
THE FLORIDA STATE UNIVERSITYCOLLEGE OF ARTS AND SCIENCESBOUNDING WORST-CASE DATA CACHE PERFORMANCEByRANDALL T. WHITEA Dissertation submitted to theDepartment of Computer Sciencein partial ful�llment of therequirements for the degree ofDoctor of PhilosophyDegree Awarded:Spring Semester, 1997

The members of the Committee approve the dissertationof Randall T. White defended on April 1, 1997.David B. WhalleyProfessor Directing DissertationSteven F. BellenotOutside Committee MemberTheodore P. BakerCommittee MemberR. C. LacherCommittee MemberGregory A. RiccardiCommittee MemberApproved:R. C. Lacher, Chair, Department of Computer Science

ToMy parents, R. B. and Margie White,My grandmother, Martha Cox,andIn Loving Memory ofMy grandfather, L. T. Cox, Sr.

iii

AcknowledgementsI would �rst and foremost like to thank Dr. David Whalley, my major professor,for his guidance, patience, and support throughout this entire project. He wasalways available to listen to my questions and concerns, to o�er insights andsolutions, and to discuss my progress on the often quite di�cult programmingtasks involved with this dissertation. He also deserves a reward for putting upwith my constant questions and grouching about VPO!I am also grateful to the members of my committee, Dr. Ted Baker, Dr. GregRiccardi, Dr. Steven Bellenot, and Dr. Chris Lacher for their help and support.I would also like to thank Frank Mueller for his helping me with my initialunderstanding of the static simulator code. I've abused it so much now that hewould hardly recognize it! I would also like to thank Chris Healy for his helpwith my modi�cations to both the timing analyzer and the pipeline simulationportion of the Ease execution simulator.I am forever grateful to my family, especially my parents and my sisterDebbie, for their generous support throughout my seemingly endless years ingraduate school. I would have never made it this far without their love, prayers,and belief in me.The research on which this dissertation is based was supported in part bythe O�ce of Naval Research under contract number N00014-94-1-006.iv

ContentsList of Tables viiList of Figures viiiAbstract ix1 Introduction 11.1 Challenges : 11.2 Related Work : 31.3 Organization of Dissertation : 52 Overview of Research Environment 63 Calculation of Relative Addresses in the Compiler 83.1 Front-End : 83.2 Back-End : 83.3 The DNF File : 154 Calculation of Virtual Addresses 225 Static Simulation to Produce Data Reference Categorizations 266 Timing Analysis 34v

7 Execution Simulation of Data Cache and Pipeline E�ects 418 Results 469 Future Work 539.1 Merging Instruction and Data Caching Prediction and Simulation 539.2 Wrap-Around Fill for Data Caches : : : : : : : : : : : : : : : : 539.3 Write Bu�er : 549.4 Best Case : 549.5 Compiler Optimizations : 5410 Conclusions 55Appendices 57A Memory References in Annulled Delay Slots 57B Description of the DNF File 63References 68Bibliographical Sketch 71
vi

List of Tables6.1 Timing Analysis Steps for the loop in Figure 6.2 : : : : : : : : : 398.1 Test Programs : 478.2 Dynamic Results : 48

vii

List of Figures1.1 Data vs. Instruction Memory Mapping : : : : : : : : : : : : : : 22.1 Overview of Bounding Data Cache Performance : : : : : : : : : 63.1 Example C Program, RTLS, and SPARC Assembly : : : : : : : 103.2 Algorithmic Range of Relative Addresses for the load in Figure 3.1 113.3 Example in Figure 3.1 without Strength Reduction in Outer Loop 123.4 Algorithmic Range of Relative Addresses for the load in Figure 3.3 143.5 Portion of a DNF File for Function Initialize : : : : : : : : : : : 173.6 C Code, RTLS, and SPARC Assembly for Function Initialize : : 194.1 Virtual Address Space Organization in SunOS : : : : : : : : : : 234.2 Algorithmic Range of Virtual Addresses for the Load in Figure 3.3 255.1 Algorithm to Calculate Data Cache States : : : : : : : : : : : : 275.2 Instruction Vs. Data Cache State Representation : : : : : : : : 285.3 Detecting Spatial Locality : 305.4 Detecting Temporal Locality Across and Within Loops : : : : : 326.1 Worst-Case Loop Analysis Algorithm : : : : : : : : : : : : : : : 356.2 Example to Illustrate Worst-Case Loop Analysis Algorithm : : : 386.3 Pipeline Diagrams for the Two Paths in Figure 6.2 : : : : : : : 38A.1 Example C Program, RTLS, and SPARC Assembly, Revised : : 59viii

AbstractTightly predicting worst-case execution times (WCETs) of programs on real-time systems with caches is di�cult. Whether or not a particular reference isin cache depends on the program's previous dynamic behavior. While muchprogress has been accomplished recently on predicting instruction cache per-formance of programs, bounding worst-case data cache performance is signi�-cantly more challenging. Unlike instruction caching, many of the data addressesreferenced by load and store instructions can change during the execution of aprogram. This dissertation describes an automatic tool-based approach for stat-ically bounding the worst-case data cache performance of large code segments.It also presents the work done to verify the validity of the computed bounds.The given approach works on fully optimized code, performs the analysis overthe entire control ow of a program, detects and exploits both spatial and tem-poral locality within data references, produces results typically within a fewseconds, and produces, on average, 30% tighter WCET bounds than can bepredicted without analyzing data cache behavior.The given method of timing analysis involves several steps. First, data owanalysis within an optimizing compiler is used to determine the bounded rangeof addresses of each data reference relative to a global symbol or activationrecord. Second, virtual address ranges are calculated from the relative addressranges by examining the order of the assembly data declarations and the callix

graph of the entire program. Third, the control ow of the program is analyzedto statically categorize the caching behavior of each data reference. Fourth,these categorizations are used when calculating the pipeline performance ofsequences of instructions representing paths within the program. Finally, thepipeline path analysis is used to estimate the worst-case execution performanceof each loop and function in the program.Overall, this dissertation presents a comprehensive report on methods andresults of worst-case timing analysis of data cache behavior and shows that suchan analysis can lead to a signi�cantly tighter worst-case performance prediction.The given approach is unique and provides a considerable step towards realisticworst-case execution time prediction of contemporary architectures and its usein schedulability analysis for real-time systems.

x

Chapter 1IntroductionReal-time systems rely on the assumption that the worst-case execution time(WCET) of hard real-time tasks be known to ensure that deadlines of tasks canbe met { otherwise the safety of the controlled system is jeopardized. Staticanalysis of program segments corresponding to tasks provides an analytical ap-proach to determine the WCET for modern processors. The complexity of theseprocessors requires a tool-based approach since ad hoc testing methods may notexhibit the worst-case behavior of the architecture. This dissertation presentsa working system of tools that can statically analyze optimized code and pro-duce the data cache timing analysis for real-time programs without requiringinteraction from the user. Furthermore, those programs are allowed to take fulladvantage of many features of modern architectures, including pipelining anddata caches. 1.1 ChallengesObtaining WCETs for real-time applications on systems that use a data cacheis quite challenging. Unlike instruction caching, many of the addresses of refer-ences to data can change during the execution of a program. A reference to anitem within an activation record could have di�erent addresses depending on thesequence of calls associated with the invocation of the function. Many data ref-erences, such as indexing into an array, are dynamically calculated and can vary1

2
.
.
.

.

.

.

.

.

.

.

.

.

Memory

Mapping

Instruction

Mapping

Data

5

4

3

2

1

global

scalar

calculated

local

scalar

Memory
Code

global

Figure 1.1: Data vs. Instruction Memory Mappingeach time the data reference occurs. Pointer variables in languages like C maybe assigned addresses of di�erent variables or an address that is dynamicallycalculated from the heap. Instruction caches also allow for a simple 1-1 mappingfrom instructions to memory. This is not possible for data caches. Figure 1.1shows how the mapping of data addresses di�ers from that of instructions. Aglobal variable may be accessed from more than one place in the code (blocks1 and 5). A global calculated reference may appear textually in the programonly once (block 3), but will access many di�erent addresses. Likewise, a localvariable may appear only once (block 4), but will map to di�erent addresses inthe stack depending on the calling sequence of the function in which it appears.Initially, it may appear that obtaining a reasonable bound on worst-case

3data cache performance is just not feasible. However, this problem is far fromhopeless since the addresses for many data references can be statically calcu-lated. Static or global scalar data references do retain the same addresses duringthe execution of a program. Run-time stack scalar data references can often bestatically determined as a set of addresses depending upon the sequence of callsassociated with an invocation of a function. The pattern of addresses associatedwith many calculated references, such as indexing through an array, can alsooften be resolved statically.1.2 Related WorkThere has been some work in the area of locality analysis to assist compilersperforming optimizations [18, 27]. Generally, this work only attempts to es-timate the locality of data within a set of nested loops. The e�ect of scalarreferences is not typically considered. Furthermore, this analysis usually occursfor high-level optimizations, where the exact machine instructions and virtualaddresses of the data references are unknown.In the past few years, research in the static analysis of WCET of programshas increased. Conventional methods for static analysis have been extendedfrom unoptimized programs on simple CISC processors [7, 22, 21] to optimizedprograms on pipelined RISC processors [9, 17, 28] and from uncached architec-tures to instruction caches [3, 11, 15]. However, there has been little previouswork on predicting WCET for data caching. Only three previous attempts havebeen reported. Rawat and Nilsen [23] used a graph coloring approach to bounddata caching performance. However, only the live ranges of local scalar variables

4within a single function were analyzed. Unfortunately, these types of referencesare fairly uncommon since most local scalar variables are allocated to registersby optimizing compilers and actually do not reference memory.Kim et. al. [12] have recently published work about bounding data cacheperformance for calculated references, which they refer to as occurring fromdynamic load and store instructions. Their approach uses a pigeonhole principle.For each loop they determine the maximum number of references from eachdynamic load/store instruction. They also determine the maximum number ofdistinct locations in memory referenced by these instructions. The di�erencebetween these two values is the number of data cache hits for the loop given thatthere are no conicting references. This technique works quite well when all ofthe data references �t into cache and the size of each data reference is the samesize as a cache line. Unfortunately, their technique does not detect any spatiallocality (i.e., when the line size is greater than the size of each data reference andthe elements are accessed contiguously) and detects no temporal locality acrossdi�erent loop nests. Furthermore, no general analysis of induction variables andloop invariant values is performed to calculate relative ranges of data references.Instead, they rely on analyzing unoptimized code, where registers associatedwith a memory address have to correspond to a loop index variable. As willbe shown in this dissertation, compiler optimizations can make the process ofcalculating ranges of relative addresses signi�cantly more challenging.Li et. al. [16] have described a framework to integrate data caching intotheir integer linear programming (ILP) approach to timing prediction. Theirimplementation performs data-ow analysis to �nd conicting blocks. However,

5their linear constraints describing the range of addresses of each data referencecurrently have to be calculated by hand. They also require a separate constraintfor every element of a calculated reference, which causes a scalability problemfor large arrays. No actual WCET results on data caches were reported. Theirapproach can also incur signi�cant overhead. In fact, one program in their testsuite required over 50,000 seconds (nearly 14 hours) for WCET results to beproduced with instruction caches being considered. The number of constraintsneeded for large arrays can make overhead for data cache prediction even higher.1.3 Organization of DissertationChapter 2 gives a brief overview of the di�erent stages involved in the bound-ing of worst-case data cache performance. Chapter 3 discusses changes madeto the vpo compiler [4] to allow the calculation of relative address information.In Chapter 4 the method of computing virtual addresses is discussed. Chap-ter 5 describes the method of static cache simulation to categorize the datareferences in a program. In Chapter 6 the timing analysis algorithm is givenalong with an example showing its use. Chapter 7 describes the changes madeto the ease cache simulator [6] in order to check the validity of the computedaddresses and to simulate data caching and pipeline e�ects of executing the testprograms. Chapter 8 shows the results of the work on various representativeprograms. Chapter 9 suggests topics for future research, and Chapter 10 givesthe conclusions. In addition there are two appendices. Appendix A discusses thedi�culties of dealing with a load or store in an annulled delay slot. AppendixB gives a grammatical description of the data information (dnf) �le.

