THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

Reducing Timing Analysis Complexity by Partitioning Control Flow

By
NAGHAM M. AL-YAQOUBI

A project submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:

Summer Semester, 1997

The members of the Committee approve the project

of Nagham Al-Yaqoubi defended on July 24, 1997.

David B. Whalley

Professor Directing Project

Theodore P. Baker

Committee Member

Stephen P. Leach

Committee Member

Approved:

R. C. Lacher, Chair, Department of Computer Science

To Yasir, Noor, Amar, Sumia, and Arwa

11l

Acknowledgements

I wish to thank my major professor, Dr. David Whalley for his patience, guid-
ance and support during my project. I am also grateful for the helpful sugges-
tions given by Christopher Healy. I am also grateful for the assistance Gang-
Ryung Uh and Randy White offered in typesetting this document. The timing
analyzer upon which this project is based was created by Robert Arnold and
Christopher Healy. Lo Ko and Emily Ratliff implemented the graphical user

interface.

v

Contents

List of Tables

List of Figures

1 INTRODUCTION

2 OVERVIEW OF OBTAINING TIMING PREDICTIONS

3 IMPORTANT CONCEPTS AND DEFINITIONS

4 SECTION APPROACH IN THE TIMING ANALYZER AND

THE USER INTERFACE

4.1 Section Approach in The Timing Analyzer

4.1.1 Find the Maximum Number of Paths Through a Loop

4.1.2 Splitting a Loop into Sections .

4.1.3 Timing Tree

4.2 Section Approach in the User Interface

5 PERFORMANCE

6 CONCLUSION

vi

vil

10
15
17

22

25

4.1
4.2

4.3

(&
—

5.2

List of Tables

Paths Number and Sublist during the First Pass 12
Paths Number and Sublist during the Second Pass 13
Paths Number and Sublist during the Last Pass 15
Timing Analyzer Performance before Modification 24
Timing Analyzer Performance after Modification 24

vi

1.1
2.1
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

List of Figures

Code Segment with Two Control Statments 2
Overview of Obtaining Timing Predictions 3
Examble Introducing Loop Terminology 6
Find the Maximum Number of Path Algorithm 9
Source Code and Block Diagram for Toy6 9
Find and Create Sections Algorithm 11
Control Flow after the First Pass 12
Control Flow after the Second Pass 13
Block Diagram after the Third Pass 14
Program Containing Three Loops 16
Timing Tree o 16
Main Window at Function Level 18
Source Code and Assembly Code Window 18
Main Window at Loop Level 20
Main Window at Section Level 20
Main Window at Path Level 20
Main Window at Subpath Level 20
Main Window at Instruction Level 21

Vil

Chapter 1
INTRODUCTION

To assist real-time programmers in the specifications and analysis of timing
constraints, a timing analyzer and graphical user interface were developed. The
timing analyzer analyzes the paths through each loop and function associated
with the control flow in a C program. The analyzer uses this path analysis infor-
mation to estimate the execution time of each loop and function. Afterwards,
a user interface is invoked to allow the user to request timing predictions on
portions of the program.

However, program functions and loops may have many control statements
that can cause exponential growth in the number of possible paths through
a loop or function. To illustrate this concept, consider the function and the
four possible paths within this function in Figure 1.1. The T’s represent the
conditions taken and the NT’s the conditions not taken. Each row represents
different possible paths. If there is a loop containing six if statements at the
same level, then there will be 64 paths through that loop. Likewise, a loop with
ten if statements will have 1024 paths. So for a loop with n if statements, there
would be 2" paths through that loop.

Attempting to obtain timing predictions for a function or loop with complex
control flow poses problems for both the timing analyzer and the user interface.

