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Abstract

Tightly predicting worst-case execution times (WCETSs) of programs on real-
time systems with caches is difficult. Whether or not a particular reference is
in cache depends on the program’s previous dynamic behavior. While much
progress has been accomplished recently on predicting instruction cache per-
formance of programs, bounding worst-case data cache performance is signifi-
cantly more challenging. Unlike instruction caching, many of the data addresses
referenced by load and store instructions can change during the execution of a
program. This dissertation describes an automatic tool-based approach for stat-
ically bounding the worst-case data cache performance of large code segments.
It also presents the work done to verify the validity of the computed bounds.
The given approach works on fully optimized code, performs the analysis over
the entire control flow of a program, detects and exploits both spatial and tem-
poral locality within data references, produces results typically within a few
seconds, and produces, on average, 30% tighter WCET bounds than can be
predicted without analyzing data cache behavior.

The given method of timing analysis involves several steps. First, data flow
analysis within an optimizing compiler is used to determine the bounded range
of addresses of each data reference relative to a global symbol or activation
record. Second, virtual address ranges are calculated from the relative address

ranges by examining the order of the assembly data declarations and the call
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graph of the entire program. Third, the control flow of the program is analyzed
to statically categorize the caching behavior of each data reference. Fourth,
these categorizations are used when calculating the pipeline performance of
sequences of instructions representing paths within the program. Finally, the
pipeline path analysis is used to estimate the worst-case execution performance
of each loop and function in the program.

Overall, this dissertation presents a comprehensive report on methods and
results of worst-case timing analysis of data cache behavior and shows that such
an analysis can lead to a significantly tighter worst-case performance prediction.
The given approach is unique and provides a considerable step towards realistic
worst-case execution time prediction of contemporary architectures and its use

in schedulability analysis for real-time systems.



Chapter 1

Introduction

Real-time systems rely on the assumption that the worst-case execution time
(WCET) of hard real-time tasks be known to ensure that deadlines of tasks can
be met — otherwise the safety of the controlled system is jeopardized. Static
analysis of program segments corresponding to tasks provides an analytical ap-
proach to determine the WCET for modern processors. The complexity of these
processors requires a tool-based approach since ad hoc testing methods may not
exhibit the worst-case behavior of the architecture. This dissertation presents
a working system of tools that can statically analyze optimized code and pro-
duce the data cache timing analysis for real-time programs without requiring
interaction from the user. Furthermore, those programs are allowed to take full
advantage of many features of modern architectures, including pipelining and

data caches.

1.1 Challenges

Obtaining WCETs for real-time applications on systems that use a data cache
is quite challenging. Unlike instruction caching, many of the addresses of refer-
ences to data can change during the execution of a program. A reference to an
item within an activation record could have different addresses depending on the
sequence of calls associated with the invocation of the function. Many data ref-

erences, such as indexing into an array, are dynamically calculated and can vary
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each time the data reference occurs. Pointer variables in languages like C may
be assigned addresses of different variables or an address that is dynamically
calculated from the heap. Instruction caches also allow for a simple 1-1 mapping
from instructions to memory. This is not possible for data caches. Figure 1.1
shows how the mapping of data addresses differs from that of instructions. A
global variable may be accessed from more than one place in the code (blocks
1 and 5). A global calculated reference may appear textually in the program
only once (block 3), but will access many different addresses. Likewise, a local
variable may appear only once (block 4), but will map to different addresses in
the stack depending on the calling sequence of the function in which it appears.

Initially, it may appear that obtaining a reasonable bound on worst-case



data cache performance is just not feasible. However, this problem is far from
hopeless since the addresses for many data references can be statically calcu-
lated. Static or global scalar data references do retain the same addresses during
the execution of a program. Run-time stack scalar data references can often be
statically determined as a set of addresses depending upon the sequence of calls
associated with an invocation of a function. The pattern of addresses associated
with many calculated references, such as indexing through an array, can also

often be resolved statically.

1.2 Related Work

There has been some work in the area of locality analysis to assist compilers
performing optimizations [18, 27]. Generally, this work only attempts to es-
timate the locality of data within a set of nested loops. The effect of scalar
references is not typically considered. Furthermore, this analysis usually occurs
for high-level optimizations, where the exact machine instructions and virtual
addresses of the data references are unknown.

In the past few years, research in the static analysis of WCET of programs
has increased. Conventional methods for static analysis have been extended
from unoptimized programs on simple CISC processors [7, 22, 21] to optimized
programs on pipelined RISC processors [9, 17, 28] and from uncached architec-
tures to instruction caches [3, 11, 15]. However, there has been little previous
work on predicting WCET for data caching. Only three previous attempts have
been reported. Rawat and Nilsen [23] used a graph coloring approach to bound

data caching performance. However, only the live ranges of local scalar variables



within a single function were analyzed. Unfortunately, these types of references
are fairly uncommon since most local scalar variables are allocated to registers
by optimizing compilers and actually do not reference memory.

Kim et. al. [12] have recently published work about bounding data cache
performance for calculated references, which they refer to as occurring from
dynamic load and store instructions. Their approach uses a pigeonhole principle.
For each loop they determine the maximum number of references from each
dynamic load/store instruction. They also determine the maximum number of
distinct locations in memory referenced by these instructions. The difference
between these two values is the number of data cache hits for the loop given that
there are no conflicting references. This technique works quite well when all of
the data references fit into cache and the size of each data reference is the same
size as a cache line. Unfortunately, their technique does not detect any spatial
locality (i.e., when the line size is greater than the size of each data reference and
the elements are accessed contiguously) and detects no temporal locality across
different loop nests. Furthermore, no general analysis of induction variables and
loop invariant values is performed to calculate relative ranges of data references.
Instead, they rely on analyzing unoptimized code, where registers associated
with a memory address have to correspond to a loop index variable. As will
be shown in this dissertation, compiler optimizations can make the process of
calculating ranges of relative addresses significantly more challenging.

Li et. al. [16] have described a framework to integrate data caching into
their integer linear programming (ILP) approach to timing prediction. Their

implementation performs data-flow analysis to find conflicting blocks. However,



their linear constraints describing the range of addresses of each data reference
currently have to be calculated by hand. They also require a separate constraint
for every element of a calculated reference, which causes a scalability problem
for large arrays. No actual WCET results on data caches were reported. Their
approach can also incur significant overhead. In fact, one program in their test
suite required over 50,000 seconds (nearly 14 hours) for WCET results to be
produced with instruction caches being considered. The number of constraints

needed for large arrays can make overhead for data cache prediction even higher.

1.3 Organization of Dissertation

Chapter 2 gives a brief overview of the different stages involved in the bound-
ing of worst-case data cache performance. Chapter 3 discusses changes made
to the vpo compiler [4] to allow the calculation of relative address information.
In Chapter 4 the method of computing virtual addresses is discussed. Chap-
ter 5 describes the method of static cache simulation to categorize the data
references in a program. In Chapter 6 the timing analysis algorithm is given
along with an example showing its use. Chapter 7 describes the changes made
to the ease cache simulator [6] in order to check the validity of the computed
addresses and to simulate data caching and pipeline effects of executing the test
programs. Chapter 8 shows the results of the work on various representative
programs. Chapter 9 suggests topics for future research, and Chapter 10 gives
the conclusions. In addition there are two appendices. Appendix A discusses the
difficulties of dealing with a load or store in an annulled delay slot. Appendix

B gives a grammatical description of the data information (dnf) file.



Chapter 2

Overview of Research Environment

There are several stages involved in the approach used for bounding data cache
performance of large code segments. Figure 2.1 depicts an overview of these
stages. An optimizing compiler [4] has been modified to store information about
the control flow, which includes the calling structure of functions, data declara-
tions, and relative address ranges of data references within each function as the
side effect of the compilation of each source file. This information is passed to
an address calculator, which converts the relative data addresses to virtual data
addresses. The control flow is input to the static cache simulator, which uses
it to construct a control-flow graph of the entire program. The static simulator
uses the information produced by the address calculator and the specified data

cache configuration when analyzing this graph to produce a categorization of
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each data reference in the program. This static stimulation is based on previous
work described in [19]. The timing analyzer reads machine-dependent infor-
mation to determine how each instruction proceeds through the pipeline. It
uses the data categorizations to determine whether each data reference should
be treated as a hit or miss during the pipeline analysis. The timing analyzer
also uses the control flow information to produce a program control-flow graph,
which is analyzed to produce a worst-case estimate for each loop and function
within the program. The timing analysis is based on earlier work described
in [2, 8]. Finally, a graphical user interface is displayed that allows a user to
request timing bounds for portions of the program [14, 13]. Excerpts of this dis-
sertation describing the approach to statically bounding WCETSs for programs
that use a data cache, along with extensions to the static simulator to produce
categorizations for instructions in programs using a set associative cache, can
be found in [26].

In addition to the components mentioned above, an execution simulator was
developed to check the validity of the statically computed WCETs. An existing
cache simulator (EASE, described in [6]) was modified to measure the simulated
pipeline and data caching behavior of a program’s execution. This simulator is
also used to check the validity of the computed addresses by comparing them
against the addresses that are actually accessed at run time. If any actual
address is found to be outside the computed range, an error message is output

and the simulation terminates.



Chapter 3

Calculation of Relative Addresses in the Compiler

3.1 Front-End

The front-end of the compiler (¢fe — C Front End) [5] was modified to pass
information about declarations of static data to the compiler back-end. Nor-
mally, this information is discarded after the static data assembly declarations
are emitted. However, it is necessary for the address calculator to know some
of this information, which includes the name, size, and alignment requirements

for each static data declaration.