Chapter 2Overview of Research EnvironmentThere are several stages involved in the approach used for bounding data cacheperformance of large code segments. Figure 2.1 depicts an overview of thesestages. An optimizing compiler [4] has been modi�ed to store information aboutthe control ow, which includes the calling structure of functions, data declara-tions, and relative address ranges of data references within each function as theside e�ect of the compilation of each source �le. This information is passed toan address calculator, which converts the relative data addresses to virtual dataaddresses. The control ow is input to the static cache simulator, which usesit to construct a control-ow graph of the entire program. The static simulatoruses the information produced by the address calculator and the speci�ed datacache con�guration when analyzing this graph to produce a categorization of
Instrumented

Executable

Timing

Predictions

Files

Source

C

Compiler

Static
Cache

Interface

User

Analyzer
Timing

Information

and Relative

Address
Address

Calculator
Information

Address

Data Decls

Control Flow

Information

Virtual

Simulator

User

Timing

RequestsInformation

Dependent

Machine

Configurations

Data Cache Data Caching

Categorizations
Linker

Simulation

Results

Library
Simulator

EASE Figure 2.1: Overview of Bounding Data Cache Performance6

7each data reference in the program. This static stimulation is based on previouswork described in [19]. The timing analyzer reads machine-dependent infor-mation to determine how each instruction proceeds through the pipeline. Ituses the data categorizations to determine whether each data reference shouldbe treated as a hit or miss during the pipeline analysis. The timing analyzeralso uses the control ow information to produce a program control-ow graph,which is analyzed to produce a worst-case estimate for each loop and functionwithin the program. The timing analysis is based on earlier work describedin [2, 8]. Finally, a graphical user interface is displayed that allows a user torequest timing bounds for portions of the program [14, 13]. Excerpts of this dis-sertation describing the approach to statically bounding WCETs for programsthat use a data cache, along with extensions to the static simulator to producecategorizations for instructions in programs using a set associative cache, canbe found in [26].In addition to the components mentioned above, an execution simulator wasdeveloped to check the validity of the statically computed WCETs. An existingcache simulator (EASE, described in [6]) was modi�ed to measure the simulatedpipeline and data caching behavior of a program's execution. This simulator isalso used to check the validity of the computed addresses by comparing themagainst the addresses that are actually accessed at run time. If any actualaddress is found to be outside the computed range, an error message is outputand the simulation terminates.

Chapter 3Calculation of Relative Addresses in the Compiler3.1 Front-EndThe front-end of the compiler (cfe { C Front End) [5] was modi�ed to passinformation about declarations of static data to the compiler back-end. Nor-mally, this information is discarded after the static data assembly declarationsare emitted. However, it is necessary for the address calculator to know someof this information, which includes the name, size, and alignment requirementsfor each static data declaration.3.2 Back-EndThe back-end of the compiler (vpo { Very Portable Optimizer) [4] required moreintensive modi�cations than cfe. Since a goal of the research was to allowthe user to take advantage of fully optimized code, there were many instanceswhere traditional techniques for calculating ranges of relative addresses werenot adequate due to interference from various compiler optimizations.Vpo attempts to calculate relative addresses for each data reference associ-ated with load and store instructions after other compiler optimizations havebeen performed. First, the compiler determines for each loop the set of its induc-tion variables, their initial values and strides, and the loop-invariant registers.11A basic loop induction variable only has assignments of the form v := v � c, where v isa variable or register and c is an integer constant. Nonbasic induction variables are also onlyincremented or decremented by a constant value on each loop iteration, but get their values8

9Expansion of addresses used in loads and stores is then performed. Expan-sion is accomplished by examining each preceding RTL and replacing registersused as source values in the address with the source of the RTL which set thatregister. Induction variables associated with a loop are not expanded. Loopinvariant values are expanded by moving to the end of the preheader block ofthat loop. Expansion of addresses of scalar references to the run-time stack (e.g.local variables) is trivial. Expansion of references to static data (e.g. global vari-ables) often requires expanding loop invariant registers since these addresses areconstructed with instructions that may be moved out of a loop. Expansion ofcalculated address references (e.g. array indexing) requires knowledge of loopinduction variables.Consider the source code and corresponding RTLs, which represent SPARC 2assembly instructions, in Figure 3.1. Note that although delay slots are actually�lled by the compiler, they have not been �lled when compiling code for theexamples in this section in order to simplify the examples for the initial expla-nation of the expansion and simpli�cation of memory address information. Amore detailed discussion of the rami�cations of memory references in (possiblyannulled) delay slots is given in Appendix A.The memory reference in the load (instruction 9) references the registerr[13], which is a basic induction variable for the inner loop (instructions 9-13)and will not be expanded. The stride for r[13] was calculated to be 4. Theeither directly or indirectly from basic induction variables. A variety of forms of assignmentfor nonbasic induction variables are allowed. Loop invariant values do not change during theexecution of a loop. A discussion of how induction variables and loop invariant values areidenti�ed can be found elsewhere [1].2SPARC is a registered trademark of Sparc International, Inc.

10
load of a[i][j]

int a[100][100];

main

{

 int i, j, sum;

 sum = 0;

}
 sum += a[i][j];

r[12]=0; # 1. mov %g0,%o4

r[13]=HI[_a]; # 2. sethi %hi(_a),%o5

r[4]=0; # 3. mov %g0,%g4

r[5]=HI[40000]; # 4. sethi %hi(40000),%g5

r[6]=r[13]+LO[_a]; # 6. add %o5,%lo(_a),%g6

r[13]=r[4]+r[6]; # 7. add %g4,%g6,%o5

r[2]=r[13]+400; # 8. add %o5,400,%g2

r[12]=r[12]+r[8]; # 10. add %o4,%o0,%o4

r[13]=r[13]+4; # 11. add %o5,4,%o5

IC=r[13]?r[2]; # 12. cmp %o5,%g2

PC=IC<0,L20; # 13. bl L20

r[4]=r[4]+400; # 14. add %g4,400,%g4

IC=r[4]?r[5]; # 15. cmp %g4,%g5

PC=IC<0,L17; # 16. bl L17

PC=RT; # 17. retl

r[5]=r[5]+LO[40000]; # 5. add %g4,%lo(40000),%g5

 for (i=0; i < 100; i++)

 for (j=0; j < 100; j++)

r[8]=R[r[13]]; # 9. ld [%o5],%o0L20

L17

Figure 3.1: Example C Program, RTLS, and SPARC Assemblycompiler determined its initial value to be r[4]+r[6] by expanding r[13] atthe end of the inner loop preheader, which precedes the header block at L20.The register r[4] is a basic induction variable for the outer loop (instructions7-16). However, the r[6] register is loop invariant in the outer loop and thisinitial address also needs to be expanded. The expansion of the initial addressaccessed by the load is shown in the following steps.1. r[13] # address expression in load at instruction 92. r[4]+r[6] # from instruction 73. r[4]+(r[13]+LO[_a]) # from instruction 64. r[4]+(HI[_a]+LO[_a]) # from instruction 2Address simpli�cation is performed to obtain the following expression as aninitial address. The HI and LO correspond to the high and low portions of

11for (r[4] = 0; r[4] < 40000; r[4] += 400)for (r[13] = r[4]+_a; r[13] < r[4]+_a+400; r[13] += 4)address{r[13]}Figure 3.2: Algorithmic Range of Relative Addresses for the load in Figure 3.1the address since the address calculation cannot be accomplished in a singleinstruction on the SPARC.5. r[4]+_a # eliminate HI and LO and unnecessary parenthesesThe relative range of addresses is calculated using the initial value and stride ofthese induction variables and the number of iterations of the loop to determinea limit. The compiler determined that the initial value for r[4] is 0 and itsstride is 400. The number of iterations for each loop is calculated to be 100 bythe compiler. The range of relative addresses for this example can be depictedalgorithmically as shown in Figure 3.2.Unfortunately, the calculation of a range of relative addresses is not always sosimple. Occasionally, the compiler optimization called loop strength reductioncannot be applied due to lack of available registers. To address this problem amore sophisticated address simpli�cation algorithmwas developed. To illustratethe capabilities of this algorithm, the same example in Figure 3.1 was recompiledwithout loop strength reduction being applied to the outer loop. Figure 3.3contains the instructions generated in this case.The e�ect of the memory address in the load (instruction 12), which is r[2],has to be expanded. The register r[2] cannot be immediately expanded sinceit is an induction variable for the inner loop (instructions 12-16). The compiler

12
load of a[i][j]

r[12]=0; # 1. mov %g0,%o4

r[13]=HI[_a]; # 3. sethi %hi(_a),%o5

r[11]=0; # 2. mov %g0,%o3

r[1]=r[11]<<2; # 5. sll %o3,2,%g1

r[1]=r[1]-r[11]; # 6. sub %g1,%o3,%g1

r[1]=r[1]<<3; # 7. sll %g1,3,%g1

r[1]=r[1]+r[11]; # 8. add %g1,%o3,%g1

r[1]=r[1]<<4; # 9. sll %g1,4,%g1

r[2]=r[1]+r[5]; # 10. add %g1,%g5,%g2

r[5]=r[13]+LO[_a]; # 4. add %o5,%lo(_a),%g5

r[4]=r[2]+400; # 11. add %g2,400,%g4

r[2]=r[2]+4; # 14. add %g2,4,%g2

IC=r[2]?r[4]; # 15. cmp %g2,%g4

r[12]=r[12]+r[8]; # 13. add %o4,%o0,%o4

r[11]=r[11]+1; # 17. add %o3,1,%o3

IC=r[11]?100; # 18. cmp %o3,100

PC=IC<0,L17; # 19. bl L17

PC=RT; # 20. retl

PC=IC<0,L20; # 16. bl L20

r[8]=R[r[2]]; # 12. ld [%g2],%o0L20

L17

Figure 3.3: Example in Figure 3.1 without Strength Reduction in Outer Loopnext attempts to determine the initial value for this induction variable. This isaccomplished by moving to the end of the preheader of the inner loop, whichprecedes the loop header block at L20. The initial value of r[2] is r[1]+r[5].The result of expanding the initial memory address within the preheader isshown in the following steps.1. r[2] # from load at instruction 122. r[1]+r[5] # from instruction 103. (r[1]<<4)+r[5] # from instruction 94. ((r[1]+r[11])<<4)+r[5] # from instruction 85. (((r[1]<<3)+r[11])<<4)+r[5] # from instruction 76. ((((r[1]-r[11])<<3)+r[11])<<4)+r[5] # from instruction 67. (((((r[11]<<2)-r[11])<<3)+r[11])<<4)+r[5] # from instruction 5

13The register r[11] is an induction variable for the outer loop and will not beexpanded. The register r[5] cannot be immediately expanded since it is loopinvariant. The compiler moves to the end of the outer loop's (instructions 5-19)preheader, which precedes the header block at L17. The assignments to r[5]are used to further expand the initial address in the two following steps.8. (((((r[11]<<2)-r[11])<<3)+r[11])<<4)+(r[13]+LO[_a])# from instruction 49. (((((r[11]<<2)-r[11])<<3)+r[11])<<4)+(HI[_a]+LO[_a])# from instruction 3Now the expression needs to be simpli�ed. The reason it appears so complicatedis that the compiler had performed an optimization that turned a multiply byan integer constant into a sequence of shifts, adds, and subtracts. This multi-plication was unnecessary when loop strength reduction had been performed onthe outer loop. The HI and LO calculation is eliminated and the e�ect of thisoptimization is reversed in the following steps.10. (((((r[11]<<2)-r[11])<<3)+r[11])<<4)+_a # eliminate HI and LO11. (((((r[11]*4)-r[11])<<3)+r[11])<<4)+_a # change <<2 to *412. ((((r[11]*3)<<3)+r[11])<<4)+_a # change n*4-n to n*313. ((((r[11]*3)*8)+r[11])<<4)+_a # change <<3 to *814. (((r[11]*24)+r[11])<<4)+_a # change *3*8 to *2415. ((r[11]*25)<<4)+_a # change n*24+n to n*2516. ((r[11]*25)*16)+_a # change <<4 to *1617. (r[11]*400)+_a # change *25*16 to *400

