THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

IMPROVING PERFORMANCE BY BRANCH REORDERING

By

MINGHUI YANG

A Thesis submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:

Summer Semester, 1998

The members of the Committee approve the thesis of Minghui Yang
defended on March 31, 1998.

David B. Whalley

Professor Directing Thesis

Theodore P. Baker

Committee Member

Kyle A. Gallivan

Committee Member

Approved:

R.C. Lacher, Chair, Department of Computer Science

ACKNOWLEDGEMENTS

I am deeply indebted in gratitude to my advisor, Dr. David Whalley, for his
able guidance and encouragement. It is to his excellent method of teaching and
mentoring that I owe my kindling of interest in the area of optimizing compilers.
I thank my committee members Dr. Baker and Dr. Gallivan for reviewing this
thesis and subsequent valuable suggestions. Finally, I give thanks to Gang-

Ryung Uh, Mikael Sjodin and Chris Healy for their assistance.

11

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
ABSTRACT ix
1 INTRODUCTION 1
2 RELATED WORK 6

3 DETECTING A SEQUENCE OF REORDERABLE
BRANCHES 9
3.1 Detecting a Sequence of Reorderable Branches with a Common

SUCCESSOT + v v v v e v e i e et e e e e 9
3.2 Detecting a Sequence of Reorderable Range Conditions Compar-

ing a Common Variable to Constants 15

4 HANDLING SIDE EFFECTS IN A COMMON VARIABLE

SEQUENCE 22
5 PERFORMING PROFILING 28
5.1 Producing Profile Information for Common Successor Sequence . 28

5.2 Producing Profile Information for Common Variable Sequence . 33

v

6 SELECTING THE ORDERING OF BRANCHES 37
6.1 Selecting the Order of a Sequence of Branches with Common
SUCCESSOTS « v v v v v v e i e et e e e e e e 38
6.2 Selecting the Order of a Sequence of Range Conditions Compar-

ing a Common Variable. 0L 40

7 IMPROVING THE SELECTED SEQUENCE OF RANGE

CONDITIONS 46
8 APPLYING THE REORDERING TRANSFORMATION 49
9 RESULTS 54
10 FUTURE WORK 65
11 CONCLUSIONS 67
REFERENCES 68

BIOGRAPHICAL SKETCH 70

3.1
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

LIST OF TABLES

Range Conditions and Corresponding Range of Values.
Dynamic Frequency Measurements for Heuristic Set I..
Dynamic Frequency Measurements for Heuristic Set II.
Dynamic Frequency Measurements for Heuristic Set III.
Static Measurements for Heuristic Set I.
Static Measurements for Heuristic Set I1.
Static Measurements for Heuristic Set III.
Branch Prediction Measurements.
Branch Prediction Measurements for Different Configurations . .

Execution Times.

vi

1.1
1.2
1.3
1.4
2.1
2.2
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5.4

LIST OF FIGURES

Example Sequences of Branches with a Common Successor. . . .
Reordering of Branches in Figure 1.1.
Example Sequence of Comparisons with the Same Variable. . . .
Overview of Compilation Process for Branch Reordering.
Loop Unrolling
Loop Unswitching L.
Reordering Branches with Common Successors.
Register Renaming. L.
Reordering Range Conditions with No Intervening Side Effects.

Detecting a Reorderable Sequence of Range Conditions.
Example of Detecting Range Conditions.
Moving Side Effects from a Sequence of Two Range Conditions .
Moving Side Effects from a Sequence of n + 1 Range Conditions
Source Code Segment from we.c Lo
Handling Side Effect in a Common Variable Sequence.
Avoid Extra Unconditional Branch by Block Duplication.
Instrumentation Code.o
Function _easeend.g.,
Example of profile.inf File for Common Successor Sequence.

Example of profile.dat File for Common Successor Sequence.

Vil

3.5
5.6
6.1
7.1
7.2
8.1
8.2
8.3
8.4

Example of Reordering Default Range Conditions.
Example of Profile Information For Common Variable Sequence.
Selecting the Ordering of a Sequence of Range Conditions
Branches for Deciding a Properly Bounded Range.
Eliminating Redundant Comparisons.
Reordering Transformation for Common Successor Sequence
Example of Applying the Reordering Transformation
Resolving Sequence Overlapping.

Special Case of Sequence Overlapping.

Vil

ABSTRACT

The conditional branch has long been considered an expensive operation. The
relative cost of conditional branches has increased as recently designed ma-
chines are now relying on deeper pipelines and higher multiple issue. Reducing
the number of conditional branches executed can often result in a substantial
performance benefit. This thesis describes a code-improving transformation to
reorder sequences of conditional branches. First, sequences of branches that
can be reordered are detected in the control flow. Second, profiling informa-
tion is collected to predict the probability that each branch will transfer control
out of the sequence. Third, the cost of performing each conditional branch is
estimated. Fourth, the most beneficial ordering of the branches based on the
estimated probability and cost is selected. The most beneficial ordering often
included the insertion of additional conditional branches that did not previously
exist in the sequence. Finally, the control flow is restructured to reflect the new
ordering. The results of applying the transformation were significant reductions
in the dynamic number of instructions and branches, as well as decreases in

execution time.

X

CHAPTER 1
INTRODUCTION

Sequences of conditional branches occur frequently in programs, particularly
in nonnumerical applications. Sometimes these branches may be reordered to
effectively reduce the dynamic number of branches encountered during pro-
gram execution. One type of reorderable sequence consists of branches having
a common successor. For instance, a logical expression may consist of sev-
eral relational expressions connected by logical operators (e.g. || and && in C).
Each relational expression will typically be translated into a conditional branch.
Applying a logical operator between two relational expressions will result in a
common successor for these associated two branches (i.e. the True or False
target of the logical expression). For instance, Figure 1.1 shows two different
logical expressions with the common successors identified. Nested control state-
ments, such as if and while statements may also result in similar reorderable
sequences.

In Figure 1.1(a), for example, control flow will reach code segment x if ei-

ther a == 0 or b == 1 is True. With the semantics of the C language, the

expression b == 1 will not be evaluated if the evaluation of expression a ==
turns out to be True. In programming language parlance, we say in this case

expression a == 0 short-circuits expression b == 1. If we know the fact that

expression b == 1 is more likely to short-circuit expression a == 0, we would

if (a==0]] b==1) if (a==08&b ==1)
X; X3
% N
(a) x Isthe Common Successor (b) y Isthe Common Successor
I Either Expressionis True If Either Expression Is False

Figure 1.1: Example Sequences of Branches with a Common Successor.

like to restructure Figure 1.1(a) in the way as shown in Figure 1.2(a).

if (b==1]| a==0) if (b==128%&a ==0)
X; X5
% v
() Equivalent Structure of Code (b) y Isthe Common Successor
Segment of Figure 1.1(a) Segment of Figure 1.1(b)

Figure 1.2: Reordering of Branches in Figure 1.1.

Another type of reorderable sequence consists of branches comparing the
same variable or expression to constants. These sequences may occur when
a multiway statement, such as a C switch statement, does not have enough
cases to warrant the use of an indirect jump from a jump table. Also, control
statements may often compare the same variable more than once. Consider the
following original code segment in Figure 1.3(a). Assume that there is typically
more than one blank read per line and EOF is only read once. Many astute
programmers may realize that the order of the statements may be changed to

improve performance. In fact, we found that the authors of most Unix utilities

while (1) {
c = getchar();
while (1) { if (c>"")
¢ = getchar(); goto def;
if (c=="") elseif (c=="")
while (c=getchar()) Vi Y
I'= ECF) elseif (c=="\n) elseif (c=="\n")
i f (C =='\n’) X: X5
X; else if (c == EOF) else if (¢ == EOF)
elseif (c=="") br eak: br eak;
Y, el se el se
el se z: def: z;
Z, } }
(@) Origina Code (b) Conventional Reordering (c) Improved Reordering

Figure 1.3: Example Sequence of Comparisons with the Same Variable.

were quite performance conscious and would attempt to manually reorder such
statements. A conventional manual reordering shown in Figure 1.3(b) would im-
prove performance by performing the three comparisons in reverse order. In fact,
the most commonly used characters (e.g. letters, digits, punctuation symbols)
have an ASCII value that is greater than a blank (32), carriage return (10), or
EOF (-1). Figure 1.3(c) shows an improved reordering of the statements that in-
creases the static number of if statements and associated conditional branches,
but normally reduces the dynamic number of conditional branches encountered
during the execution. Manually reordering a sequence of comparisons of a com-
mon variable or inserting extra if statements to achieve performance benefits,
as shown in Figure 1.3(b) and (c), can lead to obscure code. A general improving

transformation to reorder branches automatically may help encourage the use

)

of good software engineering principles by performance conscious programmers.

c traini executable
; rainin :
first ‘ 9 instrumented profile
source [~ . input [---= I [
compilation for data |
program data . !
‘ profiling ‘
I
I I
I I
I I
e e e e e e e —— g
| I
| I
!)
! 1
| | !
I
| ! executable
i ---=> second 'teﬂ with
| - input -~ ->
__________<| compilation branches
data
reordered

Figure 1.4: Overview of Compilation Process for Branch Reordering.

This thesis presents methods for reordering code to reduce the number of
branches executed. Figure 1.4 shows an overview of the compilation process
for reordering branches. A first compilation pass is applied to a C source pro-
gram. All conventional optimizations are applied except for filling delay slots.!
Sequences of reorderable branches are detected in the control flow and an ex-
ecutable file is produced that is instrumented to collect profiling information
about how often each branch in the sequence will transfer control out of the
sequence. This profile data and estimated cost for executing each branch is
used during a second compilation pass to estimate the most beneficial branch

reordering. Delay slots are filled after branch reordering and the final executable

'We do not want to allow filling of delay slots first. This would complicate reordering
branches since before filling delay slots a branch would have to be the last RTL within a block.
Eventually, we may reinvoke some other transformations after branch reordering if we believe
there would be additional opportunities as a result of the branch reordering transformation.

is produced. The transformation was frequently applied with reductions in in-
structions executed and execution time.

The thesis is organized as follows. Chapter 2 briefly describes some related
work. Chapters 3 to 6 are presented in the same sequential order by which
the transformation is performed. Chapter 3 shows how to detect a sequence of
reorderable branches. Chapter 4 presents how to perform profiling and gives real
examples of profile information. Chapter 5 discusses how to select the ordering
of branches. Chapter 6 explains how to apply the reordering transformation.
Chapter 7 presents results including the reductions for the total number of
instructions, total number of branch instructions, execution time, etc. Chapter
8 discusses future work in this topic and Chapter 9 gives the conclusions for the

thesis.

