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ABSTRACTThe conditional branch has long been considered an expensive operation. Therelative cost of conditional branches has increased as recently designed ma-chines are now relying on deeper pipelines and higher multiple issue. Reducingthe number of conditional branches executed can often result in a substantialperformance bene�t. This thesis describes a code-improving transformation toreorder sequences of conditional branches. First, sequences of branches thatcan be reordered are detected in the control 
ow. Second, pro�ling informa-tion is collected to predict the probability that each branch will transfer controlout of the sequence. Third, the cost of performing each conditional branch isestimated. Fourth, the most bene�cial ordering of the branches based on theestimated probability and cost is selected. The most bene�cial ordering oftenincluded the insertion of additional conditional branches that did not previouslyexist in the sequence. Finally, the control 
ow is restructured to re
ect the newordering. The results of applying the transformation were signi�cant reductionsin the dynamic number of instructions and branches, as well as decreases inexecution time.
ix



CHAPTER 1INTRODUCTIONSequences of conditional branches occur frequently in programs, particularlyin nonnumerical applications. Sometimes these branches may be reordered toe�ectively reduce the dynamic number of branches encountered during pro-gram execution. One type of reorderable sequence consists of branches havinga common successor. For instance, a logical expression may consist of sev-eral relational expressions connected by logical operators (e.g. || and && in C).Each relational expression will typically be translated into a conditional branch.Applying a logical operator between two relational expressions will result in acommon successor for these associated two branches (i.e. the True or Falsetarget of the logical expression). For instance, Figure 1.1 shows two di�erentlogical expressions with the common successors identi�ed. Nested control state-ments, such as if and while statements may also result in similar reorderablesequences.In Figure 1.1(a), for example, control 
ow will reach code segment x if ei-ther a == 0 or b == 1 is True. With the semantics of the C language, theexpression b == 1 will not be evaluated if the evaluation of expression a == 0turns out to be True. In programming language parlance, we say in this caseexpression a == 0 short-circuits expression b == 1. If we know the fact thatexpression b == 1 is more likely to short-circuit expression a == 0, we would1
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if (a == 0 || b == 1)

   x;

y;

if (a == 0 && b == 1)

   x;

y;

If Either Expression is True

(a) x Is the Common Successor (b) y Is the Common Successor

If Either Expression Is FalseFigure 1.1: Example Sequences of Branches with a Common Successor.like to restructure Figure 1.1(a) in the way as shown in Figure 1.2(a).
   x;

y;

   x;

y;

(b) y Is the Common Successor

Segment of Figure 1.1(b)Segment of Figure 1.1(a)

(a) Equivalent Structure of Code

if (b == 1 || a == 0) if (b == 1 && a == 0)

Figure 1.2: Reordering of Branches in Figure 1.1.Another type of reorderable sequence consists of branches comparing thesame variable or expression to constants. These sequences may occur whena multiway statement, such as a C switch statement, does not have enoughcases to warrant the use of an indirect jump from a jump table. Also, controlstatements may often compare the same variable more than once. Consider thefollowing original code segment in Figure 1.3(a). Assume that there is typicallymore than one blank read per line and EOF is only read once. Many astuteprogrammers may realize that the order of the statements may be changed toimprove performance. In fact, we found that the authors of most Unix utilities
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while (c=getchar())

       != EOF)

   if (c == ’\n’)

      x;

   else if (c == ’ ’)

      y;

   else

      z;

(a) Original Code

while (1) {

   c = getchar();

   if (c > ’ ’)

   else if (c == ’ ’)

      y;

   else if (c == ’\n’)

      x;

   else if (c == EOF)

      break;

   else

}

(c) Improved Reordering

while (1) {

   c = getchar();

   if (c == ’ ’)

      y;

   else if (c == ’\n’)

      x;

   else if (c == EOF)

      break;

   else

      z;

}

(b) Conventional Reordering

      goto def;

def:  z;Figure 1.3: Example Sequence of Comparisons with the Same Variable.were quite performance conscious and would attempt to manually reorder suchstatements. A conventional manual reordering shown in Figure 1.3(b) would im-prove performance by performing the three comparisons in reverse order. In fact,the most commonly used characters (e.g. letters, digits, punctuation symbols)have an ASCII value that is greater than a blank (32), carriage return (10), orEOF (-1). Figure 1.3(c) shows an improved reordering of the statements that in-creases the static number of if statements and associated conditional branches,but normally reduces the dynamic number of conditional branches encounteredduring the execution. Manually reordering a sequence of comparisons of a com-mon variable or inserting extra if statements to achieve performance bene�ts,as shown in Figure 1.3(b) and (c), can lead to obscure code. A general improvingtransformation to reorder branches automatically may help encourage the use



4of good software engineering principles by performance conscious programmers.
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Figure 1.4: Overview of Compilation Process for Branch Reordering.This thesis presents methods for reordering code to reduce the number ofbranches executed. Figure 1.4 shows an overview of the compilation processfor reordering branches. A �rst compilation pass is applied to a C source pro-gram. All conventional optimizations are applied except for �lling delay slots.1Sequences of reorderable branches are detected in the control 
ow and an ex-ecutable �le is produced that is instrumented to collect pro�ling informationabout how often each branch in the sequence will transfer control out of thesequence. This pro�le data and estimated cost for executing each branch isused during a second compilation pass to estimate the most bene�cial branchreordering. Delay slots are �lled after branch reordering and the �nal executable1We do not want to allow �lling of delay slots �rst. This would complicate reorderingbranches since before �lling delay slots a branch would have to be the last RTL within a block.Eventually, we may reinvoke some other transformations after branch reordering if we believethere would be additional opportunities as a result of the branch reordering transformation.



5is produced. The transformation was frequently applied with reductions in in-structions executed and execution time.The thesis is organized as follows. Chapter 2 brie
y describes some relatedwork. Chapters 3 to 6 are presented in the same sequential order by whichthe transformation is performed. Chapter 3 shows how to detect a sequence ofreorderable branches. Chapter 4 presents how to perform pro�ling and gives realexamples of pro�le information. Chapter 5 discusses how to select the orderingof branches. Chapter 6 explains how to apply the reordering transformation.Chapter 7 presents results including the reductions for the total number ofinstructions, total number of branch instructions, execution time, etc. Chapter8 discusses future work in this topic and Chapter 9 gives the conclusions for thethesis.



CHAPTER 2RELATED WORKThere has been some research on techniques for avoiding the execution of con-ditional branches. Loop unrolling has been used to avoid executions of theconditional branch associated with a loop termination condition [1]. Figure 2.1gives an example of loop unrolling.
for (i = 0; i < 100; i += 4) {

   f(i);

   f(i+3);

}

   f(i);

   f(i+1);

   f(i+2);

(b) After Loop Unrolling

   f(i);
for (i = 0; i < 102; i++)

(a) Before Loop Unrolliing

for ( ; i < 102; i++)Figure 2.1: Loop UnrollingTo perform loop unrolling, in general we need to replicate the loop body oneor more times, change the increment of the loop induction variable, and addnew code to execute the excess iterations of the loop as shown in Figure 2.1.Loop unswitching moves a conditional branch with a loop-invariant condi-tion before the loop and replicates the loop in each of the two destinations ofthe branch [2]. Figure 2.2 is an example of loop unswitching. The relational ex-6



7pression a == 0 is loop-invariant, hence it can be moved out of the loop. Afterunswitching, the expression a == 0 is only evaluated once, therefore reducingthe execution time.
   if (a == 0)

      x[i] = 0;

   else

      y[i] = 0;

if (a == 0)

   for (i = 0; i < 100; i++)

      x[i] = 0;

else

   for (i = 0; i < 100; i++)

      y[i] = 0;

(a) Before Loop Unswitching (b) After Loop Unswitching

for (i = 0; i < 100; i++)

Figure 2.2: Loop UnswitchingDi�erent search methods based on static heuristics for the cases associatedwith a multiway statement have been studied [3]. These methods include linearsearch, binary search, hashing, and indirect jump from a table. These studiesall assume that each case of a multiway statement are equally likely.Conditional branches have also been avoided by code replication [4]. Thismethod determines if there are paths where the result of a conditional branchwill be known and replicates code to avoid execution of the branch. The methodof avoiding conditional branches using code replication has been extended usinginterprocedural analysis [5].Finally, conditional branches have been coalesced together into an indirectjump from a jump table [6]. This method extends the use of an indirect jumptable far beyond the translation of a multiway statement and allows many other



8coalescing opportunities to be exploited.There have also been studies about reordering or aligning basic blocks tominimize pipeline penalties associated with conditional branches [7, 8]. How-ever, this reordering or alignment of basic blocks does not change the order ornumber of conditional branches executed. Instead, it only changes whether thebranches will fall through or be taken. Usually these approaches use pro�leinformation to minimize the number of taken branches on architectures wheretaken branches cause delays.



