’s body and leave them intact. Because they will be replicated along with the rest of the

loop’s body, unrolling will not add or remove any necessary comparison and branch pairs. If we

try to unroll more than one exit, we might run into problems when a basic induction variable is

shared among exits. We could also run into some issues if basic blocks shared by multiple exits are

replicated more times than intended.

The decision not to unroll these loops was due to the limitations of our initial unrolling imple-

mentation. All of our code assumed there would only be one loop exit, so processing a loop with

multiple exits could produce unexpected results. This might miss out on loops whose first exit

cannot be eliminated yet a later one can. However, it could also break our analysis stage entirely,

and require everything to be re-engineered. Consequently, our analysis stage automatically rejected

loops with more than one exit. This prevented multiple exit loops from ever reaching the unrolling

code or Dr. Uh’s code, so those sections of asopt were particularly vulnerable to bugs.

29

To reduce the possibility of having to rewrite everything while adding support for multiple exits,

I redesigned the analysis stage. It now starts off by finding all exits in the loop and putting them

into a list. It then linearly checks each exit to see if it meets the criteria for unrolling. When an

exit does not meet the criteria, the analysis will mark the loop as not unrollable and move on to the

next exit. When it finds an exit that can be used for unrolling, it immediately stops and attempts

to unroll the loop using that exit. If none of the exits meet the criteria, then it can either give up

on unrolling or decide to use naive unrolling if enabled. In this latter case, the analysis stage will

use the first exit in the list to unroll the loop.

The benefit from changing the analysis stage in this way was that I did not have to update the

unrolling code or any of Dr. Uh’s code. Those two sections of asopt are still expecting a single exit

to be passed to them, which is sufficient if we only want to eliminate one exit per loop. All the

analysis stage has to do is select an exit, and tell the other sections of code that the chosen exit

is the loop’s “main” exit. The other sections will then do the work that needs to be done to that

exit, and leave the other exits alone.

This implementation works well for both single exit loops and multiple exit loops. If a loop has

one exit, then it is the only exit in the list and it alone determines whether the loop can be unrolled.

When a loop has multiple exits, then this process will filter out exits that cannot be used and only

attempt to eliminate an exit that is safe to remove. If more than one exit could be eliminated by

unrolling, our implementation picks the first one it encounters, ensuring that unrolling is always

attempted on the loop.

30

CHAPTER 5

RESULTS

The set of loops we analyze in this chapter comes from the SPEC 06 CPU benchmark suite.

We ran our optimizer on all the benchmarks in the suite and collected various results about the

characteristics of their innermost loops. We then ran the resulting assembly code through three ADL

SCALE simulators to see how a benchmark’s performance changes after using our loop unrolling

strategies.

5.1 Loop characteristics

asopt produces various statistics on all loops in an assembly file as the code is being optimized.

For this study, we collected the statistics of each benchmark’s assembly files and merged them into

one comprehensive report for their respective benchmark.

The optimization setting we chose to collect this data with was u2, which tells asopt to use

both the compile-time and execution-time methods to unroll with an unroll factor of 2. We imagine

this would be a very common choice, and thus an appropriate setting to give us a general idea of

the state of the loops in the benchmarks seeing as the choice of unroll factor and strategy greatly

impacts the results obtained by asopt.

Consider Figures 5.1 and 5.2. 434.zeusmp and 470.lbm stand out from the other benchmarks

in that they have a higher average number of instructions per loop. 470.lbm in particular has a

very large amount of instructions in its loops, while also having the smallest number of innermost

loops out of all the benchmarks. This could be significant because of the fact that loop unrolling

increases code size in exchange for potentially better performance. With programs that have a lot

of small loops (such as 403.gcc), this trade off may be worth it since each unrolled loop can provide

a performance improvement to the overall application. In the case of 470.lbm, because it has so

few loops, unrolling would greatly increase code size for a potentially marginal benefit.

31

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

n
u
m

b
e
r

o
f
in

n
e
rm

o
s
t
lo

o
p
s

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 5.1: Number of innermost loops in each benchmark.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

a
v
g
 #

 o
f
in

s
ts

 i
n
 i
n
n
e
rm

o
s
t
lo

o
p
s

0

50

100

150

200

250

Figure 5.2: Average number of instructions per innermost loop.