CHAPTER 2
RELATED WORK

There has been some research on techniques for avoiding the execution of con-
ditional branches. Loop unrolling has been used to avoid executions of the
conditional branch associated with a loop termination condition [1]. Figure 2.1

gives an example of loop unrolling.

for (i =0 i <102 i++) for (50 <102 i+4)
F(i); f(i);

(@) Before Loop Unralliing (b) After Loop Unrolling

Figure 2.1: Loop Unrolling

To perform loop unrolling, in general we need to replicate the loop body one
or more times, change the increment of the loop induction variable, and add
new code to execute the excess iterations of the loop as shown in Figure 2.1.

Loop unswitching moves a conditional branch with a loop-invariant condi-
tion before the loop and replicates the loop in each of the two destinations of

the branch [2]. Figure 2.2 is an example of loop unswitching. The relational ex-

6

pression a == 0 is loop-invariant, hence it can be moved out of the loop. After
unswitching, the expression a == 0 is only evaluated once, therefore reducing

the execution time.

it (a==0)

for (i =0; i <100; i+4) for (i =0; i <100; i+4)
if (a==0) x[i] =0
X[i] =0 el se
el se for (i =0; i <100; i+4)
y[i] =0 yli] = 0;
(8) Before Loop Unswitching (b) After Loop Unswitching

Figure 2.2: Loop Unswitching

Different search methods based on static heuristics for the cases associated
with a multiway statement have been studied [3]. These methods include linear
search, binary search, hashing, and indirect jump from a table. These studies
all assume that each case of a multiway statement are equally likely.

Conditional branches have also been avoided by code replication [4]. This
method determines if there are paths where the result of a conditional branch
will be known and replicates code to avoid execution of the branch. The method
of avoiding conditional branches using code replication has been extended using
interprocedural analysis [5].

Finally, conditional branches have been coalesced together into an indirect
jump from a jump table [6]. This method extends the use of an indirect jump

table far beyond the translation of a multiway statement and allows many other

coalescing opportunities to be exploited.

There have also been studies about reordering or aligning basic blocks to
minimize pipeline penalties associated with conditional branches [7, 8]. How-
ever, this reordering or alignment of basic blocks does not change the order or
number of conditional branches executed. Instead, it only changes whether the
branches will fall through or be taken. Usually these approaches use profile
information to minimize the number of taken branches on architectures where

taken branches cause delays.

CHAPTER 3

DETECTING A SEQUENCE OF REORDERABLE
BRANCHES

Reorderable sequences of branches detected in this thesis consist of two types,
those branches having a common successor block and those branches that com-
pare the same variable or expression to constants. When a sequence of branches
with a common successor overlapped with a sequence of branches comparing a
common variable, the latter type of sequence was used since this type of re-

ordering was found to be more effective as described later in the thesis.

3.1 Detecting a Sequence of Reorderable Branches
with a Common Successor

Having two branches with a common successor means that both of the blocks
containing the branches have a transition to the same target block. Figure 3.1

depicts an example of two branches with a common successor T.

Definition 1. A consecutive sequence of branches [B,,...,B,] is a path in
the control flow graph, where each node is a basic block that contains a branch

and each edge is a control-flow transition to the next basic block in the sequence.

Definition 2. A reorderable sequence of branches is a conseculive sequence
where the branches may be interchanged in any permutation with no effect on

the semantics of the program.

10

(a) Origina Sequence (b) Reordered Sequence

Figure 3.1: Reordering Branches with Common Successors.

Definition 3. A side effect in a basic block is an instruction that updates a

variable and the updated value can reach a use of that variable or register outside

of the basic block.

Function calls were also considered side effects in this thesis since interpro-

cedural analysis was not performed at this time.

Definition 4. Sets(B) is the set of variables and registers that are set in basic

block B.

Definition 5. Uses(B) is the set of variables and registers that are used in basic

block B.

Definition 6. Ins(B) is the set of variables and registers that are live when

basic block B is entered.

Theorem 1. A consecutive sequence of two branches [B;, B;| with a common

successor can be reordered with no semantic effect on the program if

1. both B; and B; do not have side effects,

11

2. Sets(B;) N Uses(B;) N Ins(B;) = O, and

3. the only predecessor of B is B;.

Proof: Consider the original and reordered sequences of blocks in Figure 3.1.
B; and B; are blocks that contain branches that can be reordered. a, b, a, b
are conditions associated with the branches.

The two sequences are semantically equivalent given that

1. state of the program is equivalent in both sequences when blocks F' and T'

are reached, and

2. blocks F' and T are always reached in both sequences under the same

conditions.
3. no new error exceptions are introduced.

Condition 1 can be satisfied by noting that blocks B; and B; have no side
effects. Note that if B; did have a side effect, then it could be split apart into the
portion with a side effect and the portion without one. Only the latter portion
would be considered by the theorem.

To satisfy condition 2, we can evaluate under what conditions blocks F' and

T will be reached in both sequences, note that the only predecessor of B; is B;.

o In the original sequence F' will be reached iff a && b.

e In the original sequence T will be reached iff la || a && b, which simplifies

tola |1 1b.

e In the reordered sequence F' will be reached iff ¢’ && b'.

12

o In the reordered sequence T will be reached iff b && 'a" || 0, which
simplifies to la" |1 10,
Condition 2 can be satisfied if @« = ¢ and b = b". These conditions are

equivalent since both B; and B; have no side effects and Sets(B;) does not
affect Uses(B;) N Ins(B;).

Condition 3 can be satisfied if both B; and B; cannot raise exceptions. Note
no new error exceptions will be introduced after leaving the sequence due to
condition 1 and 2. On one hand, B; must not raise an exception if moved
before B;. In this situation, the branch in B; serves as a guard preventing an
exception in B;. For instance, this could occur if there is a memory reference
in B; that has an invalid address. ' On the other hand, B; must not raise an
error exception since otherwise if B; is moved before B;, B; may short circuit
B; and hence the exception raised by B; may get lost. ?

O

The compiler was updated to conservatively check if each memory reference
in B; was to an identifiable scalar reference. Pointer analysis could be per-
formed to sometimes ease this restriction. No other instructions in our target

architecture can cause an error exception. 2

Corollary 1. A consecutive sequence of branches with a single common suc-

cessor can be reordered in any arbitrary permutation given that there are no

!The compiler identified the following memory references as safe: reference a global scalar,
reference a local scalar variable, reference a parameter from caller’s activation record.

2There are different opinions about whether B; should have to raise an error exception or
not. Some people think it is OK to get rid of an exception through code transformation.

3The compiler should also check for potential integer divisions by zero in Bj, but in our
target architecture, integer division is implemented as a function call and hence 1s considered
as side effect which violates condition 1 of theorem 1.

13

intervening side effects, the sets of a given block in the sequence do not affect

the uses that are live entering any preceding block in the original sequence, and

the sequence is only entered through the first branch.

Proof: Suppose for sequences with length of 2, 3, ..., n, the above corol-

lary is true. Now we need to prove for a sequence with length of n + 1, [By,

B, ...

, By11], is semantically equivalent to any sequence that is an arbitrary

permutation of these blocks.

(i)

Suppose the first block of the permutation is B, then the rest of the
permutation is a permutation of [By, Bs, ..., B,, B,41], which is a sequence
of length n and by induction hypothesis it is equivalent to [Bs, Bs, ...,B,,
B,11]. In this case, the whole permutation is equivalent to [By, Bs, Bs,
.oy By, Buy1]. We know this sequence is valid since this is the original

order of the sequence.

Suppose the first block of the permutation is B; (¢ # 1), then the rest of the
permutation is a permutation of [By, By, ..., Bi_1, Biy1, ---, Bn, Bai]
(except B;), which is a sequence of length n and it is equivalent to [By, By,

.y Biz1, Biy1, - .., B, Bug1] (a sequence of length n without B;). So the
whole permutation is equivalent to [B;, By, Ba, ..., Bi_1, Biy1, ..., By,
B,.11]. Since the sequence [B;, By] has a length of 2 and thus is equivalent
to [B1, Bi], so the whole sequence is equivalent to [By, By, Ba, ..., Bi_1,
Bist, -+, Bu, Busal.

Now Bj is the first block, by (i) we know that the whole permutation is

equivalent to By, By, Bs, ..., B,, B.i1.

14

Bi: Bi:
IC=r[8]?-1; IC=r[8]?-1,
PC=IC:0,L330; PC=IC:0,L330;

| ¢ ~
Bj: New Bj:
r[8]=(W[r[14]+.9_ibuf]{ 16)} 16; r[10]=(W[r[14]+.9_ibuf]{ 16)} 16;
r[9]=(W[r[14]+.9_obuf]{ 16)} 16; r[9]=(W[r[14]+.9_obuf]{ 16)} 16;
IC=r[9][8]; IC=r[9][10];
PC=IC!0,L330; PC=IC!0,L330;

! ~ ¢ ™~

(a) Before Register Renaming (b) After Register Renaming

Figure 3.2: Register Renaming.

The detection of a reorderable sequence of more than two branches with a
common successor is not described in this thesis. This study limited the detec-
tion of such sequences to two branches since we could not guarantee an optimal
ordering for longer sequences. The reason for this limitations is discussed in
Chapter 5. Also, in our experiments the Sets(B;) N Uses(B;) N Ins(B;) = O
restriction never prevented branch reordering since the compiler was able to find
an available register and successtully apply register renaming every time a set in
B; affected a use that was live entering B;. An example of register renaming is
shown in Figure 3.2. The register r[8] is live entering B;, but B; sets r[8]. After
renaming r[8] with »[10] in Bj, the condition Sets(B;) N Uses(B;) N Ins(B;)

= () is satisfied so this becomes a reorderable sequence. *

*Theoretically, it is possible that all the registers are busy at that point and hence register
renaming cannot be performed.

15

3.2 Detecting a Sequence of Reorderable Range
Conditions Comparing a Common Variable to
Constants

The approach used for finding a sequence of reorderable branches that compare
a common variable or expression was quite different from finding a sequence of
reorderable branches having a common successor since it required associating

branch targets with ranges of values.
Definition 7. A range is a contiguous range of integer values.

Definition 8. A range condition is a branch or a pair of consecutive branches

that tests if an integer variable is within a range.

Definition 9. A consecutive sequence of range conditions [R,,...,R,] is a
path in the control flow graph, where each node is a range condition testing the
same variable and each edge is control-flow transition to the next range condition

in the sequence.

Definition 10. A reorderable sequence of range conditions is a consecutive
sequence where the range conditions may be interchanged in any permutation

with no effect on the semantics of the program.