CHAPTER 3DETECTING A SEQUENCE OF REORDERABLEBRANCHESReorderable sequences of branches detected in this thesis consist of two types,those branches having a common successor block and those branches that com-pare the same variable or expression to constants. When a sequence of brancheswith a common successor overlapped with a sequence of branches comparing acommon variable, the latter type of sequence was used since this type of re-ordering was found to be more e�ective as described later in the thesis.3.1 Detecting a Sequence of Reorderable Brancheswith a Common SuccessorHaving two branches with a common successor means that both of the blockscontaining the branches have a transition to the same target block. Figure 3.1depicts an example of two branches with a common successor T.De�nition 1. A consecutive sequence of branches [B1; : : : ; Bn] is a path inthe control 
ow graph, where each node is a basic block that contains a branchand each edge is a control-
ow transition to the next basic block in the sequence.De�nition 2. A reorderable sequence of branches is a consecutive sequencewhere the branches may be interchanged in any permutation with no e�ect onthe semantics of the program. 9
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P

F

a

T

b

!a

P

F T

a’

b’ !b’

!a’!b

(b) Reordered Sequence(a) Original Sequence

Bi

Bj

Bj

BiFigure 3.1: Reordering Branches with Common Successors.De�nition 3. A side effect in a basic block is an instruction that updates avariable and the updated value can reach a use of that variable or register outsideof the basic block.Function calls were also considered side e�ects in this thesis since interpro-cedural analysis was not performed at this time.De�nition 4. Sets(B) is the set of variables and registers that are set in basicblock B.De�nition 5. Uses(B) is the set of variables and registers that are used in basicblock B.De�nition 6. Ins(B) is the set of variables and registers that are live whenbasic block B is entered.Theorem 1. A consecutive sequence of two branches [Bi; Bj] with a commonsuccessor can be reordered with no semantic e�ect on the program if1. both Bi and Bj do not have side e�ects,



112. Sets(Bj) \ Uses(Bi) \ Ins(Bi) = �, and3. the only predecessor of Bj is Bi.Proof: Consider the original and reordered sequences of blocks in Figure 3.1.Bi and Bj are blocks that contain branches that can be reordered. a, b, a0, b0are conditions associated with the branches.The two sequences are semantically equivalent given that1. state of the program is equivalent in both sequences when blocks F and Tare reached, and2. blocks F and T are always reached in both sequences under the sameconditions.3. no new error exceptions are introduced.Condition 1 can be satis�ed by noting that blocks Bi and Bj have no sidee�ects. Note that if Bi did have a side e�ect, then it could be split apart into theportion with a side e�ect and the portion without one. Only the latter portionwould be considered by the theorem.To satisfy condition 2, we can evaluate under what conditions blocks F andT will be reached in both sequences, note that the only predecessor of Bj is Bi.� In the original sequence F will be reached i� a && b.� In the original sequence T will be reached i� !a || a && !b, which simpli�esto !a || !b.� In the reordered sequence F will be reached i� a0 && b0.



12� In the reordered sequence T will be reached i� b0 && !a0 || !b0, whichsimpli�es to !a0 || !b0.Condition 2 can be satis�ed if a � a0 and b � b0. These conditions areequivalent since both Bi and Bj have no side e�ects and Sets(Bj) does nota�ect Uses(Bi) \ Ins(Bi).Condition 3 can be satis�ed if both Bi and Bj cannot raise exceptions. Noteno new error exceptions will be introduced after leaving the sequence due tocondition 1 and 2. On one hand, Bj must not raise an exception if movedbefore Bi. In this situation, the branch in Bi serves as a guard preventing anexception in Bj. For instance, this could occur if there is a memory referencein Bj that has an invalid address. 1 On the other hand, Bi must not raise anerror exception since otherwise if Bj is moved before Bi, Bj may short circuitBi and hence the exception raised by Bi may get lost. 2 2The compiler was updated to conservatively check if each memory referencein Bj was to an identi�able scalar reference. Pointer analysis could be per-formed to sometimes ease this restriction. No other instructions in our targetarchitecture can cause an error exception. 3Corollary 1. A consecutive sequence of branches with a single common suc-cessor can be reordered in any arbitrary permutation given that there are no1The compiler identi�ed the following memory references as safe: reference a global scalar,reference a local scalar variable, reference a parameter from caller's activation record.2There are di�erent opinions about whether Bi should have to raise an error exception ornot. Some people think it is OK to get rid of an exception through code transformation.3The compiler should also check for potential integer divisions by zero in Bj , but in ourtarget architecture, integer division is implemented as a function call and hence is consideredas side e�ect which violates condition 1 of theorem 1.



13intervening side e�ects, the sets of a given block in the sequence do not a�ectthe uses that are live entering any preceding block in the original sequence, andthe sequence is only entered through the �rst branch.Proof: Suppose for sequences with length of 2, 3, : : : , n, the above corol-lary is true. Now we need to prove for a sequence with length of n + 1, [B1,B2, : : : , Bn+1], is semantically equivalent to any sequence that is an arbitrarypermutation of these blocks.(i) Suppose the �rst block of the permutation is B1, then the rest of thepermutation is a permutation of [B2, B3, : : : , Bn, Bn+1], which is a sequenceof length n and by induction hypothesis it is equivalent to [B2, B3, : : : ,Bn,Bn+1]. In this case, the whole permutation is equivalent to [B1, B2, B3,: : : , Bn, Bn+1]. We know this sequence is valid since this is the originalorder of the sequence.(ii) Suppose the �rst block of the permutation is Bi (i 6= 1), then the rest of thepermutation is a permutation of [B1, B2, : : : , Bi�1, Bi+1, : : : , Bn, Bn+1](except Bi), which is a sequence of length n and it is equivalent to [B1, B2,: : : , Bi�1, Bi+1, : : : , Bn, Bn+1] (a sequence of length n without Bi). So thewhole permutation is equivalent to [Bi, B1, B2, : : : , Bi�1, Bi+1, : : : , Bn,Bn+1]. Since the sequence [Bi, B1] has a length of 2 and thus is equivalentto [B1, Bi], so the whole sequence is equivalent to [B1, Bi, B2, : : : , Bi�1,Bi+1, : : : , Bn, Bn+1].Now B1 is the �rst block, by (i) we know that the whole permutation isequivalent to B1, B2, B3, : : : , Bn, Bn+1.
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PC=IC:0,L330;
IC=r[8]?-1;

Bi:

PC=IC:0,L330;
IC=r[8]?-1;

Bi:

(a) Before Register Renaming (b) After Register Renaming

Bj:

r[8]=(W[r[14]+.9_ibuf]{16)}16;
r[9]=(W[r[14]+.9_obuf]{16)}16;
IC=r[9]?r[8];
PC=IC!0,L330; PC=IC!0,L330;

r[10]=(W[r[14]+.9_ibuf]{16)}16;
r[9]=(W[r[14]+.9_obuf]{16)}16;
IC=r[9]?r[10];

New Bj:

Figure 3.2: Register Renaming.The detection of a reorderable sequence of more than two branches with acommon successor is not described in this thesis. This study limited the detec-tion of such sequences to two branches since we could not guarantee an optimalordering for longer sequences. The reason for this limitations is discussed inChapter 5. Also, in our experiments the Sets(Bj) \ Uses(Bi) \ Ins(Bi) = �restriction never prevented branch reordering since the compiler was able to �ndan available register and successfully apply register renaming every time a set inBj a�ected a use that was live entering Bi. An example of register renaming isshown in Figure 3.2. The register r[8] is live entering Bi, but Bj sets r[8]. Afterrenaming r[8] with r[10] in Bj, the condition Sets(Bj) \ Uses(Bi) \ Ins(Bi)= � is satis�ed so this becomes a reorderable sequence. 44Theoretically, it is possible that all the registers are busy at that point and hence registerrenaming cannot be performed.



153.2 Detecting a Sequence of Reorderable RangeConditions Comparing a Common Variable toConstantsThe approach used for �nding a sequence of reorderable branches that comparea common variable or expression was quite di�erent from �nding a sequence ofreorderable branches having a common successor since it required associatingbranch targets with ranges of values.De�nition 7. A range is a contiguous range of integer values.De�nition 8. A range condition is a branch or a pair of consecutive branchesthat tests if an integer variable is within a range.De�nition 9. A consecutive sequence of range conditions [R1; : : : ; Rn] is apath in the control 
ow graph, where each node is a range condition testing thesame variable and each edge is control-
ow transition to the next range conditionin the sequence.De�nition 10. A reorderable sequence of range conditions is a consecutivesequence where the range conditions may be interchanged in any permutationwith no e�ect on the semantics of the program.The possible types of ranges and the corresponding range conditions areshown in Table 3.1, where v stands for the branch variable and c representsa constant. When a range is a single value or a range is unbounded in onedirection, a single conditional branch can be used to test if the variable is withinthe range. Two conditional branches are needed when a range is bounded andspans more than a single value, as depicted in Form 4 in Table 3.1.



16Table 3.1: Range Conditions and Corresponding Range of Values.Form Range of Values Range Condition1 c..c v == c2 MIN..c v <= c3 c..MAX v >= c4 c1..c2 c1 <= v && v <= c2Figure 3.3(a) depicts a sequence of two range conditions. R1 and R2 arerange conditions that can consist of one or two branches that check to see if avariable is in a range. T1 and T2 are target blocks of the range conditions andthe corresponding range of values for the range condition is given to the rightof these blocks. T3 is the default target block when neither range condition issatis�ed. Figure 3.3(b) shows how the sequence can be reordered. Note that T1and T2 can be the same target.
T1

P

R1

R2 T2

T3

T1

T2
T

T
F

F

T

T
F

F

T3

P

R2

R1

[c1..c2]

[c3..c4] [c1..c2]

[c3..c4]

not {[c1..c2],[c3..c4]} not {[c1..c2],[c3..c4]}

(a) Original Sequence (b) Reordered SequenceFigure 3.3: Reordering Range Conditions with No Intervening Side E�ects.De�nition 11. Two ranges are nonoverlapping if they do not have any com-mon values.