32

The next set of results are represented as a percentage of the total number of innermost loops,

as opposed to an absolute number. Figure 5.3 shows the percentage of innermost loops containing

a constant initial value, a constant exit value, and a constant stride. Overall, there seems to be a

small amount of loops that contain all three values. Our compile-time unrolling strategy requires

all three of these values to be constant, so these results represent a maximum percentage of loops

that could be unrolled using that method. For benchmarks like 470.lbm and 445.gobmk, we expect

the compile-time unrolling strategy to deliver some performance benefit after unrolling. It should

be noted that while these loops meet the criteria for unrolling with the compile-time method, they

may fail our unrolling checks at some other step. Thus Figure 5.3 does not represent the exact

percentage of loops successfully unrolled using the compile-time strategy.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e
rc

e
n
ta

g
e
 o

f
in

n
e
rm

o
s
t
lo

o
p
s

0

0.2

0.4

0.6

0.8

1
initial value, exit value, and stride constant

Figure 5.3: Percentage of innermost loops with a constant initial value, a constant exit value, and
a constant stride.

The left bar of each benchmark in Figure 5.4 represents how asopt classified a given loop during

the unrolling process in terms of number of iterations. Unlike the compile and execution-time

classifications, which signify asopt unrolled those loops using one of these two strategies, loops in

the “unknown number of iterations” category are not guaranteed to have undergone naive unrolling.

In theory, naive unrolling should be able to unroll all loops, not excluding those under the “unknown

number” category. However, there is a small number of loops that still do not get naively unrolled

due to corner cases not handled by our optimizer.

33

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rc
e

n
ta

g
e

 o
f

in
n

e
rm

o
s
t

lo
o

p
s

0

0.2

0.4

0.6

0.8

1

compile−time number of iterations execution−time number of iterations unknown number of iterations positive stride negative stride

no stride

Figure 5.4: Classifications of number of iterations, and different kinds of strides.

The percentage of innermost loops that are marked as having an “unknown number” of iterations

is significant. Without naive loop unrolling, there would be no way to potentially gain performance

from these loops since applying the compile and execution-time methods requires knowing the

number of iterations in advance (or that the number of iterations is some constant).

The right bar of each benchmark, which shows the percentage of a type of stride present in

that benchmark’s loops, also reflects the usefulness of naive unrolling seeing as the majority of

loops have no detectable stride. The compile and execution-time methods require a known stride

to unroll a loop, so these loops could not be unrolled without naive unrolling. Having a known

stride enables us to calculate the number of iterations a loop will run, so there is a large overlap

where loops with no stride iterate for an unknown number of times.

Interestingly, positive strides constitute the majority of loops that have a known stride. This

makes supporting negative strides less important as the number of loops we could unroll that have

negative strides is likely small. During this study, we added support for unrolling negative strides

to our optimizer in the hopes that a larger portion of loops would be unrolled. While this change

did allow more loops to be unrolled, it did not have much impact on the benchmarks as loops with

negative strides are relatively rare.

Figure 5.5 shows whether there is more than one exit on a benchmark’s left bar and whether

the exit value is invariant on the right bar. Statistically, innermost loops are likely to have a single

exit, and this trend holds true in all tested benchmarks. Some benchmarks, such as 400.perlbench,

34

still have a relatively high number of loops with multiple exits. Because our optimizer could not

unroll loops with multiple exits prior to this study, we ignored many potential opportunities for

unrolling. Unlike supporting negative strides, adding support for multiple exit loops seems to have

been a meaningful optimization to make due to the large number of loops we would have missed

had we not done so.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rc
e

n
ta

g
e

 o
f

in
n

e
rm

o
s
t

lo
o

p
s

0

0.2

0.4

0.6

0.8

1

single exit multiple exits exit value invariant exit value not invariant

Figure 5.5: Percentage of loop exit amounts and whether an exit value is invariant.