The possible types of ranges and the corresponding range conditions are
shown in Table 3.1, where v stands for the branch variable and ¢ represents
a constant. When a range is a single value or a range is unbounded in one
direction, a single conditional branch can be used to test if the variable is within
the range. Two conditional branches are needed when a range is bounded and

spans more than a single value, as depicted in Form 4 in Table 3.1.

16

Table 3.1: Range Conditions and Corresponding Range of Values.

Form | Range of Values Range Condition
1 c..c v==c
2 MIN..c v<=c¢
3 c.MAX v>=¢
4 cl..c2 cl<=v && v<=1c2

Figure 3.3(a) depicts a sequence of two range conditions. R; and R, are
range conditions that can consist of one or two branches that check to see if a
variable is in a range. T} and T; are target blocks of the range conditions and
the corresponding range of values for the range condition is given to the right
of these blocks. Tj is the default target block when neither range condition is
satisfied. Figure 3.3(b) shows how the sequence can be reordered. Note that T

and T, can be the same target.

not {[cL..c2],[c3..c4]} not {[c1..c2],[c3..c4]}
(a) Original Sequence (b) Reordered Sequence

Figure 3.3: Reordering Range Conditions with No Intervening Side Effects.

Definition 11. Two ranges are nonoverlapping if they do not have any com-

mon values.

17

Theorem 2. A sequence of two consecutive nonoverlapping range conditions
can be reordered with no semantic effect on the program if the sequence can only
be entered through the first range condition, the two range conditions contain
only pairs of comparisons and conditional branches, and the sequence has no

side effects.

Proof: Consider the original and reordered sequences of range conditions in

Figure 3.3. The two sequences are semantically equivalent given that

1. state of the program is equivalent in both sequences when blocks T4, T5,

and T3 are reached, and

2. blocks T7, T3, and T5 are always reached in both sequences under the same

conditions.

3. no new error exceptions are raised.

Condition 1 is satisfied since the range conditions R; and Ry have no side
effects.

Condition 2 is satisfied since the ranges associated with T4, Ty, and T are
nonoverlapping, there are no assignments in either range condition that can
affect the other, and the only predecessor of the second range condition is the
first range condition.

Condition 3 can be satisfied by considering the following two facts. First,
no new error exceptions can be introduced after exiting the reordered sequence
due to conditions 1 and 2. Second, no new error exceptions can be introduced

in Ry or Ry since comparison and conditional branch instructions cannot raise

18

error exceptions on the target architecture. Note that there will be no assign-
ments of registers or variables associated with a range condition since each range
condition could be accomplished with just comparison and branch instructions.

a

Corollary 2. A sequence of range conditions associated with the same variable
can be reordered with no semantic effect on the program if the sequence can only
be entered through the first range condition, the sequence contains only pairs of

comparisons and conditional branches, and the sequence has no side effects. °

The detection of a sequence of reorderable range conditions was accomplished
using the algorithm in Figure 3.4. Instead of storing a sequence of branches, we
instead store a sequence of ranges. The algorithm first finds two nonoverlapping
range conditions comparing the same variable. Afterwards, it repeatedly detects
an additional nonoverlapping range condition until no more range conditions
with nonoverlapping ranges can be found.

Figure 3.5 shows an example of detecting a sequence of range conditions.
Figures 3.5(a) and 3.5(b) show a C code segment and the corresponding control
flow produced by the compiler. Figure 3.5(c) shows the sequence of reorderable
range conditions that are detected using the algorithm in Figure 3.5. Note that
all of the ranges detected are nonoverlapping.

A more complete set of branches that compare a common variable or expres-
sion to constants may be detected by propagating value ranges through both
successors of each branch (i.e. detecting a DAG of branches instead of a path

of range conditions) [6].

>The proof is the same as Corollary 1.

FOR each bl ock B DO
IF (B is not narked AND
B has a branch that conpares
a variable V to a constant) THEN
I'F (Find_First_Two_Conds(B,V, Rl, R2, N)) THEN
Ranges={R1, R2};
C=N;
mar k bl ocks associated with RL and R2;
WH LE Fi nd_Range_Cond(Ranges, V, C,R N) DO
Ranges+=R;
C=N;
mar k bl ock(s) associated with R
Store info about Ranges for profiling;

BOOL FUNCTI ON Fi nd_First_Two_Conds(B, V, R1, R2, N)
{
I F (Find_Range_Cond({},V, B, R1, N1) AND
Fi nd_Range_Cond(R1, V, N1, R2, N2)) THEN
N=N2;
RETURN TRUE;
ELSE
Rt =R1;
| F (Find_Range_Cond(Rt, V, B, R1l, N1) AND
Fi nd_Range_Cond(R1, V, N1, R2, N2)) THEN
N=N2;
RETURN TRUE;
RETURN FALSE;

}
BOOL FUNCTI ON Fi nd_Range_Cond(Ranges, V, B, R N)

IF (B has a branch that conpares
V to a constant C) THEN
| F branch operator is "==" THEN
R=C.. C
N=B's fall-through succ;
RETURN Nonover | appi ng(R, Ranges) ;
ELSE I F branch operator is "!=" THEN
R=C..C
N=B’' s taken succ;
RETURN Nonover | appi ng(R, Ranges) ;
ELSE I F (B's branch and the branch of a succ S of
forma bounded range R AND
B and S have a common succ AND
Nonover | appi ng(R, Ranges)) THEN
N=t he succ of S not associated with R
RETURN TRUE;
ELSE
SW TCH (branch operator)
CASE "<":R=M N..C-1; |=C. .MNAX;
CASE "<=":R=M N.. G, I =C+1. . MAX;
CASE ">=": R=C.. MAX; I=MN..C 1;
CASE ">":R=C+1l..MAX; I=MN..C
I F (Nonover | appi ng(R, Ranges)) THEN
N=B's fall-through succ;
RETURN TRUE;
ELSE
N=B's taken succ;
RETURN Nonover | appi ng(1, Ranges) ;
RETURN FALSE;

Figure 3.4: Detecting a Reorderable Sequence of Range Conditions.

19

20

if (c >="a && c <="'2z2" ||
c >="'A && c <='27)
T1;

else if (c =="_")

T2;
else if (c <="'~")
T3;
el se
T4;
(a) C Code Segment (b) Control Flow
Blocks Range Target
1,2 [97..122] T1
3.4 [65..90] T1
6 [95..95] T2
8 [127..M AX] T4

(c) Reorderable Range Conditions

Figure 3.5: Example of Detecting Range Conditions.

There were two reasons why reordering was limited to sequences of range
conditions. First, there were very few cases that we examined where a sequence
of range conditions did not capture the entire set of branches comparing a
common variable to constants. Second, we show in this paper that it is possible
to start with a sequence and guarantee an improved reordered sequence with
respect to profile and cost estimates. Note that it is possible that the reordering
may be improved if a binary search was used instead of a linear search (i.e. a
sequence of range conditions). However, we will show later in this thesis that a
near-optimal ordering of a sequence can be found using an algorithm requiring
only linear complexity. Our initial investigations have shown that an algorithm
to select an optimal binary search would require both exponential time and
space complexity. We will describe our plans to investigate the use of a binary

search and contrast the benefits of a binary search versus a linear search in

Chapter 10.

21

CHAPTER 4

HANDLING SIDE EFFECTS IN A COMMON
VARIABLE SEQUENCE

We can convert a sequence of nonoverlapping range conditions with interven-
ing side effects into a sequence of nonoverlapping range conditions without side
effects through code replication, given that the side effects do not affect the
common variable being compared. ! Thus, we can further exploit some oppor-

tunities where there are intervening side effects among range conditions.

Theorem 3. A side effect between two consecutive range conditions can be du-
plicated to follow the second range condition with no semantic effect on the
program if the side effect does not affect the branch variable of the second range

condition and the sequence can only be entered through the first range condition.

Proof: Consider the original and transformed sequences of range conditions
in Figure 4.1. 2

The two sequences are semantically equivalent given that

1. state of the program is equivalent in both sequences when blocks Ty and

T5 are reached,

2. blocks T and T3 are always reached in both sequences under the same

conditions, and

'We allow side effects between range conditions, but not within properly bounded range
conditions. A properly bound range condition is treated as atomic and indivisible.
2The side effect S is actually in a basic block containing Rs.

22

23

3. no new error exceptions are raised.

(&) Origina Sequence (b) Transformed Sequence

Figure 4.1: Moving Side Effects from a Sequence of Two Range Conditions

Condition 1 is satisfied since the range condition Ry in the transformed
sequence has no side effects, S is executed in both sequences when T, or Tj
is reached after executing Ry, and S is not executed if Ty or T3 is reached
without executing R,. Note that the transitions from P, and Ps require that
the replicated side effects S be placed in separate basic blocks.

Condition 2 is satisfied since .S does not affect the branch variable of Rs.

Condition 3 can be satisfied by noting that no new side effects are introduced

in the transformed sequence.

Corollary 3. A sequence of range conditions attached with side effects can be

transformed to have no intervening side effects and still have the same semantic

24

effect on the program if the side effects do not affect the branch variable of
the range conditions and the sequence is only entered through the first range

condition.

Proof: Suppose for sequences with length of n, the above corollary is true.
Now we need to prove for a sequence with length of n + 1, [Ry, Ra, ..., Ry41],

as shown in Figure 4.2 (a), it can be transformed to have no intervening side

effects and still have the same semantic effect on the program.

(a) Origina Sequence (b) Intermediate Sequence (c) Final Transformed Sequence

Figure 4.2: Moving Side Effects from a Sequence of n + 1 Range Conditions

Consider the sequence [Ry, Ry, ..., R,], it is a sequence of length n, By
induction hypothesis we know that this sequence can be transformed to have no
intervening side effects and still have the same semantic effect on the program,

as shown in Figure 4.2 (b). Since the only predecessor of range condition R, 41

is block R,,, so the replicated side effects 515, ...
into R,;; rather than creating a new block containing 519, ...
consider the sequence [R,,, R,11], it satisfies the condition of theorem 3 and as
a result the side effect 57,55 ...,.5, can be moved out of the sequence as shown

in Figure 4.2 (¢). Combine the above transformations together, we have proved

the corollary.

for(;;)

Figure 4.3: Source Code Segment from wec.c .

Figure 4.3 shows a real code segment from unix utility program we.c. Fig-

ure 4.4 is the corresponding control flow graph for code segment in Figure 4.3.

{

c = getc(fp);

if(c EOF)
br eak;

char ct ++;

if(' '<c && c<0177) {
if(!token) {
wor dct ++;
t oken++;
}
conti nue;
}
if(c=="\n") {
li nect ++;
}
else if(c!= && c! =" \t’
conti nue;

t oken = O;

We use B, to represent block n.