14for (r[11] = 0; r[11] < 100; r[11] += 1)for (r[2] = r[11]*400+_a; r[2] < r[11]*400+_a+400; r[2] += 4)address{r[2]}Figure 3.4: Algorithmic Range of Relative Addresses for the load in Figure 3.3At this point the initial address of the load has been fully expanded. The onlyremaining register in the initial address is an induction variable. The initialvalue and stride of these induction variables and the number of iterations ofthe loop to determine a limit is used by the compiler to calculate the relativerange of addresses. The initial value of the inner induction variable r[2] wasgiven at step 17 and its stride is 4. The initial value of the outer inductionvariable r[11] is 0 and the stride is 1. The number of iterations of each loopis 100. Thus, the range of relatives addresses for this example can be depictedalgorithmically as shown in Figure 3.4.This approach to expanding addresses allows us the ability to handle non-standard induction variables. We are not limited to simple induction variablesin simple for loops that are updated only at the head of the loop. For example,consider the following code segment.for (i = 0; i < 100; i++) {... a[i] ... { �rst use of i as index into a...i++; { induction variable i incremented inside body of the loop...... a[i] ... { second use of i as index into a...}

15The �rst use of i to index into a within the loop body uses the value to whichit was initialized or incremented in the for loop header statement. However,since i is incremented in the middle of the loop, the next use of i as an indexinto a will have a value that is one more than it was before. Our approach willdetect this di�erence and correctly determine the relative address range for eachmemory reference. 3.3 The DNF FileAfter relative address information is computed, it needs to be passed to theaddress calculator. The data information, or dnf, �le serves this purpose. Itsformat was chosen for ease of input into the address calculator and for humanreadability. A grammar showing the full organization of the dnf �le is givenin Appendix B. The dnf �le contains lines giving both the static location ofthe data references in the �le, i.e., which function and basic block in whicheach particular reference resides, and the dynamic control ow of the program.However, its primary purpose is to give information about each data reference ina program to the address calculator so that virtual addresses can be computed.The following describes typical information the dnf �le contains for each datareference in the program.variable name: This is either the name of the local or global variable or an ad-dress string consisting of a base name with possible registers and constanto�sets for calculated references.type: One of the letters B, W, R, F, or D, for bytes (1 byte), shorts (2 bytes),ints (4 bytes), oats (4 bytes), or doubles (8 bytes), respectively, giving

16the size and alignment requirements of a particular memory reference ora sequence of memory references.relative o�set: There are lines that give o�sets relative to the current acti-vation record for locals and relative to the beginning of global data forglobals. For calculated references these o�sets are used to calculate abase address, and there are additional lines which give a list of inductionvariables from which the actual virtual range of addresses that can beaccessed, as well as the order in which these addresses will be accessed,may be computed.access type: This is the letter r or w, telling whether this reference is a readfrom or a write to memory. Reads (loads) and writes (stores) may beaccessed di�erently and can cause di�erent e�ects on the data cache.instruction number: The number of the load or store instruction, relative tothe current function.data reference number: The number of the current data reference, startingat 0, relative to the current source �le.Figure 3.5 shows a portion of the dnf �le containing the data reference in-formation for a function Initialize, which takes two arrays as parameters andsets the corresponding elements in each to the same random integers. Note thatthe line numbers are not actually part of the �le but are given in the �gure fordemonstration purposes. The calculated reference information lines in this �leportion, along with the two lines following each of them (lines 23-28), are the

17...1 FN Main...2 FC Initialize3 PM 2 ArrayA ArrayB...4 FN Initialize5 SP 966 -- 1 --7 SL 28 NI 59 -- 2 --10 LI 1011 SL 312 P 6 1 -113 NI 614 -- 3 --15 LI 1016 SL 417 P 5 2 -118 FC Rand19 NI 220 -- 4 --21 SL 522 P 3 -123 CR w 13 R 9 024 BA r[21]+r[25]-r[24] 4 10 10 3 025 IV 1 r[21] 2 4 10 10 r[24]+r[18]+4 1 r[18] 1 44 10 10 44 1 : : :: : :r[26] 1 44 10 10 r[24]+88 026 CR w 14 R 10 027 BA r[21] 4 10 10 3 028 IV 1 r[21] 2 4 10 10 r[24]+r[18]+4 1 r[18] 1 44 10 10 44 1 : : :: : :r[26] 1 44 10 10 r[24]+88 029 NI 230 -- 5 --31 SL 632 SR 333 P 4 -134 NI 4...Figure 3.5: Portion of a DNF File for Function Initialize

18dnf �le result of an interesting example of the expansion and simpli�cation ofaddress strings for calculated references. These lines show how the system canhandle an optimization called index reduction in which the induction variablecalculation for one memory reference is \piggy-backed" onto that of anotherwhen there are two di�erent memory references with identical strides in thesame loop. They also show how the computation of relative address informa-tion is accomplished when dealing with calculated references that have addresscomponents that are passed in as parameters.Consider the C source code, RTLs, and SPARC assembly instructions inFigure 3.6 for the Initialize function. The �rst memory address, r[21] +r[22] (instruction 14), is for the store of B[i][j]. The second memory ad-dress, r[21] (instruction 15), is for the store of A[i][j]. Register r[21] isthe induction register for the inner loop (instructions 12-19) and thus cannotbe expanded. It has an initial value, a stride, and a maximum and minimumnumber of iterations associated with it that were computed and stored earlierin the compilation process.3 These values for induction register r[21] can beseen in the IV lines (lines 25 and 28) following the CR lines (lines 23 and 26) forboth arrays A and B in Figure 3.5.The initial value for r[21] is r[24]+r[18]+4. r[24] is the same as regis-ter i[0], the �rst input register. The SPARC uses the concept of a registerwindow [24] to pass the �rst six arguments to a function via six special inputregisters. Since r[24] was seen to be a special register during the initial value3This earlier computation and expansion of the initial value string of an induction registerproceeds in basically the same manner as has already been discussed except that loop invariantregisters are expanded as well.

19
.
.
.

.

.

.

.

.

.

#define MAX 11

typedef int matrix[MAX][MAX];

matrix ArrayA, ArrayB;

main()

{

}

 Initialize(ArrayA, ArrayB);

Initialize(A, B)

matrix A, B;

{

 int i, j;

 for (i=1; i<MAX; i++)

 for (j=1; j<MAX; j++)

 {

 A[i][j]

 = B[i][j]

 = Rand();

 }

}

r[14]=SV[r[14]+-96]; # 1. save %sp,(-96),%sp

L32

ST=HI[_Rand]+LO[_Rand],68,0; # 12. call _Rand,0

NL=NL; # 13. nop

L35

NL=NL; # 19. nop

PC=RT; # 24. ret

NL=RS[]; # 25. restore

r[18]=44; # 2. mov 44,%l2

r[26]=44+r[24]; # 3. add %i0,44,%i2

r[26]=r[26]+44; # 4. add %i2,44,%i2

r[27]=r[24]+528; # 5. add %i0,528,%i3

r[21]=4+r[24]; # 6. add %i0,4,%l5

r[21]=r[21]+r[18]; # 7. add %l5,%l2,%l5

r[22]=r[25]+r[18]; # 8. add %i1,%l2,%l6

r[23]=r[24]+r[18]; # 9. add %i0,%l2,%l7

r[22]=r[22]-r[23]; # 10. sub %l6,%l7,%l6

r[23]=r[26]; # 11. mov %i2,%l7

R[r[21]+r[22]]=r[8]; # 14. st %o0,[%l5 + %l6]

R[r[21]]=r[8]; # 15. st %o0,[%l5]

r[21]=r[21]+4; # 16. add %l5,4,%l5

IC=r[21]?r[23]; # 17. cmp %l5,%l7

PC=IC<0,L35; # 18. ble L35

r[26]=r[26]+44; # 20. add %i2,44,%i2

IC=r[26]?r[27]; # 21. cmp %i2,%i3

PC=IC<0,L32; # 22. ble L32

r[18]=r[18]+44; # 23. add %l2,44,%l2

store of

store of

B[i][j]

A[i][j]Figure 3.6: C Code, RTLS, and SPARC Assembly for Function Initializeexpansion, no attempt was made to expand it further. During virtual addresscalculation later, parameter information will be searched to �nd the appropriateglobal or local (to the caller) base address to use in its place. The parameterinformation dumped for this example can be seen in the PM line (line 3) of Fig-ure 3.5. Such a line is dumped out after every function call in the program forwhich parameter information could be readily expanded. Therefore, the initialvalue of r[21] can be seen to consist of the �rst element accessed r[24]+4 plusthe o�set that comes from computing the row location, that of the inductionvariable for the outer loop (instructions 6-23), r[18]. The stride is 4 and the

20minimum and maximum number of iterations are both 10.Once the initial value, stride, and number of iterations are available, there isenough information to compute the sequence of addresses that will be accessedby the store of A[i][j]. Knowing that both references had the same stride, thecompiler used index reduction to avoid having to use another induction registerfor the address computation for B[i][j] since it shares the same loop controlvariables as that for A. Therefore, the memory address, r[21] + r[22] forB[i][j], includes the address for A (r[21]) plus the di�erence between the twoarrays (r[22]). This can be seen from the following sequence of expansions andsimpli�cations. Remember that register r[21] cannot be immediately expandedsince it is an induction register for the inner loop, so the expansion continueswith register r[22] as follows. Also, register r[18] will not be expanded sinceit is the induction variable for the outer loop. Furthermore, registers r[24] andr[25] are input registers corresponding to parameters and will not be expandedeither.1. r[21] + r[22] # from load at 142. r[21]+(r[22]-r[23]) # from inst 103. r[21]+(r[22]-(r[24]+r[18])) # from inst 94. r[21]+((r[25]+r[18])-(r[24]+r[18])) # from inst 8The e�ect of this expansion is simpli�ed in the following steps.5. r[21]+r[25]+r[18]-(r[24]+r[18]) # remove ()'s and distribute +'s6. r[21]+r[25]+r[18]-r[24]-r[18] # remove ()'s and distribute -'s7. r[21]+r[25]-r[24] # remove negating terms (r[18]-r[18])

21Thus, we are left with the induction register r[21] plus the di�erence betweenthe two arrays. Although, for now, we can only see that the arrays will be foundin the parameter information. This simpli�ed address expression string is thendumped to the dnf �le.When the address calculator attempts to resolve this string to an actualvirtual address, it will �rst search the parameter information to �nd out thatr[24] is ArrayA and r[25] is ArrayB. It will then use these base names and theinitial value of r[21], which is r[24]+r[18]+4 or ArrayA+r[18]+4, and theArrayA's will cancel out as the following steps show.1. r[21]+r[25]-r[24] # address string of B[i][j]2. r[21]+ArrayB-ArrayA # substitute parameter information3. ArrayA+r[18]+4+ArrayB-ArrayA # substitute initial value of r[21]4. r[18]+4+ArrayB # result when ArrayA's cancel outNote that this result gives the initial address of the row in the ArrayB array.

Chapter 4Calculation of Virtual AddressesCalculating addresses that are relative to the beginning of a global variable oran activation record is accomplished within the compiler since much of the dataow information required for this analysis is immediately available due to itsuse in compiler optimizations. However, calculating virtual addresses can notbe done in the compiler since the analysis of the call graph and data declarationsacross multiple �les is required. Figure 4.1 shows the general organization ofthe virtual address space of a process executing under SunOS.1 There is somestartup code preceding the instructions associated with the compiled program.Following the program code segment is the static data, which is aligned on apage boundary. The run-time stack starts at high addresses and grows towardlow addresses. Part of the memory between the run-time stack and the staticdata is the heap, which is not depicted in the �gure since addresses in theheap could not be calculated statically by the environment described in thisdissertation.Static data consists of global variables, static variables, and nonscalar con-stants (e.g. strings). In general, the Unix linker (ld) places the static data inthe same order that the declarations appeared within an assembly �le. Also,static data within one �le will precede static data in another �le speci�ed later1SunOS is a registered trademark of Sun Microsystems, Inc.22

23
static data must be

aligned on page boundary

includes:

 argc count

 argv variables

 environment variables

startup code

program code

segment

0x0

0xffffffff

initial stack

program stack

run-time
growth

data

static

Figure 4.1: Virtual Address Space Organization in SunOSin the list of �les to be linked.2 In addition, padding between variables some-times occurs. For instance, variables declared as int and double on the SPARCare aligned on word and doubleword boundaries, respectively. In addition, the�rst static or global variable declared in each of the source �les comprising theprogram is aligned on a doubleword boundary. Finally, the beginning of thestatic data area is aligned on a page boundary.Run-time stack data includes temporaries and local variables not allocatedto registers. Some examples of temporaries include parameters beyond the sixthword passed to a function and memory used to move values between integer andoating-point registers since such movement cannot be accomplished directlyon a SPARC. While the code size and static data addresses would not change2There were some exceptions to these rules depending upon how such data is staticallyinitialized.