Unfortunately, the majority of loops seem to have non-invariant exit values. This is a problem

for the compile and execution-time unrolling strategies, as they need a loop’s exit value to be

invariant in order for them to unroll the loop. Naive unrolling is a good solution to this problem,

since it does not care whether an exit value is invariant. Something to note is that, if an exit value

is not known (usually due to it being loaded from a memory location during the loop), we mark

it as “not invariant,” which slightly inflates that number. It might be possible to add unrolling

support for loops where an exit value’s memory location is loop invariant, but we leave that for

future work.

Finally, we analyze the “unrolling statuses” asopt provides after a file is processed. When a

loop is detected by the optimizer and unrolling is enabled, asopt will always attempt to unroll it. If

unrolling is successful, then the unroll status of the loop is set to “unrolled.” If it is not successful,

the status is set to a corresponding reason depending on which point in the unrolling process the

optimizer encountered an issue. These statuses can be specific, such as “no basic induction variable

in exit,” while others are more general and encompass a variety of related issues. Something to

35

note is that a loop could be unfit for unrolling for more than one reason. In those cases, the reason

that gets assigned is the first one asopt encounters.

The hierarchy of reasons that can be assigned is shown from bottom to top in the bars of Figure

5.6, excluding the “unrolled” reason. What this means is that “irreducible” can get assigned first,

followed by “improper exit value,” “problem with branch over loop,” and so on. If a reason other

than “unrolled” is assigned, asopt gives up on unrolling the loop unless naive unrolling is enabled.

SPEC 06 benchmark

4
0

0
.p

e
rl
b

e
n

c
h

4
0

1
.b

z
ip

2

4
0

3
.g

c
c

4
2

9
.m

c
f

4
3

4
.z

e
u

s
m

p

4
3

6
.c

a
c
tu

s
A

D
M

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
5

9
.G

e
m

s
F

D
T

D

4
6

2
.l
ib

q
u

a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l
b

m

4
8

2
.s

p
h

in
x
3

A
v
e

ra
g

e
 (

a
ll)

p
e
rc

e
n
ta

g
e
 o

f
in

n
e
rm

o
s
t
lo

o
p
s

0

0.2

0.4

0.6

0.8

1

unrolled irreducible improper exit value problem with branch over loop improper branch

no basic induction variable in exit exit condition not checked every iteration can’t determine number of iterations

unavailable register not rotatable not attempted

Figure 5.6: Percentage of unroll statuses after loop unrolling.

Figure 5.6 shows the aggregated percentages of these statuses for the innermost loops of each

benchmark. On average, around 20% of loops are successfully unrolled while the rest run into

issues. By far the largest status encountered when unrolling is the “problem with branch over

loop” status. We will discuss what this status means after we briefly overview the other statuses.

The “irreducible” status is necessary since asopt can only unroll natural loops with a single entry

point (the loop header). A reducible loop is a loop where the edges can be partitioned between

backedges and the remaining edges form a directed acyclic graph (DAG). We check if the blocks in

the innermost loop are reducible, and if they are not we assign the status of “irreducible”.

36

“No basic induction variable in exit,” “exit condition not checked every iteration,” and “can’t

determine number of iterations” are self-explanatory. “Unavailable register” gets assigned when we

have run out of registers and we need to allocate a new one. “Not rotatable” and “not attempted”

get assigned when the code that makes the loop body contiguous or the code that attempts to

rotate a loop run into a corner case we have not yet handled. Most of these issues have been

resolved, which is why they rarely show up.

“Improper exit value” is assigned when an exit value is not invariant and not explicitly constant.

“Improper branch” gets assigned when asopt could not find a valid relational operator (less than,

greater than, etc.) in the loop’s exit branch or the loop’s exit comparison instruction.

“Problem with branch over loop” is the most complicated unroll status. It has become a catch-

all we use for a variety of statuses that share the same underlying problem. The issue boils down

to an arbitrary restriction we had in asopt that required it to check for a branch instruction that

branches past the loop. Issues such as a loop not having a preheader, a loop preheader having

multiple predecessors, not being able to find an initial or exit value in the branch over the loop

instruction, or not finding a branch over the loop instruction at all are tied to this assumption.