The timing analyzer will abort if it is unable to dynamically allocate enough

main ()
{ PATH NO. | COND. 1| COND.2
if (condition 1); path 1 T T
st at enent ; path2 T NT
if (condition 2); path3 NT T
st at ement ; pathd NT NT
}

Figure 1.1: Code Segment with Two Control Statments

space to represent all of the paths. Furthermore, even if enough space can be
allocated to represent all of the paths in each loop and function, a large number
of paths will result in a significant increase in the execution time of the timing
analyzer. Likewise, the user interface may be unable to allocate enough space
to graphically represent the paths at each loop and function level. The user
interface allows a user to select a path for timing prediction from the list of
possible paths. Few users would bother searching through a very long list of
paths.

This document describes a technique to simplify the control flow of complex
functions or loops by partitioning the control flow into sections that are limited
to a predefined number of paths. Each section is treated by the timing analyzer
as a loop that iterates only once (similar to a function). After the timing
analyzer was modified to partition complex loops and functions into sections
and to analyze these sections, the user interface was updated to display the

sections as a new selection level between loops and paths.

OVERVIEW OF OBTAINING TIMING
PREDICTIONS

Chapter 2

Figure 2.1 gives an overview of the context in which timing predictions are ob-

tained. Control-flow information is stored as the side effect of the compilation

of a file. This control-flow information is passed to a static cache simulator. It

constructs the control-flow graph of the program that consists of the call graph

and the control flow of each function. The program control-flow graph is then

analyzed for a given cache configuration and a categorization of each instruc-

tion’s potential caching behavior is produced.

C Source
Fileswith
Timing
Congtraints

Control
Flow
Information

Cache
Configuration

Figure 2.1: Overview of Obtaining Timing Predictions

\ User Timing Requests \

Timing 1 User
Analyzer! |nterface

Caching
Categorizations

Timing
Predictions

Next, a timing analyzer uses the instruction caching categorizations along

with the control-flow information provided by the compiler, which includes the

source lines associated with basic blocks, to estimate the worst-case instruction
caching performance for each loop within the program. Once the timing ana-
lyzer has evaluated all functions within the program, a user interface is invoked
to allow the user to request timing bounds for specific code segments within the

program.

Chapter 3
IMPORTANT CONCEPTS AND DEFINITIONS

The timing analyzer constructs a timing tree to simplify the process of deter-
mining the execution bounds of a program. Each node in the tree represents a
function or natural loop in the program. Functions are analyzed as though they
are a natural loop that iterates only once when entered.

The creation of the timing tree requires the analysis of the program’s code
in order to determine information regarding the loops within each function.
The optimizing compiler initiates this analysis by identifying for each loop:
the nesting level, all the blocks contained within the loop, all exit blocks from
the loop, the minimum number of loop iterations, and the maximum number
of loop iterations. The timing tool extends this analysis by determining all
possible paths through the loop.

A basic block is defined as a sequence of consecutive instructions in which
flow of control enters at the beginning and leaves at the end without halt or
possibility of branching except at the end. A loop header block is defined as
the unique entry block into the loop. Blocks outside the loop that are reached
by control-flow transitions from blocks within the loop are defined as loop exit
blocks. A function header block is defined as the unique entry block into the
function. A function exit block is the block containing a return instruction.

A path is a sequence of unique blocks in the loop connected by control-flow

transitions. Each path in the loop must start with the loop header block and
terminate with a block containing a transition to the header block (continue
path) or to an exit block (exit path.) The path through a function is defined to
start with the function header block and end with the function exit block. If a
path within a loop or a function contains a nested loop, then the entire nested
loop is represented in the path by only the header block of the nested loop.
Associated with each loop is the set of exit blocks for that specific loop.

To illustrate these definitions and concepts consider a loop depicted by the
block diagram in Figure 3.1. Each block is represented by a numbered box.
This loop has block 2 as a header block. Blocks 5 and 7 are not part of the
loop, but rather exit blocks from the loop. This loop is nested in an outer loop
(actually a function) that has block 1 as its loop header block, and it contains

two paths, one containing block 5 but not block 7, and the other containing

block 7 but not block 5.