17Theorem 2. A sequence of two consecutive nonoverlapping range conditionscan be reordered with no semantic e�ect on the program if the sequence can onlybe entered through the �rst range condition, the two range conditions containonly pairs of comparisons and conditional branches, and the sequence has noside e�ects.Proof: Consider the original and reordered sequences of range conditions inFigure 3.3. The two sequences are semantically equivalent given that1. state of the program is equivalent in both sequences when blocks T1, T2,and T3 are reached, and2. blocks T1, T2, and T3 are always reached in both sequences under the sameconditions.3. no new error exceptions are raised.Condition 1 is satis�ed since the range conditions R1 and R2 have no sidee�ects.Condition 2 is satis�ed since the ranges associated with T1, T2, and T3 arenonoverlapping, there are no assignments in either range condition that cana�ect the other, and the only predecessor of the second range condition is the�rst range condition.Condition 3 can be satis�ed by considering the following two facts. First,no new error exceptions can be introduced after exiting the reordered sequencedue to conditions 1 and 2. Second, no new error exceptions can be introducedin R1 or R2 since comparison and conditional branch instructions cannot raise



18error exceptions on the target architecture. Note that there will be no assign-ments of registers or variables associated with a range condition since each rangecondition could be accomplished with just comparison and branch instructions.2Corollary 2. A sequence of range conditions associated with the same variablecan be reordered with no semantic e�ect on the program if the sequence can onlybe entered through the �rst range condition, the sequence contains only pairs ofcomparisons and conditional branches, and the sequence has no side e�ects. 5The detection of a sequence of reorderable range conditions was accomplishedusing the algorithm in Figure 3.4. Instead of storing a sequence of branches, weinstead store a sequence of ranges. The algorithm �rst �nds two nonoverlappingrange conditions comparing the same variable. Afterwards, it repeatedly detectsan additional nonoverlapping range condition until no more range conditionswith nonoverlapping ranges can be found.Figure 3.5 shows an example of detecting a sequence of range conditions.Figures 3.5(a) and 3.5(b) show a C code segment and the corresponding control
ow produced by the compiler. Figure 3.5(c) shows the sequence of reorderablerange conditions that are detected using the algorithm in Figure 3.5. Note thatall of the ranges detected are nonoverlapping.A more complete set of branches that compare a common variable or expres-sion to constants may be detected by propagating value ranges through bothsuccessors of each branch (i.e. detecting a DAG of branches instead of a pathof range conditions) [6].5The proof is the same as Corollary 1.
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         IF (Nonoverlapping(R,Ranges)) THEN
            N=B’s fall-through succ;
            RETURN TRUE;
         ELSE
            N=B’s taken succ;
            RETURN Nonoverlapping(I,Ranges);
   RETURN FALSE;          
}

{

            CASE  ">":R=C+1..MAX; I=MIN..C;

         SWITCH (branch operator)

            CASE  "<":R=MIN..C-1; I=C..MAX;            
            CASE "<=":R=MIN..C;   I=C+1..MAX;
            CASE ">=":R=C..MAX;   I=MIN..C-1;

      ELSE
         RETURN TRUE;
         N=the succ of S not associated with R;
               Nonoverlapping(R,Ranges)) THEN

                 form a bounded range R AND

         RETURN Nonoverlapping(R,Ranges);

         R=C..C;

         RETURN Nonoverlapping(R,Ranges);

   IF (B has a branch that compares
{

}

   ELSE

FOR each block B DO
   IF (B is not marked AND
       B has a branch that compares
         a variable V to a constant) THEN
      IF (Find_First_Two_Conds(B,V,R1,R2,N)) THEN
         Ranges={R1,R2};
         C=N;
         mark blocks associated with R1 and R2;
         WHILE Find_Range_Cond(Ranges,V,C,R,N) DO
            Ranges+=R;
            C=N;
            mark block(s) associated with R;
   Store info about Ranges for profiling;

BOOL FUNCTION Find_First_Two_Conds(B,V,R1,R2,N)

   IF (Find_Range_Cond({},V,B,R1,N1) AND
       Find_Range_Cond(R1,V,N1,R2,N2)) THEN
      N=N2;
      RETURN TRUE;

      Rt=R1;
      IF (Find_Range_Cond(Rt,V,B,R1,N1) AND
          Find_Range_Cond(R1,V,N1,R2,N2)) THEN
         N=N2;
         RETURN TRUE;
   RETURN FALSE;

BOOL FUNCTION Find_Range_Cond(Ranges,V,B,R,N)

       V to a constant C) THEN
      IF branch operator is "==" THEN
         R=C..C;
         N=B’s fall-through succ;

      ELSE IF branch operator is "!=" THEN

         N=B’s taken succ;

      ELSE IF (B’s branch and the branch of a succ S of B

               B and S have a common succ AND

Figure 3.4: Detecting a Reorderable Sequence of Range Conditions.
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Blocks Range Target

1,2 T1

3,4 T1

6 T2

8 T4

(c) Reorderable Range Conditions

[97..122]

[65..90]

[95..95]

[127..MAX]

1

2

c < 97

c <= 122

c < 65

c > 90

T1

3

4

5

F

F

F

F

T

T

T

T

(b) Control Flow

c != 95

T2

T3

T4

6

7

8

9

10

F

F

T

T

c > 126

(a) C Code Segment

if (c >= ’a’ && c <= ’z’ ||

    c >= ’A’ && c <= ’Z’)

   T1;

else if (c == ’_’)

   T2;

else if (c <= ’~’)

   T3;

else

   T4;

Figure 3.5: Example of Detecting Range Conditions.There were two reasons why reordering was limited to sequences of rangeconditions. First, there were very few cases that we examined where a sequenceof range conditions did not capture the entire set of branches comparing acommon variable to constants. Second, we show in this paper that it is possibleto start with a sequence and guarantee an improved reordered sequence withrespect to pro�le and cost estimates. Note that it is possible that the reorderingmay be improved if a binary search was used instead of a linear search (i.e. asequence of range conditions). However, we will show later in this thesis that anear-optimal ordering of a sequence can be found using an algorithm requiringonly linear complexity. Our initial investigations have shown that an algorithmto select an optimal binary search would require both exponential time andspace complexity. We will describe our plans to investigate the use of a binarysearch and contrast the bene�ts of a binary search versus a linear search in



21Chapter 10.



CHAPTER 4HANDLING SIDE EFFECTS IN A COMMONVARIABLE SEQUENCEWe can convert a sequence of nonoverlapping range conditions with interven-ing side e�ects into a sequence of nonoverlapping range conditions without sidee�ects through code replication, given that the side e�ects do not a�ect thecommon variable being compared. 1 Thus, we can further exploit some oppor-tunities where there are intervening side e�ects among range conditions.Theorem 3. A side e�ect between two consecutive range conditions can be du-plicated to follow the second range condition with no semantic e�ect on theprogram if the side e�ect does not a�ect the branch variable of the second rangecondition and the sequence can only be entered through the �rst range condition.Proof: Consider the original and transformed sequences of range conditionsin Figure 4.1. 2The two sequences are semantically equivalent given that1. state of the program is equivalent in both sequences when blocks T2 andT3 are reached,2. blocks T2 and T3 are always reached in both sequences under the sameconditions, and1We allow side e�ects between range conditions, but not within properly bounded rangeconditions. A properly bound range condition is treated as atomic and indivisible.2The side e�ect S is actually in a basic block containing R2.22



233. no new error exceptions are raised.
T1R1

T

F

R2 T2

T3

T

F

P1

P2

P3

T1R1
T

F

R2 S
T

S T2

T3

F

P2

P3

P1

(a) Original Sequence (b) Transformed Sequence

SFigure 4.1: Moving Side E�ects from a Sequence of Two Range ConditionsCondition 1 is satis�ed since the range condition R2 in the transformedsequence has no side e�ects, S is executed in both sequences when T2 or T3is reached after executing R2, and S is not executed if T2 or T3 is reachedwithout executing R2. Note that the transitions from P2 and P3 require thatthe replicated side e�ects S be placed in separate basic blocks.Condition 2 is satis�ed since S does not a�ect the branch variable of R2.Condition 3 can be satis�ed by noting that no new side e�ects are introducedin the transformed sequence. 2Corollary 3. A sequence of range conditions attached with side e�ects can betransformed to have no intervening side e�ects and still have the same semantic



24e�ect on the program if the side e�ects do not a�ect the branch variable ofthe range conditions and the sequence is only entered through the �rst rangecondition.Proof: Suppose for sequences with length of n, the above corollary is true.Now we need to prove for a sequence with length of n+ 1, [R1, R2, : : : , Rn+1],as shown in Figure 4.2 (a), it can be transformed to have no intervening sidee�ects and still have the same semantic e�ect on the program.
...
Sn-1

S1

...
Sn-1

S1

...
Sn-1

S1

Sn
...
Sn-1

S1

Sn

...

Sn-1

R1

F
T1

T

P1

R2

S1

T
P3

TD

P2Sn

T

Rn+1

TnRn

Tn+1

T
T2

F

F

F

R1

F
T1

T

P1

T2

R2
T

S1

...

F

R1

F
T1

T

P1

T2

R2
T

S1

F

Tn

T
Rn

F

T
P3

TD

P2

Rn+1 Tn+1

Sn

F

T
Rn

F

P2

...

Rn+1
T

F

Tn+1

TD

P3

(a) Original Sequence (b) Intermediate Sequence (c) Final Transformed SequenceFigure 4.2: Moving Side E�ects from a Sequence of n+ 1 Range ConditionsConsider the sequence [R1, R2, : : : , Rn], it is a sequence of length n, Byinduction hypothesis we know that this sequence can be transformed to have nointervening side e�ects and still have the same semantic e�ect on the program,as shown in Figure 4.2 (b). Since the only predecessor of range condition Rn+1



25is block Rn, so the replicated side e�ects S1S2; : : : ; Sn�1 can be inserted directlyinto Rn+1 rather than creating a new block containing S1S2; : : : ; Sn�1. Nowconsider the sequence [Rn, Rn+1], it satis�es the condition of theorem 3 and asa result the side e�ect S1; S2 : : : ; Sn can be moved out of the sequence as shownin Figure 4.2 (c). Combine the above transformations together, we have provedthe corollary. 2
for(;;) {

        c = getc(fp);

        if(c == EOF)

                break;

        charct++;

        if(’ ’<c && c<0177) {

                if(!token) {

                        wordct++;

                        token++;

                }

                continue;

        }

        if(c==’\n’) {

                linect++;

        }

        else if(c!=’ ’ && c!=’\t’)

                continue;

        token = 0;

}Figure 4.3: Source Code Segment from wc.c .Figure 4.3 shows a real code segment from unix utility program wc:c. Fig-ure 4.4 is the corresponding control 
ow graph for code segment in Figure 4.3.We use Bn to represent block n.
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B15

B30

B27

B26

B23

B19c==EOF?

charct++

32<c &&

c<127?

c==10?

c==32?

c==9?

goto B23;

goto B26;

goto B27;

goto B15;

c==9?
goto B30;

c==EOF?