If we removed the need for this assumption, those issues would no longer be important and could

safely be ignored by our optimizer. Removing this restriction will be a significant undertaking, so

we decided not to do this for the current study. We expect this restriction will be removed in future

work. Because it is the most common unroll status, successfully removing it is a priority and doing

so should increase the number of successfully unrolled loops.

Because these statistics were collected using u2, Figure 5.6 will look very different when naive

loop unrolling is enabled. Most of the unroll statuses would change into “unrolled” since naive

unrolling is not bound by the same restrictions as the compile and execution-time strategies. The

only statuses that will remain are “irreducible,” “not rotatable,” and “not attempted”.

5.2 Dynamic results

Here we discuss the performance results obtained from using our unrolling strategies on the

SPEC benchmarks. We are interested in how many cycles a simulation of a benchmark takes, and

how the unrolled version of a benchmark stacks up to the non-unrolled version. Our results are

presented as a percentage of cycles relative to the amount of cycles taken to run the non-unrolled

instance, since each benchmark can vary greatly in terms of absolute cycle counts. Since we must

37

run the benchmarks through the optimizer to switch to the SCALE ISA, our baseline metric will

be running the benchmark through the optimizer with no unrolling enabled.

There were three different sets of unrolling strategies under test, and each combination was

tested using unroll factors of 2 and 4. The first set was to only unroll loops that could be unrolled

with the compile-time method. The second set was to unroll using both the compile and execution-

time methods, with the optimizer attempting the compile-time method first. The final set was

to unroll using the compile-time method, the execution-time method, and naive unrolling (in this

order).

All three sets of tests were run by passing the gcc-compiled MIPS assembly files from a bench-

mark through our optimizer to produce optimized code. The code was first changed from MIPS to

SCALE, and then was unrolled with the respective unroll factor and strategies for each test. If there

were any specific minor optimizations that could be done (or in the case of the VLIW simulator,

VLIW instruction scheduling), those were performed after unrolling was completed. This process

of running files through the optimizer was also done for the simulator’s system library files, so that

all code under test had been run through the optimizer.

In the interest of time, we used the test input set for running the benchmarks. While this is

not the preferred method of running SPEC, it was sufficient for our study to get a general idea

of how asopt ’s unrolling algorithms affect the performance of the benchmarks. We anticipate the

performance of loop unrolling will improve further using the reference input set, as loops in that

set will contain more iterations.

Figures 5.7 and 5.8 show the performance results from running the optimized code on the

SCALE pipeline simulator. This simulator represents a standard 5-stage pipeline SCALE processor.

In general, the benchmarks required fewer cycles to complete after being unrolled with an unroll

factor of 4. Combining all three methods produces the best average results for an unroll factor of

4, while only using the compile and execution-time methods gives the best average results for an

unroll factor of 2.

456.hmmer seems to have benefited a lot from naive unrolling with an unroll factor of 4, given

the large difference between only using the compile and execution-time strategies and combining

them with naive unrolling. 464.h264ref, 458.sjeng, and 429.mcf benefited the most from any kind

of unrolling compared to the other benchmarks. On the other hand, 470.lbm and 436.cactusADM

seemed to reap no performance gains from any of the unrolling strategies, and 462.libquantum had

no change when using an unroll factor of 4.

38

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rf
o

rm
a

n
c
e

 (
u

n
ro

lle
d

 /
 n

o
 u

n
ro

lli
n

g
)

0.92

0.94

0.96

0.98

1

1.02

1.04
compile−time only compile + execution−time compile + execution + naive

Figure 5.7: Performance results from the SCALE pipeline simulator after unrolling with asopt using
an unroll factor of 2.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rf
o

rm
a

n
c
e

 (
u

n
ro

lle
d

 /
 n

o
 u

n
ro

lli
n

g
)

0.92

0.94

0.96

0.98

1

1.02

1.04
compile−time only compile + execution−time compile + execution + naive

Figure 5.8: Performance results from the SCALE pipeline simulator after unrolling with asopt using
an unroll factor of 4.