, Sp_1 can be inserted directly

,Sn-1. Now

26

19
o
c=1277 goto B23;
goto B26;
goto B27;
goto B30;
goto B15;
(a) Original CFG (b) CFG after Code Replication

Figure 4.4: Handling Side Effect in a Common Variable Sequence.

Since the side effect portion charct++ must be executed whenever ¢ != EQF,
so we want to replicate charct++ at each target except block 19. In general, for
a given target we have to replicate all those side effect portions along the path
from the head of the sequence to the target.

An unconditional branch instruction could be added to the end of each one of
the copies as shown in Figure 4.4. But that could possibly increase the dynamic
number of instructions and also would make cost estimation more complex.
In order to avoid these two problems, a simple code replication algorithm was
used. We just replicate block(s) by following the fall-through link of the target
until we reach a block containing an unconditional jump, return, or indirect
jump instruction. A similar approach has been used when transforming code to

improve branch prediction [9].

27

For example block 26 in Figure 4.4 is not a terminal block since it ends

with a fall-through path. Block 27 is a terminal block since it ends with an

unconditional branch. Hence instead of generating the unconditional branch

goto block 26 after charct++, we are going to replicate block 27 following

block 26, as shown in Figure 4.5.

<>

r[8]=R[r[21]+L O[_charct]];
r[8]=r[8]+1;
R[r[21]+L O[_charct]]=r[8];

l

r[8]=R[r[23]+L O[_linect]];
r[8]=r[8]+1;
R[r[23]+LO[_linect]]=r[8];

l

r[17]=0;
PC=L61;

replication of side effect charct++

block 26

replication of block 27

Figure 4.5: Avoid Extra Unconditional Branch by Block Duplication.

Note that when we produce profile information, we don’t have to replicate

any code. All we need is to detect a reorderable sequence of range conditions.

Code replication occurs when we really perform branch reordering if the re-

ordering is deemed to be beneficial.

CHAPTER 5
PERFORMING PROFILING

The profile information required for branch reordering had to be collected in a
different manner from conventional profiling. One may believe that instrumen-
tation code could simply be inserted at the basic block containing a branch in
a reorderable sequence and either on the fall-through or taken transition. How-
ever, this approach will not be sufficient since each branch or range condition
in the sequence may not be encountered every time the sequence is executed.
The compiler needs to know how often each branch or range condition in the
sequence would have a transition out of the sequence given it was executed
when the head of the sequence is encountered. The instrumentation code for
obtaining profile information about the sequence was entirely inserted at the

head of the sequence to check every branch or range condition in the sequence.

5.1 Producing Profile Information for Common
Successor Sequence

Profile information for common successor sequence is produced by inserting
instrumentation code at the head of a sequence to check each branch in the
sequence. First, we declare a set of counters for each sequence, including a
counter indicating the number of times that the head of the sequence is entered,
and a counter for each branch indicating the number of times that it is not taken.

Since the length of a reorderable sequence of branches with a common successor

28

29

is limited to 2, we will declare 3 counters for each sequence. Second, we insert
instrumentation code to increment those counters when the head of a sequence
is entered or corresponding branches are not taken. This involved replicating the
instructions associated with each branch as instrumentation code. Finally we
insert a call to a function (__ease_end_g) that dumps the profile information
(the values of these counters) into a file (profile.dat) at every possible exit
point in the program.

Figure 5.1 gives an example of inserting instrumentation code. Figure 5.1
(a) shows a common successor sequence of length 2 with the target label 1233
as the common successor. The head of the sequence (i.e. block 6) is split into
two separate portions, one with side effect (the first RT'L) and the other without
side effect (the last three RTLs). The instrumentation instructions is inserted
right after the side effect portion as shown in Figure 5.1 (b). The lines ending
with 7!” are instrumentation instructions inserted to increment those counters.
The lines starting with a ’-” are SPARC assembly instructions and will be copied
directly into the target SPARC assembly code. Note that RTLs associated with
each branch are replicated before the first original branch in the sequence.

Figure 5.2 shows the complete code of the function __ease_end_g.

_ease_main_head_1 is the counter indicating the number of times that the
first sequence of function main is entered. __ease_main_nt_1[0] is the counter
for the first branch of the sequence indicating how many times it is not taken.
The function __ease_end_g was called at every possible exit point in the

instrumented executable code. It is generated automatically and is linked with

the instrumented executable. In order to generate this function automatically,

! block 7
r[8]=H[_nfile];
r[8]=R[r[8]+LO _nfile]l;
| C=r[8] ?1;

PC=I C 0, L290;

! block 8
r[8]=HI[_hflag];
ri8]=Rir[8] +LO _hflag]];
| C=r[8] ?0;

PC=1 C: 0, L290;

(&) Original Common Successor Sequence

! block 7

- . seg "dat a"

- .align 4

- .global ___ease_succeed_head_1
-___ease_succeed_head_1:

-.word O

- .global ___ease_succeed_nt_1
-___ease_succeed_nt_1:

-.word O

-.word O

- . seg "text"

- std %04, [¥%sp- 8]

- set hi %i (___ease_succeed_head_1), %05

- Id [Y©5+% o(___ease_succeed_head_1)], Y04
- add %04, 1, Y04

- st %04, [Y©5+% o(___ease_succeed_head_1)]
- | dd [%sp- 8], Y04

r[8l=H[_nfile];
r[8]=R[r[8]+LO _nfile]l;

| C=r[8] ?1;

PC=I C 0, L0O022;

- nop

- std %04, [Y%sp- 8]

- set hi 9%i (___ease_succeed_nt _1+0), %05

- Id [Y©5+% o(___ease_succeed_nt _1+0)], %04
- add %04, 1, Y04

- st %04, [Y©5+% o(___ease_succeed_nt _1+0)]
- | dd [¥%sp- 8], Y04

-L0022:

r[8]=HI[_hfl ag];
r[8]=R[r[8] +Ld _hflag]];

| C=r [8] ?20;

PC=I C: 0, LO023;

- nop

- std %04, [Y%sp- 8]

- set hi %i (___ease_succeed_nt_1+4), %05

- I d [Y©5+% o(___ease_succeed_nt_1+4)], Y04
- add %04, 1, Y04

- st %04, [Y©5+% o(___ease_succeed_nt _1+4)]
- | dd [¥%sp- 8], Y04

-L0023:

r[8]=HI[_nfile];
r[8]=R[r[8]+L _nfile]];
| C=r[8]?1;

PC=I1 C 0, L290;

! block 8
r[8]=HI[_hflag];

r[8] =R r[8] +LO[_hfl ag]];
| C=r[8] ?0;

PC=1 C: 0, L290;

(b) Instrumented Common Successor Sequence

Figure 5.1: Instrumentation Code.

void __ease_end g() {

FI LE* fp;

extern int __ease_main_head_1;
extern int __ease_nain_nt_1[];
extern int _ ease_mmin_head 2;
extern int __ease_main_nt_2[];
extern int __ease_main_head_3;
extern int __ease_main_nt_3[];
extern int _ ease nunber_head 1;
extern int __ease_nunber_nt_1[];
extern int __ease_cal _head_1;
extern int _ _ease_cal _nt_1[];
int i;

fp = fopen("profile.dat", "w');
fprintf(fp, "main\n\n");

fprintf(fp, "%\ n", _ _ease_mmin_head_1);
for (i =0; i <2; i++4)
fprintf(fp, "% ", __ease_main_nt_1[i]);

fprintf(fp, "\n\n");

fprintf(fp, "%\ n", _ ease_mmin_head 2);
for (i =0; i <2; i++4)
fprintf(fp, "% ", __ease_main_nt_2[i]);

fprintf(fp, "\n\n");

fprintf(fp, "%\ n", _ ease_mai n_head_3);
for (i =0; i <2; i++4)
fprintf(fp, "% ", __ease_min_nt_3[i]);

fprintf(fp, "\n\n");

fprintf(fp, "nunber\n\n");

fprintf(fp, "%\ n", _ ease_nunber_head_1);
for (i =0; i <2; i++4)
fprintf(fp, "% ", __ease_nunber_nt_1[i]);

fprintf(fp, "\n\n");

fprintf(fp, "cal\n\n");

fprintf(fp, "%\ n", _ ease_cal _head_1);
for (i =0; i <2; i++)
fprintf(fp, "% ", _ _ease_cal_nt_1[i]);
fprintf(fp, "\n\n");
fclose(fp);

Figure 5.2: Function __ease_end._g .

32

we need to know how many sequences there are in a function. We use a file
(profile.inf) to capture this information, as shown in Figure 5.3.
mai n

2
get char

1

Figure 5.3: Example of profile.inf File for Common Successor Sequence.

Before performing any optimization the compiler will open the file
profile.inf,or create the file profile. inf if it does not already exist. This file
contains the name of a function followed by the number of reorderable sequences
for that function. The compiler will read the information from profile.inf
into an array if the file already exists. Then the compiler is going to update
the information in the array when performing profiling operation. Before the
compiler terminates normally, it is going to write the information in the array
back to the file profile.inf.

The information in profile.inf is solely for automating the process of

producing the function __ease_end_g. Even when we compile a program with

multiple modules, the scheme of using profile.inf still works since function
names are unique even across different modules. It is up to the programmer to
remove this file before compiling a program for the first time.

Figure 5.4 shows an example portion of profile information for common suc-

cessor sequences stored in profile.dat. In this example, there are two reorder-

able common successor sequences detected in function main. The first sequence

33

in main was never entered, so all the three counters are 0. The second sequence
in main was entered 230 times. Its first branch was not taken 196 times, or it
was taken 230 - 196 = 34 times. The second branch was not taken 111 times,
or was taken 230 - 111 = 119 times. Since the second branch would have trans-
ferred the control out of the sequence more often than the first branch, if both
branches have the same cost, this sequence will be identified to be reordered to

improve performance.

230
196 111

getch
1368
1232 1245

Figure 5.4: Example of profile.dat File for Common Successor Sequence.

5.2 Producing Profile Information for Common
Variable Sequence

The profiling code for reordering range conditions checks if the common variable
is within ranges of values. However, additional ranges have to be determined

from the ones calculated by the algorithm in Figure 3.4.

Definition 12. An explicit range is a range that is checked by a range condi-

tion.

34

Definition 13. A default range is a range that is not checked by a range

condition.