32<c &&

c<127?

c==10?

c==32?

charct++;

charct++;

charct++;

charct++;

charct++;

B19

(a) Original CFG (b) CFG after Code ReplicationFigure 4.4: Handling Side E�ect in a Common Variable Sequence.Since the side e�ect portion charct++must be executed whenever c != EOF,so we want to replicate charct++ at each target except block 19. In general, fora given target we have to replicate all those side e�ect portions along the pathfrom the head of the sequence to the target.An unconditional branch instruction could be added to the end of each one ofthe copies as shown in Figure 4.4. But that could possibly increase the dynamicnumber of instructions and also would make cost estimation more complex.In order to avoid these two problems, a simple code replication algorithm wasused. We just replicate block(s) by following the fall-through link of the targetuntil we reach a block containing an unconditional jump, return, or indirectjump instruction. A similar approach has been used when transforming code toimprove branch prediction [9].



27For example block 26 in Figure 4.4 is not a terminal block since it endswith a fall-through path. Block 27 is a terminal block since it ends with anunconditional branch. Hence instead of generating the unconditional branchgoto block 26 after charct++, we are going to replicate block 27 followingblock 26, as shown in Figure 4.5.
r[8]=R[r[23]+LO[_linect]];

r[8]=r[8]+1;

R[r[23]+LO[_linect]]=r[8];

r[17]=0;

PC=L61;

c==10?

replication of block 27

replication of side effect charct++

r[8]=R[r[21]+LO[_charct]];

r[8]=r[8]+1;

R[r[21]+LO[_charct]]=r[8];

block 26Figure 4.5: Avoid Extra Unconditional Branch by Block Duplication.Note that when we produce pro�le information, we don't have to replicateany code. All we need is to detect a reorderable sequence of range conditions.Code replication occurs when we really perform branch reordering if the re-ordering is deemed to be bene�cial.



CHAPTER 5PERFORMING PROFILINGThe pro�le information required for branch reordering had to be collected in adi�erent manner from conventional pro�ling. One may believe that instrumen-tation code could simply be inserted at the basic block containing a branch ina reorderable sequence and either on the fall-through or taken transition. How-ever, this approach will not be su�cient since each branch or range conditionin the sequence may not be encountered every time the sequence is executed.The compiler needs to know how often each branch or range condition in thesequence would have a transition out of the sequence given it was executedwhen the head of the sequence is encountered. The instrumentation code forobtaining pro�le information about the sequence was entirely inserted at thehead of the sequence to check every branch or range condition in the sequence.5.1 Producing Pro�le Information for CommonSuccessor SequencePro�le information for common successor sequence is produced by insertinginstrumentation code at the head of a sequence to check each branch in thesequence. First, we declare a set of counters for each sequence, including acounter indicating the number of times that the head of the sequence is entered,and a counter for each branch indicating the number of times that it is not taken.Since the length of a reorderable sequence of branches with a common successor28



29is limited to 2, we will declare 3 counters for each sequence. Second, we insertinstrumentation code to increment those counters when the head of a sequenceis entered or corresponding branches are not taken. This involved replicating theinstructions associated with each branch as instrumentation code. Finally weinsert a call to a function (__ease_end_g) that dumps the pro�le information(the values of these counters) into a �le (profile.dat) at every possible exitpoint in the program.Figure 5.1 gives an example of inserting instrumentation code. Figure 5.1(a) shows a common successor sequence of length 2 with the target label L233as the common successor. The head of the sequence (i.e. block 6) is split intotwo separate portions, one with side e�ect (the �rst RTL) and the other withoutside e�ect (the last three RTLs). The instrumentation instructions is insertedright after the side e�ect portion as shown in Figure 5.1 (b). The lines endingwith ' !' are instrumentation instructions inserted to increment those counters.The lines starting with a '-' are SPARC assembly instructions and will be copieddirectly into the target SPARC assembly code. Note that RTLs associated witheach branch are replicated before the �rst original branch in the sequence.Figure 5.2 shows the complete code of the function __ease_end_g.__ease_main_head_1 is the counter indicating the number of times that the�rst sequence of function main is entered. __ease_main_nt_1[0] is the counterfor the �rst branch of the sequence indicating how many times it is not taken.The function __ease_end_g was called at every possible exit point in theinstrumented executable code. It is generated automatically and is linked withthe instrumented executable. In order to generate this function automatically,
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(b) Instrumented Common Successor Sequence

(a) Original Common Successor Sequence

-       .seg    "data"                                  !

-       .align  4                                       !

-       .global ___ease_succeed_head_1                  !

-___ease_succeed_head_1:                                !

-.word 0                                                !

-       .global ___ease_succeed_nt_1                    !

-.word 0                                                !

! block 7

-___ease_succeed_nt_1:                                  !

-.word 0                                                !

-       .seg    "text"                                  !

-       std     %o4,[%sp-8]                             !

-       sethi   %hi(___ease_succeed_head_1),%o5         !

-       ld      [%o5+%lo(___ease_succeed_head_1)],%o4   !

-       add     %o4,1,%o4                               !

-       st      %o4,[%o5+%lo(___ease_succeed_head_1)]   !

-       ldd     [%sp-8],%o4                             !

-       nop                                             !

-       std     %o4,[%sp-8]                             !

-       sethi   %hi(___ease_succeed_nt_1+0),%o5         !

-       ld      [%o5+%lo(___ease_succeed_nt_1+0)],%o4   !

-       add     %o4,1,%o4                               !

-       st      %o4,[%o5+%lo(___ease_succeed_nt_1+0)]   !

-       ldd     [%sp-8],%o4                             !

-L0022:                                                 !

r[8]=R[r[8]+LO[_hflag]];

IC=r[8]?0;

PC=IC:0,L0023;

-       nop

-       std     %o4,[%sp-8]                             !

-       sethi   %hi(___ease_succeed_nt_1+4),%o5         !

-       ld      [%o5+%lo(___ease_succeed_nt_1+4)],%o4   !

-       add     %o4,1,%o4                               !

-       st      %o4,[%o5+%lo(___ease_succeed_nt_1+4)]   !

-       ldd     [%sp-8],%o4

-L0023:

r[8]=HI[_nfile];

r[8]=R[r[8]+LO[_nfile]];

IC=r[8]?1;

PC=IC’0,L290;

! block 8

r[8]=HI[_hflag];

r[8]=R[r[8]+LO[_hflag]];

IC=r[8]?0;

PC=IC:0,L290;

r[8]=HI[_hflag];

PC=IC’0,L0022;

r[8]=R[r[8]+LO[_nfile]];

r[8]=HI[_nfile];

IC=r[8]?1;

! block 7

r[8]=HI[_nfile];

r[8]=R[r[8]+LO[_nfile]];

IC=r[8]?1;

PC=IC’0,L290;

! block 8

r[8]=HI[_hflag];

r[8]=R[r[8]+LO[_hflag]];

IC=r[8]?0;
PC=IC:0,L290;

Figure 5.1: Instrumentation Code.
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void __ease_end_g()  {

    FILE* fp;

    extern int __ease_main_head_1;

    extern int __ease_main_nt_1[];

    extern int __ease_main_head_2;

    extern int __ease_main_nt_2[];

    extern int __ease_main_head_3;

    extern int __ease_main_nt_3[];

    extern int __ease_number_head_1;

    extern int __ease_number_nt_1[];

    extern int __ease_cal_head_1;

    int i;

    extern int __ease_cal_nt_1[];

    fp = fopen("profile.dat", "w");

    fprintf(fp, "main\n\n");

    fprintf(fp, "%d\n", __ease_main_head_1);

    for (i = 0; i < 2; i++)

        fprintf(fp, "%d ", __ease_main_nt_1[i]);

    fprintf(fp, "\n\n");

    fprintf(fp, "%d\n", __ease_main_head_2);

    for (i = 0; i < 2; i++)

        fprintf(fp, "%d ", __ease_main_nt_2[i]);

    fprintf(fp, "\n\n");

    fprintf(fp, "%d\n", __ease_main_head_3);

    for (i = 0; i < 2; i++)

        fprintf(fp, "%d ", __ease_main_nt_3[i]);

    fprintf(fp, "\n\n");

    fprintf(fp, "number\n\n");

    fprintf(fp, "%d\n", __ease_number_head_1);

        fprintf(fp, "%d ", __ease_number_nt_1[i]);

    for (i = 0; i < 2; i++)

    fprintf(fp, "\n\n");

    fprintf(fp, "cal\n\n");

    fprintf(fp, "%d\n", __ease_cal_head_1);

    for (i = 0; i < 2; i++)

        fprintf(fp, "%d ", __ease_cal_nt_1[i]);

    fprintf(fp, "\n\n"); 
    fclose(fp);
} Figure 5.2: Function ease end g .



32we need to know how many sequences there are in a function. We use a �le(profile.inf) to capture this information, as shown in Figure 5.3.
main

2

getchar

1Figure 5.3: Example of profile.inf File for Common Successor Sequence.Before performing any optimization the compiler will open the �leprofile.inf, or create the �le profile.inf if it does not already exist. This �lecontains the name of a function followed by the number of reorderable sequencesfor that function. The compiler will read the information from profile.infinto an array if the �le already exists. Then the compiler is going to updatethe information in the array when performing pro�ling operation. Before thecompiler terminates normally, it is going to write the information in the arrayback to the �le profile.inf.The information in profile.inf is solely for automating the process ofproducing the function __ease_end_g. Even when we compile a program withmultiple modules, the scheme of using profile.inf still works since functionnames are unique even across di�erent modules. It is up to the programmer toremove this �le before compiling a program for the �rst time.Figure 5.4 shows an example portion of pro�le information for common suc-cessor sequences stored in profile.dat. In this example, there are two reorder-able common successor sequences detected in function main. The �rst sequence



33in main was never entered, so all the three counters are 0. The second sequencein main was entered 230 times. Its �rst branch was not taken 196 times, or itwas taken 230 - 196 = 34 times. The second branch was not taken 111 times,or was taken 230 - 111 = 119 times. Since the second branch would have trans-ferred the control out of the sequence more often than the �rst branch, if bothbranches have the same cost, this sequence will be identi�ed to be reordered toimprove performance.
main

0

0 0

230

196 111

getch

1368

1232 1245Figure 5.4: Example of profile.dat File for Common Successor Sequence.5.2 Producing Pro�le Information for CommonVariable SequenceThe pro�ling code for reordering range conditions checks if the common variableis within ranges of values. However, additional ranges have to be determinedfrom the ones calculated by the algorithm in Figure 3.4.De�nition 12. An explicit range is a range that is checked by a range condi-tion.