24between executions of a program, the addresses for run-time stack data could.The reason is that the size of the initial stack area that appears before the mainfunction is invoked can vary. This initial stack area includes the argc count,the strings for argv (command line) arguments, and the strings for the logicalnames associated with a Unix setenv command that can be accessed using theenvp argument. Another complication for calculating run-time stack addressesis that the address of the activation record for a function can vary dependingupon the actual sequence of calls associated with its activation. For instance, alocal array variable accessed in a function B would have a di�erent address if Bwas invoked directly from main or if the main function invoked function A whichin turn invoked B. The sum of the sizes of the activation records associatedwith this sequence of calls along with the initial run-time stack address is usedto determine the virtual address of the activation record containing the localvariable. The address calculator (along with the static simulator and timinganalyzer) distinguishes between di�erent function instances and evaluates eachinstance separately.Once the static data names and activation records of functions are associatedwith virtual addresses, the relative address ranges can be converted into virtualaddress ranges. For instance, consider the relative range shown in Figure 3.4.Say the address calculator determines that array a starts at virtual address20,000. Then this address would be substituted for the name in the expressionas shown in Figure 4.2.Only virtual addresses have been calculated so far. There is no guaranteethat the virtual address will be the same as the actual physical address, which

25for (r[11] = 0; r[11] < 100; r[11] += 1)for (r[2] = r[11]*400+20000; r[2] < r[11]*400+20400; r[2] += 4)address{r[2]}Figure 4.2: Algorithmic Range of Virtual Addresses for the Load in Figure 3.3is typically used to access cache memory on most machines. The assumptionfor this work is that the system page size is an integer multiple of the datacache size, which is often the case. For instance, the MicroSPARC I has a 4KBpage size and a 2KB data cache [25]. Thus, both a virtual and correspondingphysical address would have the same relative o�set within a page and wouldmap to the same line within the data cache.

Chapter 5Static Simulation to Produce Data ReferenceCategorizationsThe method of static cache simulation is used to statically categorize the cachingbehavior of each data reference in a program for a speci�ed cache con�gura-tion. A program control-ow graph is constructed that includes the control owwithin each function and a function instance graph, which uniquely identi�eseach function instance by the sequence of call sites required for its invocation.This program control-ow graph is analyzed to determine the possible data linesthat can be in the data cache at the entry and exit of each basic block within theprogram. Static simulation in general and its particular use in the simulationof caches for instruction categorization is explored in detail by Mueller in [19].The iterative algorithm used for static instruction cache simulation [3, 19]will not be su�cient for static data cache simulation. The problem is that thecalculated references can access a range of possible addresses. At the point thatthe data access occurs, the data lines associated with these addresses may ormay not be brought in cache, depending upon how many iterations of the loophas been performed at that point. To deal with this problem, an additional statewas created to indicate whether or not a particular data line could potentially bein the data cache due to calculated references. When a block with an incomingtransition that exits a loop is encountered, then the data lines associated with acalculated reference in that loop that are still in cache at that point are unioned26

27WHILE any change DOFOR each basic block instance B DOIF B == top THENinput state(B) = calc input state(B) = all invalid linesELSEinput state(B) = calc input state(B) = NULLFOR each immed pred P of B DOinput state(B) += output state(P)calc input state(B) += output state(P) + calc output state(P)IF P is in another loop THENinput state(B) += calc output state(P) & data lines(remaining in that loop)output state(B) = input state(B)FOR each data reference D in B DOIF D is scalar reference THENoutput state(B) += data line(D)output state(B) -= data lines(D conicts with)calc output state(B) += data line(D)calc output state(B) -= data lines(conicts with)ELSEoutput state(B) -= data lines(D could conict with)calc output state(B) += data lines(D could access)calc output state(B) -= data lines(D could conict with)Figure 5.1: Algorithm to Calculate Data Cache Statesinto the input cache state of that block. The iterative algorithm in Figure 5.1was used to calculate the input and output cache states for each basic block inthe program control-ow graph.Another problem to resolve is the internal representation of the cache stateas a bit vector. With instructions, because of the simple 1-1 mapping frominstructions to program lines and program lines to memory (see Figure 1.1),it is easy to represent the cache state directly in a bit vector following thismapping. However static data starts in low memory, growing upward, andstack data starts at very high memory and grows downward. Representing allof the possible memory addresses to which data could map in a single contiguous

28
. . .

0 31 2

. . .

0 1 32 4

bit vector

. . .

0 31 2

. . .

0 1 32 4

bit vector

static data stack data

start static data
end of all

startcall sequence
end of longest

0 ff...ff

mapping of memory locations to bits

data lines

instructions

0 ff...ff

.

program lines

For Instructions:

For Data:

can be over 30 32-bit unsigned integers to
represent cache state for data lines when
dealing with large arrays

** locations
static

locations
stack

* * *

padding*

averages 1-3 32-bit unsigned integers to
represent cache state for test programsFigure 5.2: Instruction Vs. Data Cache State Representationbit vector is not possible since the vector would be too large. Therefore, a newmapping method, shown in Figure 5.2, was devised. The upper limit of globaland other static data can be computed since the starting address and size of eachobject is known. Likewise, the lower limit of stack data can be computed usingthe call graph since we can �nd the longest calling sequence in the program andsum the sizes of the activation record of each function involved. Knowing thesetwo limits, we can e�ectively remove the unused memory space from the middleand push the two pieces together with padding as needed to preserve alignmentrequirements. We can now represent a very large address space in a smaller andmore manageable state vector.

29Once the cache state vectors have been produced, they are used to deter-mine whether or not each of the memory references within the bounded virtualaddress range associated with a data reference will be in cache. The static cachesimulator needs to produce a categorization of each data reference in the pro-gram. The four worst-case categories of caching behavior used in the past forstatic instruction cache simulation were as follows.1. Always Miss (m): The reference is not guaranteed to be in cache.2. Always Hit (h): The reference is guaranteed to always be in cache.3. First Miss (fm): The reference is not guaranteed to be in cache the�rst time it is accessed each time the loop is entered, but is guaranteedthereafter.4. First Hit (fh): The reference is guaranteed to be in cache the �rst time itis accessed each time the loop is entered, but is not guaranteed thereafter.These categorizations are still used for scalar data references. However, fornonscalar (calculated) data references, they are not adequate by themselves.To obtain the most accuracy, a worst-case categorization of a calculated datareference for each iteration of a loop could be determined. For example, somecategorizations for a data reference in a loop with 20 iterations might be asfollows: m h h h m h h h m h h h m h h h m h h hWith such detailed information the timing analyzer could then accurately de-termine the worst-case path on each iteration of the loop. However, consider

30/* row order sum */ /* column order sum */int a[100][100]; int a[100][100];main() main(){ {int i, j, sum; int i, j, sum;sum = 0; sum = 0;for (i = 0; i < 100; i++) for (j = 0; j < 100; j++)for (j = 0; j < 100; j++) for (i = 0; i < 100; i++)sum += a[i][j]; sum += a[i][j];} }row order: c 25 2500 from [m h h h m h h h m h h h ... m h h h]col order: m from [m m m m m m m m m m m m ... m m m m]Figure 5.3: Detecting Spatial Localitya loop with 100,000 iterations. Such an approach would be very ine�cient inspace (storing all of the categorizations) and time (analyzing each loop itera-tion separately). A new categorization was created called Calculated (c) thatwould also indicate the maximum number of data cache misses that could oc-cur at each loop level in which the data reference is nested. The previous datareference categorization string can now be represented as follows:c 5since there are only �ve total misses and there is only one loop level involved.The order of access and the cache state vectors were used to detect cachehits within calculated references due to spatial locality. Consider the followingtwo code segments in Figure 5.3 that sum the elements of a two dimensionalarray. The left code code segment is the same as that given in Figure 3.1.The two code segments are equivalent, except that the left code segmentaccesses the array in row order and the right code segment uses column order

31(i.e., the for statements are reversed). Assume that the scalar variables (i, j,and sum) are allocated to registers. Also, assume the size of the direct-mappeddata cache is 256 bytes with 16 cache lines containing 16 bytes each. Thus, asingle row of the array a requiring 400 bytes cannot �t into cache. The staticcache simulator is able to detect that the load of the array element in the leftcode segment had at most one miss for each of the elements that are part ofthe same data line. This is accomplished by inspecting the order in which thearray is accessed and detecting that no conicting lines are accessed in theseloops. The categorizations for the load data reference in the two segments aregiven in the same �gure. Note in this case that the array happens to be alignedon a line boundary. The speci�cation of a single categorization for a calculatedreference is accomplished in two steps for each loop level after the cache statesare calculated. First, the number of references (iterations) performed in theloop is retrieved. Next, the maximum number of misses that could occur forthis reference in the loop is determined. For instance, at most 25 misses willoccur in the innermost loop for the left code segment. The static cache simulatordetermined that all of the loads for the right code segment would result in cachemisses. Its data caching behavior can simply be viewed as an always miss. Thus,the range of 10,000 di�erent addresses referenced by the load are collapsed intoa single categorization of c 25 2500 (calculated reference with 25 misses at theinnermost level and 2500 misses at the outer level) for the left code segmentand an m (always miss) for the right code segment.Likewise, cache hits from calculated references due to temporal localityboth across and within loops are also be detected. Consider the code segment

32int i, j, sum, same, a[50], b[50];...sum = 0;for (i = 0; i < 50; i++)sum += a[i]; /* ref 1 */same = 0;for (i = 0; i < 50; i++)for (j = 0; j < 50; j++)if (a[i] == /* ref 2 */b[j]) /* ref 3 */same++;ref 1: c 13 from [m h m h h h m h h h m h h h ... m h h h]ref 2: h from [h h ... h h] due to temporal locality across loops.ref 3: c 13 13 from [m h h m h ... m h] on �rst execution of inner loop,and [h h h h ... h] on all successive executions of it.Figure 5.4: Detecting Temporal Locality Across and Within Loopsin Figure 5.4. Assume a cache con�guration with 32 16-byte lines (512 bytecache) so that both arrays a and b requiring 400 bytes total (200 each) �t intocache. Also assume the scalar variables are allocated to registers. The accessesto the elements of array a after the �rst loop were categorized as h (always hit)by the static simulator since all of the data lines associated with the array willbe in the cache state once the �rst loop is exited. This shows the detection oftemporal locality across loops. After the �rst complete execution of the innerloop, all the elements of b will be in cache, so then all references to it on theremaining executions of the inner loop are also categorized as hits. Thus, thecategorization of c 13 13 is given. There are 13 misses relative to the innermostloop due to spatial locality from bringing b into cache during the �rst completeexecution of the inner loop. But there are also only 13 misses relative to theoutermost loop since b will now be completely in cache on each iteration after

33the �rst iteration. This shows the detection of temporal locality within loops.The current implementation of the static data cache simulator (and timinganalyzer) imposes some restrictions. First, only direct-mapped cache con�g-urations are allowed. Obtaining categorizations for set-associative data cacheorganizations can be done in a manner similar to that described in [20]. Sec-ond, recursive calls are not allowed since it would complicate the generation ofunique function instances. Third, indirect calls are not allowed since an explicitcall graph must be generated statically.