Consider the original sequence of range conditions in Figure 5.5(a). There
are additional ranges associated in the default target Tp since these ranges will
span any remaining values not covered by the other ranges. It is assumed in
this figure that MIN < ¢1, ca+1 < ¢3, and ¢y < MAX. Figure 5.5(b) shows an
equivalent sequence with these default ranges explicitly checked. Figure 5.5(¢)
shows a reordered sequence of range conditions, where the range condition for
the last default range in 5.5(b) was placed first in the sequence. Once a point is
reached in the sequence where there is only a single target possible, all remaining
range conditions need not be explicitly tested as shown in Figure 5.5(d). The
compiler calculated these remaining ranges by sorting the explicit ranges and
adding the minimum number of ranges to cover the remaining values.

Figure 5.6 (a) is an example showing a portion of the profile information
for common variable sequences stored in profile.dat. There are 2 reorderable
sequences in the function emp, and both are never entered. Function skip con-
tains three reorderable sequences. The first sequence of skip was entered 1052
times. With all ranges (both explicit ranges and default ranges) being checked,
the length of the sequence is 5. The first four ranges were never satisfied, while
the last range, which was a default range was always satisfied. We can greatly
improve performance if we explicitly check this default range first.

The function __ease_end_g in Figure 5.2 was extended to print out profile
information for common variable sequences. This was accomplished by storing

additional information, or counters for common variable sequences. The instru-

[c2+1..c3-1]
[c4+1.MAX]
(a) Original Sequence

[c4+1.MAX]

[MIN..c1-1]

TD| [c2+1..c3-1]

[c2+1..c3-1]

(c) Reordered Sequence (d) Equivaent Reordered Sequence

Figure 5.5: Example of Reordering Default Range Conditions.

35

00O0O

couwoouao

0O0O0O

ski p

5

1052

O 0 0 0 1052
6

36518

O O 1052 O O 35466

5
(0]
0O000O0O

(@) Portion of File profile.dat

36

cnp
2
55
ski p
3
565

(b) Portion of File profile.inf

Figure 5.6: Example of Profile Information For Common Variable Sequence.

mentation code was inserted to test each range (not each branch) including the

default ranges. Figure 5.6 (b) gives an example of profile.inf for common

variable sequences. Unlike common successor sequences, which always have

length of 2, common variable sequences may have various lengths. Function

cmp has two common variable sequences, each with length of 5. Function skip

has three common variable sequences, with lengths of 5, 6 and 5, respectively.

CHAPTER 6
SELECTING THE ORDERING OF BRANCHES

The ordering for a reorderable sequence of branches or range conditions was

chosen by using two factors defined as follows.

Definition 14. p; is the probability that N; (branch B; or range condition R;)

will exit the sequence.

Each p; was calculated using the profile information indicating how often the
corresponding branch B; (in a common successor sequence) or range condition
R; (in a common variable sequence) would exit the sequence if it was executed.
The accuracy of this probability depends on the correlation of the branch results
between using the training data set and the test data set. It has been found

that conditional branch results can often be accurately predicted using profile

data [10].

Definition 15. ¢; is the cost of performing N; (branch B; or range condition
R;).

Each ¢; was estimated by determining the number of instructions required
to perform the corresponding branch or range condition. This cost includes the
conditional branch, associated comparison, and any instructions that produce

the values being compared. (A more accurate cost estimate could be obtained

37

38

by estimating the latency and pipeline stalls associated with these instructions.)
Some factors of the cost can vary depending upon the ordering selected. In these

cases, a conservative estimation of the cost was used.

Definition 16. Cost([N,,...,N,)] is the estimated cost of executing a sequence

of nodes (branches or range conditions.)

The cost of a sequence of branches is calculated as a sum of products. One
factor is the probability that a branch will be reached and will exit the sequence.
The other factor is the cost of performing that branch and all preceding branches
in the sequence. Note that the last branch in the sequence will always exit the

sequence when reached.

6.1 Selecting the Order of a Sequence of Branches
with Common Successors

Equation 1 represents the cost of executing a sequence of two reorderable
branches with common successors [B;, B;].
Cost((B:, B))

= pici + (1 = pi)(ei + ¢;) < pjej + (1 = pi)lej +) (1)

Theorem 4. A sequence of two reorderable branches with common successors
can be optimally ordered as [B;, B;] when p;/c; > p;/c; with respect to the

probability and cost estimates.

Proof: The optimal ordering of a sequence of two branches with a common
successor can be obtained when the cost of one ordering is less than the cost of

the other ordering.

39

Cost([B;, B;]) < Cost([B;, Bi])
& pici + (1= pi)ci+¢) < pje;+ (1 —p;)(¢; + i)
< pic+ e+ ¢; — pic — picy < pic; +¢; + ¢ —pic; — pic
& ¢+ —pic; < ¢+ —pic
& TPic; S PG
& Picj 2 Pici
& pifci 2 pife

O

Intuitively, this means that it is desirable to first execute the branch that has

a high probability of exiting the sequence combined with a low cost. Note that
we cannot determine an optimal ordering based on the profile data that was
obtained in chapter 4 when the number of branches with common successors is
greater than two. Consider three branches B;, B; and By, where p;=0.8, p;=0.6,
pr=0.4, and ¢; = ¢; = ¢, = 2. One can determine an ordering [B;, B;, By] where
pifet > pjley > pk/ck (i.e. 0.4 > 0.3 > 0.2). However, it is possible that B;
will only exit the sequence when B; has already exited the sequence. Likewise,
By may only exit the sequence when B; does not. The optimal ordering in
this case would be [B;, Bi, Bj]. Determining an optimal ordering for a sequence
of such branches would require obtaining profile data about all combinations
of branch results in the sequence. Using such profile data would be expensive

in both time and space. The compiler limited the length of these sequences

40

to two branches in this study to ensure that the reordered sequence always
resulted in an improvement with respect to the estimated probabilities and costs.
The most common length of sequences of branches with common successors we

encountered was two.

6.2 Selecting the Order of a Sequence of Range
Conditions Comparing a Common Variable

A sequence of explicit range conditions can be optimally ordered with respect to

the probability and cost estimates. First, consider the cost of an entire sequence

of all the range conditions (i.e. the default range conditions also being specified.)
Equation 2 represents the cost of executing a sequence of n range conditions,

where every range is explicitly checked.

Explicit Cost([Ry, ..., Ry])

=pert+plaatc)t. o Fplateat...+e) (2)

Theorem 5. A sequence of two reorderable range conditions can be optimally
ordered as [R;, R;] when p;/¢; > p;/c; with respect to the probability and cost

estimates.

Proof: An optimal ordering of two consecutive nonoverlapping range conditions
can be achieved when the explicit cost of the selected ordering is less than or

equal to the explicit cost of the other ordering.
Explicit Cost([R;, R;]) < Eaplicit_Cost([R;, R;])
& pici +pilci+¢) < pic; 4 pile; +)

& pic + pici + pic; < pic; + pic; + pic;

41

& pic < pic;
& pile; < pife
& pifei > pife
O

Corollary 4. A reorderable sequence of range conditions can be optimally re-
ordered as [Ry, Ry, ..., R,] when p1/cy > pafes > ... > pa/e, with respect to

the probability and cost estimates.

Proof: Suppose for sequence with length of 2, 3, ..., n, the above corol-
lary is true. In order to prove for a sequence with length of n + 1,
[R1, Ra, ..., R,41] is the optimal order, we need to prove that an arbitrary per-

mutation [R , Ri, ..] will have an explicit cost that is at least as great

119 ligy - v -

as Explicit_Cost([Ry, Ry, ..., Rog1])-

(i) If the first condition of this permutation is R; and the permutation is

[Ri,Ri,,...,R; .|, then:

i1
Explicit_Cost([R1, Ri,, ..., Ri,,,])
= p1 X el +piy X (er+)+ oo d iy, X (e F e+t cigy)

=pi, X Ciy + oo FPing, X (e .o F i) Fax(pitp+... 4+ pn)

Explicit_Cost([R1, Rz, ..., Rut1)]
=mxXet+px(ate)t...+ppr X (aa+e+ ..o+ cugr)

=paXeat...tpupr X(ca+ ...t) +ax(prtpr+...+pa)

42

If we only consider a sequence formed by [Ra, Rs, ..., R,41], then it is
a sequence of length n, by induction, [Ry, Rs, ..., R,11] should have the
lowest explicit cost which is:
P2 X CaF oot pupr X (ca+ oo+ cny1)
The Explicit_Cost([R;,, Ri,, ..., R,] is
Pis X Cig oo piny X (Ciy oo F Ciy)
which is at least as great as the Explicit_Cost([R,, Ri,, ..., Ri, .|
This proves that sequence [Ry, R, ..., R,41] has a lower cost than sequence
[Ri, Ry, .. By)

(ii) If the first condition is R;, 7 # 1. Then by applying induction hypotheses
and the result of (i), we have:

Explicit Cost([R;, Ry, ..., R,])

> Explicit_Cost([Ri, Ry, . . ., Rus1)]) (sort Riy,..., Ri.,, by p/c)
> Explicit_Cost([Ry, Ri, . . ., Rus1]) (swap Ry and R;)
> Explicit_Cost([Ry, Ra, . . ., Rus1] (sort Ri,..., Ri,.,)

O

However, there is also a default cost, which occurs when no range condition
is satisfied and the control transfers to the default target. Equation 3 shows the
complete cost of a sequence, where only the first n ranges are explicit.
Cost([Ry,...,R,]) =

Explicit Cost([Ry,....,R.))+ (1 —=(p1+ ...+ pa))(c1 + ...+ ¢cn) (3)

Once only a single target remains, the range conditions associated with that

target need not be tested. Consider again the example in Figure 5.5. The three

43

targets of the range conditions are T, T, and Tp. Each of these targets could be
potentially used as the default target and its associated range conditions would
not have to be tested. The T target has three associated ranges. If any of these
ranges are explicitly checked, then Corollary 4 should be used to establish its
best position relative to the other explicitly checked range conditions to achieve
the lowest cost for the sequence. If Tp is used as the default target, then at

least one of the three range conditions should not be explicitly checked.

Definition 17. mindefault(T;) is the minimum cost of any ordering of a range

condition sequence, where T; is used as the default target.

For each potential target having m associated ranges, there are 2 — 1 possi-
ble combinations of these range conditions that could not be explicitly checked.
The compiler used the ordering p1/¢; > ... > p, /¢, between the m ranges
of a target to consider only m possible combinations of default range con-
ditions, {{Rm},{Rm-1, B}, {R1,..., Ru_1, Rn}}. The compiler selected the
lowest cost combination of default ranges by calculating the minimum cost of
the sequences excluding the range conditions associated with each of these sets.
Assume that ¢ is the number of unique targets out of the sequence. The com-
piler then calculates the minimum of {minde fault(Ty), mindefault(Ty), ...,
minde fault(T;)}. Note that only the cost of n sequences have to be calculated,
where n is the total number of ranges for all of the targets. Our approach is
not guaranteed to be optimal. However, we also implemented an exhaustive
approach to find the lowest cost sequence. We discovered that our approach se-
lected the optimal sequence for every reorderable sequence in every test program

for the training and test data sets.