34De�nition 13. A default range is a range that is not checked by a rangecondition.Consider the original sequence of range conditions in Figure 5.5(a). Thereare additional ranges associated in the default target TD since these ranges willspan any remaining values not covered by the other ranges. It is assumed inthis �gure that MIN < c1, c2+1 < c3, and c4 < MAX. Figure 5.5(b) shows anequivalent sequence with these default ranges explicitly checked. Figure 5.5(c)shows a reordered sequence of range conditions, where the range condition forthe last default range in 5.5(b) was placed �rst in the sequence. Once a point isreached in the sequence where there is only a single target possible, all remainingrange conditions need not be explicitly tested as shown in Figure 5.5(d). Thecompiler calculated these remaining ranges by sorting the explicit ranges andadding the minimum number of ranges to cover the remaining values.Figure 5.6 (a) is an example showing a portion of the pro�le informationfor common variable sequences stored in profile.dat. There are 2 reorderablesequences in the function cmp, and both are never entered. Function skip con-tains three reorderable sequences. The �rst sequence of skip was entered 1052times. With all ranges (both explicit ranges and default ranges) being checked,the length of the sequence is 5. The �rst four ranges were never satis�ed, whilethe last range, which was a default range was always satis�ed. We can greatlyimprove performance if we explicitly check this default range �rst.The function __ease_end_g in Figure 5.2 was extended to print out pro�leinformation for common variable sequences. This was accomplished by storingadditional information, or counters for common variable sequences. The instru-
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T

F

P

R1 T1 [c1..c2]

T
R2 T2 [c3..c4]

T

R3

R4

R5

TD

T

T

T

[MIN..c1-1]

[c2+1..c3-1]

F

F

F

(b) Equivalent Original Sequence

T1

P

R1
T

[c1..c2]

TD

[c2+1..c3-1]

R2 T2 [c3..c4]
T

[MIN..c1-1]

F

F

(a) Original Sequence

[c4+1..MAX]

[c4+1..MAX]

T

F

F

P

T

T
R1

R2

T1 [c1..c2]

R5

T2 [c3..c4]

TD

F

[MIN..c1-1]

[c2+1..c3-1]

(d) Equivalent Reordered Sequence

[c4+1..MAX]

R3

R4 TD

[MIN..c1-1]

[c2+1..c3-1]

T

T

F

F

T

F

F

P

T

T
R1

R2

T1 [c1..c2]

R5

T2 [c3..c4]

(c) Reordered Sequence

[c4+1..MAX]

Figure 5.5: Example of Reordering Default Range Conditions.
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cmp

5

0

0 0 0 0 0

5

0

0 0 0 0 0

skip

5

1052

0 0 0 0 1052

6

36518

0 0 1052 0 0 35466

5

0

0 0 0 0 0

cmp

2

5 5

skip

3

5 6 5

(a) Portion of File profile.dat (b) Portion of File profile.infFigure 5.6: Example of Pro�le Information For Common Variable Sequence.mentation code was inserted to test each range (not each branch) including thedefault ranges. Figure 5.6 (b) gives an example of profile.inf for commonvariable sequences. Unlike common successor sequences, which always havelength of 2, common variable sequences may have various lengths. Functioncmp has two common variable sequences, each with length of 5. Function skiphas three common variable sequences, with lengths of 5, 6 and 5, respectively.



CHAPTER 6SELECTING THE ORDERING OF BRANCHESThe ordering for a reorderable sequence of branches or range conditions waschosen by using two factors de�ned as follows.De�nition 14. pi is the probability that Ni (branch Bi or range condition Ri)will exit the sequence.Each pi was calculated using the pro�le information indicating how often thecorresponding branch Bi (in a common successor sequence) or range conditionRi (in a common variable sequence) would exit the sequence if it was executed.The accuracy of this probability depends on the correlation of the branch resultsbetween using the training data set and the test data set. It has been foundthat conditional branch results can often be accurately predicted using pro�ledata [10].De�nition 15. ci is the cost of performing Ni (branch Bi or range conditionRi).Each ci was estimated by determining the number of instructions requiredto perform the corresponding branch or range condition. This cost includes theconditional branch, associated comparison, and any instructions that producethe values being compared. (A more accurate cost estimate could be obtained37



38by estimating the latency and pipeline stalls associated with these instructions.)Some factors of the cost can vary depending upon the ordering selected. In thesecases, a conservative estimation of the cost was used.De�nition 16. Cost([N1; : : : ; Nn)] is the estimated cost of executing a sequenceof nodes (branches or range conditions.)The cost of a sequence of branches is calculated as a sum of products. Onefactor is the probability that a branch will be reached and will exit the sequence.The other factor is the cost of performing that branch and all preceding branchesin the sequence. Note that the last branch in the sequence will always exit thesequence when reached.6.1 Selecting the Order of a Sequence of Brancheswith Common SuccessorsEquation 1 represents the cost of executing a sequence of two reorderablebranches with common successors [Bi; Bj].Cost([Bi; Bj])= pici + (1 � pi)(ci + cj) � pjcj + (1� pj)(cj + ci) (1)Theorem 4. A sequence of two reorderable branches with common successorscan be optimally ordered as [Bi; Bj] when pi=ci � pj=cj with respect to theprobability and cost estimates.Proof: The optimal ordering of a sequence of two branches with a commonsuccessor can be obtained when the cost of one ordering is less than the cost ofthe other ordering.



39Cost([Bi; Bj]) � Cost([Bj; Bi]), pici + (1� pi)(ci + cj) � pjcj + (1 � pj)(cj + ci), pici + ci + cj � pjci � picj � pjcj + cj + ci � pjcj � pjci, ci + cj � picj � cj + ci � pjci, �picj � �pjci, picj � pjci, pi=ci � pj=cj 2Intuitively, this means that it is desirable to �rst execute the branch that hasa high probability of exiting the sequence combined with a low cost. Note thatwe cannot determine an optimal ordering based on the pro�le data that wasobtained in chapter 4 when the number of branches with common successors isgreater than two. Consider three branches Bi, Bj and Bk, where pi=0.8, pj=0.6,pk=0.4, and ci = cj = ck = 2. One can determine an ordering [Bi; Bj; Bk] wherepi=ci � pj=cj � pk=ck (i.e. 0:4 � 0:3 � 0:2). However, it is possible that Bjwill only exit the sequence when Bi has already exited the sequence. Likewise,Bk may only exit the sequence when Bi does not. The optimal ordering inthis case would be [Bi; Bk; Bj]. Determining an optimal ordering for a sequenceof such branches would require obtaining pro�le data about all combinationsof branch results in the sequence. Using such pro�le data would be expensivein both time and space. The compiler limited the length of these sequences



40to two branches in this study to ensure that the reordered sequence alwaysresulted in an improvementwith respect to the estimated probabilities and costs.The most common length of sequences of branches with common successors weencountered was two.6.2 Selecting the Order of a Sequence of RangeConditions Comparing a Common VariableA sequence of explicit range conditions can be optimally ordered with respect tothe probability and cost estimates. First, consider the cost of an entire sequenceof all the range conditions (i.e. the default range conditions also being speci�ed.)Equation 2 represents the cost of executing a sequence of n range conditions,where every range is explicitly checked.Explicit Cost([R1; : : : ; Rn])= p1c1 + p2(c1 + c2) + : : :+ pn(c1 + c2 + : : :+ cn) (2)Theorem 5. A sequence of two reorderable range conditions can be optimallyordered as [Ri; Rj] when pi=ci � pj=cj with respect to the probability and costestimates.Proof: An optimal ordering of two consecutive nonoverlapping range conditionscan be achieved when the explicit cost of the selected ordering is less than orequal to the explicit cost of the other ordering.Explicit Cost([Ri; Rj]) � Explicit Cost([Rj; Ri]), pici + pj(ci + cj) � pjcj + pj(cj + ci), pici + pjci + pjcj � pjcj + picj + pici



41, pjci � picj, pj=cj � pi=ci, pi=ci � pj=cj 2Corollary 4. A reorderable sequence of range conditions can be optimally re-ordered as [R1; R2; : : : ; Rn] when p1=c1 � p2=c2 � : : : � pn=cn with respect tothe probability and cost estimates.Proof: Suppose for sequence with length of 2, 3, : : : , n, the above corol-lary is true. In order to prove for a sequence with length of n + 1,[R1; R2; : : : ; Rn+1] is the optimal order, we need to prove that an arbitrary per-mutation [Ri1 ; Ri2; : : : ; Rin+1 ] will have an explicit cost that is at least as greatas Explicit Cost([R1; R2; : : : ; Rn+1]).(i) If the �rst condition of this permutation is R1 and the permutation is[R1; Ri2; : : : ; Rin+1 ], then:Explicit Cost([R1; Ri2; : : : ; Rin+1 ])= p1 � c1 + pi2 � (c1 + ci2) + : : :+ pin+1 � (c1 + ci2 + : : :+ cin+1)= pi2 � ci2 + : : :+ pin+1 � (ci2 + : : :+ cin+1) + c1 � (p1 + p2 + : : :+ pn)Explicit Cost([R1; R2; : : : ; Rn+1)]= p1 � c1 + p2 � (c1 + c2) + : : :+ pn+1 � (c1 + c2 + : : :+ cn+1)= p2 � c2 + : : :+ pn+1 � (c2 + : : :+ cn+1) + c1 � (p1 + p2 + : : :+ pn)