3.2 Back-End

The back-end of the compiler (vpo — Very Portable Optimizer) [4] required more
intensive modifications than cfe. Since a goal of the research was to allow
the user to take advantage of fully optimized code, there were many instances
where traditional techniques for calculating ranges of relative addresses were
not adequate due to interference from various compiler optimizations.

Vpo attempts to calculate relative addresses for each data reference associ-
ated with load and store instructions after other compiler optimizations have
been performed. First, the compiler determines for each loop the set of its induc-

tion variables, their initial values and strides, and the loop-invariant registers.!

! A basic loop induction variable only has assignments of the form v := v & ¢, where v is
a variable or register and c 1s an integer constant. Nonbasic induction variables are also only
incremented or decremented by a constant value on each loop iteration, but get their values



Expansion of addresses used in loads and stores is then performed. Expan-
sion is accomplished by examining each preceding RTL and replacing registers
used as source values in the address with the source of the RTL which set that
register. Induction variables associated with a loop are not expanded. Loop
invariant values are expanded by moving to the end of the preheader block of
that loop. Expansion of addresses of scalar references to the run-time stack (e.g.
local variables) is trivial. Expansion of references to static data (e.g. global vari-
ables) often requires expanding loop invariant registers since these addresses are
constructed with instructions that may be moved out of a loop. Expansion of
calculated address references (e.g. array indexing) requires knowledge of loop
induction variables.

Consider the source code and corresponding RTLs, which represent SPARC 2
assembly instructions, in Figure 3.1. Note that although delay slots are actually
filled by the compiler, they have not been filled when compiling code for the
examples in this section in order to simplify the examples for the initial expla-
nation of the expansion and simplification of memory address information. A
more detailed discussion of the ramifications of memory references in (possibly
annulled) delay slots is given in Appendix A.

The memory reference in the load (instruction 9) references the register
r[13], which is a basic induction variable for the inner loop (instructions 9-13)

and will not be expanded. The stride for r[13] was calculated to be 4. The

either directly or indirectly from basic induction variables. A variety of forms of assignment
for nonbasic induction variables are allowed. Loop invariant values do not change during the
execution of a loop. A discussion of how induction variables and loop invariant values are
identified can be found elsewhere [1].

ZSPARC is a registered trademark of Sparc International, Inc.
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int a[100][100];

r[12] =0; # 1. nmov %0, %04
nai n r[13]=H[_a]; # 2. sethi %i(_a), %5
{ r[ 4] =0; # 3. nmov %90, Yg4
int i, j, sum r[5] =Hi [ 40000] ; # 4. sethi %i (40000), %g5
r[5]=r[5]+L 40000]; # 5. add %4, % o(40000), %5
sum = 0; r[6]=r[13]+LO _a]; # 6. add %5, % o(_a), %6
for (i=0; i < 100; i++) ¢
for (j=0; j < 100; j++) L1710y 1181 =r[ 4] +r[ 6] ; # 7. add %4, %g6, %5
sum += a[ i ] [J ] : r [ 2] =r [ 13] +400; # 8. add %05, 400, %92
} !
L20[ rr8]=Rr[13]1; # 9. 1d  [%5], %0
. r[12] =r[12] +r[8]; # 10. add %4, %0, %4
load of a[i1[]] r[13] =r[13] +4; # 11. add %5, 4, Y05
1 C=r[13]?r[2]; # 12. cnp %5, %92
PC=I C<0, L20; # 13. bl L20
r[ 4] =r[ 4] +400; # 14. idd %g4, 400, Yg4
1C=r[4]?r[5]; # 15. cnp %94, %5
PC=1 C<0, L17; # 16. i)l L17
| PC=RT; # 17. retl \

Figure 3.1: Example C Program, RTLS, and SPARC Assembly

compiler determined its initial value to be r[4]+r[6] by expanding r[13] at

the end of the inner loop preheader, which precedes the header block at L20.

The register r[4] is a basic induction variable for the outer loop (instructions

7-16). However, the r[6] register is loop invariant in the outer loop and this

initial address also needs to be expanded. The expansion of the initial address

accessed by the load is shown in the following steps.

1. r[13]
2. r[4]+r[6]
3. r[4]+(r[13]+L0[_al)

4. r[4]+(HI[_al+L0O[_al)

# address expression in load at instruction 9
# from instruction 7
# from instruction 6

4t from instruction 2

Address simplification is performed to obtain the following expression as an

initial address. The HI and LO correspond to the high and low portions of
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for (r[4] = 0; r[4] < 40000; r[4] += 400)
for (r[13] = r[4]l+_a; r[13] < r[4]+_a+400; r[13] += 4)
address{r[13]}

Figure 3.2: Algorithmic Range of Relative Addresses for the load in Figure 3.1

the address since the address calculation cannot be accomplished in a single

instruction on the SPARC.

5. r[4]+_a # eliminate HI and LO and unnecessary parentheses

The relative range of addresses is calculated using the initial value and stride of
these induction variables and the number of iterations of the loop to determine
a limit. The compiler determined that the initial value for r[4] is 0 and its
stride is 400. The number of iterations for each loop is calculated to be 100 by
the compiler. The range of relative addresses for this example can be depicted
algorithmically as shown in Figure 3.2.

Unfortunately, the calculation of a range of relative addresses is not always so
simple. Occasionally, the compiler optimization called loop strength reduction
cannot be applied due to lack of available registers. To address this problem a
more sophisticated address simplification algorithm was developed. To illustrate
the capabilities of this algorithm, the same example in Figure 3.1 was recompiled
without loop strength reduction being applied to the outer loop. Figure 3.3
contains the instructions generated in this case.

The effect of the memory address in the load (instruction 12), which is r[2],
has to be expanded. The register r[2] cannot be immediately expanded since

it is an induction variable for the inner loop (instructions 12-16). The compiler
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r[12] =0; # 1. mov %0, %4
r[11] =0; # 2. mov %0, %3
r[13]=H[_a]; # 3. sethi %i(_a), %5
r[5]=r[13]+Ld _a]; # 4. add 9%5,%o(_a), %95
L7 1) =r 11] <<2; # 5. sl %32 %1
r{1]=r[1]-r[11]; # 6. sub %91, %03, %9l
r[1]=r[1] <<3; # 7. sl %1, 3, %91
r[1]=r[1] +r[11]; # 8. add %1, %3, %g1
r[ 1] =r[ 1] <<4; # 9. sll %1, 4, %l
r[2]=r[1] +r[5]; # 10. add %1, %5, %92
r[ 4] =r[ 2] +400; # 11. add %2, 400, Yg4
L201 v 181=Rr[2]]; #12. |d  [%2], %0
U ria2r =2+ 8l # 13. add %4, %0, %4
load of a[i][j] 2 r[2]=r[2] +4; # 14. add %92, 4, %92
ICr[2]?r[4]; # 15. cnp %2, Yg4
PC=I C<0, L20; # 16. bl L20
r[11] =r[11] +1; # 17. add %3, 1, %3
I C=r[ 11] 2100; # 18. cnp %3, 100
PC=I C<0, L17; # 19. bl L17
| PC=RT; # 20. retl |

Figure 3.3: Example in Figure 3.1 without Strength Reduction in Outer Loop

next attempts to determine the initial value for this induction variable. This is

accomplished by moving to the end of the preheader of the inner loop, which

precedes the loop header block at L20. The initial value of r[2] is r[1]+r[5].

The result of expanding the initial memory address within the preheader is

shown in the following steps.

1. r[2] 7t from load at instruction 12

2. r[1]1+r[5]

3. (r[1]<<4)+r[5]

4. ((r[1]+r[11])<<4)+r[5]

5. (((r[11<<3)+r[11])<<4)+r[5]

6. ((((r[11-r[11]1)<<3)+r[11]1)<<4)+r[5]

7. (((((r[111<<2)-r[11]1)<<3)+r[11])<<4)+r[5]

# from instruction 10
# from instruction 9
# from instruction 8
# from instruction 7
# from instruction 6

# from instruction 5
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The register r[11] is an induction variable for the outer loop and will not be
expanded. The register r[5] cannot be immediately expanded since it is loop
invariant. The compiler moves to the end of the outer loop’s (instructions 5-19)
preheader, which precedes the header block at L17. The assignments to r[5]
are used to further expand the initial address in the two following steps.

8. (((((r[11]<<2)-r[11]1)<<3)+r[11]1)<<4)+(r[13]+L0[_al)

7t from instruction 4

9, (((((r[11]1<<2)-r[11])<<3)+r[11])<<4)+(HI[_al+L0[_al)

# from instruction 3

Now the expression needs to be simplified. The reason it appears so complicated
is that the compiler had performed an optimization that turned a multiply by
an integer constant into a sequence of shifts, adds, and subtracts. This multi-
plication was unnecessary when loop strength reduction had been performed on
the outer loop. The HI and LO calculation is eliminated and the effect of this

optimization is reversed in the following steps.

10, ((C((r[11]<<2)-r[11])<<3)+r[11])<<4)+_a +# eliminate HI and LO

11, (CCC(r[11]%4)-r[11]1)<<3)+r[11])<<4)+_a  # change <<2 to *4

12. ((((r[11]1%3)<<3)+r[11])<<4)+_a # change nx4-n to n*3
13. ((((r[11]1*3)*8)+r[11])<<4)+_a # change <<3 to *8

14, (((r[11]#*24)+r[11])<<4)+_a # change *3%8 to *24
15. ((r[11]1%*25)<<4)+_a # change n*24+n to n*25
16. ((r[11]1*25)*16)+_a # change <<4 to *16

17. (r[11]1%400)+_a # change *25%16 to *400



14

for (r[11] = 0; r[11] < 100; r[11] += 1)
for (r[2] = r[11]1*400+_a; r[2] < r[11]1*400+_a+400; r[2] += 4)
address{r[2]}

Figure 3.4: Algorithmic Range of Relative Addresses for the load in Figure 3.3

At this point the initial address of the load has been fully expanded. The only
remaining register in the initial address is an induction variable. The initial
value and stride of these induction variables and the number of iterations of
the loop to determine a limit is used by the compiler to calculate the relative
range of addresses. The initial value of the inner induction variable r[2] was
given at step 17 and its stride is 4. The initial value of the outer induction
variable r[11] is 0 and the stride is 1. The number of iterations of each loop
is 100. Thus, the range of relatives addresses for this example can be depicted
algorithmically as shown in Figure 3.4.