Figure 3.1: Examble Introducing Loop Terminology

Chapter 4

SECTION APPROACH IN THE TIMING
ANALYZER AND THE USER INTERFACE

While the main purpose of partitioning loops into sections is to help the user
obtain an accurate timing prediction in an efficient manner regardless of the
complexity of the analyzed program, there are some implementation issues that
have to be considered when implementing sections. First, the approach for cre-
ating sections, when necessary, and modifying the timing analyzer to process
sections, should not increase the execution time of the timing analyzer. In fact,
the use of sections should decrease the execution time since the total number
of paths that need to be analyzed after section creation will be less than be-
fore sections. Second, the timing analyzer should not recognize any differences
between sections and loops. The sections should analyzed as if they are loops
that only iterate once, which is similar to the way functions are processed. This
approach will minimize the changes to the timing analyzer and other portions
of the timing analysis process. Finally, updating the timing analyzer to create
the sections and analyze them should not significantly affect the accuracy of the

timing prediction results.

4.1 Section Approach in The Timing Analyzer

The timing analyzer reads the control-flow information of the program from

the INF file. This file contains information identifying the loops within each

function, the blocks within each loop, and the instructions within each block.
This file also includes the lists of the predecessor, successor, and dominator
blocks for every block in each function. The timing analyzer uses this static
information from the INF file to find all possible paths through each loop and
function. Once the static analysis is complete, the timing analyzer begins to
construct the timing analysis tree, where each node of the tree represents either
a loop or a function in the function instance graph. Finally, the timing analyzer
determines the execution time of the program by analyzing each node in the
tree starting from the innermost loops and functions, and proceeding to higher
level loops until it reaches the main() function.

The section approach in the timing analyzer consists of the following steps.
First, the loops whose number of paths exceeds the specified threshold are iden-
tified. Second, sections are represented using the same data structure that is
used to represent loops in the timing analyzer. Third, the available utilities for
analyzing paths, building the timing tree, and calculating the execution time

are updated to handle sections as if they were loops that iterated only once.

4.1.1 Find the Maximum Number of Paths Through a Loop

The maximum number of paths through each loop and function should be known
before deciding to create sections since only loops with a number of paths that
exceeds a given threshold will be partitioned into sections. The algorithm shown
in Figure 4.1 was used to find the maximum number of paths in each loop of a
program. The path number associated with each block is used to represent the

number of paths that will pass through that block. The path number also serves

(1) Set the current loop header block’s path number to one. Set the path
number of all other blocks in the current loop at that level to zero.
Remember that a loop that is directly nested in the current loop will
be represented as a single block at the current loop level.

(2) %0
FOR(each basic block in the loop at that level)

IF the current block has not been processed (path number == 0),
THEN:

(a) Determine the list of predecessor blocks to the current basic
block.

(b) IF all the blocks in the predecessor block list has been
processed, THEN:

- Calculate the path number for the current block to be
the sum of the path numbers associated with each block in
the predecessor list.

}
JWHILE (more blocks to process)

(3) The maximum number of paths through the loop is equal to the sum of
the values of the path numbers associated with each block within the
loop that have a transition to blocks outside the loop.

Figure 4.1: Find the Maximum Number of Path Algorithm

#i ncl ude <stdi o. h>

mai n () 1 ~------ Header Block
{

printf (" pl ease enter a nunber: ");
scanf ("od", &);
ifo(

|

|

=y
—

i f

e |
I
W
-

-
ApATA A

if =
i + 3
== 4) 4
+i
if i == 5)
printf(" i = 2@\n", i); 5
if (i == 6) 16
printf (i = %\ n", j);
¥ 10
a2
a2
64 —_~--------- Exit Block
Source Code of Toy6 Control Flow of Toy6