44

Equation 4 represents the cost of executing a sequence of n explicitly checked
range conditions, where only range condition ¢ is a default range. Note that all
explicitly specified range conditions must be checked before a target associated

with a default range can be reached.

Cost([Riy..., Ri—1, Rig1, ..., Ry))
=per+ ...+ pica(ar+ .o F 1)
+piqiler+ .o o F o)+
+paler+ .ottt ot)
+piler+ ...ttt +c) (4)

However, Equation 4 can be rewritten as Equation 5, where the cost of a
sequence of range conditions with a default range can be calculated by subtract-

ing the difference from Equation 1.

COSt([Rl, . .,Ri_l,RH_l, PN ,Rn])
= Cost([Ry,...,Ry)) + pi(ciy1 + ...+ ¢n)

_Ci(pi‘|‘---‘|’pn) (5)

The ordering of a sequence of range conditions was selected using the algo-
rithm in Figure 6.1. The algorithm first uses Equation 1 to calculate the cost
of the optimal sequence when all of the range conditions are explicitly checked.
It then uses Equation 5 to avoid calculating the complete cost of the n different

sequences. The algorithm requires a complexity of O(n), where n is the number

of ranges associated with the targets of the sequence.

[* Assume the range conditions are sorted in descending order of Pi/Ci
Calculate the cost with al range conditions explicitly checked */
Explicit_Cost = 0.0

cost = 0;
FORi =1ton DO
cost += (i];

Explicit_Cost += P[i]*cost;

[* Calculate tcost[i] = Ci+1 + ... + Cnand tprob[i] = Pi + Pi+1+ ...+ Pn*/
tcost[n] = O;
tprob[n] = P[n];
FORi = n-1 downto 1 DO
tcost[i] = (i+1] + tcost[i+1];
tprob[i] = P[i] + tprob[i];

* Now find the sequence with the lowest cost */
Lowest _cost = Explicit_Cost;
FOR each unique target T DO
Cost = Explicit_Cost;
El imCost = 0;
FOR each range R in T fromlowest to highest P[i]/Ci] DO
Cost += P[i]*(tcost[i] - ElimCost) - (i]*tprob[i];
I F Cost < Lowest_Cost THEN
Lowest _Cost = Cost;
Best _Sequence = current sequence;
ElimCost += (i];

Figure 6.1: Selecting the Ordering of a Sequence of Range Conditions

CHAPTER 7

IMPROVING THE SELECTED SEQUENCE OF
RANGE CONDITIONS

Other improvements were obtained after the ordering decision was made for a
sequence of range conditions. The compiler can determine the best ordering of
the two branches within a single range condition that is of type Form 4 shown
in Table 3.1. The compiler assumed that both branches would be executed in
estimating the cost for selecting the range condition ordering. If the result of the
first branch indicates that the range condition is not satisfied, then the second
branch need not be executed. Assume that such a range condition, R;, is the
ith range condition in the sequence and is associated with the range [e;..co].
The probability that the value of the common variable is below or above the
range at the point that the range condition is performed can be determined
as follows. We know that the range conditions associated with the sequence
[R1, Ra, ... R;_1] have already been tested and the value of the common variable
cannot be in these ranges if R; is reached. Given that there are n total range
conditions, the compiler examined the probability for each of the remaining
ranges, [R;y1, Riya,. .., R,], to determine the probability that v < ¢; versus the
probability that v > ¢;. Based on these probabilities, the branch is placed first
that is most likely to determine if the range condition is not satisfied.

For example, suppose we have this situation:

[RivRi-I-lv .. 7Rn]

46

47

where R; is [65..97], R;41 is [48..55], Ri42 is [33, 33], and R,y5 is [104. MAX].
Suppose the number of times when the value of the common variable falls
into R;y1, Ri1o and R, are 200, 100, and 5,000 respectively. R; is a properly
bounded range and hence two branches need to check if the value of the common
variable falls into R;. We can have two different orders for determining if R;, is

satisfied, as shown in Figure 7.1.

(a) First Form of Checking (b) Second Form of Checking
Range[65..97] Range[65..97]

Figure 7.1: Branches for Deciding a Properly Bounded Range.

We use the counts of the satisfied ranges below and above R;. We have 300
samples which are less than 65, and we have 5,000 samples which are greater
than 97. If we choose the first form as shown in Figure 7.1 (a), then the total
cost will be 300 x 2 + 5,000 x 4 = 20,600 since each condition requires both
a comparison and branch instruction. If we choose the second form, then the
total cost will be 5,000 x 2+ 300 x 4 = 11,200. Obviously the second form has
a lower cost than the first form.

Suppose the total number of samples falling into ranges less than R; is nq,

48

and the total number of samples falling into ranges above R; is ny. ny and ns
can be easily obtained by sorting ranges R;, Rit1, Riya,..., Ry. The cost for (a)
and (b) will be nq x 1 4+ ng x 2 versus ny x 1 4+ ny x 2. It is easy to see that we
should choose (a) when ny > ny and (b) when ny > ny.

Another improvement that was performed after the range conditions have
been ordered is to eliminate redundant comparisons. For instance, consider Fig-
ure 7.2(a). There are two consecutive range conditions that test if the common
variable is in the ranges [c+1..max] and [c..c]. Figure 7.2(b) shows an equivalent
comparison and branch for the first range condition. The comparison instruc-

tion within the second range condition is redundant and the compiler eliminates

it.

IC=v7c+1; # first comparison IC=v7c; # first comparison
PC=IC>=0->L1;# first branch PC=IC>0->L1; # first branch
IC=v7c; # second comparison

PC=I1C==0->L2;# second branch PC=1C==0->L2;#second branch

(a) Before (b) After

Figure 7.2: Eliminating Redundant Comparisons.

CHAPTER 8

APPLYING THE REORDERING
TRANSFORMATION

Once a branch ordering has been selected, the compiler will apply the reorder-
ing transformation. Figure 8.1 (a) shows a control-flow segment containing a
common successor sequence. Figure 8.1 (b) shows the control flow with the
reordered branch blocks. The predecessors of the first original branch block
now have transitions to the first reordered branch block, which in this case is a
replication of the second original branch block. Also we do not generate an extra
unconditional branch instruction by replicating the default target Tp, assuming
Tp is a terminal block. This will guarantee the semantic equivalence whenever
the head of the sequence is entered. Figure 8.1 (c) shows the code after applying
dead code elimination. The original branch block By was deleted, while branch
block B; remains since it was still reachable from another path. Other optimiza-
tions, such as code repositioning and branch chaining to minimize unconditional
jumps, were also reinvoked to improve the code.

Figure 8.2 (a) through (e) shows the reordering transformation for a common
variable sequence. In Figure 8.2 (b), the range conditions are replicated in order
to get rid of the side transition into the sequence from block P3, again Tp is
replicated to avoid an unconditional jump. We can skip this step if there is no
side transition into the sequence. Note that although we draw the side effects

S; and S, as separate blocks, they are really contained in the basic blocks

49

30

(a) Origina Sequence (b) Sequence with Reordered Branches

(c) Sequence After Dead Code Elimination

Figure 8.1: Reordering Transformation for Common Successor Sequence

containing R; and Ry, respectively.

The next step is to transform the sequence into a reorderable sequence by
replicating the side effects, as shown in Figure 8.2 (¢). Note T is also replicated
to avoid the introduction of an unconditional jump. In Figure 8.2 (d), the range
conditions are reordered, with an additional range condition R4 being moved
out of the original default range conditions to the head of the sequence. Finally,
we invoke dead code elimination and the result is Figure 8.2 (e).

When a sequence of branches with a common successor overlapped with a
sequence of branches comparing a common variable, we need to make a choice
as to which type should be used. Our experiments indicated that the common

variable type is more effective (see the results in Chapter 7.) Hence the com-

51

(c) No Intervening Side Effects

(b) Replicated Range Conditions

(a) Origina Sequence

(e) Dead Code Elimination

(d) Reordered Range Conditions

Figure 8.2: Example of Applying the Reordering Transformation

52

piler gave the common variable sequence precedence over the common successor
sequence.

Figure 8.3(a) shows an example in which [V, N3] is a common variable
sequence and [N, V3] is a common successor sequence. Assume that [Ng, V5]

and [Ny, N3] should be reordered based on profile information and there are no

() Original Sequence (b) After Common Variable Sequence Reordering (c) After Dead Code Elimination

Figure 8.3: Resolving Sequence Overlapping.

side transitions for both sequences. The compiler is going to reorder sequence
[N1, N3] before reordering [Nz, Ns]. Figure 8.3(b) shows that four new basic
blocks are created to apply the reordering of [Ny, N,], among which N; and N,
correspond to range conditions Ny and N, and Nj and T} are replicated code of
blocks N3 and 75. Here we assume block 73 1s a terminal block. Since we need to
replicate code until we reach a terminal block, we cannot stop replication at N,
and hence we continue to replicate Ty. After we finish reordering all the common
variable sequences, we are going to reorder common successor sequences. When

we come to the common successor sequence [N,, N3], we are not going to apply

33

the reordering since now block Ny does not have any predecessors. As we can
see in Figure 8.3 (c), the basic blocks Ny, Ny, N3 and T3 are deleted.

The compiler also checks for a special case in which the reordering of a
common successor sequence should not be applied at all. Figure 8.4(a) gives
an example in which [Ny, N3] is a common successor sequence and [Ny, N3] is a
common variable sequence. Figure 8.4 (b) shows the situation after reordering
[N2, N5]. Note that in Figure 8.4 (b) the basic block Ny has lost all of its
predecessors, including N;. In this case the original relationship between Ny
and N, is lost, i.e, they do not form a common successor sequence any more.

So the compiler will not apply the reordering of [Ny, Vs].

7 7

F TT %
S
R

(@) Original Sequence (b) After Common Variable Sequence Reordering (c) After Dead Code Elimination

N
<Ng>

T

3

=l [
N =

Figure 8.4: Special Case of Sequence Overlapping.

CHAPTER 9
RESULTS

Measurements were collected on the code generated for the SPARC architecture
by the vpo compiler using the ease environment [11]. We chose non-numerical
applications since they tend to have complex control flow and a higher density
of conditional branches. Table 9.1 shows the dynamic frequency measurements
from several common Unix utilities. !