Figures 5.9 and 5.10 show the results from running the same code through the SCALE super-

scalar simulator. The superscalar simulator is a 4-issue superscalar SCALE processor that does not

use memory speculation.

On average, performance is worse using our unrolling techniques on the superscalar processor.

Certain benchmarks still get benefits from it, such as 464.h264ref and 458.sjeng, but 429.mcf and

456.hmmer are now considerably worse after unrolling using either an unroll factor of 2 or 4. While

mostly beneficial when used on the pipeline simulator, naive unrolling seems to make performance

39

worse on the superscalar simulator. This result makes sense if the loops that were naively unrolled

are loading and storing values to memory, as instructions dependent on those values cannot be

executed in parallel and must stall the CPU. The effect of naively unrolling these loops would then

cause more instruction cache misses, seeing as instructions would need to be fetched again once the

necessary data is available.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rf
o

rm
a

n
c
e

 (
u

n
ro

lle
d

 /
 n

o
 u

n
ro

lli
n

g
)

0.92

0.94

0.96

0.98

1

1.02

1.04
compile−time only compile + execution−time compile + execution + naive

Figure 5.9: Performance results from the SCALE superscalar simulator after unrolling with asopt
using an unroll factor of 2.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rf
o

rm
a

n
c
e

 (
u

n
ro

lle
d

 /
 n

o
 u

n
ro

lli
n

g
)

0.92

0.94

0.96

0.98

1

1.02

1.04
compile−time only compile + execution−time compile + execution + naive

Figure 5.10: Performance results from the SCALE superscalar simulator after unrolling with asopt
using an unroll factor of 4.

Lastly, Figures 5.11 and 5.12 show the results after converting the code into the SCALE VLIW

ISA. The VLIW simulator we used simulates a 4-wide SCALE VLIW processor with no lane

40

restrictions on memory operations. This means that a memory instruction can go in any of the 4

lanes of a VLIW pack. The code is first unrolled by asopt, similar to how the code for the previous

two benchmarks is produced. After unrolling, the code is converted into VLIW packs and VLIW

scheduling is performed. The results we observe from this simulator are influenced by both our

unrolling algorithms and any scheduling optimizations done by the VLIW scheduler.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rf
o

rm
a

n
c
e

 (
u

n
ro

lle
d

 /
 n

o
 u

n
ro

lli
n

g
)

0.92

0.94

0.96

0.98

1

1.02

1.04
compile−time only compile + execution−time compile + execution + naive

Figure 5.11: Performance results from the SCALE VLIW simulator after unrolling with asopt using
an unroll factor of 2.

SPEC 06 benchmark

4
0
0
.p

e
rl
b
e
n
c
h

4
0
1
.b

z
ip

2

4
0
3
.g

c
c

4
2
9
.m

c
f

4
3
4
.z

e
u
s
m

p

4
3
6
.c

a
c
tu

s
A

D
M

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

e
r

4
5
8
.s

je
n
g

4
5
9
.G

e
m

s
F

D
T

D

4
6
2
.l
ib

q
u
a
n
tu

m

4
6
4
.h

2
6
4
re

f

4
7
0
.l
b
m

4
8
2
.s

p
h
in

x
3

A
v
e
ra

g
e
 (

a
ll)

p
e

rf
o

rm
a

n
c
e

 (
u

n
ro

lle
d

 /
 n

o
 u

n
ro

lli
n

g
)

0.92

0.94

0.96

0.98

1

1.02

1.04
compile−time only compile + execution−time compile + execution + naive

Figure 5.12: Performance results from the SCALE VLIW simulator after unrolling with asopt using
an unroll factor of 4.

The results here are much less erratic than the superscalar simulator, and akin to the results

of the pipeline simulator. On average, the benchmarks perform slightly better than the baseline

41

for both unroll factors. Like with the pipeline simulator, the inclusion of naive unrolling improved

performance in some of the benchmarks.

456.hmmer has the worst performance out of all the benchmarks, with increased cycle counts

after using all combinations of unrolling strategies with an unroll factor of 4. Peculiarly, this was

not the case when we unrolled 456.hmmer using all three strategies with an unroll factor of 2. In

fact, that result is the best performance result from Figure 5.11, which is interesting considering

its compile and execution-time result is the worst in the figure.