Chapter 6Timing AnalysisThe timing analysis of data caches is based on earlier work. Arnold in [2] detailswork predicting the performance of programs using instruction caches. Healyin [8] extends this work to handle the integration of pipeline and instructioncache analysis.The pipeline path analysis calculates the performance of a sequence of in-structions representing paths through loops or functions. Pipeline informa-tion about each instruction type is obtained from the machine-dependent data�le. Information about the speci�c instructions in a path is obtained from thecontrol-ow information �les. As each instruction is added separately to thepipeline state information, the timing analyzer uses the data caching catego-rizations to determine whether the MEM (data memory access) stage should betreated as a cache hit or a miss.The worst-case loop analysis algorithm was modi�ed to appropriately han-dle calculated data reference categorizations. The timing analyzer will conser-vatively assume that each of these misses for a calculated reference has to occurbefore any of its hits. Furthermore, the timing analyzer cannot assume that thepenalty for these misses will overlap with other long running instructions sincethe analyzer may not evaluate these misses in the exact iterations in which theyoccur. Thus, each calculated reference miss is always viewed as a hit within34

35total cycles = curr iter = 0.pipeline information = �rst misses encountered = �rst hits encountered = NULL.WHILE curr iter != n - 1 DOFind the longest continue path.�rst misses encountered += �rst misses that were misses in this path.�rst hits encountered += �rst hits that were hits in this path.IF a �rst miss or �rst hit was encountered in this path THENcurr iter += 1.Subtract 1 from the remaining misses of each calculated reference in this path.Concatenate pipeline information with the union of the information for all paths.total cycles += additional cycles required by union.ELSE IF a calculated reference was encountered in this path as a miss THENmin misses = the minimum of the number of remaining misses of eachcalculated reference in this path that is nonzero.min misses = min(min misses, n - 1 - curr iter).curr iter += min misses.Subtract min misses from the remaining misses of each calc ref in this pathConcatenate pipeline information with the union of the informationfor all paths min misses times.total cycles += (additional cycles required by union) * min misses.ELSEbreakConcatenate pipeline information with the union of the pipeline informationfor all paths (n - 1 - curr iter) times.total cycles += (additional cycles required by union) * (n - 1 - curr iter).FOR each set of exit paths that have a transition to a unique exit block DOFind the longest exit path in the set.�rst misses encountered += �rst misses that were misses in this path.�rst hits encountered += �rst hits that were hits in this path.Concatenate pipeline information with the union of the informationfor all exit paths in the set.total cycles += additional cycles required by exit union.Store this information with the exit block for the loop.Figure 6.1: Worst-Case Loop Analysis Algorithmthe pipeline path analysis and the maximum number of cycles associated witha data cache miss penalty is added to the total time of the path. This strategypermits an e�cient loop analysis algorithm with some potential overestimationswhen a data cache miss penalty could be overlapped with other stalls. However,the results in Chapter 8 indicate that any such overestimations were small whenthey occurred at all.The worst-case loop analysis algorithm is given in Figure 6.1. The additions

36to the previously published algorithm [9] to handle calculated references areshown in boldface. Let n be the maximum number of iterations associated witha loop. The WHILE loop terminates when the number of processed iterationsreaches n - 1 or no more �rst misses, �rst hits, or calculated references areencountered as misses, hits, and misses, respectively. This WHILE loop williterate no more than the minimum of (n - 1) or (p + r) times, where p is thenumber of paths and r is the number of calculated references in the loop.The algorithm attempts to select the longest path for each loop iteration.In order to demonstrate the correctness of the algorithm, one must show thatno other path for a given iteration of the loop will produce a longer time thanthat calculated by the algorithm. Since the pipeline e�ects of each of the pathsare unioned, it only remains to be shown that the caching e�ects are treatedproperly. All categorizations are treated identically on repeated references, ex-cept for �rst misses, �rst hits, and calculated references. Assuming that thedata references have been categorized correctly for each loop and the pipelineanalysis was correct, it remains to be shown that �rst misses, �rst hits, andcalculated references are interpreted appropriately for each loop iteration. Acorrectness argument about the interpretation of �rst hits and �rst misses isgiven in [3].The WHILE loop will subtract one from each of the calculated reference'smiss count in the longest path chosen on each iteration whenever there are �rstmisses or �rst hits encountered as misses or hits, respectively. Once no such�rst misses and �rst hits are encountered in the longest path, the same pathwill remain the longest path as long as its set of calculated references that were

37encountered as misses continue to be encountered as misses since the cachingbehavior of all of the references will be treated the same. Thus, the pipelinee�ects of this longest path are e�ciently replicated for the number of iterationsassociated with the minimum number of remaining misses of the calculatedreferences that are nonzero within the longest path. After the WHILE loop,all of the �rst misses, �rst hits, and calculated references in the longest pathwill be encountered as hits, misses, and hits, respectively. The unioned pipelinee�ects after the WHILE loop will not change since the caching behavior ofthe references will be treated the same. Thus, the pipeline e�ects of this pathare e�ciently replicated for all but one of the remaining iterations. The lastiteration of the loop is treated separately since the longest exit path may beshorter than the longest continue path.A short example is given in Figure 6.2 to illustrate the algorithm. In thisexample delay slots have been �lled. The if statement condition was contrivedto force the worst-case paths to be taken when executed. Assume a data cacheline size of 8 bytes and enough lines to hold all three arrays in cache. The �gurealso shows the iterations when each element of each of the three arrays will bereferenced and whether or not each of these references will be a hit or a miss.Two di�erent paths can be taken through the loop on each iteration as shownin Figure 6.3. Note that the pipeline diagrams reect that the loads of the arrayelements were found in cache. The miss penalty from calculated reference missesis simply added to the total cycles of the path and is not directly reected inthe pipeline information since these misses may not occur in the same exactiterations as assumed by the timing analyzer.

38
 for (i = 0; i < 100; i++)

}

{

main()

char c[100];

short s[100];

int k[100];

 int i, sum;

 sum = 0;

 if ((i & 3) != 1)

 sum += k[i]+c[i];

 else

 sum += s[i];

 Path B: Blocks 2, 4, & 5

 Path A: Blocks 2,3, & 5

Paths in the loop:

load of s[i]

load of c[i]

load of k[i]

r[8]=(B[r[17]]{24)}24; # 16. ldsb [%l1],%o0

r[9]=R[r[16]]; # 17. ld [%l0],%o1

r[9]=r[9]+r[8]; # 18. add %o1,%o0,%o1

PC=L17; # 19. ba L17

r[12]=r[12]+r[9]; # 20. add %o4,%o1,%o4

r[8]=(W[r[7]]{16)}16; # 21. ldsh [%g7],%o0

r[12]=r[12]+r[8]; # 22. add %o4,%o0,%o4

Instructions 1 through 11

Instructions 12 through 15

Block 1

Block 2

Block 3

Block 4

Instructions 23 through 28

Instructions 29 through 30

Block 5

Block 6

L17

data line 0 data line 1 data line 2 data line 3

2 3 40 1 5 6 7 ...

...

k:

miss

1

miss hit miss miss hit

3 4 5 7 8

result:

accessed:
iteration

elements:
array

data lines: data line 50 data line 51

0 1 2 3 4 5 6 7

...

...

miss miss

2 6

s:
0 1 2 3 4 5

data line 76 data line 77

h

0 1 2 3 4 5 6 7 8 9

m

1

h h h h h m h h h h

3 4 5 7 8 9
2 3 5 6

1
1

1 1 1 1

1 1 1 1 1 1

...

...c:k[i]: c 50 from [m h m h ... m h]s[i]: c 25 from [m h h h m h h h ... m h h h]c[i]: c 13 from [m h h h h h h h m h h h h h h h ... m h h h]Figure 6.2: Example to Illustrate Worst-Case Loop Analysis Algorithm
EX

ID

IF

MEM

FEX

WB

FWB

2 3 4 5

cycle

stage

1

12

12

12

12

12

13

13

13

13

13

14

14

15

15

15

15

15

16

16

16

16

16

17

17

17

17

17

18

18

18

18

18

19 20

20

20

1918

19

20

20

23

23

23

23

23

24

24

24

24

24

25

25

25

25

25

26

26

26

26

26

27

27

28

28

28

28

28

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pipeline Diagram for Path A: Instructions 12-20 and 23-28 (blocks 2,3,5)

EX

ID

IF

MEM

FEX

WB

FWB

2 3 4 5

cycle

stage

1

12

12

12

12

12

13

13

13

13

13

14

14

15

15

15

15

15

6 7 8 9 10 11 12 13 14 15 16 17

21

21

21

21

21

22

22 22

22

22

22

23 23

23

23

23

23

24 25 26 27 28

24 25 26 27 28

24 25 26 28

24 25 26 28

24 25 26 28

Pipeline Diagram for Path B: Instructions 12-15 and 21-28 (blocks 2,4,5)Figure 6.3: Pipeline Diagrams for the Two Paths in Figure 6.2

39Table 6.1: Timing Analysis Steps for the loop in Figure 6.2start longest iters totalstep iter path cycles min misses handled additional cycles cycles1 1 20+18=38 min(13,50)=13 13 20+((20-4)*12)+(18*13)=446 4462 14 20+9=29 min(37)=37 37 ((20-4)*37)+(9*37)=925 13713 51 17+9=26 min(25)=25 25 ((17-4)*25)+(9*25)=550 19214 76 20+0=20 N/A 24 (20-4)*24=384 23055 100 20+0=20 N/A 1 20-4=16 2321Table 6.1 shows the steps the timing analyzer uses from the algorithm givenin Figure 6.1 to estimate the WCET for the loop in the example shown inFigures 6.2 and 6.3. The longest path detected in the �rst step is Path A, whichcontains references to k[i] and c[i]. The pipeline time required 20 cycles andthe misses for the two calculated references (k[i] and c[i]) required 18 cycles.Note that each miss penalty was assumed to require 9 cycles. Since there wereno �rst misses, the timing analyzer determines that the minimum number ofremaining misses from the two calculated references is 13. Thus, the path isreplicated an additional 12 times. The overlap between iterations is determinedto be 4 cycles. Note that 4 is not subtracted from the �rst iteration since anyoverlap for it would be calculated when determining the worst-case executiontime of the path through the main function. The total time for the �rst 13iterations will be 446. The longest path detected in step 2 is also Path A.But this time all references to c[i] are hits. There are 37 remaining misses tok[i]. The total time for iterations 14 through 50 is 925 cycles. The longest pathdetected in step 3 is Path B, which has 25 remaining misses to s[i]. This resultsin 550 additional cycles for iterations 51 through 75. After step 3 the worst-caseloop analysis has exited the WHILE loop in the algorithm shown in Figure 6.1.

40Step 4 calculates 384 cycles for the next 24 iterations (76-99). Step 5 calculatesthe last iteration to require 16 cycles. The timing analyzer calculates the lastiteration separately since the longest exit path may be shorter than other pathsin a given loop. The total number of cycles calculated by the timing analyzerfor this example was identical to the number observed via execution simulation.A timing analysis tree is constructed to predict the worst-case performance.Each node of the tree represents either a loop or a function in the functioninstance graph. The nodes representing the outer level of function instances aretreated as loops that will iterate only once. The worst-case time for a node isnot calculated until the time for all of its immediate child nodes are known. Forinstance, consider the example shown in Figures 6.2 and 6.3 and Table 6.1. Thetiming analyzer would calculate the worst-case time for the loop and use thisinformation to next calculate the time for the path in main that contains theloop (block 1, loop, block 6). The construction and processing of the timinganalysis tree occurs in a similar manner as described in [3, 9].