The Original column contains the number of instructions executed with all
of vpo’s conventional optimizations applied. We present in the rest of the table
the percentage change in the number of instructions and branches executed after
reordering sequences of branches with a common successor, reordering sequences
of range conditions comparing a common variable, and reordering both types
of sequences. The approach for reordering branches with common successors
had very little impact. The compiler could only find very few sequences that
were deemed worthwhile to reorder. The approach for reordering range condi-
tions comparing a common variable had significant benefits both in reducing
the total number of instructions and conditional branches. Also, comparison
instructions became redundant and were eliminated much more often when an
original default range became an explicit range in the reordered sequence. One
may notice that the reordering transformations had a slight negative impact

on a few programs, such as hyphen, which occurred for a couple of reasons.

IThe heuristic for Table 9.1 is Heuristics Set I as defined later.

o4

)

Table 9.1: Dynamic Frequency Measurements for Heuristic Set 1.

Program Original Common Successor Common Variable Both

Insts Branches Insts Branches Insts Branches
awlk 13,611,150 || -3.232% | -3.828% | -2.02% ~4.19% | -3.88% 7.36%
cb 17,100,927 || -0.253% | -0.300% | -7.65% | -15.46% | -7.90% | -15.76%
cpp 18,883,104 || +0.160% | +0.322% | -0.13% 0.19% | -0.06% | +0.13%
ctags 71,824,053 || -0.004% | -0.004% | -9.10% | -14.72% | -9.00% | -14.62%
deroff 15,458,812 || -0.032% | -0.003% | -1.52% -2.63% | -1.55% -2.62%
grep 9,256,749 || -0.028% | -0.053% | -3.60% -8.31% | -3.62% -8.37%
hyphen | 18,059,010 0.000% | 0.000% | +3.42% | +3.40% | +3.41% | +3.34%
join 3,552,801 0.000% 0.000% | -1.68% -2.12% | -1.68% -2.12%
lex 10,005,018 || -0.546% | -0.919% | -4.56% | -10.39% | -4,81% | -10.52%
nroff 25,307,809 || -1.118% | -1.869% | -2.48% -6.35% | -3.21% -7.32%
pr 73,051,342 0.000% 0.000% | -16.25% | -29.96% | -16.25% | -29.96%
ptx 20,059,901 || -0.860% | -1.4174% | -9.18% | -13.28% | -10.04% | -14.69%
sdiff 14,558,535 || -0.043% | -0.037% | -16.09% | -37.03% | -16.13% | -37.07%
sed 14,229,310 || -0.166% | -0.310% | -1.16% -2.03% | -1.33% -2.34%
sort 23,146,400 0.000% 0.000% | -47.20% | -57.38% | -47.20% | -57.38%
we 25,818,199 0.000% 0.000% | -15.05% | -26.26% | -15.05% | -26.25%
yace 25,127,817 || -0.022% | -0.034% | -0.25% -0.44% | -0.27% -0.47%
average || 23,473,585 || -0.361% | -0.497% | -7.91% | -13.37% | 6.745% | -13.73%

First, different test input data was used as compared to the training input data.
When we used the same test input data as the training input data, the num-
ber of branches never increased. Second, the reordering transformation was
applied after all optimizations except for filling delay slots. Sometimes delay
slots would be filled from the other successor and would often not execute a
useful instruction. One should note that inconsistent filling of delay slots also
sometimes resulted in increased performance benefits. The transformation may
also have significant benefits when a program executes most of its instructions
in a reorderable sequence, such as in sort.

Since there is little benefit from reordering common successor sequences, the
following tables only consider reordering common variable sequences. Three dif-
ferent sets of heuristics were used when translating switch statements. Assume

there are n cases in a switch statement and there are m possible values between

56

the first and last case. When compiling for a SPARC IPC and a SPARC 20,
the front end used Heuristic Set I that would only generate an indirect jump
from a table if n > 4 and m < 3n. If an indirect jump was not generated,
then a binary search was used when n > 8. These are the same heuristics
used in the pce front end [12]. The authors used the dual loop method [13]
and found that indirect jumps on the SPARC Ultra I were about four times
more expensive than indirect jumps on the SPARC IPC or SPARC 20 [14].
Therefore, Heuristic Set II used for the Ultra only generated an indirect jump
when n > 16. Finally, Heuristic Set Il always generated a linear search when
translating a switch statement, which resulted in the maximum benefit from
reordering. The differences between using the different sets of heuristics in-
dicates that the effectiveness of branch reordering increases as indirect jumps
become more expensive. It is also interesting to note that the total number of
instructions executed after reordering often decreased as fewer indirect jumps
were generated. This shows that profile information should be used to decide
if an indirect jump should be generated or branch reordering should instead
be applied. Tables 9.2 and 9.3 show the dynamic frequency measurements for
Heuristic Set 1T and Heuristic Set 111, respectively.

Tables 9.4, 9.5, and 9.6 show static measurements for the same set of
programs for Heuristic Set I, II, and III, respectively. There was only about a
5% increase in the number of instructions generated. The Total Seqs column
represents the total number of reorderable sequences detected in each program.
The Segs column indicates the percentage of these sequences that were actually

reordered. The single most common factor that prevented a sequence from

Table 9.2: Dynamic Frequency Measurements for Heuristic Set II.

Original Reordered
Program Insts Branches Insts | Branches
awk 13,552,831 | 2,195,748 | -2.97% -6.15%
cb 17,100,927 | 2,882,466 | -7.65% | -15.46%
cpp 18,880,116 | 2,642,973 | -0.13% -0.19%
ctags 71,824,093 | 18,948,699 | -9.02% | -14.64%
deroff 15,449,146 | 2,714,435 | -1.38% -2.36%
grep 9,938,414 | 2,115,757 | -10.53% | -22.04%
hyphen 18,059,010 | 2,831,171 | +3.42% | +3.40%
join 3,552,801 983,936 | -1.68% -2.12%
lex 10,003,391 | 1,764,417 | -4.57% | -10.40%
nroff 25,313,527 | 3,690,741 | -2.50% -6.39%
pr 73,051,352 | 12,078,585 | -16.25% | -29.96%
ptx 20,059,901 | 3,310,268 | -9.18% | -13.28%
sdiff 14,558,530 | 2,765,574 | -16.09% | -37.03%
sed 14,243,263 | 2,549,635 | -1.28% -2.32%
sort 23,146,400 | 6,277,167 | -47.20% | -57.38%
wc 25,818,199 | 5,227,974 | -15.05% | -26.26%
yacc 25,127,817 | 4,851,335 | -0.25% -0.44%
average || 23,510,571 | 4,578,287 | -8.37% | -14.30%

Table 9.3: Dynamic Frequency Measurements for Heuristic Set II1.

Original Reordered
Program Insts Branches Insts | Branches
awk 13,651,335 | 2,230,559 | -3.63% -7.44%
cb 19,662,207 | 3,538,146 | -21.79% | -37.41%
cpp 30,477,974 | 6,730,186 | -28.37% | -41.85%
ctags 72,222,399 | 19,042,284 | -9.13% | -14.73%
deroff 15,491,185 | 2,722.474 | -1.40% -2.39%
grep 11,810,072 | 2,526,865 | -32.04% | -51.42%
hyphen 18,059,010 | 2,831,171 | +3.42% | +3.40%
join 3,552,801 983,936 | -1.68% -2.12%
lex 10,028,151 | 1,771,795 | -4.77% | -10.73%
nroff 25,339,678 | 3,697,534 | -2.53% -6.45%
pr 73,051,352 | 12,078,585 | -16.25% | -29.96%
ptx 20,059,901 | 3,310,268 | -9.18% | -13.28%
sdiff 14,558,530 | 2,765,574 | -16.09% | -37.03%
sed 15,368,724 | 3,014,722 | -10.07% | -17.01%
sort 23,146,434 | 6,277,177 | -47.20% | -57.38%
wc 25,818,199 | 5,227,974 | -15.05% | -26.26%
yacc 25,168,370 | 4,864,310 | -0.47% -0.76%
average || 24,556,842 | 4,918,444 | -12.72% | -20.75%

Table 9.4: Static Measurements for Heuristic Set 1.

Reordered
Program Insts Total Seqs Avg Seq Len
Y45 Oig | After
awk || +1.91% 48 16.67% | 2.88 3.75
cb || +8.32% 12 83.33% | 2.50 2.80
cpp || +1.57% 15 33.33% | 2.20 3.20
ctags | +9.48% 28 39.29% | 2.64 3.36
deroff || +1.58% 38 23.68% | 2.67 2.89
grep || +3.51% 7 28.57% | 3.50 4.50
hyphen || +8.70% 3 100% | 2.67 3.33
join || +7.61% 8 37.50% | 3.33 3.67
lex || +8.55% 95 58.95% | 2.55 2.95
nroff || +1.62% 87 21.84% | 2.95 3.53
pr || +2.40% 10 50.00% | 3.00 4.20
ptx || +1.47% 4 75.00% | 3.00 4.33
sdiff | +3.48% 8 37.50% | 2.67 3.33
sed | +4.22% 34 47.06% | 2.88 3.50
sort || +3.68% 16 56.25% | 2.33 2.78
we || +10.20% 3 33.33% | 5.00 5.00
vace || +6.42% 35 77.14% | 3.70 4.48
average || +4.98% 26 48.20% | 2.97 3.62

Table 9.5: Static Measurements for Heuristic Set 11.

Reordered
Program Insts Total Seqs Avg Seq Len
Y45 Oig | After
awk || +2.05% 56 19.64% | 3.91 4.55
cb || +8.32% 12 83.33% | 2.50 2.80
cpp || +1.57% 16 31.25% | 220 | 3.20
ctags | +9.47% 29 37.93% | 2.64 3.36
deroff | +1.76% 41 24.39% | 3.00 3.20
grep || +4.11% 19 36.84% | 2.57 2.86
hyphen || +8.70% 3 100% | 2.67 3.33
join || +7.61% 8 37.50% | 3.33 3.67
lex || +8.98% 103 58.25% | 2.68 3.07
nroff | +1.73% 93 25.81% | 2.83 3.33
pr || +2.62% 11 54.55% | 3.67 | 4.67
ptx | +1.47% 5 60.00% | 3.00 4.33
sdiff || +3.49% 10 40.00% | 3.00 3.50
sed +4.32% 41 51.22% | 2.81 3.29
sort || +3.68% 16 56.25% | 2.33 2.78
we || +10.20% 3 33.33% | 5.00 5.00
vace || +6.42% 35 77.14% | 3.70 4.48
average || +5.09% 29 48.67% | 3.05 3.61

Table 9.6: Static Measurements for Heuristic Set 111.