This approach to expanding addresses allows us the ability to handle non-
standard induction variables. We are not limited to simple induction variables
in simple for loops that are updated only at the head of the loop. For example,

consider the following code segment.

for (i = 0; i < 100; i++) {

alil ... — first use of i as index into a
it++; —induction variable i incremented inside body of the loop
alil ... — second use of 1 as index Into a
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The first use of i to index into a within the loop body uses the value to which
it was initialized or incremented in the for loop header statement. However,
since 1 is incremented in the middle of the loop, the next use of i as an index
into a will have a value that is one more than it was before. Our approach will
detect this difference and correctly determine the relative address range for each

memory reference.

3.3 The DNF File

After relative address information is computed, it needs to be passed to the
address calculator. The data information, or dnf, file serves this purpose. Its
format was chosen for ease of input into the address calculator and for human
readability. A grammar showing the full organization of the dnf file is given
in Appendix B. The dnf file contains lines giving both the static location of
the data references in the file, i.e., which function and basic block in which
each particular reference resides, and the dynamic control flow of the program.
However, its primary purpose is to give information about each data reference in
a program to the address calculator so that virtual addresses can be computed.
The following describes typical information the dnf file contains for each data

reference in the program.

variable name: This is either the name of the local or global variable or an ad-
dress string consisting of a base name with possible registers and constant

offsets for calculated references.

type: One of the letters B, W, R, F, or D, for bytes (1 byte), shorts (2 bytes),

ints (4 bytes), floats (4 bytes), or doubles (8 bytes), respectively, giving
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the size and alignment requirements of a particular memory reference or

a sequence of memory references.

relative offset: There are lines that give offsets relative to the current acti-
vation record for locals and relative to the beginning of global data for
globals. For calculated references these offsets are used to calculate a
base address, and there are additional lines which give a list of induction
variables from which the actual virtual range of addresses that can be
accessed, as well as the order in which these addresses will be accessed,

may be computed.

access type: This is the letter r or w, telling whether this reference is a read
from or a write to memory. Reads (loads) and writes (stores) may be

accessed differently and can cause different effects on the data cache.

instruction number: The number of the load or store instruction, relative to

the current function.

data reference number: The number of the current data reference, starting

at 0, relative to the current source file.

Figure 3.5 shows a portion of the dnf file containing the data reference in-
formation for a function Initialize, which takes two arrays as parameters and
sets the corresponding elements in each to the same random integers. Note that
the line numbers are not actually part of the file but are given in the figure for
demonstration purposes. The calculated reference information lines in this file

portion, along with the two lines following each of them (lines 23-28), are the
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26
27
28

29
30
31
32
38

34

FN Main

FC Initialize
PM 2 ArrayA ArrayB

FN Initialize
SP 96

P52 -1
FC Rand
NI 2

__4__

P3-1

CRw 13 R 90

BA r[21]+r[25]-r[24] 4 10 10 3 ©

IV 1 r[21] 2 4 10 10 r[24]+r[18]1+4 1 r[18] 1 44 10 10 44 1 ...
...r[26] 1 44 10 10 r[24]1+88 0

CRw 14 R 10 0

BA r[21] 4 10 10 3 0

IV 1 r[21] 2 4 10 10 r[24]+r[18]1+4 1 r[18] 1 44 10 10 44 1 ...
...r[26] 1 44 10 10 r[24]1+88 0

NI 2

Figure 3.5: Portion of a DNF File for Function Initialize
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dnf file result of an interesting example of the expansion and simplification of
address strings for calculated references. These lines show how the system can
handle an optimization called index reduction in which the induction variable
calculation for one memory reference is “piggy-backed” onto that of another
when there are two different memory references with identical strides in the
same loop. They also show how the computation of relative address informa-
tion is accomplished when dealing with calculated references that have address
components that are passed in as parameters.

Consider the C source code, RTLs, and SPARC assembly instructions in
Figure 3.6 for the Initialize function. The first memory address, r[21] +
r[22] (instruction 14), is for the store of B[i]1[j]. The second memory ad-
dress, r[21] (instruction 15), is for the store of A[i]1[j]. Register r[21] is
the induction register for the inner loop (instructions 12-19) and thus cannot
be expanded. It has an initial value, a stride, and a maximum and minimum
number of iterations associated with it that were computed and stored earlier
in the compilation process.” These values for induction register r[21] can be
seen in the IV lines (lines 25 and 28) following the CR lines (lines 23 and 26) for
both arrays A and B in Figure 3.5.

The initial value for r[21] is r[24]+r[18]+4. r[24] is the same as regis-
ter 1[0], the first input register. The SPARC uses the concept of a register
window [24] to pass the first six arguments to a function via six special input

registers. Since r[24] was seen to be a special register during the initial value

3This earlier computation and expansion of the initial value string of an induction register
proceeds in basically the same manner as has already been discussed except that loop invariant
registers are expanded as well.



19

#define MAX 11

typedef int matrix[ MAX] [ MAX] ;
matrix ArrayA, ArrayB;

r[14] =SV[r[ 14] +- 96] ;
r[ 18] =44;

r[26] =44+r[ 24];

. r[26] =r[ 26] +44;

mai n() r[27] =r[ 24] +528;

{

. save %sp, (-96), ¥sp
. nmov 44, % 2

. add % 0, 44, % 2

. add % 2,44, % 2

. add % 0, 528, % 3

H* H H H
g s wN R

=

L32

r[21] =4+r[24]; # 6. add %0,4,%5
Initialize(ArrayA, ArrayB); r{21]=r{21] +r[18]; # 7. add %5 %2 %5
. r[22] =r[25] +r[ 18] ; # 8. add %1,%2, %6
: r[23] =r[24] +r[ 18] ; # 9. add %0,%2,%7
} r[22]=r[22]-r[23]; # 10. sub %6,%7, %6
Initialize(A B) r[23]=r[26]; # 11. nov %2,%7
matrix A B; i
{ L35
inti, | ST=HI[_Rand] +LJ _Rand], 68,0; # 12. call _Rand,0
NL=NL; # 13. nop
for (i=1; i<MAX; i++) i
for (j=1; j<MAX |++)
A Rr[21]+r[22]]=r[8]; # 14. st %0,[% 5 + % 6]
AL Rr[21]]1=r[8]; # 15. st %00, [ % 5]
= Bli][j] ]
= Rand(); o
} r[21] =r[ 21] +4; # 16. add %5,4,%5
} I C=r[21] 2r[ 23] ; # 17. cnp %5, %7
storeof B[i1[j] PC=I C<0, L35; #18. ble L35
NL=NL; # 19. nop

soreof ALi][j]

r[26] =r[26] +44;
I C=r[26] ?r[27];
PC=I C<0, L32;

r[ 18] =r[ 18] +44;

20. add %2, 44,%2
21 cnp % 2,%3
22. ble  L32

23. add %2, 44,%2

#* H OH* W

PC=RT;
NL=RS[ ] ;

#*

24. ret
25. restore

#*

Figure 3.6: C Code, RTLS, and SPARC Assembly for Function Initialize

expansion, no attempt was made to expand it further. During virtual address
calculation later, parameter information will be searched to find the appropriate
global or local (to the caller) base address to use in its place. The parameter
information dumped for this example can be seen in the PM line (line 3) of Fig-
ure 3.5. Such a line is dumped out after every function call in the program for
which parameter information could be readily expanded. Therefore, the initial
value of r[21] can be seen to consist of the first element accessed r[24]+4 plus
the offset that comes from computing the row location, that of the induction

variable for the outer loop (instructions 6-23), r[18]. The stride is 4 and the
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minimum and maximum number of iterations are both 10.

Once the initial value, stride, and number of iterations are available, there is
enough information to compute the sequence of addresses that will be accessed
by the store of A[i] [j]. Knowing that both references had the same stride, the
compiler used index reduction to avoid having to use another induction register
for the address computation for B[1] [j] since it shares the same loop control
variables as that for A. Therefore, the memory address, r[21] + r[22] for
B[i] [j1,includes the address for A (r[21]) plus the difference between the two
arrays (r[22]). This can be seen from the following sequence of expansions and
simplifications. Remember that register r[21] cannot be immediately expanded
since it is an induction register for the inner loop, so the expansion continues
with register r[22] as follows. Also, register r[18] will not be expanded since
it is the induction variable for the outer loop. Furthermore, registers r[24] and

r[25] are input registers corresponding to parameters and will not be expanded

either.
1. r[21] + r[22] # from load at 14
2. r[21]1+(r[22]-r[23]) 7t from inst 10
3. r[21]+(r[22]-(r[24]+r[18])) 4t from inst 9
4. r[21]+((r[25]+r[18])-(r[24]+r[18])) # from inst 8

The effect of this expansion is simplified in the following steps.

5. r[21]+r[25]+r[18]-(r[24]+r[18]) # remove ()’s and distribute +’s
6. r[21]+r[25]+r[18]-r[24]-r[18] # remove ()’s and distribute -’s

7. r[21]+r[25]-r[24] # remove negating terms (r[18]-r[18])
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Thus, we are left with the induction register r[21] plus the difference between
the two arrays. Although, for now, we can only see that the arrays will be found
in the parameter information. This simplified address expression string is then
dumped to the dnf file.