Chapter 7Execution Simulation of Data Cache and PipelineE�ectsThe timing analyzer produces as its result the number of cycles a programtakes to execute. In order to verify that this number is correct, a methodwas developed to simulate a program's worst-case execution time. The Easeexecution simulator [6] works by instrumenting the assembly code generated bythe compiler in order to invoke measurement routines during its execution. Oneof these routines was heavily modi�ed in earlier work in order to calculate thenumber of cycles required to execute a program by simulating the program'spipeline and instruction caching behavior during its execution [8]. This routinewas further modi�ed for this dissertation in order to simulate data cachingbehavior as well. Also, other portions of the Ease simulator were modi�ed soas to check the accuracy of the statically computed addresses.In the original Ease implementation, a call to a special instruction cachetrace function was inserted into the assembly code at the beginning of eachbasic block. This function was modi�ed as reported in [8] to go through eachinstruction in the basic block, using instruction information produced by thecompiler and dumped into the assembly �le, and to simulate the pipeline andinstruction cache e�ects that would result from that instruction's execution.This simulation of each instruction in the basic block happens before the actualinstructions in each block are executed. As each new basic block is reached either41

42by falling through or branching, a new sequence of instructions is simulated andits e�ect on the instruction cache and pipeline states is recorded. After theprogram terminates, the �nal results of this simulation, most importantly thetotal number of cycles used by the program, are dumped to a �le.For data cache simulation, however, this approach is not su�cient. This isdue to the fact that memory access to data, unlike that for instructions, does notoccur sequentially within a basic block. Also, unlike instructions, data accessaddresses can change each time they are referenced. Yet another considerationthat required this approach to be modi�ed is the desire to have the simulatorautomatically do a veri�cation of the accuracy of the virtual addresses computedby the address calculator.In addition to inserting a special trace routine at the beginning of each basicblock for data cache simulation, the original Ease implementation inserted a callto a special simulation function after each load or store in the assembly code.This function, called ease read for loads and ease write for stores, wouldtake the data address and its size as parameters and update the running datacache state as necessary, based on whether load or store was determined to bea hit or a miss. This would continue until the instrumented program completedexecution.In order to update Ease to merge data cache simulation with that of pipelineand instruction caching as well as check the validity of the computed virtualaddresses, the following changes were made.� The special trace routine at the beginning of each basic block was mod-i�ed to call the previously modi�ed block instruction simulation routine

43immediately if there were no data references in this basic block. Thus,the pipeline e�ects of executing this block can be simulated. In order forthe start-up routine to know if there are data references in the block ornot, the compiler was modi�ed to identify the number of data referencesassociated with each basic block and to write this number to a special �leof data declarations that is linked in the instrumented assembly code.� If there are data references in the current basic block, then the entire blockis executed and the data cache results|whether the access is a hit or amiss|is recorded as the result of the execution of either ease read orease write after each load or store in the block.� The ease read and ease write routines were modi�ed to recognize ifthey were called after the last load or store in the basic block, and if so,to call the block instruction simulation routine. They were also modi�edto take an additional parameter|the overall number, starting from 0, ofthe data reference they were simulating. This number is used to indexinto a global array of addresses, initialized from the adr �le produced bythe address calculator, when verifying the validity of the address for thecurrent load or store.In the previously modi�ed block instruction routine, which simulated thepipeline and instruction cache behavior for each instruction, a load or store ofa word required only a one cycle delay in the pipeline MEM stage since all datacache accesses were assumed to be hits. However, this routine was updatedin order to correctly simulate data caching by requiring extra cycles in MEM

44stage when the cache access is a miss since the needed data cache line had tobe fetched from memory. A delay is also needed in all cases when the datareference is a store, since a write-through cache is assumed and, thus, therewill be a memory access for every store. Also, for the present, the routine wasmodi�ed to assume that all instruction cache accesses are hits.When verifying the accuracy of the virtual addresses, the simulator actuallychecks each data address it receives from ease read or ease write against therange of possible virtual addresses given to it via the adr �le written by theaddress calculator. If any discrepancies are found, an error is reported and thesimulation terminates. Note that the virtual address range of a global scalarvariable is a single virtual address. The virtual address range of a local scalarvariable is the list of addresses that may result from the di�erent locations of itsactivation record on the stack due to the function in which it is declared beingcalled from di�erent places in the code. The virtual address range of a calcu-lated reference includes all addresses between the lowest and highest addressesaccessed, inclusive. None of the executions of the test programs discussed inChapter 8 reported any incorrect data addresses.One of the most di�cult problems encountered with modifying the Easesimulator was changing the compiler to produce correctly instrumented code.Many situations that were not a problem for instruction caching arose whentrying to instrument the code for data caching. These problems mainly occurredbecause whenever there were data references in a basic block, function calls hadto be inserted in the middle of the block after each load or store. Thus, thestate of the machine had to be saved before each call and restored after it.

45Instrumentation for instruction caching only had calls inserted at the beginningof each block. Less state information is typically live at basic block boundaries.Therefore, less information had to be saved and restored for instruction caching,and the inserted measurement instructions caused fewer problems.

Chapter 8ResultsMeasurements were obtained on code generated for the SPARC architecture bythe vpo optimizing compiler [4]. The machine-dependent information containsthe pipeline characteristics of the MicroSPARC I processor. The programs de-scribed in Table 8.1 are used to evaluate the e�ectiveness of the environment forbounding worst-case data cache performance. Note that these programs wererestricted to speci�c classes of data references, which did not include any dy-namic allocation from the heap. It is doubtful that heap references can ever beanalyzed to obtain known addresses. In addition, pointer variables containingthe addresses of other variables were limited to those used as formal parameters.A more general pointer analysis may be used in the future to determine a set ofpossible address ranges associated with a dereferenced pointer variable. Bothheap references and non-parameter pointer address references are currently as-sumed to be able to access any line within the data cache. A direct-mappeddata cache containing 16 lines of 32 bytes for a total of 512 bytes was used. TheMicroSPARC I uses write-through/no-allocate data caching [25]. The staticsimulator was able to categorize store data references. However, these cate-gorizations were ignored by the timing analyzer since stores always accessedmemory and a hit or miss associated with a store data reference had the samee�ect on performance. While pipeline and data caching behavior was evaluated,46

47Table 8.1: Test ProgramsNumName Bytes Description or EmphasisMatcnta 40060 Counts and Sums Nonnegative Values in a 100x100 Integer MatrixMatcntb 460 Counts and Sums Nonnegative Values in a 10x10 Integer MatrixMatmula 30044 Multiplies 2 50x50 Matrices into a third 50x50 Integer MatrixMatmulb 344 Multiplies 2 5x5 Matrices into a third 5x5 Integer MatrixMatsuma 40044 Sums Nonnegative Values in a 100x100 Integer MatrixMatsumb 444 Sums Nonnegative Values in a 10x10 Integer MatrixSorta 2044 Bubblesort of 500 Integer Array into Ascending OrderSortb 444 Bubblesort of 100 Integer Array into Ascending OrderStatsa 16200 Calcs Sum, Mean, Var, Std Dev, Cor Coef of 2 arrays of 1000 doublesStatsb 600 Calcs Sum, Mean, Var, Std Dev, Cor Coef of 2 arrays of 25 doublesDes 1346 Data Encryption Standard|Encrypts and Decrypts 64 bitsinstruction fetches were assumed to be all hits.Table 8.1 describes the test programs used to assess the e�ectiveness ofbounding worst-case data cache performance. Two versions were used for eachof the �rst �ve test programs. The a version had the same size arrays thatwere used in previous studies [3, 9]. The b version of each program used smallerarrays that would totally �t into a 512 byte cache. The number of bytes reportedin the table is the total number of bytes of variables in the program. Note thatsome of these bytes will be in the static data area while others will be in therun-time stack. The sixth test program is des, a data encryption program. Theamount of data in this program is not changed since the encryption algorithmis based on using the large static arrays as they are. This program is includedhere because of its other interesting properties. It includes arrays of structures,arrays indexed by other arrays, and many address parameters to functions.Table 8.2 depicts the dynamic results from executing the test programs. The

48Table 8.2: Dynamic ResultsHit Observed Estimated Estim. NaiveName Ratio Cycles Cycles Ratio RatioMatcnta 71.86% 1,143,014 1,143,023 1.000 1.148Matcntb 70.73% 12,189 12,189 1.000 1.148Matmula 62.81% 7,245,830 7,952,807 1.098 1.240Matmulb 89.40% 11,396 11,396 1.000 1.332Matsuma 71.86% 1,122,944 1,122,953 1.000 1.151Matsumb 69.98% 11,919 11,919 1.000 1.152Sorta 97.06% 4,768,228 9,826,909 2.061 2.883Sortb 99.40% 188,696 371,977 1.971 2.915Statsa 90.23% 1,237,698 1,447,572 1.170 1.290Statsb 89.21% 32,547 37,246 1.144 1.290Des 75.71% 155,340 191,564 1.233 1.448hit ratios were obtained from the data cache execution simulation. Only Sorthad very high data cache hit ratios due to many repeated references to thesame array elements. The observed cycles were obtained using the ease cachesimulator discussed in Chapter 7. The estimated cycles were obtained from thetiming analyzer discussed in Chapter 6. The estimated ratio is the quotient ofthese two values. The naive ratio was calculated by assuming that all data cachereferences were misses and dividing those cycles by the observed cycles. It isused to show the advantage of doing the data cache analysis versus assumingall data cache references are misses.The timing analyzer was able to tightly predict the worst-case number ofcycles required for pipelining and data caching for most of the test programs.In fact, for �ve of them, the prediction was exact or over by less than 110 ofa percent. Also, each of the small examples shown earlier in this dissertationresulted in exact predictions when the worst-case paths were executed. Forthose that were overestimated, there were clear reasons as to why it happened.

49Matmula had an overestimation of about 10% whereas the smaller data ver-sion Matmulb was exact. As shown in the following code segment, the Matmulprogram has repeated references to the same elements of three di�erent arrays:A, B, and Res....for (Outer = 0; Outer < UPPERLIMIT; Outer++)for (Inner = 0; Inner < UPPERLIMIT; Inner++){ Res [Outer][Inner] = 0;for (Index = 0; Index < UPPERLIMIT; Index++)Res[Outer][Inner] +=A[Outer][Index] * B[Index][Inner];}...These references would miss the �rst time they were encountered, but wouldbe in cache for the smaller Matmulb when they were accessed again since thearrays �t entirely in cache. Also, since they �t into cache, there is no interferencebetween them. A reference to B could not knock any lines of A or Res out ofcache. However, when they do not �t into cache they can interfere with eachother and possibly with other elements of themselves, if individually they aresu�ciently larger than cache. In such a case, the static simulator conservativelyassumes that any possible interference must result in a cache miss. Therefore,the categorizations are more conservative and the overestimation is larger.The inner loop in the function within Sort that actually sorts the values hasa varying number of iterations that depends upon a counter of an outer loop.The number of iterations performed was overrepresented on average by abouttwo for this inner loop.The Stats program had about 17% and 14% overestimations for the large andsmall versions of the program, respectively. The strategy of treating a calculated

50reference miss as a hit in the pipeline and adding the maximum number ofcycles associated with the miss penalty to the total time of the path causedoverestimations with these two programs. The Statsa and Statsb programs werethe only oating-point intensive programs in the test set. Often delays due tolong-running oating-point operations could have been overlapped with datacache miss penalty cycles.The Des program had the worst overestimation of the test set at 23%. Thismay seem large, but is in fact quite satisfactory when considering the nature ofthe data accesses within the program. There are many places in the code wherean element of a locally de�ned static character array is used as an index into aglobal array of integers as the following code segment shows....unsigned long bit[33];...static char iet[49]={0,32,1,2,3,4,5,4,5,6,7,8,9, ... ,32,1};...for (j=16,l=32,m=48;j>=1;j--,l--,m--) {ie.r = (ie.r <<=1) | (bit[iet[j]] & ir ? 1 : 0);ie.c = (ie.c <<=1) | (bit[iet[l]] & ir ? 1 : 0);ie.l = (ie.l <<=1) | (bit[iet[m]] & ir ? 1 : 0);}...Since the character array iet is statically initialized, there is no simple methodto determine which value from it will be used to index into the integer arraybit, and, thus, no way to establish a meaningful pattern of access. In a case likethis, we assume that any element of the bit array may be accessed any time thedata reference occurs in the program. This forces all conicting data lines tobe knocked out of the cache state during the iterative ow analysis phase of thestatic simulation. Thus, the resulting categorizations are quite conservative.