Figure 4.2: Source Code and Block Diagram for Toy6

10

as a sign that this block has been processed. The central idea of the algorithm
is that the path number of a block is calculated as the sum of the path numbers
of its immediate predecessors. To illustrate the algorithm, consider the source
code of Toy6 and the corresponding control flow diagram show in Figure 4.2.
The algorithm first initializes the path number associated with each block to
zero, except for the header block that is initialized to one. The forloop in Figure
4.1 iterates for each block in the loop, main() at that level. The header block
(block 1) has already been marked as processed, so the first block examined
will be block 2. It inherits its path number from its only predecessor. Block 5
receives a path number of 2, which is the sum of the path numbers in blocks 3
and 4. After all of the blocks have been processed, block 15 has a path number

of 64. Thus, the number of distinct paths through the loop will be 64.

4.1.2 Splitting a Loop into Sections

As stated previously, sections are implemented to decrease the execution time
of the timing analyzer and to reduce the amount of dynamically allocated space
needed to represent all of the paths when analyzing a program with complex
control flow. Therefore, the number of paths through each loop is calculated
and the sections are created before the timing analyzer begins to allocate space
for the paths. The algorithm to find and create the sections is given in Figure
4.3. The central idea of the algorithm is to find the first block where the path
number (as used in Figures 4.1 and 4.2) exceeds the specified threshold and to
replace the blocks collected up to that point with a section. Each section is then

treated like a single block at that loop level. The algorithm iterates until the

(1) Allocate an empty block_list structure sub_list and set a pointer to
it.

DO

{

(2) IF sub_list is not empty THEN:

Create a section, copy the sub_list to the section’s block list.

Increment the section number, the new header number, and

the loops nesting level to include the new section.

c. Remove the blocks from the loop’s block list that are in the
sub_list.

d. Create a new block for the new header and link it at the

beginning of the loop’s main block list.

(o)

(3) Set the loop header block’s path number to one and set the other
blocks’ path numbers to zero in the loop’s block list.

(4) Clear sub_list. Copy the loop’s header block to it.
DO
(5) FOR (each basic block in the loop’s main block list)

IF this is the first time to visit the current block THEN:

(a) Determine the list of predecessor blocks to the current
basic block.

(b) IF all the predecessor blocks have been visited AND
all the predecessor blocks exist in the sub_list THEN

Append the current block to the sub_list.

Calculate the path number for the current block to be
equal to the sum of the path numbers associated with each
predecessor block.

IF the path number is larger than threshold THEN

- Delete the current block from the sub_list.
- CONTINUE.

Find the total number of paths through the sub_list by
adding the path numbers associated with the blocks that
have transitions out of the sub_list.

IF the total number of paths through the sub_list is
larger than the threshold THEN
- Delete the current block from the sub_list.

}
}(6) WHILE there are more blocks in the loop’s block list to proces.
}(7) WHILE loop’s block list is NOT the same as sub_list.

(8) IF there are now sections within the loop THEN
a. Create a new block for the header and link it at the beginning of
the loop’s block list.
b. Calculate the new exit block list.
c¢. Update the block list of the loop to include the new header blocks.

Figure 4.3: Find and Create Sections Algorithm

11

number of paths within the loop is within the specified threshold. To illustrate
the algorithm, consider the control flow diagram in Figure 4.4 and the variables

value in Table 4.1, assuming the threshold is set to 4. The algorithm collects

Header Block

s

~
1 * sub_list

2

.
,
/
/
NN
1
1
™~ o
\
\
\
\
%\\h}ﬂ
N
N
N

8

B
H

B
H

Exit Block

Figure 4.4: Control Flow after the First Pass

num. of paths | | gcks no. that | total number

iteration current block | sub_list through current | g |ist exits | of paths through
o block from sub_list