When the address calculator attempts to resolve this string to an actual
virtual address, it will first search the parameter information to find out that
r[24] is ArrayA and r[25] is ArrayB. It will then use these base names and the
initial value of r[21], which is r[24]+r[18]+4 or ArrayA+r[18]+4, and the

ArrayA’s will cancel out as the following steps show.

1. r[21]+r[25]-r[24] # address string of B[1] [j]
2. r[21]+ArrayB-ArrayA # substitute parameter information
3. ArrayA+r[18]+4+ArrayB-ArrayA # substitute initial value of r[21]

4. r[18]+4+ArrayB # result when Arrayh’s cancel out

Note that this result gives the initial address of the row in the ArrayB array.



Chapter 4
Calculation of Virtual Addresses

Calculating addresses that are relative to the beginning of a global variable or
an activation record is accomplished within the compiler since much of the data
flow information required for this analysis is immediately available due to its
use in compiler optimizations. However, calculating virtual addresses can not
be done in the compiler since the analysis of the call graph and data declarations
across multiple files is required. Figure 4.1 shows the general organization of
the virtual address space of a process executing under SunOS.! There is some
startup code preceding the instructions associated with the compiled program.
Following the program code segment is the static data, which is aligned on a
page boundary. The run-time stack starts at high addresses and grows toward
low addresses. Part of the memory between the run-time stack and the static
data is the heap, which is not depicted in the figure since addresses in the
heap could not be calculated statically by the environment described in this
dissertation.

Static data consists of global variables, static variables, and nonscalar con-
stants (e.g. strings). In general, the Unix linker (Id) places the static data in
the same order that the declarations appeared within an assembly file. Also,

static data within one file will precede static data in another file specified later

1SunOS is a registered trademark of Sun Microsystems, Inc.
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0x0

startup code
program code
segment
} static data must be
static aligned on page boundary
data

run-time
program stack growth

initial stack } includes:

argc count
oxfffffff argv variables
environment variables

Figure 4.1: Virtual Address Space Organization in SunOS

in the list of files to be linked.? In addition, padding between variables some-
times occurs. For instance, variables declared as int and double on the SPARC
are aligned on word and doubleword boundaries, respectively. In addition, the
first static or global variable declared in each of the source files comprising the
program is aligned on a doubleword boundary. Finally, the beginning of the
static data area is aligned on a page boundary.

Run-time stack data includes temporaries and local variables not allocated
to registers. Some examples of temporaries include parameters beyond the sixth
word passed to a function and memory used to move values between integer and
floating-point registers since such movement cannot be accomplished directly

on a SPARC. While the code size and static data addresses would not change

?There were some exceptions to these rules depending upon how such data is statically
initialized.
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between executions of a program, the addresses for run-time stack data could.
The reason is that the size of the initial stack area that appears before the main
function is invoked can vary. This initial stack area includes the argc count,
the strings for argv (command line) arguments, and the strings for the logical
names associated with a Unix setenv command that can be accessed using the
envp argument. Another complication for calculating run-time stack addresses
is that the address of the activation record for a function can vary depending
upon the actual sequence of calls associated with its activation. For instance, a
local array variable accessed in a function B would have a different address if B
was invoked directly from main or if the main function invoked function A which
in turn invoked B. The sum of the sizes of the activation records associated
with this sequence of calls along with the initial run-time stack address is used
to determine the virtual address of the activation record containing the local
variable. The address calculator (along with the static simulator and timing
analyzer) distinguishes between different function instances and evaluates each
instance separately.

Once the static data names and activation records of functions are associated
with virtual addresses, the relative address ranges can be converted into virtual
address ranges. For instance, consider the relative range shown in Figure 3.4.
Say the address calculator determines that array _a starts at virtual address
20,000. Then this address would be substituted for the name in the expression
as shown in Figure 4.2.

Only virtual addresses have been calculated so far. There is no guarantee

that the virtual address will be the same as the actual physical address, which
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for (r[11] = 0; r[11] < 100; r[11] += 1)
for (r[2] = r[11]1*400+20000; r[2] < r[11]#400+20400; r[2] += 4)
address{r[2]}

Figure 4.2: Algorithmic Range of Virtual Addresses for the Load in Figure 3.3

is typically used to access cache memory on most machines. The assumption
for this work is that the system page size is an integer multiple of the data
cache size, which is often the case. For instance, the MicroSPARC I has a 4KB
page size and a 2KB data cache [25]. Thus, both a virtual and corresponding
physical address would have the same relative offset within a page and would

map to the same line within the data cache.



Chapter 5

Static Simulation to Produce Data Reference
Categorizations

The method of static cache simulation is used to statically categorize the caching
behavior of each data reference in a program for a specified cache configura-
tion. A program control-flow graph is constructed that includes the control flow
within each function and a function instance graph, which uniquely identifies
each function instance by the sequence of call sites required for its invocation.
This program control-flow graph is analyzed to determine the possible data lines
that can be in the data cache at the entry and exit of each basic block within the
program. Static simulation in general and its particular use in the simulation
of caches for instruction categorization is explored in detail by Mueller in [19].

The iterative algorithm used for static instruction cache simulation [3, 19]
will not be sufficient for static data cache simulation. The problem is that the
calculated references can access a range of possible addresses. At the point that
the data access occurs, the data lines associated with these addresses may or
may not be brought in cache, depending upon how many iterations of the loop
has been performed at that point. To deal with this problem, an additional state
was created to indicate whether or not a particular data line could potentially be
in the data cache due to calculated references. When a block with an incoming
transition that exits a loop is encountered, then the data lines associated with a

calculated reference in that loop that are still in cache at that point are unioned

26
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WHILE any change DO
FOR each basic block instance B DO
IF B == top THEN
input_state(B) = calc_input_state(B) = all invalid lines
ELSE
input_state(B) = calc_input_state(B) = NULL
FOR each immed pred P of B DO
input_state(B) += output_state(P)
calc_input_state(B) += output_state(P) + calc_output_state(P)
IF P is in another loop THEN
input_state(B) += calc_output_state(P) & data_lines(remaining in that loop)
output_state(B) = input_state(B)
FOR each data reference D in B DO
IF D is scalar reference THEN
output_state(B) += data_line(D)
output_state(B) -= data_lines(D conflicts with)
calc_output_state(B) += data_line(D)
calc_output_state(B) -= data_lines(conflicts with)
ELSE
output_state(B) -= data_lines(D could conflict with)
calc_output_state(B) += data_lines(D could access)
calc_output_state(B) -= data_lines(D could conflict with)

Figure 5.1: Algorithm to Calculate Data Cache States

into the input cache state of that block. The iterative algorithm in Figure 5.1
was used to calculate the input and output cache states for each basic block in
the program control-flow graph.

Another problem to resolve is the internal representation of the cache state
as a bit vector. With instructions, because of the simple 1-1 mapping from
instructions to program lines and program lines to memory (see Figure 1.1),
it is easy to represent the cache state directly in a bit vector following this
mapping. However static data starts in low memory, growing upward, and
stack data starts at very high memory and grows downward. Representing all

of the possible memory addresses to which data could map in a single contiguous
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Figure 5.2: Instruction Vs. Data Cache State Representation

bit vector is not possible since the vector would be too large. Therefore, a new

mapping method, shown in Figure 5.2, was devised. The upper limit of global

and other static data can be computed since the starting address and size of each

object is known. Likewise, the lower limit of stack data can be computed using

the call graph since we can find the longest calling sequence in the program and

sum the sizes of the activation record of each function involved. Knowing these

two limits, we can effectively remove the unused memory space from the middle

and push the two pieces together with padding as needed to preserve alignment

requirements. We can now represent a very large address space in a smaller and

more manageable state vector.
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Once the cache state vectors have been produced, they are used to deter-
mine whether or not each of the memory references within the bounded virtual
address range associated with a data reference will be in cache. The static cache
simulator needs to produce a categorization of each data reference in the pro-
gram. The four worst-case categories of caching behavior used in the past for

static instruction cache simulation were as follows.

1. Always Miss (m): The reference is not guaranteed to be in cache.
2. Always Hit (h): The reference is guaranteed to always be in cache.

3. First Miss (fm): The reference is not guaranteed to be in cache the
first time it is accessed each time the loop is entered, but is guaranteed

thereafter.

4. First Hit (fh): The reference is gnaranteed to be in cache the first time it

is accessed each time the loop is entered, but is not guaranteed thereafter.

These categorizations are still used for scalar data references. However, for
nonscalar (calculated) data references, they are not adequate by themselves.

To obtain the most accuracy, a worst-case categorization of a calculated data
reference for each iteration of a loop could be determined. For example, some
categorizations for a data reference in a loop with 20 iterations might be as
follows:

mhhhmhhhmhhhmhhhmhhhbh

With such detailed information the timing analyzer could then accurately de-

termine the worst-case path on each iteration of the loop. However, consider
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/* row order sum */ /* column order sum */
int a[100][100]; int a[100][100];
main() main()
{ {
int i, j, sum; int i, j, sum;
sum = 0; sum = 0;
for (i = 0; i < 100; i++) for (j = 0; j < 100; j++)
for (j = 0; j < 100; j++) for (1 = 0; i < 100; i++)
sum += al[il[j]; sum += al[i][j];
¥ ¥
row order: ¢ 25 2500 from[mhhhmhhhmhhh ... mhh h]
col order: m frommMmmmmmmmmmmmm ... mmm m]

Figure 5.3: Detecting Spatial Locality

a loop with 100,000 iterations. Such an approach would be very inefficient in
space (storing all of the categorizations) and time (analyzing each loop itera-
tion separately). A new categorization was created called Calculated (c) that
would also indicate the maximum number of data cache misses that could oc-
cur at each loop level in which the data reference is nested. The previous data
reference categorization string can now be represented as follows:
cb

since there are only five total misses and there is only one loop level involved.