51The Des program also has an overestimation due to data dependences in theprogram. A longer path deemed feasible by the timing analyzer could not betaken in a function due to a variable's value in an if statement. In [9], a 13%overestimation is reported for this program when doing pipeline and instructioncaching evaluation only.Despite the overestimations detailed above, the results given in this disser-tation show that with certain restrictions it is possible to tightly predict muchof the data caching behavior of many programs.The di�erence between the naive and estimated ratios shows the bene�ts forperforming data cache analysis when predicting worst-case execution times. Thebene�t of worst-case performance from data caching is not as signi�cant as thebene�t obtained from instruction caching [3, 9]. An instruction fetch occurs foreach instruction executed. The performance bene�t from a write-through/no-allocate data cache only occurs when the data reference from a load instructionis determined to be in cache. Load instructions only comprised on average14.28% of the total executed instructions for these test programs. However, theresults do show that performing data cache analysis for predicting worst-caseexecution time does still result in substantially tighter predictions. In fact, forthe programs in the test set the prediction improvement averages over 30%.The overhead associated with predicting WCETs for data caching using thismethod comes primarily from that of the static cache simulation. The timerequired for the static simulation increases linearly with the size of the data.However, even with large arrays as in the given test programs this time is rathersmall. The average time for the static simulation to produce data reference

52categorizations for the 11 programs given in Tables 8.1 and 8.2 is only 2.89seconds. The average time for the timing analyzer to produce the worst-caseexecution times for the test programs is 1.05 seconds.

Chapter 9Future WorkThere are several areas of further investigation that can be carried on for bound-ing worst-case data cache performance.9.1 Merging Instruction and Data Caching Predictionand SimulationAn eventual goal of this research is to merge all components of the data cachingworst-case analysis with those of the instruction caching worst-case analysis [9].Timing predictions could then be obtained for the complete machine. Actualmeasurements from the machine using a logic analyzer could be used to gaugethe e�ectiveness of the entire timing analysis environment.9.2 Wrap-Around Fill for Data CachesOther future work includes analyzing the e�ect of wrap-around-�ll data caching.This analysis would result in tighter estimations since the MicroSPARC I doesuse wrap-around �ll for both instruction and data caching [25]. Wrap-around-�llanalysis for data caching can probably be accomplished in a manner similar tothat used for wrap-around-�ll instruction caching [10]. It is currently assumedthat each store requires a constant penalty for accessing memory with a write-through data cache. 53

549.3 Write Bu�erAnother area to be explored is evaluating the e�ect of the use of a write bu�er.The MicroSPARC I actually has a write bu�er that can hold the address anddata for a single outstanding store. Also, at most a single load or store canaccess memory at one time. Both wrap-around �ll and the write bu�er canprobably be handled by representing the access to memory and the write bu�eras a pipeline stage and multiple simultaneous accesses would be prevented dueto the detection of structural hazards.9.4 Best CaseThe timing analyzer may be modi�ed in order to predict the best-case executiontime of programs for data caching. All preceding elements of the data cache anal-ysis project|the compiler, the address calculator, and the static simulator|already have some code in place to deal with best case. There would also haveto be some changes made to the Ease execution simulator.9.5 Compiler OptimizationsThe research presented in this dissertation could also be applied to developingnew or improving existing compiler optimizations for programs on machineswith data caches. Current data cache compiler optimizations are only appliedon tightly nested loops without function calls. This research would allow opti-mizations to be performed more accurately and in an interprocedural fashion.

Chapter 10ConclusionsThis dissertation has presented an approach for bounding the worst-case perfor-mance for programs using a data cache. This approach involves several steps.Data ow analysis is used within a compiler to determine a bounded range ofrelative addresses for each data reference. An address calculator converts theserelative ranges to virtual address ranges by examining the order of data declara-tions and the call graph of the program. Categorizations of the data referencesare produced by a static simulator. A timing analyzer uses the categorizationswhen performing pipeline path analysis to predict the worst-case performancefor each loop and function in the program. A method of quantitatively verifyingthe results using a data cache and pipeline simulator has also been presented.The following accomplishments have been demonstrated:� The creation of a tool-based system that automatically produces WCETresults with no interaction from the user,� A static analysis technique that requires no complete simulation or execu-tion of the program to be timed and, thus, no need to �nd the appropriateinput data to drive the worst-case paths,� The ability to analyze the complete control ow of a program, includingfunctions and all their instances, loops at all nesting levels, and conditionalcontrol ow, 55

56� The ability to handle address information that is sent into functions viaparameters,� Detection and exploitation for tighter timing bounds of spatial localitywithin calculated data references and temporal locality both within andacross loops, and� A performance overhead when predicting WCETs measured in seconds.The results of using the system on various representative programs indicatethat the approach is valid and can result in signi�cantly tighter worst-case per-formance predictions. For the given test programs, an improvement averagingover 30% is shown for the WCET predictions.

Appendix AMemory References in Annulled Delay SlotsOne of the main advantages of the approach to bounding WCETs for processorswith data caches that is discussed in this dissertation is the ability to work withcompletely optimized code. However, doing so makes the analysis needed tostatically compute addresses muchmore complicated. Certain optimizations canalso a�ect the manner in which both the static simulation and timing analysisis performed. Perhaps the most di�cult of the optimizations dealt with is thatof �lling delay slots, particularly those of annulled branches.On the SPARC processor, every instruction that can transfer control fromone place in the program to another (branches and calls) is followed by a de-lay instruction. This is an instruction that will be executed before control istransferred to the target of the branch or call, and is said to be in the delayslot. Without optimization, these slots can be �lled with nop instructions tomake compilation faster. However, this wastes an instruction cycle where some-thing useful could actually be accomplished. So, a compiler optimization called�lling delay slots is usually performed to move another useful instruction fromsomewhere else in the program into this slot.While the �lling of delay slots increases execution e�ciency, it can radicallyalter the structure of a program. This makes the expansion of data addressinformation muchmore di�cult since instructions that set registers that contain57

58part of the address may be moved away from the area in which the load or storethat uses that address is located. Furthermore, a load or store instruction itselfmay be used to �ll a delay slot. This often results in a duplicate load or storeinstruction being created when loops are involved.Matters may be complicated further if the branch instruction before thedelay slot is an annulled branch. If an annulled branch is not taken, then theinstruction in the delay slot will be annulled. This means that although itwill occupy all stages in the pipeline, the results of the instruction will not becommitted. If this instruction is a load or a store, it will be ushed out of thepipeline before a read from or write to memory is performed, respectively. Forexample, consider the following assembly code segment....add %o2,%o0,%o2 # 9cmp %o2,%g1 # 10ble,a L15 # 11ld [%o2],%o0 # 12sethi %hi(a),%o3 # 13...L15: add %o1,%o5,%o1 # 27...If the branch (instruction 11) is taken, the instructions 9, 10, 11, 12, and 27 willbe executed completely, including the ld instruction in the delay slot (instruc-tion 12). However, if the branch is not taken, only instructions 9, 10, 11, and13 will be executed fully. As mentioned above, the ld will begin in the pipelinebut will not complete execution as a load.To see the di�culties involved with predicting WCET for programs contain-ing a data reference in an annulled delay slot, consider the source code and

59
int a[100][100];

main

{

 int i, j, sum;

 sum = 0;

}
 sum += a[i][j];

r[12]=0; # 1. mov %g0,%o4

r[13]=HI[_a]; # 2. sethi %hi(_a),%o5

r[4]=0; # 3. mov %g0,%g4

r[5]=HI[40000]; # 4. sethi %hi(40000),%g5

r[6]=r[13]+LO[_a]; # 6. add %o5,%lo(_a),%g6

r[2]=r[13]+400; # 8. add %o5,400,%g2

r[13]=r[4]+r[6]; # 7. add %g4,%g6,%o5

r[8]= R[r[13]]; # 9. ld [%o5],%o0

r[12]=r[12]+r[8]; # 10. add %o4,%o0,%o4

r[5]=r[5]+LO[40000]; # 5. add %g5,%lo(40000),%g5

r[13]=r[13]+4; # 11. add %o5,4,%o5

IC=r[13]?r[2]; # 12. cmp %o5,%g2

r[8]= R[r[13]]; # 14. ld [%o5],%o0

r[4]=r[4]+400; # 15. add %g4,400,%g4

IC=r[4]?r[5]; # 16. cmp %g4,%g5

r[13]=r[4]+r[6]; # 18. add %g4,%g6,%o5

PC=RT; # 17. retl

 for (i=0; i < 100; i++)

L18

L21

 for (j=0; j < 100; j++)

PC=IC<0,L18; # 17. bl,a L18

PC=IC<0,L21; # 13. bl,a L21

Figure A.1: Example C Program, RTLS, and SPARC Assembly, Revisedcorresponding RTLs and SPARC assembly instructions, in Figure A.1. This isthe same example as that in Figure 3.1 except that the �lling of delays slots hasbeen turned back on. Note that although there is only one memory reference inthe source code, the reference to a[i][j], it is actually turned into two loads(instructions 9 and 14) in the machine code due to the �lling of delay slots. Inthis case, a load instruction that was originally at the beginning of the innermostloop was used to �ll the delay slot at the end of the loop, so a copy of it wasplaced right before the innermost loop. Thus, the e�ective behavior of the datareference is the same { all 10,000 elements of the array will be summed. This istrue because the load at instruction 9 will access the �rst element of every rowof array a and the load at instruction 14, the one in the delay slot, will access

60the remaining elements of every row of a. It may appear that the second loadwill actually go beyond the last element of each row to the �rst element of thenext row. However, remember that because of the annulled branch, the load atinstruction 14 will not be fully executed as a load when the branch is not taken.Therefore, register r[8] will not be set when control falls out of the inner loop(i.e., the branch at instruction 13 is not taken).For this example, the �lling of the annulled delay slot with a load did notcause problems with expansion of addresses. The load at instruction 9 wasexpanded and recognized as a simple calculated reference with one inductionregister since it is in the outer loop. The load at instruction 14 was also expandedand recognized as a simple CR with two induction registers. Enough informationis available for both to compute the range of virtual addresses that will beaccessed by each.However, there is a problem to be solved in doing the static simulation to pro-duce the appropriate categorizations for these calculated references. Rememberthat the iterative analysis phase of the static simulator that produces the cachestates does not know and does not care about loop iteration information. It hasno way of knowing that the last access to the load at instruction 14 for eachcomplete execution of the inner loop will not actually update the cache since itis in an annulled delay slot. A method was devised so that lines brought in bythis array access on the last iteration of the inner loop would not update thecache. The compiler recognizes the case when this happens and puts a ag inthe DNF �le for the load in the delay slot as well as the corresponding load thatwas moved outside the loop. When the static simulator sees these ags when

61building the control ow information, it e�ectively changes these two loads toa single load that happens at the beginning of the innermost loop { exactly theway the code appeared before delay slots were �lled. This way, when the iter-ative ow algorithm executes, it produces the correct cache state information.After the cache states are produced, the loads are put back in their originalform.In order to produce the appropriate calculated categorizations for theseloads, the categorization phase of the static simulator also has to recognizethem as special cases. When the �rst load is identi�ed (usually the one that hasbeen moved out), the corresponding one is located and a single categorizationstring for both is produced. This works by using the stored induction variableregister information to step through both of the references at the same time.During each iteration of the algorithm, the element of the reference that wouldcome next is considered when determining if the corresponding place in thecategorization string should be a hit or a miss.For example, if the references have a positive stride, the lowest of the two ischosen. Next, its individual categorization is determined (hit or miss). Then,it is incremented according to its stride. This process repeats until the wholecategorization string is produced.This method works correctly since, even though there are two di�erent loads,they are both needed to completely iterate through the array. As mentionedabove, the one right before the innermost loop iterates through the �rst elementof each row, and the one in the delay slot iterations through all of the otherelements in each row.

62After the categorization string is produced it can be used to produce thecorrect calculated (c) categorization for each load for every loop level involved.Modi�cations were also necessary to allow both the timing analyzer andthe execution simulator to deal correctly with loads in an annulled delay slot.Changes to both of these took the form of adding extra code that prevents theload from completing execution as a load in such a case. This prevents extratime from being counted when the load is a miss but the branch is not taken.