464.h264ref and 458.sjeng yet again enjoy performance benefits for the most part, with the

exception of 464.h264ref ’s compile-time only result using an unroll factor of 2.

42

CHAPTER 6

RELATED WORKS

There have been several studies done on loop unrolling as this optimization has been known for a

number of decades. Most of these studies performed loop unrolling at a high level, typically at the

source or intermediate code levels.

[1] studied more aggressive loop unrolling techniques and their impacts on application per-

formance. They used similar compile and execution-time methods in their study, and they also

collected characteristics of unrolled innermost loops. Where our study differs from [1] is the explo-

ration of naive loop unrolling and our work at the assembly level. Naive unrolling has been done

before in some compilers. While the compile and execution-time methods are similar conceptually,

they differ in their implementations as our optimizer only optimizes assembly level code.

[2] studied how loop unrolling can provide performance benefits when paired with static or

dynamic disambiguation of memory references. Loop unrolling is not the main focus of that study,

as they are interested in how loop optimizations in general interact with dynamic disambiguation of

memory references. Our study is entirely focused on loop unrolling, and like mentioned previously

features naive loop unrolling and optimizations at the assembly level.

[3] explored the basics of unrolling loops in Fortran. They looked into how unrolling at the

source code level can be beneficial to performance and tested their ideas on a variety of Fortran

compilers. They are interested in obtaining performance gains without touching assembly code,

which is the opposite approach of this study.

[7] explored automatically selecting useful unroll factors and generating compact code for those

unroll factors. Their contributions include a new code generation algorithm for unrolling nested

loops, and a new algorithm that can efficiently enumerate feasible unroll vectors. Our study does

not discuss the selection of unroll factors, as we leave that up to the user. We have also developed

our own new code generation algorithm for unrolling innermost loops in the form of naive loop

unrolling.

[8] studied using AI techniques to predict the best loop unroll factors for different loops. They

demonstrate how supervised learning techniques can determine the appropriateness of unrolling a

program’s loops. Like mentioned previously, we leave the choice of unroll factor up to the user. We

43

also leave the choice of whether to unroll loops up to an application writer by providing statistics

about that application’s loops.

Finally, [5] studied re-applying loop unrolling on already unrolled loops to determine the impact

on other optimizations. While similar to this study in attempting to obtain optimal code after the

compilation process, it relies on an iterative approach to find an optimal way to unroll a loop.

We do not use an iterative approach, as our optimizer only attempts unrolling once on each loop

in an input file. They also focus on the phase-ordering problem at the compiler level, which is a

concern for our optimizer but somewhat different in that phase ordering might be more flexible at

the assembly level.

44

CHAPTER 7

CONCLUSIONS

The results show that asopt ’s unrolling strategies are a promising start. As discussed throughout

the study, our optimizer falls short when attempting to unroll specific configurations of loops that

would otherwise be unrollable. This was due to incorrect assumptions we made about our unrolling

criteria and difficulties in implementing the necessary logic to handle various corner cases. While

the current optimizer can successfully unroll many loops, more can be done to expand our strategies

to cover more loops.

In particular, the “problem with branch over loop” unroll status is our next focus for future

work. There are still many loops we should be able to unroll that get flagged with this status,

leaving potential performance benefits on the table. While we know it is possible to unroll these

loops, getting the optimizer to the point where it can actually unroll them will be a challenge. The

assumptions we made about unrolling criteria are hard-coded into various parts of the unrolling

algorithms, and it will take a significant amount of re-engineering to remove those criteria from the

code.

As far as loop characteristics are concerned, asopt ’s statistic-collection abilities give us a unique

look into the state of SPEC 06’s innermost loops. Raw performance metrics are important to

measure, but they can take a long time to collect. Code characteristics such as average number

of instructions per loop and whether an exit value is invariant can give us fast insight into a

program’s structure without needing to run the code. This can quickly inform application writers

what optimizations would be beneficial to their code, allowing them to bypass the potentially costly

process of running their applications to completion.