42If we only consider a sequence formed by [R2; R3; : : : ; Rn+1], then it isa sequence of length n, by induction, [R2; R3; : : : ; Rn+1] should have thelowest explicit cost which is:p2 � c2 + : : :+ pn+1 � (c2 + : : :+ cn+1)The Explicit Cost([Ri2 ; Ri3; : : : ; Rin+1 ] ispi2 � ci2 + : : :+ pin+1 � (ci2 + : : :+ cin+1)which is at least as great as the Explicit Cost([Ri2 ; Ri3; : : : ; Rin+1 ].This proves that sequence [R1; R2; : : : ; Rn+1] has a lower cost than sequence[R1; Ri2; : : : ; Rin+1 ].(ii) If the �rst condition is Ri, i 6= 1. Then by applying induction hypothesesand the result of (i), we have:Explicit Cost([Ri; Ri2; : : : ; Rin+1 ])� Explicit Cost([Ri; R1; : : : ; Rn+1)]) (sort Ri2; : : : ; Rin+1 by p=c)� Explicit Cost([R1; Ri; : : : ; Rn+1]) (swap R1 and Ri)� Explicit Cost([R1; R2; : : : ; Rn+1] (sort Ri; : : : ; Rin+1)2However, there is also a default cost, which occurs when no range conditionis satis�ed and the control transfers to the default target. Equation 3 shows thecomplete cost of a sequence, where only the �rst n ranges are explicit.Cost([R1; : : : ; Rn]) =Explicit Cost([R1; : : : ; Rn]) + (1� (p1 + : : :+ pn))(c1 + : : :+ cn) (3)Once only a single target remains, the range conditions associated with thattarget need not be tested. Consider again the example in Figure 5.5. The three



43targets of the range conditions are T1, T2, and TD. Each of these targets could bepotentially used as the default target and its associated range conditions wouldnot have to be tested. The TD target has three associated ranges. If any of theseranges are explicitly checked, then Corollary 4 should be used to establish itsbest position relative to the other explicitly checked range conditions to achievethe lowest cost for the sequence. If TD is used as the default target, then atleast one of the three range conditions should not be explicitly checked.De�nition 17. mindefault(Ti) is the minimum cost of any ordering of a rangecondition sequence, where Ti is used as the default target.For each potential target having m associated ranges, there are 2m�1 possi-ble combinations of these range conditions that could not be explicitly checked.The compiler used the ordering p1=c1 � : : : � pm=cm between the m rangesof a target to consider only m possible combinations of default range con-ditions, ffRmg; fRm�1; Rmg; fR1; : : : ; Rm�1; Rmgg. The compiler selected thelowest cost combination of default ranges by calculating the minimum cost ofthe sequences excluding the range conditions associated with each of these sets.Assume that t is the number of unique targets out of the sequence. The com-piler then calculates the minimum of fmindefault(T1), mindefault(T2), : : : ,mindefault(Tt)g. Note that only the cost of n sequences have to be calculated,where n is the total number of ranges for all of the targets. Our approach isnot guaranteed to be optimal. However, we also implemented an exhaustiveapproach to �nd the lowest cost sequence. We discovered that our approach se-lected the optimal sequence for every reorderable sequence in every test programfor the training and test data sets.



44Equation 4 represents the cost of executing a sequence of n explicitly checkedrange conditions, where only range condition i is a default range. Note that allexplicitly speci�ed range conditions must be checked before a target associatedwith a default range can be reached.Cost([R1; : : : ; Ri�1; Ri+1; : : : ; Rn])= p1c1 + : : :+ pi�1(c1 + : : :+ ci�1)+ pi+1(c1 + : : :+ ci�1 + ci+1) + : : :+ pn(c1 + : : :+ ci�1 + ci+1 + : : :+ cn)+ pi(c1 + : : :+ ci�1 + ci+1 + : : :+ cn) (4)However, Equation 4 can be rewritten as Equation 5, where the cost of asequence of range conditions with a default range can be calculated by subtract-ing the di�erence from Equation 1.Cost([R1; : : : ; Ri�1; Ri+1; : : : ; Rn])= Cost([R1; : : : ; Rn]) + pi(ci+1 + : : :+ cn)� ci(pi + : : :+ pn) (5)The ordering of a sequence of range conditions was selected using the algo-rithm in Figure 6.1. The algorithm �rst uses Equation 1 to calculate the costof the optimal sequence when all of the range conditions are explicitly checked.It then uses Equation 5 to avoid calculating the complete cost of the n di�erentsequences. The algorithm requires a complexity of O(n), where n is the number



45of ranges associated with the targets of the sequence.
    Calculate the cost with all range conditions explicitly checked */

/* Calculate tcost[i] = Ci+1 + ... + Cn and tprob[i] = Pi + Pi+1 + ... + Pn */

/* Now find the sequence with the lowest cost */

/* Assume the range conditions are sorted in descending order of Pi/Ci

Explicit_Cost = 0.0
cost = 0;
FOR i = 1 to n DO
   cost += C[i];
   Explicit_Cost += P[i]*cost;

tcost[n] = 0;
tprob[n] = P[n];
FOR i = n-1 downto 1 DO
   tcost[i] = C[i+1] + tcost[i+1];
   tprob[i] = P[i] + tprob[i];

Lowest_cost = Explicit_Cost;
FOR each unique target T DO
   Cost = Explicit_Cost;
   Elim_Cost = 0;
FOR each range Ri in T from lowest to highest P[i]/C[i] DO
   Cost += P[i]*(tcost[i] - Elim_Cost) - C[i]*tprob[i];
   IF Cost < Lowest_Cost THEN
      Lowest_Cost = Cost;
      Best_Sequence = current sequence;
   Elim_Cost += C[i];Figure 6.1: Selecting the Ordering of a Sequence of Range Conditions



CHAPTER 7IMPROVING THE SELECTED SEQUENCE OFRANGE CONDITIONSOther improvements were obtained after the ordering decision was made for asequence of range conditions. The compiler can determine the best ordering ofthe two branches within a single range condition that is of type Form 4 shownin Table 3.1. The compiler assumed that both branches would be executed inestimating the cost for selecting the range condition ordering. If the result of the�rst branch indicates that the range condition is not satis�ed, then the secondbranch need not be executed. Assume that such a range condition, Ri, is theith range condition in the sequence and is associated with the range [c1::c2].The probability that the value of the common variable is below or above therange at the point that the range condition is performed can be determinedas follows. We know that the range conditions associated with the sequence[R1; R2; : : :Ri�1] have already been tested and the value of the common variablecannot be in these ranges if Ri is reached. Given that there are n total rangeconditions, the compiler examined the probability for each of the remainingranges, [Ri+1; Ri+2; : : : ; Rn], to determine the probability that v < c1 versus theprobability that v > c2. Based on these probabilities, the branch is placed �rstthat is most likely to determine if the range condition is not satis�ed.For example, suppose we have this situation:[Ri; Ri+1; : : : ; Rn] 46



47where Ri is [65..97], Ri+1 is [48..55], Ri+2 is [33, 33], and Ri+3 is [104..MAX].Suppose the number of times when the value of the common variable fallsinto Ri+1, Ri+2 and Rn are 200, 100, and 5,000 respectively. Ri is a properlybounded range and hence two branches need to check if the value of the commonvariable falls into Ri. We can have two di�erent orders for determining if Ri, issatis�ed, as shown in Figure 7.1.
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Range[65..97]Figure 7.1: Branches for Deciding a Properly Bounded Range.We use the counts of the satis�ed ranges below and above Ri. We have 300samples which are less than 65, and we have 5,000 samples which are greaterthan 97. If we choose the �rst form as shown in Figure 7.1 (a), then the totalcost will be 300 � 2 + 5; 000 � 4 = 20; 600 since each condition requires botha comparison and branch instruction. If we choose the second form, then thetotal cost will be 5; 000� 2 + 300� 4 = 11; 200. Obviously the second form hasa lower cost than the �rst form.Suppose the total number of samples falling into ranges less than Ri is n1,



48and the total number of samples falling into ranges above Ri is n2. n1 and n2can be easily obtained by sorting ranges Ri; Ri+1; Ri+2; : : : ; Rn. The cost for (a)and (b) will be n1 � 1 + n2 � 2 versus n2 � 1 + n1 � 2. It is easy to see that weshould choose (a) when n1 > n2 and (b) when n2 > n1.Another improvement that was performed after the range conditions havebeen ordered is to eliminate redundant comparisons. For instance, consider Fig-ure 7.2(a). There are two consecutive range conditions that test if the commonvariable is in the ranges [c+1..max] and [c..c]. Figure 7.2(b) shows an equivalentcomparison and branch for the �rst range condition. The comparison instruc-tion within the second range condition is redundant and the compiler eliminatesit.IC=v?c+1; # first comparisonPC=IC>=0->L1;# first branchIC=v?c; # second comparisonPC=IC==0->L2;# second branch(a) Before IC=v?c; # first comparisonPC=IC>0->L1; # first branchPC=IC==0->L2;#second branch(b) AfterFigure 7.2: Eliminating Redundant Comparisons.