1st 1 1 1 = =

2nd 2 12 1 2 =

3rd 3 12,3 1 3 L

4th 4 1,234 1 3.4 1

5th 5 12,345 2 5 2

6th 6 1,2,3456 2 5.6 4

7th 7 1,2,3,4,5,6,7 4 4 4

ath 8 1,2,3,4,5,6,7,8 8 7.8 8

oth 9 1,2,3,4,5,6,7,9 8 9 8

10th 10 1,2,3,4,5,6,7 NA 4 4

11th 1 1,2,3,4,5,6,7 NA 7 4

12th 12 1,2,3,4,5,6,7 NA 7 4

13th 13 1,2,3,4,5,6,7 NA 7 4

14th 14 1,234,567 NA 7 4

15th 15 1,234,567 NA 7 4

Table 4.1: Paths Numbers and the Sublist during the First Pass

First Section

exit blocks 8 annd 9
number of path 4
header block is 1

\

Ol ___. exit block

a: Control Flow of the First Section

/’/ < - — — new header
T
/ \
/ \
/ - - —---__ header of theinner section
! £ \
/ 11 \
1 1
' o4
| 3)
A) ‘\Z: — - sub_list
1
2 Eg\ !
\ 1
\ //2 the remain blocks
\ after creating the first section
\\ E P //
AN lﬂx , block 1 represents the
.
Sl o first section
a
o[l
Blwe-mmmm o= Exit Block

Figure 4.5:

b: Control Flow of main after the Second
Pass

Control Flow after the Second Pass

13

num. of paths | pjocks no. that | total number

iteration current block | sub_list through current | g Jist exit | of paths through
no. block from sub_list

1st h1 h1 1 h1 1

2nd 1 h1,1 1 1 1

3rd 8 h1,1,8 1 18 1

4th 9 h1,1,8,9 2 9 2

5th 10 h1,1,8,9,10 2 9,10 4

6th 11 h1,1,8,9,10,11 4 11 4

7th 12 h1,1,8,9,10,11,12 4 11,12 8

8th 13 h1,1,8,9,10,11,13 8 13 8

o9th 14 h1,1,8,9,10,11 NA 11 4

10th 15 h1,1,8,9,10,11 NA 11 4

Table 4.2: Paths Numbers and the Sublist during the Second Pass

14

blocks 1 through 8 in a sublist. At this point there are two transitions out of
the sublist from blocks 7 and 8. Both of these two blocks have a path number
of 4, which results in a total of 8 paths for the sublist. Thus, block 8 is deleted
from the sublist and a section is created for blocks 1 through 7 as shown in
Figure 4.5a. during the second pass, an empty block with an unique number
is added as a new header for the loop and the first section is treated as single
block using the section’s header (block 1) as shown in Figure 4.5b and Table
4.2. A similar scenario takes place through the last pass of the algorithm and
a second section is created for the new block, block 1, and blocks 8 through 11

as shown in Figure 4.6 and Table 4.3.

- - new header 7 2 X" new header of main
1 // @ \\

— — header of thefirst inner section ; \

|
|
[g 2 1!~ ablig

Second Section h
exit blocks 12 and 13 \ E3) |
2 number of path 4 | ;

header block ishl \ !

\ 2

Eﬂ‘l\ Y . Functions blocks after the creation
Nl N / of the two section
<\ \ "« ExitBlock

Exit Blocks
a Control Flow of Second Section b: Control Flow of main after the Third Pass

Figure 4.6: Block Diagram after the Third Pass

15

num. of paths | p ks no., that | total number

iteration current block | sub_list through current sub_listexit | of pathsthrough
no. block from sub_list

1t h1 h1 1 h1 1

2nd 1 h1,1 1 1 1

3rd 8 h1,1,8 1 18 1

4th 9 h1,1,8,9 2 9 2

5th 10 h1,1,8,9,10 2 9,10 4

6th 11 h1,1,8,9,10,11 4 11 4

7th 12 h1,1,8,9,10,11,12 4 11,12 8

8th 13 h1,1,8,9,10,11,13 8 13 8

oth 14 h1,1,8,9,10,11 NA 1 4

10th 15 h1,1,8,9,10,11 NA 1 4

Table 4.3: Paths Numbers and the Sublist during the Last Pass

4.1.3 Timing Tree

The timing analyzer constructs a timing tree to calculate the worst and best
case bounds of a program. The timing analyzer uses the function call graph and
the control flow information from each function in the program to construct a
timing tree. Figure 4.8 depicts the timing tree before and after section creation
for the program in Figure 4.7.