The order of access and the cache state vectors were used to detect cache
hits within calculated references due to spatial locality. Consider the following
two code segments in Figure 5.3 that sum the elements of a two dimensional
array. The left code code segment is the same as that given in Figure 3.1.

The two code segments are equivalent, except that the left code segment

accesses the array in row order and the right code segment uses column order
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(i.e., the for statements are reversed). Assume that the scalar variables (1, j,
and sum) are allocated to registers. Also, assume the size of the direct-mapped
data cache is 256 bytes with 16 cache lines containing 16 bytes each. Thus, a
single row of the array a requiring 400 bytes cannot fit into cache. The static
cache simulator is able to detect that the load of the array element in the left
code segment had at most one miss for each of the elements that are part of
the same data line. This is accomplished by inspecting the order in which the
array is accessed and detecting that no conflicting lines are accessed in these
loops. The categorizations for the load data reference in the two segments are
given in the same figure. Note in this case that the array happens to be aligned
on a line boundary. The specification of a single categorization for a calculated
reference is accomplished in two steps for each loop level after the cache states
are calculated. First, the number of references (iterations) performed in the
loop is retrieved. Next, the maximum number of misses that could occur for
this reference in the loop is determined. For instance, at most 25 misses will
occur in the innermost loop for the left code segment. The static cache simulator
determined that all of the loads for the right code segment would result in cache
misses. [ts data caching behavior can simply be viewed as an always miss. Thus,
the range of 10,000 different addresses referenced by the load are collapsed into
a single categorization of ¢ 25 2500 (calculated reference with 25 misses at the
innermost level and 2500 misses at the outer level) for the left code segment
and an m (always miss) for the right code segment.

Likewise, cache hits from calculated references due to temporal locality

both across and within loops are also be detected. Consider the code segment
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int i, j, sum, same, a[50], b[50];

sum = 0;
for (1 = 0; i < 50; i++)

sum += ali]l; /* ref 1 *x/
same = O;

for (1 = 0; i < 50; i++)
for (j = 0; j < 50; j++)

if (ali] == /* ref 2 */
b[31) /* ref 3 */
same++;
ref 1: ¢ 13 frommhmhhhmhhhmhhh ... mhhh]
ref 2: h from [h h ... h h] due to temporal locality across loops.
ref 3: ¢ 13 13 from [m h h m h ... m h] on first execution of inner loop,
and [h h h h ... h] on all successive executions of it.

Figure 5.4: Detecting Temporal Locality Across and Within Loops

in Figure 5.4. Assume a cache configuration with 32 16-byte lines (512 byte
cache) so that both arrays a and b requiring 400 bytes total (200 each) fit into
cache. Also assume the scalar variables are allocated to registers. The accesses
to the elements of array a after the first loop were categorized as h (always hit)
by the static simulator since all of the data lines associated with the array will
be in the cache state once the first loop is exited. This shows the detection of
temporal locality across loops. After the first complete execution of the inner
loop, all the elements of b will be in cache, so then all references to it on the
remaining executions of the inner loop are also categorized as hits. Thus, the
categorization of ¢ 13 13is given. There are 13 misses relative to the innermost
loop due to spatial locality from bringing b into cache during the first complete
execution of the inner loop. But there are also only 13 misses relative to the

outermost loop since b will now be completely in cache on each iteration after
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the first iteration. This shows the detection of temporal locality within loops.
The current implementation of the static data cache simulator (and timing
analyzer) imposes some restrictions. First, only direct-mapped cache config-
urations are allowed. Obtaining categorizations for set-associative data cache
organizations can be done in a manner similar to that described in [20]. Sec-
ond, recursive calls are not allowed since it would complicate the generation of
unique function instances. Third, indirect calls are not allowed since an explicit

call graph must be generated statically.



Chapter 6
Timing Analysis

The timing analysis of data caches is based on earlier work. Arnold in [2] details
work predicting the performance of programs using instruction caches. Healy
in [8] extends this work to handle the integration of pipeline and instruction
cache analysis.

The pipeline path analysis calculates the performance of a sequence of in-
structions representing paths through loops or functions. Pipeline informa-
tion about each instruction type is obtained from the machine-dependent data
file. Information about the specific instructions in a path is obtained from the
control-flow information files. As each instruction is added separately to the
pipeline state information, the timing analyzer uses the data caching catego-
rizations to determine whether the MEM (data memory access) stage should be
treated as a cache hit or a miss.

The worst-case loop analysis algorithm was modified to appropriately han-
dle calculated data reference categorizations. The timing analyzer will conser-
vatively assume that each of these misses for a calculated reference has to occur
before any of its hits. Furthermore, the timing analyzer cannot assume that the
penalty for these misses will overlap with other long running instructions since
the analyzer may not evaluate these misses in the exact iterations in which they

occur. Thus, each calculated reference miss is always viewed as a hit within

34
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total_cycles = curr_iter = 0.
pipeline_information = first_misses_encountered = first_hits_encountered = NULL.
WHILE curr_iter '= n - 1 DO
Find the longest continue path.
first_misses_encountered += first misses that were misses in this path.
first_hits_encountered += first hits that were hits in this path.
IF a first miss or first hit was encountered in this path THEN
curr_iter += 1.
Subtract 1 from the remaining misses of each calculated reference in this path.
Concatenate pipeline_information with the union of the information for all paths.
total_cycles += additional cycles required by union.
ELSE IF a calculated reference was encountered in this path as a miss THEN
min_misses = the minimum of the number of remaining misses of each
calculated reference in this path that is nonzero.
min_misses = min(min_misses, n - 1 - curr_iter).
curr_iter += min_misses.
Subtract min_misses from the remaining misses of each calc ref in this path
Concatenate pipeline_information with the union of the information
for all paths min_misses times.
total_cycles += (additional cycles required by union) * min_misses.
ELSE
break
Concatenate pipeline_information with the union of the pipeline information
for all paths (n - 1 - curr_iter) times.
total_cycles += (additional cycles required by union) * (n - 1 - curr_iter).
FOR each set of exit paths that have a transition to a unique exit block DO
Find the longest exit path in the set.
first_misses_encountered += first misses that were misses in this path.
first_hits_encountered += first hits that were hits in this path.
Concatenate pipeline_information with the union of the information
for all exit paths in the set.
total_cycles += additional cycles required by exit union.
Store this information with the exit block for the loop.

Figure 6.1: Worst-Case Loop Analysis Algorithm

the pipeline path analysis and the maximum number of cycles associated with
a data cache miss penalty is added to the total time of the path. This strategy
permits an efficient loop analysis algorithm with some potential overestimations
when a data cache miss penalty could be overlapped with other stalls. However,
the results in Chapter 8 indicate that any such overestimations were small when
they occurred at all.

The worst-case loop analysis algorithm is given in Figure 6.1. The additions
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to the previously published algorithm [9] to handle calculated references are
shown in boldface. Let n be the maximum number of iterations associated with
a loop. The WHILE loop terminates when the number of processed iterations
reaches n - 1 or no more first misses, first hits, or calculated references are
encountered as misses, hits, and misses, respectively. This WHILE loop will
iterate no more than the minimum of (n - 1) or (p + r) times, where p is the
number of paths and ris the number of calculated references in the loop.

The algorithm attempts to select the longest path for each loop iteration.
In order to demonstrate the correctness of the algorithm, one must show that
no other path for a given iteration of the loop will produce a longer time than
that calculated by the algorithm. Since the pipeline effects of each of the paths
are unioned, it only remains to be shown that the caching effects are treated
properly. All categorizations are treated identically on repeated references, ex-
cept for first misses, first hits, and calculated references. Assuming that the
data references have been categorized correctly for each loop and the pipeline
analysis was correct, it remains to be shown that first misses, first hits, and
calculated references are interpreted appropriately for each loop iteration. A
correctness argument about the interpretation of first hits and first misses is
given in [3].

The WHILE loop will subtract one from each of the calculated reference’s
miss count in the longest path chosen on each iteration whenever there are first
misses or first hits encountered as misses or hits, respectively. Once no such
first misses and first hits are encountered in the longest path, the same path

will remain the longest path as long as its set of calculated references that were
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encountered as misses continue to be encountered as misses since the caching
behavior of all of the references will be treated the same. Thus, the pipeline
effects of this longest path are efficiently replicated for the number of iterations
associated with the minimum number of remaining misses of the calculated
references that are nonzero within the longest path. After the WHILE loop,
all of the first misses, first hits, and calculated references in the longest path
will be encountered as hits, misses, and hits, respectively. The unioned pipeline
effects after the WHILE loop will not change since the caching behavior of
the references will be treated the same. Thus, the pipeline effects of this path
are efficiently replicated for all but one of the remaining iterations. The last
iteration of the loop is treated separately since the longest exit path may be
shorter than the longest continue path.

A short example is given in Figure 6.2 to illustrate the algorithm. In this
example delay slots have been filled. The if statement condition was contrived
to force the worst-case paths to be taken when executed. Assume a data cache
line size of 8 bytes and enough lines to hold all three arrays in cache. The figure
also shows the iterations when each element of each of the three arrays will be
referenced and whether or not each of these references will be a hit or a miss.