CHAPTER 8APPLYING THE REORDERINGTRANSFORMATIONOnce a branch ordering has been selected, the compiler will apply the reorder-ing transformation. Figure 8.1 (a) shows a control-
ow segment containing acommon successor sequence. Figure 8.1 (b) shows the control 
ow with thereordered branch blocks. The predecessors of the �rst original branch blocknow have transitions to the �rst reordered branch block, which in this case is areplication of the second original branch block. Also we do not generate an extraunconditional branch instruction by replicating the default target TD, assumingTD is a terminal block. This will guarantee the semantic equivalence wheneverthe head of the sequence is entered. Figure 8.1 (c) shows the code after applyingdead code elimination. The original branch block B1 was deleted, while branchblock B2 remains since it was still reachable from another path. Other optimiza-tions, such as code repositioning and branch chaining to minimize unconditionaljumps, were also reinvoked to improve the code.Figure 8.2 (a) through (e) shows the reordering transformation for a commonvariable sequence. In Figure 8.2 (b), the range conditions are replicated in orderto get rid of the side transition into the sequence from block P3, again TD isreplicated to avoid an unconditional jump. We can skip this step if there is noside transition into the sequence. Note that although we draw the side e�ectsS1 and S2 as separate blocks, they are really contained in the basic blocks49
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Figure 8.1: Reordering Transformation for Common Successor Sequencecontaining R1 and R2, respectively.The next step is to transform the sequence into a reorderable sequence byreplicating the side e�ects, as shown in Figure 8.2 (c). Note T2 is also replicatedto avoid the introduction of an unconditional jump. In Figure 8.2 (d), the rangeconditions are reordered, with an additional range condition R4 being movedout of the original default range conditions to the head of the sequence. Finally,we invoke dead code elimination and the result is Figure 8.2 (e).When a sequence of branches with a common successor overlapped with asequence of branches comparing a common variable, we need to make a choiceas to which type should be used. Our experiments indicated that the commonvariable type is more e�ective (see the results in Chapter 7.) Hence the com-
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52piler gave the common variable sequence precedence over the common successorsequence.Figure 8.3(a) shows an example in which [N1; N2] is a common variablesequence and [N2; N3] is a common successor sequence. Assume that [N1; N2]and [N2; N3] should be reordered based on pro�le information and there are no
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(c) After Dead Code EliminationFigure 8.3: Resolving Sequence Overlapping.side transitions for both sequences. The compiler is going to reorder sequence[N1; N2] before reordering [N2; N3]. Figure 8.3(b) shows that four new basicblocks are created to apply the reordering of [N1; N2], among which N 01 and N 02correspond to range conditions N1 and N2 and N 03 and T 03 are replicated code ofblocks N3 and T3. Here we assume block T3 is a terminal block. Since we need toreplicate code until we reach a terminal block, we cannot stop replication at N 03and hence we continue to replicate T 03. After we �nish reordering all the commonvariable sequences, we are going to reorder common successor sequences. Whenwe come to the common successor sequence [N2; N3], we are not going to apply



53the reordering since now block N2 does not have any predecessors. As we cansee in Figure 8.3 (c), the basic blocks N1, N2, N3 and T3 are deleted.The compiler also checks for a special case in which the reordering of acommon successor sequence should not be applied at all. Figure 8.4(a) givesan example in which [N1; N2] is a common successor sequence and [N2; N3] is acommon variable sequence. Figure 8.4 (b) shows the situation after reordering[N2; N3]. Note that in Figure 8.4 (b) the basic block N2 has lost all of itspredecessors, including N1. In this case the original relationship between N1and N2 is lost, i.e, they do not form a common successor sequence any more.So the compiler will not apply the reordering of [N1; N2].
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CHAPTER 9RESULTSMeasurements were collected on the code generated for the SPARC architectureby the vpo compiler using the ease environment [11]. We chose non-numericalapplications since they tend to have complex control 
ow and a higher densityof conditional branches. Table 9.1 shows the dynamic frequency measurementsfrom several common Unix utilities. 1The Original column contains the number of instructions executed with allof vpo's conventional optimizations applied. We present in the rest of the tablethe percentage change in the number of instructions and branches executed afterreordering sequences of branches with a common successor, reordering sequencesof range conditions comparing a common variable, and reordering both typesof sequences. The approach for reordering branches with common successorshad very little impact. The compiler could only �nd very few sequences thatwere deemed worthwhile to reorder. The approach for reordering range condi-tions comparing a common variable had signi�cant bene�ts both in reducingthe total number of instructions and conditional branches. Also, comparisoninstructions became redundant and were eliminated much more often when anoriginal default range became an explicit range in the reordered sequence. Onemay notice that the reordering transformations had a slight negative impacton a few programs, such as hyphen, which occurred for a couple of reasons.1The heuristic for Table 9.1 is Heuristics Set I as de�ned later.54



55Table 9.1: Dynamic Frequency Measurements for Heuristic Set I.Common Successor Common Variable BothProgram Original Insts Branches Insts Branches Insts Branchesawk 13,611,150 -3.232% -3.828% -2.02% -4.19% -3.88% -7.36%cb 17,100,927 -0.253% -0.300% -7.65% -15.46% -7.90% -15.76%cpp 18,883,104 +0.160% +0.322% -0.13% -0.19% -0.06% +0.13%ctags 71,824,053 -0.004% -0.004% -9.10% -14.72% -9.00% -14.62%dero� 15,458,812 -0.032% -0.003% -1.52% -2.63% -1.55% -2.62%grep 9,256,749 -0.028% -0.053% -3.60% -8.31% -3.62% -8.37%hyphen 18,059,010 0.000% 0.000% +3.42% +3.40% +3.41% +3.34%join 3,552,801 0.000% 0.000% -1.68% -2.12% -1.68% -2.12%lex 10,005,018 -0.546% -0.919% -4.56% -10.39% -4,81% -10.52%nro� 25,307,809 -1.118% -1.869% -2.48% -6.35% -3.21% -7.32%pr 73,051,342 0.000% 0.000% -16.25% -29.96% -16.25% -29.96%ptx 20,059,901 -0.860% -1.4174% -9.18% -13.28% -10.04% -14.69%sdi� 14,558,535 -0.043% -0.037% -16.09% -37.03% -16.13% -37.07%sed 14,229,310 -0.166% -0.310% -1.16% -2.03% -1.33% -2.34%sort 23,146,400 0.000% 0.000% -47.20% -57.38% -47.20% -57.38%wc 25,818,199 0.000% 0.000% -15.05% -26.26% -15.05% -26.25%yacc 25,127,817 -0.022% -0.034% -0.25% -0.44% -0.27% -0.47%average 23,473,585 -0.361% -0.497% -7.91% -13.37% -6.745% -13.73%First, di�erent test input data was used as compared to the training input data.When we used the same test input data as the training input data, the num-ber of branches never increased. Second, the reordering transformation wasapplied after all optimizations except for �lling delay slots. Sometimes delayslots would be �lled from the other successor and would often not execute auseful instruction. One should note that inconsistent �lling of delay slots alsosometimes resulted in increased performance bene�ts. The transformation mayalso have signi�cant bene�ts when a program executes most of its instructionsin a reorderable sequence, such as in sort.Since there is little bene�t from reordering common successor sequences, thefollowing tables only consider reordering common variable sequences. Three dif-ferent sets of heuristics were used when translating switch statements. Assumethere are n cases in a switch statement and there are m possible values between



56the �rst and last case. When compiling for a SPARC IPC and a SPARC 20,the front end used Heuristic Set I that would only generate an indirect jumpfrom a table if n � 4 and m � 3n. If an indirect jump was not generated,then a binary search was used when n > 8. These are the same heuristicsused in the pcc front end [12]. The authors used the dual loop method [13]and found that indirect jumps on the SPARC Ultra I were about four timesmore expensive than indirect jumps on the SPARC IPC or SPARC 20 [14].Therefore, Heuristic Set II used for the Ultra only generated an indirect jumpwhen n � 16. Finally, Heuristic Set III always generated a linear search whentranslating a switch statement, which resulted in the maximum bene�t fromreordering. The di�erences between using the di�erent sets of heuristics in-dicates that the e�ectiveness of branch reordering increases as indirect jumpsbecome more expensive. It is also interesting to note that the total number ofinstructions executed after reordering often decreased as fewer indirect jumpswere generated. This shows that pro�le information should be used to decideif an indirect jump should be generated or branch reordering should insteadbe applied. Tables 9.2 and 9.3 show the dynamic frequency measurements forHeuristic Set II and Heuristic Set III, respectively.Tables 9.4, 9.5, and 9.6 show static measurements for the same set ofprograms for Heuristic Set I, II, and III, respectively. There was only about a5% increase in the number of instructions generated. The Total Seqs columnrepresents the total number of reorderable sequences detected in each program.The Seqs column indicates the percentage of these sequences that were actuallyreordered. The single most common factor that prevented a sequence from



57Table 9.2: Dynamic Frequency Measurements for Heuristic Set II.Original ReorderedProgram Insts Branches Insts Branchesawk 13,552,831 2,195,748 -2.97% -6.15%cb 17,100,927 2,882,466 -7.65% -15.46%cpp 18,880,116 2,642,973 -0.13% -0.19%ctags 71,824,093 18,948,699 -9.02% -14.64%dero� 15,449,146 2,714,435 -1.38% -2.36%grep 9,938,414 2,115,757 -10.53% -22.04%hyphen 18,059,010 2,831,171 +3.42% +3.40%join 3,552,801 983,936 -1.68% -2.12%lex 10,003,391 1,764,417 -4.57% -10.40%nro� 25,313,527 3,690,741 -2.50% -6.39%pr 73,051,352 12,078,585 -16.25% -29.96%ptx 20,059,901 3,310,268 -9.18% -13.28%sdi� 14,558,530 2,765,574 -16.09% -37.03%sed 14,243,263 2,549,635 -1.28% -2.32%sort 23,146,400 6,277,167 -47.20% -57.38%wc 25,818,199 5,227,974 -15.05% -26.26%yacc 25,127,817 4,851,335 -0.25% -0.44%average 23,510,571 4,578,287 -8.37% -14.30%



58Table 9.3: Dynamic Frequency Measurements for Heuristic Set III.Original ReorderedProgram Insts Branches Insts Branchesawk 13,651,335 2,230,559 -3.63% -7.44%cb 19,662,207 3,538,146 -21.79% -37.41%cpp 30,477,974 6,730,186 -28.37% -41.85%ctags 72,222,399 19,042,284 -9.13% -14.73%dero� 15,491,185 2,722,474 -1.40% -2.39%grep 11,810,072 2,526,865 -32.04% -51.42%hyphen 18,059,010 2,831,171 +3.42% +3.40%join 3,552,801 983,936 -1.68% -2.12%lex 10,028,151 1,771,795 -4.77% -10.73%nro� 25,339,678 3,697,534 -2.53% -6.45%pr 73,051,352 12,078,585 -16.25% -29.96%ptx 20,059,901 3,310,268 -9.18% -13.28%sdi� 14,558,530 2,765,574 -16.09% -37.03%sed 15,368,724 3,014,722 -10.07% -17.01%sort 23,146,434 6,277,177 -47.20% -57.38%wc 25,818,199 5,227,974 -15.05% -26.26%yacc 25,168,370 4,864,310 -0.47% -0.76%average 24,556,842 4,918,444 -12.72% -20.75%