The root node at nesting level 0 represents the main function. The two
immediate children of main are Loop 1 and Loop 2 and are at nesting level 1.
Loop 3 is represented with the leaf node at nesting level 2.

The timing tree after creating sections for the same program for a threshold
equal to 4 is depicted in Figure 4.8. There were originally 32 paths through

Loop 1. Therefore, the complex control flow was simplified by creating Sections

16

$ain()
int i, j, a[10][10];

for (i = 0; i < 10; ++1i) /* loop_1: outer loop */
{

if (i==_0).

if (i ==_1)

if (1<=4)
for (j = 1; j < 10; ++j) /* loop_3: inner loop */
i-j;

alil[j] = i
if (1==4)
3=0;
if (i>4)
alil[j1 = j;
}
for (i = 10; j < 10; ++j) /* loop_2: outer loop */

alil[jl = i - j;

Figure 4.7: Program Containing Three Loops

a before section creation b: after section creation

Figure 4.8: Timing Tree

17

1 and 2 within Loop 1 using the algorithm described in Figure 4.3. Section 2
becomes the parent for Loop 3 since it contains Loop 3’s header block. Section

2 is also the parent of Section 1 for the same reason.

4.2 Section Approach in the User Interface

The timing prediction for each loop, section, and function is stored within the
node that represents it in the timing tree. Each node contains the predicted
time for the execution of the instructions at that loop level plus the time bound
of its immediate children. The user interface uses the timing tree to obtain
timing predictions for the user-requested program portions.

After the timing analyzer has analyzed the entire program, the user interface
is invoked to provide a tool that allows a user to quickly obtain best-case and
worst-case timing predictions for selected portions of the program. Figure 4.9
and Figure 4.10 depict three windows that are always displyed when the user
interface is executing. Figure 4.9 shows the main window, which describes the
portion of the program that is currently selected. The top section of the main
window displays a message indicating the current action the user can perform in
the middle section. The middle section of the main window has a specific portion
highlighted, which indicates the current program construct for which best-case
and worst-case timing predictions are displayed in the lower part of this section.
The bottom section of the main window contains buttons that allow the user
to select the level of information displayed. Selection of the More Detail button
permits the user to view the current program portion in finer detail. The Back

button is selected when the user desires to back up to a previous level of detail.

Select a function within the progran,

function nane

des
getbit
ks

Best Case 31342

Cycles to Execute the nain Function
Horst Case 196818

Exit | |Constraints | |Hore Detail

Hank

Figure 4.9:

Main Window at Function Level

Assenbly Code of des.s

1
212 ¥

€ Source Code of des,c
line # source code
- TS T TS 7T o0 TS T IO T
175 unsigned long} ie,l << 8}+{{unsigned long} ie,c 5> &)
176 =51 j<mdgee meed £
177 etmpl & Ox3FL3
178 ieclnl=istup? & Ox3fLs
179 istupl = 6;
180 istmp? = 6:
181 B
182 itep=oL:
183 For (jj=Brid=liii— {
184 § =iesliil:
185 irowst{] & 0xdy << 1363 & k20 3> BY3
186 icol=t{] & 0x2) << 2h+(j b Oxd}
187 HU b OxBY Y 2h & Oxl0) B> 4):
188 iss=islicol lirouwlljls
189 itmp = {itwp <<= 4) | ibinliss];
130 3
191 *iout=0L:
1392 for {j=32pgbelij-—
193 #iout = Gkiout <<= 13 | {bitlipp[j1] & itmp 7 1 & 033
194 3
195
196 maind}
197 £
198 immense irp, key, out
199 int newkey, isu:
200

blk assenbly code

.geq "data"
L317:

Select Path

Cancel Clear fLE

Heut Pipeline His, [Hersh Plpeline Bia,

Figure 4.10: Source Code and Assembly Code Window

18

19

Figure 4.10 shows the two other windows in the user interface that are
always displayed. The left window depicts the C source code and the right
window shows the corresponding assembly code. Whenever the user selects a
different construct from the middle part of the main window, the corresponding
lines in the source and assembly windows are highlighted simultaneously.

The user can obtain timing predictions either by using the main window to
access different portions of the program, or by highlighting the desired path in
the source window using the mouse. For the first method, the user can click the
More Detail button to view a lower level of detail for the selected construct in
the middle section of the main window.

There are six levels of detail a user is allowed to view. The top level and
initial display for the middle section of the main window is the list of functions
within the program. This level is depicted in Figure 4.9.

The next lower level of detail consists of loops as shown in Figure 4.11. The
entire function and each loop within the function are listed in the display. Note
that if there are no loops within the selected function then the user interface
will skip the loop level and proceed automatically to the next level.

The next lower level of detail displays sections as shown in Figure 4.12.
The entire loop and each section within the loop are listed in the display. Note
that if there are no sections within the selected function or loop, then the user
interface will skip the section level when the More Detail or Back button is
selected.

The next lower level of detail displays paths as shown in Figure 4.13. Each

path is depicted in the main display as a list of blocks and corresponding source

Select a loop within the function ks,

loop nane source lines nest level
cntire fun ()
Loop 1 90,.92 3
Logp 2 100, 102 1
Logp 3 105,111 1

Cycles to Execute the ks Function
Best Case 1769 Horst Case 3860

| Exit | |Constraints| |Hore Detail| | Back

Figure 4.11: Main Window at Loop

Level

Select a path within the function ks,

path blocks source lines

path 1
1..10 98,.98 section 1
11 95,.95
12 95,.95

path 2
1..10 83,.95 zection 1
11 95..99

path 3
1 10 2o op +ice

Cycles to Execute section 2 within ks
Best Case 8 Horst Case 2023

| Exit | |Cunstraints | ; Hore Dotell é | Back |

Select a section within the function ks,

Sec name source lines nest level

entire function [
SECT 1 a3, .95 2
SECT 2 a3, .95 1

Cycles to Execute the ks Function
Best Case 1769 Horst Case 3860

| Exit | |Constraints | | Hore Detail | | Back |

Figure 4.12: Main Window at Sec-

tion Level

Select a subpath within path 1
within the function ks.

blocks source lines

Cycles to Execute Subpath from Block 1 To
Block 12 Best Case 14 Horst Case 2023

| Exit | |Constraints | |Hore Detail| | Back

Figure 4.13: Main Window at Path

Level

Figure 4.14: Main Window at Sub-

path Level

21

line ranges. Note that if a path contains a transition to a header of a more deeply
nested loop or section, then the entire child loop or section is represented as a
single step along that path.

The next level of detail consists of subpaths as shown in Figure 4.14. A
subpath is a subset of the blocks within a path that are connected by control-
flow transitions. A subpath is selected by pressing the mouse button with the
cursor on the subpath starting block and releasing it on the ending block. The
final level of detail consists of machine instructions as shown in Figure 4.15.
Only the instructions within the initial and ending block of the subpath are
shown.

Thus, there are six levels of detail in the program that the user can view:
function, loops, sections, paths, subpaths, and ranges of machine instructions.
The loop level or the section level is not shown if there are no loops within the

selected function or no sections within the selected loop, respectively.