Two different paths can be taken through the loop on each iteration as shown
in Figure 6.3. Note that the pipeline diagrams reflect that the loads of the array
elements were found in cache. The miss penalty from calculated reference misses
is simply added to the total cycles of the path and is not directly reflected in
the pipeline information since these misses may not occur in the same exact

iterations as assumed by the timing analyzer.
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int k[100]; Instructions 1 through 11
short s[100]; ¢
chgr e[ 100]: Instructions 12 through 15
mai n()
( |
int i, sum loadof c[i] --1-—=| r[8]=(B[r[17]]1{24)}24; # 16. ldsb [%1], %0
loadof k[i] --t-—=| r[9]1=R[r[16]]; # 17. |d [%0], %1
sum = 0; r[9]=r[9]+r[8]; # 18. add %1, %0, %01
for (i =0; i < 100; i++) PC=L17; # 19. ba L17
if ((i &3) I=1) r[12]=r[12] +r[9]; #20. add %4, %1, Yo4
sum += k[i]+c[i]; ¢
|
ezjm+_ o[ load of S[i] ----- ~| r[8]=(Wr[7]1{16)}16; # 21. ldsh [%7],%0
} - ’ r[12]=r[12] +r[8]; # 22. add %4, %00, Yo4
L17
| cti 23th h 2
Pathsin the loop: ‘ nstructions 23 through 28
Path A: Blocks2,3, & 5 ¢
Path B: Blocks2,4,& 5 ‘ Instructions 29 through 30 ‘Block6
daalines | detaline0 | caalinel ' daaline2 ' daalined | - ! datalineS0 | dataline51 |.. | dataline7s | dataline77 ...
ary el o | 1 | 2| 3 4|5 | 6| 7| .| s|ojt|2|3/4]5]6|7].] cloz2[3[als|e[78oLL[L[L.
elements: 0]1/2|3/4(5]
itoration 1 | | | | | | | | g 111 11
o1 13 4, 5 L7 8 | L2 L6 ‘ 1 345 789 |
acoessed: | ‘ ‘ ‘ ‘ ‘ ‘ ‘ | 123 56
result: | miss | miss  hit | miss | miss  hit | | miss | miss i m hhh hhm hhh hh
k[il]: < 50 frommhmh ... mh ]
s[i]: ¢ 25 frommhhhmhhh ... mhh h]
clil: ¢ 13 frommhhhhhhhmhhhhhhh ... mhhh]

Figure 6.2: Example to Illustrate Worst-Case Loop Analysis Algorithm

Pipeline Diagram for Path A: Instructions 12-20 and 23-28 (blocks 2,3,5) Pipeline Diagram for Path B: Instructions 12-15 and 21-28 (blocks 2,4,5)
cycle cycle
1/2|3|4|5(6|7|8|9|10{11|12|13|14|15|16|17(18(19(20 1/2|3|4|5(6(7(8]|9|10/11|12|13|14|15|16|17

stage| IF |12|13|14|15|16|17|18|19|19|20|23|24|25|26|27|28 stage| |F |12|13|14|15|21|22|23|23|24|25|26|27|28
ID 12|13|14|15|16|17|18|18|19|20|23|24|25|26|27 |28 1D 12|13|14|15|21|22|22|23|24|25|26|27|28
EX 12|13 15|16|17 18 20|23|24|25|26 28 EX 12|13 15|21 22|23|24|25|26 28
FEX FEX
MEM 12|13 15|16(17 18 20(23|24|25|26 28 MEM 12|13 15|21 22|23|24|25|26 28
wB 12|13 15|16(17 18 20(23|24|25|26 28 wB 12|13 15(21 22|23|24|25|26 28
FwB FwB

Figure 6.3: Pipeline Diagrams for the Two Paths in Figure 6.2
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Table 6.1: Timing Analysis Steps for the loop in Figure 6.2

start longest iters total

step | iter | path cycles min_misses handled additional cycles cycles
T T [ 20+18=38 | min(13,50)=13 13 | 20+((20-4)¥12)+(18¥13)=446 | 446
2 14 | 2049=29 | min(37)=37 37 ((20-4)*37)4(9%37)=925 | 1371
3 51| 1749=26 | min(25)=25 25 ((17-4)*25)4(9%25)=550 | 1921
4 76 2040=20 N/A 24 (20-4)*24=384 2305
5 100 2040=20 N/A 1 20-4=16 2321

Table 6.1 shows the steps the timing analyzer uses from the algorithm given
in Figure 6.1 to estimate the WCET for the loop in the example shown in
Figures 6.2 and 6.3. The longest path detected in the first step is Path A, which
contains references to k[i] and c[i]. The pipeline time required 20 cycles and
the misses for the two calculated references (k[1] and c[i]) required 18 cycles.
Note that each miss penalty was assumed to require 9 cycles. Since there were
no first misses, the timing analyzer determines that the minimum number of
remaining misses from the two calculated references is 13. Thus, the path is
replicated an additional 12 times. The overlap between iterations is determined
to be 4 cycles. Note that 4 is not subtracted from the first iteration since any
overlap for it would be calculated when determining the worst-case execution
time of the path through the main function. The total time for the first 13
iterations will be 446. The longest path detected in step 2 is also Path A.
But this time all references to c[i] are hits. There are 37 remaining misses to
k[i]. The total time for iterations 14 through 50 is 925 cycles. The longest path
detected in step 3 is Path B, which has 25 remaining misses to s[1]. This results
in 550 additional cycles for iterations 51 through 75. After step 3 the worst-case

loop analysis has exited the WHILE loop in the algorithm shown in Figure 6.1.
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Step 4 calculates 384 cycles for the next 24 iterations (76-99). Step 5 calculates
the last iteration to require 16 cycles. The timing analyzer calculates the last
iteration separately since the longest exit path may be shorter than other paths
in a given loop. The total number of cycles calculated by the timing analyzer
for this example was identical to the number observed via execution simulation.

A timing analysis tree is constructed to predict the worst-case performance.
Each node of the tree represents either a loop or a function in the function
instance graph. The nodes representing the outer level of function instances are
treated as loops that will iterate only once. The worst-case time for a node is
not calculated until the time for all of its immediate child nodes are known. For
instance, consider the example shown in Figures 6.2 and 6.3 and Table 6.1. The
timing analyzer would calculate the worst-case time for the loop and use this
information to next calculate the time for the path in main that contains the
loop (block 1, loop, block 6). The construction and processing of the timing

analysis tree occurs in a similar manner as described in [3, 9].



Chapter 7

Execution Simulation of Data Cache and Pipeline
Effects

The timing analyzer produces as its result the number of cycles a program
takes to execute. In order to verify that this number is correct, a method
was developed to simulate a program’s worst-case execution time. The Ease
execution simulator [6] works by instrumenting the assembly code generated by
the compiler in order to invoke measurement routines during its execution. One
of these routines was heavily modified in earlier work in order to calculate the
number of cycles required to execute a program by simulating the program’s
pipeline and instruction caching behavior during its execution [8]. This routine
was further modified for this dissertation in order to simulate data caching
behavior as well. Also, other portions of the Ease simulator were modified so
as to check the accuracy of the statically computed addresses.

In the original Ease implementation, a call to a special instruction cache
trace function was inserted into the assembly code at the beginning of each
basic block. This function was modified as reported in [8] to go through each
instruction in the basic block, using instruction information produced by the
compiler and dumped into the assembly file, and to simulate the pipeline and
instruction cache effects that would result from that instruction’s execution.
This simulation of each instruction in the basic block happens before the actual

instructions in each block are executed. As each new basic block is reached either
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by falling through or branching, a new sequence of instructions is simulated and
its effect on the instruction cache and pipeline states is recorded. After the
program terminates, the final results of this simulation, most importantly the
total number of cycles used by the program, are dumped to a file.

For data cache simulation, however, this approach is not sufficient. This is
due to the fact that memory access to data, unlike that for instructions, does not
occur sequentially within a basic block. Also, unlike instructions, data access
addresses can change each time they are referenced. Yet another consideration
that required this approach to be modified is the desire to have the simulator
automatically do a verification of the accuracy of the virtual addresses computed
by the address calculator.

In addition to inserting a special trace routine at the beginning of each basic
block for data cache simulation, the original Ease implementation inserted a call
to a special simulation function after each load or store in the assembly code.
This function, called ease_read for loads and easewrite for stores, would
take the data address and its size as parameters and update the running data
cache state as necessary, based on whether load or store was determined to be
a hit or a miss. This would continue until the instrumented program completed
execution.

In order to update Ease to merge data cache simulation with that of pipeline
and instruction caching as well as check the validity of the computed virtual

addresses, the following changes were made.

e The special trace routine at the beginning of each basic block was mod-

ified to call the previously modified block instruction simulation routine
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immediately if there were no data references in this basic block. Thus,
the pipeline effects of executing this block can be simulated. In order for
the start-up routine to know if there are data references in the block or
not, the compiler was modified to identify the number of data references
associated with each basic block and to write this number to a special file

of data declarations that is linked in the instrumented assembly code.

o If there are data references in the current basic block, then the entire block
is executed and the data cache results—whether the access is a hit or a
miss—is recorded as the result of the execution of either ease_read or

ease_write after each load or store in the block.

o The ease read and ease write routines were modified to recognize if
they were called after the last load or store in the basic block, and if so,
to call the block instruction simulation routine. They were also modified
to take an additional parameter—the overall number, starting from 0, of
the data reference they were simulating. This number is used to index
into a global array of addresses, initialized from the adr file produced by
the address calculator, when verifying the validity of the address for the

current load or store.