59Table 9.4: Static Measurements for Heuristic Set I.ReorderedAvg Seq LenProgram Insts Total Seqs Seqs Orig Afterawk +1.91% 48 16.67% 2.88 3.75cb +8.32% 12 83.33% 2.50 2.80cpp +1.57% 15 33.33% 2.20 3.20ctags +9.48% 28 39.29% 2.64 3.36dero� +1.58% 38 23.68% 2.67 2.89grep +3.51% 7 28.57% 3.50 4.50hyphen +8.70% 3 100% 2.67 3.33join +7.61% 8 37.50% 3.33 3.67lex +8.55% 95 58.95% 2.55 2.95nro� +1.62% 87 21.84% 2.95 3.53pr +2.40% 10 50.00% 3.00 4.20ptx +1.47% 4 75.00% 3.00 4.33sdi� +3.48% 8 37.50% 2.67 3.33sed +4.22% 34 47.06% 2.88 3.50sort +3.68% 16 56.25% 2.33 2.78wc +10.20% 3 33.33% 5.00 5.00yacc +6.42% 35 77.14% 3.70 4.48average +4.98% 26 48.20% 2.97 3.62



60Table 9.5: Static Measurements for Heuristic Set II.ReorderedAvg Seq LenProgram Insts Total Seqs Seqs Orig Afterawk +2.05% 56 19.64% 3.91 4.55cb +8.32% 12 83.33% 2.50 2.80cpp +1.57% 16 31.25% 2.20 3.20ctags +9.47% 29 37.93% 2.64 3.36dero� +1.76% 41 24.39% 3.00 3.20grep +4.11% 19 36.84% 2.57 2.86hyphen +8.70% 3 100% 2.67 3.33join +7.61% 8 37.50% 3.33 3.67lex +8.98% 103 58.25% 2.68 3.07nro� +1.73% 93 25.81% 2.83 3.33pr +2.62% 11 54.55% 3.67 4.67ptx +1.47% 5 60.00% 3.00 4.33sdi� +3.49% 10 40.00% 3.00 3.50sed +4.32% 41 51.22% 2.81 3.29sort +3.68% 16 56.25% 2.33 2.78wc +10.20% 3 33.33% 5.00 5.00yacc +6.42% 35 77.14% 3.70 4.48average +5.09% 29 48.67% 3.05 3.61



61Table 9.6: Static Measurements for Heuristic Set III.ReorderedAvg Seq LenProgram Insts Total Seqs Seqs Orig Afterawk +1.97% 42 30.95% 18.15 18.69cb +11.17% 6 66.67% 5.50 7.75cpp +2.47% 16 37.50% 14.33 16.50ctags +6.50% 21 38.10% 3.50 4.50dero� +1.23% 34 20.59% 5.29 5.57grep +3.29% 9 44.44% 8.00 8.50hyphen +8.70% 3 100% 2.67 3.33join +7.61% 8 37.50% 3.33 3.67lex +6.25% 54 59.26% 6.16 7.00nro� +1.71% 46 32.61% 6.00 6.87pr +2.62% 11 54.55% 3.67 4.67ptx +1.47% 5 60% 3.00 4.33sdi� +3.49% 10 40% 3.00 3.50sed +5.32% 25 48% 7.75 8.58sort +3.76% 11 63.64% 3.57 4.29wc +10.20% 3 33.33% 5.00 5.00yacc +6.64% 29 79.31% 4.52 5.65average +4.96% 19 49.79% 6.08 6.96



62being reordered was that pro�le data indicated that the sequence was neverexecuted. Using multiple sets of pro�le data to provide better test coveragewould increase this percentage. The Avg Seq Len shows the average numberof branches in each reordered sequence before and after reordering. Note thatmost of the sequences contained only two or three branches. The length of eachreordered sequence typically increased since often one or more default rangesbecame explicit after reordering.Branch prediction measurements were obtained for the SPARC Ultra I,which supports branch prediction with a (0,2) predictor with 2048 entries. Ta-ble 9.7 shows branch prediction measurements for the same set of programs.Column Branches is the total number of branch instructions executed. ColumnMiss# is the number of mispredictions and columnMiss% is the percentage ofmispredictions. Column Miss# Change% is the change in percentage of num-ber of mispredictions between Original Miss# and Reordered Miss#. It wasanticipated that the number of branch mispredictions would decrease since thenumber of total branches executed was substantially reduced. Fewer mispredic-tions had been observed when branches were coalesced into indirect jumps [14].However, the misprediction results for branch reordering were mixed. Nine ofthe test programs had fewer mispredictions after reordering and the remainingeight had increases. But the average ratio of decreased instructions executedto the increased number of branch mispredictions was 1221.94 to 1 for theseeight programs. Thus, the increase in mispredictions was far outweighed by thebene�t of reducing the number of instructions executed. Table 9.8 shows thatcomparable results were obtained when simulations were performed using other



63Table 9.7: Branch Prediction Measurements.Original Reordered Miss # InstProgram Miss # Miss % Miss # Miss % Change % Ratio %awk 243,027 11.15% 241,916 11.83% -0.46% N/Acb 440,712 15.29% 466,158 19.13% +5.77% 51.41cpp 389,566 14.22% 382,761 14.00% -1.75% N/Actags 569,753 3.01% 1,854,523 11.26% +225.50% 5.04dero� 62,819 2.32% 61,016 2.31% -2.87% N/Agrep 115,007 5.44% 110,064 6.67% -4.30% N/Ahyphen 266,177 9.40% 490,095 16.74% +84.12% -2.76join 50,440 5.13% 47,605 4.94% -5.62% N/Alex 66,534 3.77% 67,820 4.29% +1.93% 355.47nro� 141,167 3.82% 139,849 4.05% -0.93% N/Apr 750,570 6.21% 753,046 8.90% +0.33% 4,793.65ptx 215,218 6.50% 296,103 10.31% +37.58% 22.78sdi� 156,440 5.66% 148,078 8.50% -5.35% N/Ased 83,579 3.23% 82,037 3.25% -1.84% N/Asort 171,619 2.73% 153,745 5.75% -10.41% N/Awc 481,767 9.22% 482,627 12.52% +0.18% 4,519.65yacc 373,825 7.71% 375,899 7.78% +0.55% 30.28average 269,307 6.75% 361,961 8.96% +18.97% 1,221.94branch predictors.The execution timemeasurements shown in Table 9.9 were obtained from theaverage reported user times of ten executions of each program using the C run-time library function times(). The execution time decrease was not as signi�cantas the reduction in instructions executed on these machines. One should notethat in Table 9.9 the frequency measurements from the code compiled by ourcompiler did not include the C run-time library code. However, the library codedid contribute to the execution times.



64Table 9.8: Branch Prediction Measurements for Di�erent Con�gurations(0,1) Predictor (0,2) Predictor (2,2) PredictorEntries Miss # Inst Miss # Inst Miss # InstChange % Ratio Change % Ratio Change % Ratio32 +16.65% 681.20 +17.37% 1,313.47 +17.05% 805.7864 +21.96% 720.73 +21.15% 1,082.02 +20.77% 640.08128 +21.91% 8,583.19 +20.60% 1,091.28 +19.40% 661.92256 +21.91% 972.87 +20.21% 953.70 +19.03% 569.88512 +19.67% 5,852.38 +18.09% 1,200.25 +17.34% 681.981024 +20.45% 13,331.71 +18.88% 1,217.61 +18.44% 664.032048 +20.59% 13,311.73 +18.97% 1,221.94 +37.65% 653.02Table 9.9: Execution Times.Machine Average Execution TimeSPARC IPC -4.942%SPARC 20 -5.565%Ultra SPARC -2.878%



CHAPTER 10FUTURE WORKThere are several areas in which reordering branches could be extended. Ad-ditional sequences of branches with common successors could be optimally re-ordered. Interprocedural analysis could be used to determine if invoked func-tions do not cause a side e�ect. Avoiding the execution of a function call couldhave signi�cant performance bene�ts. Sequences having more than two branchescould be optimally reordered by obtaining all combinations of branch results us-ing an array of pro�le counters. This approach may be reasonable for a smallsequence length (e.g. n <= 7), which may handle most branch sequences with acommon successor. In addition, a sequence of branches with a common succes-sor can be viewed as a single block with a branch since it has two successors (thecommon successor and the other successor of the last branch in the sequence).Thus, an entire sequence may be reordered with another branch or sequence ifthey have a common successor. This situation may occur from the translationof complex logical expressions applying di�erent logical operators (e.g. both ||and && operators in C.)A sequence of range conditions is one of several approaches that could beused to determine a target associated with the value of an expression. Essen-tially, a sequence of range conditions is a linear search. Some of these otherapproaches include performing a binary search, using a jump table, and hash-65



66ing [3]. Pro�le data could be used to more e�ectively apply these other ap-proaches as a semi-static search method and to decide when each method or acombination of methods is most bene�cial. We plan to investigate the use ofa binary search approach. Instead of �nding a near-optimal sequence of rangeconditions, we can select an optimal or near-optimal binary search tree. Ourinitial investigations have shown that an algorithm using dynamic program-ming to select an optimal binary search would require both exponential timeand space complexity. We can reduce this complexity by �rst using heuristics topartition ranges and then applying dynamic programming to �nd the optimalbinary search tree for smaller sets of ranges. We plan to study how much morebene�t will be obtained using the binary search approach instead of the linearsearch approach at the expense of increasing the complexity.



CHAPTER 11CONCLUSIONSThis thesis described an approach of using pro�le information to reduce thenumber of conditional branches executed by reordering sequences of branches.Algorithms for detecting sequences of reorderable branches having a commonsuccessor or comparing a common variable were presented. Pro�ling was per-formed to estimate the probability that each branch will transfer control out ofthe sequence. The most bene�cial orderings for these sequences based on pro-�ling and cost estimates can often be obtained. The results showed reductionsin the number of branches and instructions executed and execution time.
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