As we expected, the effectiveness of unrolling varies by benchmark. Benchmarks such as

464.h264ref had performance improvements virtually across the board, while other benchmarks

like 459.GemsFDTD saw little to no improvement. The types of loops in a benchmark, as well

as the overall quantity of them, are better predictors of potential performance improvements and

should be considered before attempting to unroll the loops in an application.

The most surprising result was the effectiveness of naive loop unrolling. While not a typical

method of unrolling loops, most simulations run with naively unrolled code performed better than

45

the baseline. This is a promising result since, without naive unrolling, there would be no way to

unroll a large class of loops. The fact that naive unrolling gave us a positive result at all demon-

strates that there is still performance to be gained from unrolling loops in certain applications. We

do not suggest blindly running naive unrolling on all code, as it might still degrade performance

depending on the application. If a custom approach is taken where naive unrolling is exclusively

used on loops whose performance is known to improve against their baseline’s, we can reduce an

application’s cycle count with minimal effort.

We conclude by stating that our compile-time, execution-time, and naive unrolling strategies

definitively improve performance for a sizeable amount of applications. While not every application

will benefit from our strategies (or loop unrolling in general), our results suggest it is worthwhile to

run applications through asopt to check if their code could be improved. We believe there is still

plenty of room to expand the scope of our unrolling algorithms, and that the results seen in this

study will only improve with the further development of asopt.

46

BIBLIOGRAPHY

[1] Jack W. Davidson and Sanjay Jinturkar. An Aggressive Approach to Loop Unrolling. Tech. rep.
USA, 1995, p. 36.

[2] Jack W. Davidson and Sanjay Jinturkar. “Improving instruction-level parallelism by loop un-
rolling and dynamic memory disambiguation.” In: Proceedings of the 28th Annual International
Symposium on Microarchitecture. 1995, pp. 125–132. doi: 10.1109/MICRO.1995.476820.

[3] J. J. Dongarra and A. R. Hinds. “Unrolling loops in Fortran.” In: Software: Practice and
Experience 9.3 (1979), pp. 219–226. doi: https://doi.org/10.1002/spe.4380090307.

[4] Arthur Karapateas. “Retargeting an Assembly Optimizer for the MIPS/SCALE Assembly
Language.” MA thesis. Tallahassee, FL: Florida State University, July 2021.

[5] Nicholas Nethercote, Doug Burger, and Kathryn McKinley. “Convergent Compilation Applied
to Loop Unrolling.” In: T. HiPEAC 1 (Jan. 2007), pp. 140–158. doi: 10.1007/978-3-540-
71528-3_10.

[6] Soner Önder and Rajiv Gupta. “Automatic generation of microarchitecture simulators.” In:
IEEE International Conference on Computer Languages. Chicago, May 1998, pp. 80–89.

[7] Vivek Sarkar. “Optimized Unrolling of Nested Loops.” In: Proceedings of the 14th Interna-
tional Conference on Supercomputing. ICS ’00. Santa Fe, New Mexico, USA: Association for
Computing Machinery, 2000, pp. 153–166. isbn: 1581132700. url: https://doi.org/10.
1145/335231.335246.

[8] M. Stephenson and S. Amarasinghe. “Predicting unroll factors using supervised classification.”
In: International Symposium on Code Generation and Optimization. 2005, pp. 123–134. doi:
10.1109/CGO.2005.29.

47

BIOGRAPHICAL SKETCH

Joseph Zilonka is a Masters student studying Computer Science at Florida State University. Zilonka

received his Bachelor of Science in Computer Science from FSU in 2020, and will be working as

a RISC-V Compiler Developer for Advanced Micro Devices (AMD) starting in August 2022. His

time as a Masters student was spent researching compilers and compiler optimizations under the

supervision of Dr. David Whalley and Dr. Gang-Ryung Uh, and contributing to their research in

the NSF SCALE project. He also held a position as a Teaching Assistant for Professor Robert

Myers in FSU’s Object Oriented Programming (OOP) C++ class. Before his time at FSU and

throughout his studies, Zilonka held technology focused internship positions at Carmel 6000 and

Donna Klein Jewish Academy.

48