In the previously modified block instruction routine, which simulated the
pipeline and instruction cache behavior for each instruction, a load or store of
a word required only a one cycle delay in the pipeline MEM stage since all data
cache accesses were assumed to be hits. However, this routine was updated

in order to correctly simulate data caching by requiring extra cycles in MEM
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stage when the cache access is a miss since the needed data cache line had to
be fetched from memory. A delay is also needed in all cases when the data
reference is a store, since a write-through cache is assumed and, thus, there
will be a memory access for every store. Also, for the present, the routine was
modified to assume that all instruction cache accesses are hits.

When verifying the accuracy of the virtual addresses, the simulator actually
checks each data address it receives from ease read or ease write against the
range of possible virtual addresses given to it via the adr file written by the
address calculator. If any discrepancies are found, an error is reported and the
simulation terminates. Note that the virtual address range of a global scalar
variable is a single virtual address. The virtual address range of a local scalar
variable is the list of addresses that may result from the different locations of its
activation record on the stack due to the function in which it is declared being
called from different places in the code. The virtual address range of a calcu-
lated reference includes all addresses between the lowest and highest addresses
accessed, inclusive. None of the executions of the test programs discussed in
Chapter 8 reported any incorrect data addresses.

One of the most difficult problems encountered with moditying the Ease
simulator was changing the compiler to produce correctly instrumented code.
Many situations that were not a problem for instruction caching arose when
trying to instrument the code for data caching. These problems mainly occurred
because whenever there were data references in a basic block, function calls had
to be inserted in the middle of the block after each load or store. Thus, the

state of the machine had to be saved before each call and restored after it.
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Instrumentation for instruction caching only had calls inserted at the beginning
of each block. Less state information is typically live at basic block boundaries.
Therefore, less information had to be saved and restored for instruction caching,

and the inserted measurement instructions caused fewer problems.



Chapter 8
Results

Measurements were obtained on code generated for the SPARC architecture by
the vpo optimizing compiler [4]. The machine-dependent information contains
the pipeline characteristics of the MicroSPARC I processor. The programs de-
scribed in Table 8.1 are used to evaluate the effectiveness of the environment for
bounding worst-case data cache performance. Note that these programs were
restricted to specific classes of data references, which did not include any dy-
namic allocation from the heap. It is doubtful that heap references can ever be
analyzed to obtain known addresses. In addition, pointer variables containing
the addresses of other variables were limited to those used as formal parameters.
A more general pointer analysis may be used in the future to determine a set of
possible address ranges associated with a dereferenced pointer variable. Both
heap references and non-parameter pointer address references are currently as-
sumed to be able to access any line within the data cache. A direct-mapped
data cache containing 16 lines of 32 bytes for a total of 512 bytes was used. The
MicroSPARC I uses write-through/no-allocate data caching [25]. The static
simulator was able to categorize store data references. However, these cate-
gorizations were ignored by the timing analyzer since stores always accessed
memory and a hit or miss associated with a store data reference had the same

effect on performance. While pipeline and data caching behavior was evaluated,
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Table 8.1: Test Programs

Num
Name Bytes Description or Emphasis
Matcenta | 40060 | Counts and Sums Nonnegative Values in a 100x100 Integer Matrix
Matcentb 460 | Counts and Sums Nonnegative Values in a 10x10 Integer Matrix

Matmula | 30044 | Multiplies 2 50x50 Matrices into a third 50x50 Integer Matrix
Matmulb 344 | Multiplies 2 5x5 Matrices into a third 5x5 Integer Matrix
Matsuma | 40044 | Sums Nonnegative Values in a 100x100 Integer Matrix
Matsumb 444 | Sums Nonnegative Values in a 10x10 Integer Matrix

Sorta 2044 | Bubblesort of 500 Integer Array into Ascending Order

Sortb 444 | Bubblesort of 100 Integer Array into Ascending Order

Statsa 16200 | Calcs Sum, Mean, Var, Std Dev, Cor Coef of 2 arrays of 1000 doubles
Statsb 600 | Calcs Sum, Mean, Var, Std Dev, Cor Coef of 2 arrays of 25 doubles
Des 1346 | Data Encryption Standard—Encrypts and Decrypts 64 bits

instruction fetches were assumed to be all hits.

Table 8.1 describes the test programs used to assess the effectiveness of
bounding worst-case data cache performance. Two versions were used for each
of the first five test programs. The a version had the same size arrays that
were used in previous studies [3, 9]. The b version of each program used smaller
arrays that would totally fit into a 512 byte cache. The number of bytes reported
in the table is the total number of bytes of variables in the program. Note that
some of these bytes will be in the static data area while others will be in the
run-time stack. The sixth test program is des, a data encryption program. The
amount of data in this program is not changed since the encryption algorithm
is based on using the large static arrays as they are. This program is included
here because of its other interesting properties. It includes arrays of structures,
arrays indexed by other arrays, and many address parameters to functions.

Table 8.2 depicts the dynamic results from executing the test programs. The
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Table 8.2: Dynamic Results

Hit Observed | Estimated | Estim. | Naive

Name Ratio Cycles Cycles Ratio | Ratio
Matcenta | 71.86% | 1,143,014 | 1,143,023 | 1.000 | 1.148
Matcenth | 70.73% 12,189 12,189 | 1.000 | 1.148
Matmula | 62.81% | 7,245,830 | 7,952,807 | 1.098 | 1.240
Matmulb | 89.40% 11,396 11,396 | 1.000 | 1.332
Matsuma | 71.86% | 1,122,944 | 1,122,953 | 1.000 | 1.151
Matsumb | 69.98% 11,919 11,919 | 1.000 | 1.152
Sorta 97.06% | 4,768,228 | 9,826,909 | 2.061 | 2.883
Sortb 99.40% 188,696 371,977 | 1.971 | 2.915
Statsa 90.23% | 1,237,698 | 1,447,572 | 1.170 | 1.290
Statsb 89.21% 32,547 37,246 | 1.144 | 1.290
Des 75.71% 155,340 191,564 | 1.233 | 1.448

hit ratios were obtained from the data cache execution simulation. Only Sort
had very high data cache hit ratios due to many repeated references to the
same array elements. The observed cycles were obtained using the ease cache
simulator discussed in Chapter 7. The estimated cycles were obtained from the
timing analyzer discussed in Chapter 6. The estimated ratio is the quotient of
these two values. The naive ratio was calculated by assuming that all data cache
references were misses and dividing those cycles by the observed cycles. It is
used to show the advantage of doing the data cache analysis versus assuming
all data cache references are misses.

The timing analyzer was able to tightly predict the worst-case number of
cycles required for pipelining and data caching for most of the test programs.
In fact, for five of them, the prediction was exact or over by less than 11—0 of
a percent. Also, each of the small examples shown earlier in this dissertation

resulted in exact predictions when the worst-case paths were executed. For

those that were overestimated, there were clear reasons as to why it happened.
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Matmula had an overestimation of about 10% whereas the smaller data ver-
sion Matmulb was exact. As shown in the following code segment, the Matmul
program has repeated references to the same elements of three different arrays:
A, B, and Res.

for (Outer = 0; Outer < UPPERLIMIT; Outer++)

for (Inner = 0; Inner < UPPERLIMIT; Inner++)
{
Res [Outer][Inner] = O;
for (Index = 0; Index < UPPERLIMIT; Index++)
Res[Outer] [Inner] +=
A[Outer] [Index] * B[Index] [Inner];

These references would miss the first time they were encountered, but would
be in cache for the smaller Matmulb when they were accessed again since the
arrays fit entirely in cache. Also, since they fit into cache, there is no interference
between them. A reference to B could not knock any lines of A or Res out of
cache. However, when they do not fit into cache they can interfere with each
other and possibly with other elements of themselves, if individually they are
sufficiently larger than cache. In such a case, the static simulator conservatively
assumes that any possible interference must result in a cache miss. Therefore,
the categorizations are more conservative and the overestimation is larger.

The inner loop in the function within Sort that actually sorts the values has
a varying number of iterations that depends upon a counter of an outer loop.
The number of iterations performed was overrepresented on average by about
two for this inner loop.

The Stats program had about 17% and 14% overestimations for the large and

small versions of the program, respectively. The strategy of treating a calculated
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reference miss as a hit in the pipeline and adding the maximum number of
cycles associated with the miss penalty to the total time of the path caused
overestimations with these two programs. The Statsa and Statsb programs were
the only floating-point intensive programs in the test set. Often delays due to
long-running floating-point operations could have been overlapped with data
cache miss penalty cycles.

The Des program had the worst overestimation of the test set at 23%. This
may seem large, but is in fact quite satisfactory when considering the nature of
the data accesses within the program. There are many places in the code where
an element of a locally defined static character array is used as an index into a

global array of integers as the following code segment shows.
unsigned long bit[33];
static char iet[49]={0,32,1,2,3,4,5,4,5,6,7,8,9, ... ,32,1};

for (j=16,1=32,m=48;j>=1;j--,1--,m—) {

ie.r = (ie.r <<=1) | (bit[iet[jl] & ir 2 1 : 0);
ie.c = (ie.c <<=1) | (bit[iet[1]] & ir 2 1 : 0);
ie.l = (ie.l <<=1) | (bit[iet[m]] & ir 2 1 : 0);

Since the character array iet is statically initialized, there is no simple method
to determine which value from it will be used to index into the integer array
bit, and, thus, no way to establish a meaningful pattern of access. In a case like
this, we assume that any element of the bit array may be accessed any time the
data reference occurs in the program. This forces all conflicting data lines to
be knocked out of the cache state during the iterative flow analysis phase of the

static simulation. Thus, the resulting categorizations are quite conservative.
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The Des program also has an overestimation due to data dependences in the
program. A longer path deemed feasible by the timing analyzer could not be
taken in a function due to a variable’s value in an if statement. In [9], a 13%
overestimation is reported for this program when doing pipeline and instruction
caching evaluation only.