Appendix BDescription of the DNF File<DNF File> ::= <ItemList> <EOF><ItemList> ::= <DNF Item> <EOLN>::= <ItemList> <DNF Item> <EOLN><DNF Item> ::= <LocalRef> j <GlobalRef> j <CalcRef> j <FuncName> j<StackSpace> j <FuncCall> j <Parameters> j <BlockNum> j<LeftSucc> j <RightSucc> j <PredList> j <NumInstructs> j<G Rec> j <LocalInf> j <LoopIters><LocalRef> ::= <LocalType> <rw> <name> <�num> <o�set> <type><drefnum> <annulled><LocalType> ::= LV j LA<GlobalRef> ::= <GlobalType> <rw> <name> <�num> <type> <drefnum><annulled><GlobalType> ::= GV j GR<CalcRef> ::= CR <rw> <�num> <type> <drefnum> <annulled> <EOLN><CalcInfoLine><CalcInfoLine> ::= BA <address> <stride> <min iters> <max iters> <loop><caseag> <EOLN> <IndVarLine>::= CM <address> <EOLN> <IndVarLine>::= OE <address>::= AW <gl> <name> <basereg><IndVarLine> ::= IV <IndVarList> 0::= IV <IndVarList> <ReplaceList> 0::= IV <ReplaceList> 0<IndVarList> ::= 1 <indreg> <loopnum> <stride> <min iters> <max iters><initval>::= <IndVarList> 1 <indreg> <loopnum> <stride> <min iters>63

64<max iters> <initval><ReplaceList> ::= -1 <indreg> <initval>::= <ReplaceList> -1 <indreg> <initval><FuncName> ::= FN <name><StackSpace> ::= SP <amount><FuncCall> ::= FC <name><Parameters> ::= PM <number> <ParamList><ParamList> ::= <address>::= <ParamList> <address><BlockNum> ::= -- <number> --<LeftSucc> ::= SL <number><RightSucc> ::= SR <number><PredList> ::= P <Preds> -1<Preds> ::= <number>::= <Preds> <number><NumInstructs> ::= NI <number><G Rec> ::= G.<func num> <name> [0 j -1] <alignment> <init ag><EOLN> <SizeRec>::= G.<func num> <name> <size> <alignment> <init ag><SizeRec> ::= G.0 ^size^ <size><LocalInf> ::= LC <name> <o�set> <size><LoopIters> ::= LI <loop iters>Where,<EOF> { end-of-�le marker<EOLN> { end-of-line marker<rw> { tells whether this access is a read (r) or a write (w)<name> { name of local or global variable<�num> { instruction number where found, relative to current function, startingfrom 0

65<o�set> { o�set into current function activation record<type> { type of memory reference: B, W, R, F, or D<drefnum> { overall data reference number, relative to beginning of each �le,starting from 0<annulled> { 1 if this memory reference is in an annulled delay slot; 0 otherwise<address> { expression that gives the base address of the reference<stride> { stride of the loop (length of each subitem)<min iters> { minimum number of loop iterations necessary to go through array<max iters> { maximum number of iterations needed to go through array<loop> { block number of the header block of the loop containing the rtl withthis memory reference<caseag> { special cases of data references in annulled slots are recognized bythe compiler to facilitate dealing with them in the static simulator;this is the number of the special case, or 0 if the data ref is not ina delay slot or was not recognized.<gl> { tells whether the following name is a global (g) or a local (l)<basereg> { s if this local name is relative to the stack pointer and f if it isrelative to the frame pointer<indreg> { register used as induction variable<loopnum> { number of the loop containing this induction register; the samenumber used in the path �le<initval> { expression that gives the initial value of this induction variable<amount> { amount of space reserved on the stack for the activation record forthis function<number> { an integer number<func num> { number of function containing this global declaration<alignment> { a number giving the alignment requirements of this global variable,i.e., 8 if the variable must be aligned on an 8-byte boundary<size> { number of bytes required to store this global/local<init ag> { 1 if variable is initialized, 0 otherwise<loop iters> { maximum number of iterations of loop in which the current block iscontained; will only appear in blocks that are loop headersAnd the tokens are,LV Local Variable. It is used to indicate that this particular local reference is relative to thestack pointer, r[14].LA Local Argument. It indicates that this local is relative to the frame pointer, r[30].GV Global Variable. Indicates that this is a global reference consisting of just a globalvariable name that must be looked up in the global records list.

66GR Global Reference. This is a global reference of the form <name> + <o�set>, where<o�set> is an integer number.CR Calculated Reference. This will be a reference for which there will not be a simple singleaddress. There will be one or two lines following this line giving more informationabout the range of addresses that may be accessed.BA Stands for Base Address. This is basically the same thing as the CM line below but withadditional information. This line still gives a base address in the form of an addressstring, but it also gives a stride and minimum and maximum number of iterations.The range of addresses that this calculated reference may access as well as the orderin which they will be accessed can be computed using this information.CM Stands for Code Motion. An expanded address string for a given data reference is storedduring code motion in a special information list. If later in the compilation process,the compiler is not able to fully expand a data reference (see above) this list will besearched. If an earlier (and better) address expansion for this data reference is foundon the list, it is output on the CM line.OE Stands for Original Expansion. The compiler attempts to expand all data references thatit determines not to be simple local or global variables. This expansion happens afterall optimizations, including the �lling of delay slots, have occurred. If this expansion isnot successful it searchs for information about this data reference that may have beenstored earlier in the compilation process as a side e�ect of code motion. If it �nds thisinformation a CM or a BA line (see below) will be output. If not, then the originalexpansion is output on the OE line.AW This line means that there was no way to tell the order and manner in which each elementof the memory reference may be accessed. Hence, when this reference is encountered itis assumed that the particular element at the time may be anywhere within the addressspace of the reference. A global or local base address of the reference is given.IV Induction Variables. This line lists each induction register found for the loop in whichthe calculated reference given in the preceding BA or CM line was found. For eachinduction register preceded by a 1 in the list, this line gives the stride, minimum andmaximum number of loop iterations, and the initial value in address string form. The1 means that this information should be used to calculate a range of virtual addressesthat may be accessed by this calculated reference. However, if the register is precededby a -1, only the initial value is given, since it is to be used directly in place of theregister in the address string in the preceding BA or CM line to compute a singlevirtual address. The -1 is used to handle a special case in which access to the �rstelement of an array may have been moved outside of a loop due to optimizations.FN Function Name. This line gives the name of a new function, signaling that all of thefollowing control-ow and data reference information is for program constructs anddata references within this function.SP Stack Space. This precedes a number giving the amount of space that will be used bythe activation record for this function. It is used when computing relative o�sets forlocal data.FC Function Call. This is control-ow information that shows that a call to the namedfunction will happen at the point in the program where this line occurs.PM Actual Parameter Information. This line gives the number of and the best possibleexpansion of all actual parameters to the function called in the preceding FC line.-- Block Number Marker. Each basic block is marked by a number between these markers.

67SL Left Successor. This precedes the basic block number of the left successor block of thecurrent basic block. Used for fall-through.SR Right Successor. This precedes the basic block number of the right successor block ofthe current basic block. Used for branching.P Predecessors. This is the list of predecessor blocks of the current basic block. It isterminated by a -1.NI Number of Instructions. This precedes a number giving the total number of instructionsin this basic block.G. Global Record. This begins a line that gives information collected in the front-end of thecompiler about static data.LC Local Information. This line gives the name and relative o�set within the activationrecord of all local data objects within the current function.LI Loop Iterations. This line gives the number of iterations of the loop in which the currentblock is the header. It will only be in blocks that are loop headers.

References[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers { Principles, Techniques,and Tools. Addison-Wesley, Reading, MA, 1986.[2] R. Arnold. Bounding instruction cache performance. Master's thesis, Dept.of Computer Science, Florida State University, December 1996.[3] R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bounding worst-case instruction cache performance. In IEEE Symposium on Real-TimeSystems, pages 172{181, December 1994.[4] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker.In ACM SIGPLAN Conference on Programming Language Design and Im-plementation, pages 329{338, June 1988.[5] J. W. Davidson and D. B. Whalley. Quick compilers using peephole opti-mizations. Software Practice & Experience, 19(1):195{203, January 1989.[6] J. W. Davidson and D. B. Whalley. A design environment for addressingarchitecture and compiler interactions. Microprocessors and Microsystems,15(9):459{472, November 1991.[7] M. Harmon, T. P. Baker, and D. B. Whalley. A retargetable techniquefor predicting execution time. In IEEE Symposium on Real-Time Systems,pages 68{77, December 1992.[8] C. A. Healy. Predicting pipeline and instruction cache performance. Mas-ter's thesis, Dept. of Computer Science, Florida State University, December1995.[9] C. A. Healy, D. B.Whalley, and M. Harmon. Integrating the timing analysisof pipelining and instruction caching. In IEEE Symposium on Real-TimeSystems, pages 288{297, December 1995.[10] C. A. Healy, D. B. Whalley, and M. Harmon. Worst-case timing analy-sis of instruction caches with wrap-around �ll. TR 96-111, Florida StateUniversity, Department of Computer Science, 1996.68

69[11] Y. Hur, Y. H. Bea, S.-S. Lim, B.-D. Rhee, S. L. Min, Y. C. Park, M. Lee,H. Shin, and C. S. Kim. Worst case timing analysis of risc processors:R3000/R3010 case study. In IEEE Symposium on Real-Time Systems,pages 308{319, December 1995.[12] S. Kim, S. L. Min, and R. Ha. E�cient worst-case timing analysis ofdata caching. In IEEE Real-Time Technology and Applications Symposium,pages 230{240, June 1996.[13] L. Ko, C. Healy, E. Ratli�, R. Arnold, D. B. Whalley, and M. Harmon.Supporting the speci�cation and analysis of timing constraints. In IEEEReal-Time Technology and Applications Symposium, pages 170{178, June1996.[14] L. Ko, D. B. Whalley, and M. Harmon. Supporting user-friendly analysis oftiming constraints. In ACM SIGPLAN Workshop on Languages, Compil-ers, and Tools for Real-Time Systems, volume 30, pages 99{107, November1995.[15] Y.-T. S. Li, S. Malik, and A. Wolfe. E�cient microarchitecture modelingand path analysis for real-time software. In IEEE Symposium on Real-TimeSystems, pages 298{307, December 1995.[16] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software:Beyond direct mapped instruction caches. In IEEE Symposium on Real-Time Systems, pages 254{263, December 1996.[17] S.-S. Lim, Y. H. Bea, G. T. Jang, B.-D. Rhee, S. L. Min, Y. C. Park,H. Shin, and C. S. Kim. An accurate worst case timing analysis for riscprocessors. In IEEE Symposium on Real-Time Systems, pages 97{108,December 1994.[18] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a com-piler algorithm for prefetching. In Architectural Support for ProgrammingLanguages and Operating Systems, pages 62{73, October 1992.[19] F. Mueller. Static Cache Simulation and its Applications. PhD dissertation,Dept. of Computer Science, Florida State University, July 1994.[20] F. Mueller. Generalizing timing predictions to set-associative caches. InEuroMicro Real-Time Workshop, June 1997. (accepted).[21] C. Y. Park. Predicting program execution times by analyzing static anddynamic program paths. Real-Time Systems, 5(1):31{61, March 1993.

70[22] P. Puschner and C. Koza. Calculating the maximum execution time ofreal-time programs. Real-Time Systems, 1(2):159{176, September 1989.[23] J. Rawat. Static analysis of cache analysis for real-time programming.Master's thesis, Iowa State University, 1995.[24] SPARC International Inc. The SPARC Architecture Manual, 1992. (Version8).[25] Texas Instruments. TMS390S10 Integrated SPARC Processor, February1993.[26] R. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon. Timinganalysis for data caches and set-associative caches. In IEEE Real-TimeTechnology and Applications Symposium, June 1997. (accepted).[27] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In ACMSIGPLAN Conference on Programming Language Design and Implemen-tation, pages 30{44, June 1991.[28] N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and worstcase execution times. Real-Time Systems, 5(4):319{343, October 1993.

Bibliographical SketchRandall White was born in Orlando, Florida on April 17, 1965. He gradu-ated as valedictorian from Apalachicola High School in Apalachicola, Florida inJune 1983. He received his Bachelor of Science degree from the Florida StateUniversity in Computer Science in May 1987 and his Master of Science degreefrom FSU in Computer Science in December 1991. He will receive his PhD inComputer Science in April 1997. He is currently employed as a programmerand consultant with a local web development company. He is a member of theAssociation for Computing Machinery and the Upsilon Pi Epsilon Honor So-ciety for the Computing Sciences. His research interests include programminglanguages, compiler theory, computer architecture, and parallel and distributedcomputing.
71