HARHING: Highlighted source lines may not
natch selected instructions
Click and drag to select instructions.

block instructions

Cycles to Execute Path 1 within section 2
Best Case 14 Horst Case 2023

Exit | |Eonstraints 5%9?@ frntamil E Back

Figure 4.15: Main Window at Instruction Level

Chapter 5
PERFORMANCE

A real-time program with simple control flow will not cause performance prob-
lems for the timing analyzer. Therefore, the threshold for the maximum number
of paths has been selected to be sixteen, which is a fairly high number of paths.
We found that the timing analyzer is responsive when the number of paths
at any loop level is less than or equal to sixteen. When the number of paths
through a loop is larger than sixteen, then it would be awkward for the user to
find a specific path using the main window method in the user interface.

To assess the performance of the section approach in the timing analyzer,
four programs with different levels of complexity have been selected. The first
test program, Toy4, with sixteen paths through main() has been chosen to
represent the case where no section is needed to be created. It may be the case
that most loop levels in a program will have simple control flow and no sections
will be needed for these levels. Toy7 with seven control statments is used to
represent a case of moderately complex control flow. Toyl0 and Toyl5 with 10
and 15 control statments are used to test the cases of complicated control flow.

As stated previously, the goal of the section approach is to increase the
speed of the timing analyzer and reduce the dynamic space needed for analyzing
programs with complex control flow. At the same time this modification to the

timing analyzer should not significantly affect the timing predictions results.

22

23

Therefore, the dynamically allocated space needed by the timing analyzer, the
WCET (Worst Case Execution Time), the BCET (Best Case Execution Time),
and the user CPU time spent in the timing analyzer were measured for each
test program to assess the performance of the section approach.

Table 5.1 shows the performance results of these metrics when executing the
timing analyzer without using the section approach. Table 5.2 shows the value
of the same metrics when running the modified timing analyzer for the same
test programs. Note that the timing analyzer without the section approach runs
out of memory and abortes before finishing the analysis of Toyl5. Thus, the
reported memory allocated for Toy15 is the amount before the program aborted.
The user CPU time spent in the timing analyzer to analyze Toy/, a program
with simple control flow, is the same before and after sections since no sections
were required to be created. It appears that the CPU time is correlated to the
number of paths. Thus, as number of paths grow, the complexity and CPU
time both increase exponentially. Partitioning the control flow into sections
effectively reduce the timing analysis complexity.

The use of the section approach slightly affected the accuracy of the timing
prediction results. A slightly less accurate timing analyzer seems to be a good
compromise for a faster timing analyzer that is capable of analyzing programs

with complex control flow.

Memory CPU user time WCET BCET

allocated KB sec cycle cycle
Toy4 116.4 1.0 43 27
Toy7 856.4 15.8 61 33
Toy10 7,945.4 146.3 85 43
Toy15 66,851.6 NA NO results|NO results

Table 5.1: Timing Analyzer Performance before Modification

Memory CPU user time WCET BCET

allocated KB sec cycle cycle
Toy4 120.9 0.9 43 27
Toy7 223.8 18 61 31
Toy10 357.1 3.8 86 40
Toy15 1,202.3 4.1 107 45

Table 5.2: Timing Analyzer Performance after Modification

Chapter 6
CONCLUSION

This document has described a technique to simplify complex control flow by
partitioning loops and functions into sections. First, the loops and the functions
with a number of paths exceeding a predefined threshold are detected. Second,
sections are created for these loops and functions to reduce the number of paths
at those nesting levels. All the sections within the same loop start from the
loop header and have a subset of the loop’s paths. The timing analysis tree is
updated to include the sections as direct descendants to the loop for which they
were created. Third, a new level of detail to be viewed by the user has been
added to the already existing five levels of the user interface. The user is also
now not forced to view the loop or section level of detail if there are no loops
or sections within the function or the loop.

Updating the timing tools to create sections when needed significantly de-
creased the execution time of the timing analyzer and reduced the dynamically
allocated space needed by the timing analyzer. Furthermore, the user can use
the user interface to search through any number of paths and obtain timing

prediction results in more convenient manner.

25