Reordered
Program Insts Total Seqs Avg Seq Len
S5 1 Oig | After
awk || +1.97% 42 30.95% | 18.15 | 18.69
ch || +11.17% 6 66.67% | 5.50 | 7.75
cpp || +2.47% 16 37.50% | 14.33 | 16.50
ctags | +6.50% 21 38.10% | 3.50 | 4.50
deroff | +1.23% 34 20.59% | 5.29 | 5.57
grep | +3.29% 9 44.44% | 8.00 | 8.50
hyphen || +8.70% 3 100% | 2.67 | 3.33
join || +7.61% 8 37.50% | 3.33 | 3.67
lex || +6.25% 54 59.26% | 6.16 | 7.00
nroff || +1.71% 46 32.61% | 6.00 | 6.87
pr || +2.62% 11 54.55% | 3.67 | 4.67
ptx | +1.47% 5 60% | 3.00 | 4.33
sdiff || +3.49% 10 40% | 3.00 | 3.50
sed || +5.32% 25 48% | 7.75 | 8.58
sort || +3.76% 11 63.64% | 3.57 | 4.29
we || +10.20% 3 33.33% | 5.00 | 5.00
yacc | +6.64% 29 79.31% | 4.52 | 5.65
average || +4.96% 19 49.79% | 6.08 | 6.96

62

being reordered was that profile data indicated that the sequence was never
executed. Using multiple sets of profile data to provide better test coverage
would increase this percentage. The Avg Seq Len shows the average number
of branches in each reordered sequence before and after reordering. Note that
most of the sequences contained only two or three branches. The length of each
reordered sequence typically increased since often one or more default ranges
became explicit after reordering.

Branch prediction measurements were obtained for the SPARC Ultra I,
which supports branch prediction with a (0,2) predictor with 2048 entries. Ta-
ble 9.7 shows branch prediction measurements for the same set of programs.
Column Branches is the total number of branch instructions executed. Column
Miss# is the number of mispredictions and column Miss% is the percentage of
mispredictions. Column Miss# Change% is the change in percentage of num-
ber of mispredictions between Original Miss# and Reordered Muiss#. It was
anticipated that the number of branch mispredictions would decrease since the
number of total branches executed was substantially reduced. Fewer mispredic-
tions had been observed when branches were coalesced into indirect jumps [14].
However, the misprediction results for branch reordering were mixed. Nine of
the test programs had fewer mispredictions after reordering and the remaining
eight had increases. But the average ratio of decreased instructions executed
to the increased number of branch mispredictions was 1221.94 to 1 for these
eight programs. Thus, the increase in mispredictions was far outweighed by the
benefit of reducing the number of instructions executed. Table 9.8 shows that

comparable results were obtained when simulations were performed using other

Table 9.7: Branch Prediction Measurements.

Program Original Reordered Miss # Inst
Miss #£ | Miss % | Miss # | Miss % | Change % | Ratio %

awk || 243,027 | 11.15% 241,916 | 11.83% -0.46% N/A

cb || 440,712 | 15.29% 466,158 | 19.13% +5.77% 51.41

cpp || 389,566 | 14.22% 382,761 | 14.00% -1.75% N/A
ctags || 569,753 | 3.01% | 1,854,523 | 11.26% | +225.50% 5.04
deroff || 62,819 | 2.32% 61,016 | 2.31% -2.87% N/A
grep || 115,007 | 5.44% 110,064 | 6.67% -4.30% N/A
hyphen || 266,177 | 9.40% 490,095 | 16.74% | +84.12% -2.76
join 50,440 | 5.13% 47,605 | 4.94% -5.62% N/A
lex 66,634 | 3.77% 67,820 | 4.29% +1.93% 355.47
nroff || 141,167 | 3.82% 139,849 | 4.05% -0.93% N/A
pr || 750,570 | 6.21% 753,046 | 8.90% +0.33% | 4,793.65

ptx || 215,218 | 6.50% 296,103 | 10.31% | +37.58% 22.78
sdiff || 156,440 | 5.66% 148,078 | 8.50% -5.35% N/A
sed 83,579 | 3.23% 82,037 | 3.25% -1.84% N/A
sort || 171,619 | 2.73% 153,745 | 5.75% -10.41% N/A

we || 481,767 | 9.22% 482,627 | 12.52% +0.18% | 4,519.65
yace || 373,825 | T7.71% 375,899 | 7.78% +0.55% 30.28
average || 269,307 | 6.75% 361,961 | 8.96% | +18.97% | 1,221.94

branch predictors.

63

The execution time measurements shown in Table 9.9 were obtained from the

average reported user times of ten executions of each program using the C run-

time library function times(). The execution time decrease was not as significant

as the reduction in instructions executed on these machines. One should note

that in Table 9.9 the frequency measurements from the code compiled by our

compiler did not include the C run-time library code. However, the library code

did contribute to the execution times.

64

Table 9.8: Branch Prediction Measurements for Different Configurations

(0,1) Predictor

(0,2) Predictor

(2,2) Predictor

Entries Miss # Inst Miss # Inst Miss # Inst
Change % | Ratio | Change % | Ratio | Change % | Ratio
32 || +16.65% 681.20 | +17.37% | 1,313.47 | +17.05% | 805.78
64 || +21.96% 720.73 | 421.15% | 1,082.02 | +20.77% | 640.08
128 || +21.91% | 8,583.19 | +20.60% | 1,091.28 | +19.40% | 661.92
256 || +21.91% 972.87 | +20.21% 953.70 | +19.03% | 569.88
512 || 419.67% | 5,852.38 | +18.09% | 1,200.25 | +17.34% | 631.98
1024 || +20.45% | 13,331.71 | 418.88% | 1,217.61 | +18.44% | 664.03
2048 || 4+20.59% | 13,311.73 | +18.97% | 1,221.94 | +37.65% | 653.02
Table 9.9: Execution Times.
Machine Average Execution Time

SPARC IPC -4.942%

SPARC 20 -5.565%

Ultra SPARC -2.878%

CHAPTER 10
FUTURE WORK

There are several areas in which reordering branches could be extended. Ad-
ditional sequences of branches with common successors could be optimally re-
ordered. Interprocedural analysis could be used to determine if invoked func-
tions do not cause a side effect. Avoiding the execution of a function call could
have significant performance benefits. Sequences having more than two branches
could be optimally reordered by obtaining all combinations of branch results us-
ing an array of profile counters. This approach may be reasonable for a small
sequence length (e.g. n <= T7), which may handle most branch sequences with a
common successor. In addition, a sequence of branches with a common succes-
sor can be viewed as a single block with a branch since it has two successors (the
common successor and the other successor of the last branch in the sequence).
Thus, an entire sequence may be reordered with another branch or sequence if
they have a common successor. This situation may occur from the translation
of complex logical expressions applying different logical operators (e.g. both ||
and && operators in C.)

A sequence of range conditions is one of several approaches that could be
used to determine a target associated with the value of an expression. Essen-
tially, a sequence of range conditions is a linear search. Some of these other

approaches include performing a binary search, using a jump table, and hash-

65

66

ing [3]. Profile data could be used to more effectively apply these other ap-
proaches as a semi-static search method and to decide when each method or a
combination of methods is most beneficial. We plan to investigate the use of
a binary search approach. Instead of finding a near-optimal sequence of range
conditions, we can select an optimal or near-optimal binary search tree. Our
initial investigations have shown that an algorithm using dynamic program-
ming to select an optimal binary search would require both exponential time
and space complexity. We can reduce this complexity by first using heuristics to
partition ranges and then applying dynamic programming to find the optimal
binary search tree for smaller sets of ranges. We plan to study how much more
benefit will be obtained using the binary search approach instead of the linear

search approach at the expense of increasing the complexity.

CHAPTER 11
CONCLUSIONS

This thesis described an approach of using profile information to reduce the
number of conditional branches executed by reordering sequences of branches.
Algorithms for detecting sequences of reorderable branches having a common
successor or comparing a common variable were presented. Profiling was per-
formed to estimate the probability that each branch will transfer control out of
the sequence. The most beneficial orderings for these sequences based on pro-
filing and cost estimates can often be obtained. The results showed reductions

in the number of branches and instructions executed and execution time.

67

1]

2]

3]

REFERENCES

J. W. Davidson and S. Jinturkar, “Aggressive loop unrolling in a retar-
getable, optimizing compiler”, Proceedings of Compiler Construction Con-

ference, pp. 59-73, April 1996.

F. Allen and J. Cocke, A Catalogue of Optimizing Transformations, ed. R.
Rustin, Prentice-Hall, Englewood Cliffs, NJ, 1971.

D. A. Spuler, Compiler Code Generation for Multiway Branch Statements
as a Static Search Problem, Addison-Wesley, U.S.A, June 1987.

F. Mueller and D. B. Whalley, “Avoiding conditional branches by code
replication”, Proceedings of the SIGPLAN 95 Conference on Programming
Language Design and Implementation, pp. 56-66, June 1995.

R. Gupta R. Bodik and M. Soffa, “Interprocedural conditional branch
elimination”, Proceedings of the SIGPLAN’97 Conference on Programming
Language Design and Implementation, pp. 146-158, June 1997.

G. R. Uh and D. B. Whalley, “Coalescing conditional branches into ef-
ficient indirect jumps”, Proceedings of the International Static Analysis
Symposium, pp. 315-329, September 1997.

B. Calder and D.Grunwald, “Recuding branch costs via branch alignment”,
Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 242-251, October
1994.

D. R. Karger C. Young, D. S. Johnson and M. D. Smith, “Near-optimal in-
traprocedural branch alignment”, Proceedings of the SIGPLAN’97 Confer-

ence on Programming Language Design and Implementation, pp. 183-193,
June 1997.

C. Young and M. D. Smith, “Improving the accuracy of static branch pre-
diction using branch correlation”, Proceedings of the Sizth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, pp. 232-241, October 1994.

63

[10]

69

J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch di-
rections from previous runs of a program”, Proceedings of the Fifth Inter-
national Conference on Architectural Suport for Programming Languages
and Operating Systems, pp. 85-95, October 1992.

J. W. Davidson and D. B. Whalley, “A design environment for addressing
architecture and compiler interactions”, Microprocessors and Microsystems

15(9), pp. 459-472, November 1991.

S. C. Johnson, A Tour Through the Portable C' Compiler, ed. R. Rustin,
Prentice-Hall, Englewood Cliffs, NJ, 1979.

R. A. Volz T. N. Mudge T. Schultze R. M. Clapp, L. Duchesneau, “Toward
real-time performance benchmarks for ada”, Communications of the ACM

bf 19(8), pp. 760-778, August 1986.

G. Uh, Effectively Exploiting Indirect Jumps, PhD Dissertation, Florida
State University, Tallahassee, FL, December 1997.