Despite the overestimations detailed above, the results given in this disser-
tation show that with certain restrictions it is possible to tightly predict much
of the data caching behavior of many programs.

The difference between the naive and estimated ratios shows the benefits for
performing data cache analysis when predicting worst-case execution times. The
benefit of worst-case performance from data caching is not as significant as the
benefit obtained from instruction caching [3, 9]. An instruction fetch occurs for
each instruction executed. The performance benefit from a write-through/no-
allocate data cache only occurs when the data reference from a load instruction
is determined to be in cache. Load instructions only comprised on average
14.28% of the total executed instructions for these test programs. However, the
results do show that performing data cache analysis for predicting worst-case
execution time does still result in substantially tighter predictions. In fact, for
the programs in the test set the prediction improvement averages over 30%.

The overhead associated with predicting WCETSs for data caching using this
method comes primarily from that of the static cache simulation. The time
required for the static simulation increases linearly with the size of the data.
However, even with large arrays as in the given test programs this time is rather

small. The average time for the static simulation to produce data reference
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categorizations for the 11 programs given in Tables 8.1 and 8.2 is only 2.89
seconds. The average time for the timing analyzer to produce the worst-case

execution times for the test programs is 1.05 seconds.



Chapter 9
Future Work

There are several areas of further investigation that can be carried on for bound-

ing worst-case data cache performance.

9.1 Merging Instruction and Data Caching Prediction
and Simulation

An eventual goal of this research is to merge all components of the data caching
worst-case analysis with those of the instruction caching worst-case analysis [9].
Timing predictions could then be obtained for the complete machine. Actual
measurements from the machine using a logic analyzer could be used to gauge

the effectiveness of the entire timing analysis environment.

9.2 Wrap-Around Fill for Data Caches

Other future work includes analyzing the effect of wrap-around-fill data caching.
This analysis would result in tighter estimations since the MicroSPARC T does
use wrap-around fill for both instruction and data caching [25]. Wrap-around-fill
analysis for data caching can probably be accomplished in a manner similar to
that used for wrap-around-fill instruction caching [10]. It is currently assumed
that each store requires a constant penalty for accessing memory with a write-

through data cache.
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9.3 Write Buffer

Another area to be explored is evaluating the effect of the use of a write buffer.
The MicroSPARC T actually has a write buffer that can hold the address and
data for a single outstanding store. Also, at most a single load or store can
access memory at one time. Both wrap-around fill and the write buffer can
probably be handled by representing the access to memory and the write buffer
as a pipeline stage and multiple simultaneous accesses would be prevented due

to the detection of structural hazards.

9.4 Best Case

The timing analyzer may be modified in order to predict the best-case execution
time of programs for data caching. All preceding elements of the data cache anal-
ysis project—the compiler, the address calculator, and the static simulator—
already have some code in place to deal with best case. There would also have

to be some changes made to the Ease execution simulator.

9.5 Compiler Optimizations

The research presented in this dissertation could also be applied to developing
new or improving existing compiler optimizations for programs on machines
with data caches. Current data cache compiler optimizations are only applied
on tightly nested loops without function calls. This research would allow opti-

mizations to be performed more accurately and in an interprocedural fashion.



Chapter 10

Conclusions

This dissertation has presented an approach for bounding the worst-case perfor-
mance for programs using a data cache. This approach involves several steps.
Data flow analysis is used within a compiler to determine a bounded range of
relative addresses for each data reference. An address calculator converts these
relative ranges to virtual address ranges by examining the order of data declara-
tions and the call graph of the program. Categorizations of the data references
are produced by a static simulator. A timing analyzer uses the categorizations
when performing pipeline path analysis to predict the worst-case performance
for each loop and function in the program. A method of quantitatively veritying
the results using a data cache and pipeline simulator has also been presented.

The following accomplishments have been demonstrated:

e The creation of a tool-based system that automatically produces WCET

results with no interaction from the user,

o A static analysis technique that requires no complete simulation or execu-
tion of the program to be timed and, thus, no need to find the appropriate

input data to drive the worst-case paths,

e The ability to analyze the complete control flow of a program, including
functions and all their instances, loops at all nesting levels, and conditional

control flow,

)
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e The ability to handle address information that is sent into functions via

parameters,

o Detection and exploitation for tighter timing bounds of spatial locality
within calculated data references and temporal locality both within and

across loops, and

o A performance overhead when predicting WCETSs measured in seconds.

The results of using the system on various representative programs indicate
that the approach is valid and can result in significantly tighter worst-case per-

formance predictions. For the given test programs, an improvement averaging

over 30% is shown for the WCET predictions.



Appendix A
Memory References in Annulled Delay Slots

One of the main advantages of the approach to bounding WCETSs for processors
with data caches that is discussed in this dissertation is the ability to work with
completely optimized code. However, doing so makes the analysis needed to
statically compute addresses much more complicated. Certain optimizations can
also affect the manner in which both the static simulation and timing analysis
is performed. Perhaps the most difficult of the optimizations dealt with is that
of filling delay slots, particularly those of annulled branches.

On the SPARC processor, every instruction that can transfer control from
one place in the program to another (branches and calls) is followed by a de-
lay instruction. This is an instruction that will be executed before control is
transferred to the target of the branch or call, and is said to be in the delay
slot. Without optimization, these slots can be filled with nop instructions to
make compilation faster. However, this wastes an instruction cycle where some-
thing useful could actually be accomplished. So, a compiler optimization called
filling delay slots is usually performed to move another useful instruction from
somewhere else in the program into this slot.

While the filling of delay slots increases execution efficiency, it can radically
alter the structure of a program. This makes the expansion of data address

information much more difficult since instructions that set registers that contain
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part of the address may be moved away from the area in which the load or store
that uses that address is located. Furthermore, a load or store instruction itself
may be used to fill a delay slot. This often results in a duplicate load or store
instruction being created when loops are involved.

Matters may be complicated further if the branch instruction before the
delay slot is an annulled branch. If an annulled branch is not taken, then the
instruction in the delay slot will be annulled. This means that although it
will occupy all stages in the pipeline, the results of the instruction will not be
committed. If this instruction is a load or a store, it will be flushed out of the
pipeline before a read from or write to memory is performed, respectively. For

example, consider the following assembly code segment.

add %02,%00,%02 # 9
cmp %o2,%g1 # 10
ble,a L15 # 11
1d [%o02] ,%00 # 12
sethi %hi(_a),%o3 # 13
L15: add %ol,%05,%01 # 27

If the branch (instruction 11) is taken, the instructions 9, 10, 11, 12, and 27 will
be executed completely, including the 1d instruction in the delay slot (instruc-
tion 12). However, if the branch is not taken, only instructions 9, 10, 11, and
13 will be executed fully. As mentioned above, the 1d will begin in the pipeline
but will not complete execution as a load.

To see the difficulties involved with predicting WCET for programs contain-

ing a data reference in an annulled delay slot, consider the source code and
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int a[100][100]; r[12] =0; # 1. mov %90, %04
mai n r[13]=H[_a]; # 2. sethi %i(_a), %5
{ r[ 4] =0; # 3. nov 990, Yg4
int i, j, sum r[ 5] =H [ 40000] ; # 4. sethi %i (40000), %95
r[5]=r[5]+LQ 40000]; # 5. add %5, % o(40000), %g5
sum = 0; r[6]=r[13]+LO[ _a]: # 6. add %5, % o(_a), %6
for (i=0; i < 100; i++) r[13]=r[4]+r[6]; # 7. add 9g4, %96, %05
for (j=0; j < 100; j++) L1 ]
sum+= a[i][j]; r[ 2] =r[13] +400; # 8. add %05, 400, %g2
} r[8l=Rr[13]]; # 9. 1d [ %05] , %00
L21 ¢
‘ r[12]=r[12] +r[8]; # 10. add %04, %0, %04
r[13] =r[13] +4; # 11. add %5, 4, %5
I C=r[13]?r[2]; # 12. cnp %05, %92
PC=1 C<0, L21; # 13. bl,a L21
r[8]=Rr[13]]; # 14. 1d [ %05] , %0
r[ 4] =r [ 4] +400; # 15. add 9%g4, 400, Y%g4
I C=r[4]?r[5]; # 16. cnp Y94, %95
PC=1 C<0, L18; # 17. bl,a L18
r[13]=r[4] +r[6]; # 18. add 9%g4, %96, %05
| PC=RT; # 17 retl \

Figure A.1: Example C Program, RTLS, and SPARC Assembly, Revised

corresponding RTLs and SPARC assembly instructions, in Figure A.1. This is
the same example as that in Figure 3.1 except that the filling of delays slots has
been turned back on. Note that although there is only one memory reference in
the source code, the reference to ali] [j], it is actually turned into two loads
(instructions 9 and 14) in the machine code due to the filling of delay slots. In
this case, a load instruction that was originally at the beginning of the innermost
loop was used to fill the delay slot at the end of the loop, so a copy of it was
placed right before the innermost loop. Thus, the effective behavior of the data
reference is the same — all 10,000 elements of the array will be summed. This is
true because the load at instruction 9 will access the first element of every row

of array a and the load at instruction 14, the one in the delay slot, will access
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the remaining elements of every row of a. It may appear that the second load
will actually go beyond the last element of each row to the first element of the
next row. However, remember that because of the annulled branch, the load at
instruction 14 will not be fully executed as a load when the branch is not taken.
Therefore, register r[8] will not be set when control falls out of the inner loop
(i.e., the branch at instruction 13 is not taken).

For this example, the filling of the annulled delay slot with a load did not
cause problems with expansion of addresses. The load at instruction 9 was
expanded and recognized as a simple calculated reference with one induction
register since it is in the outer loop. The load at instruction 14 was also expanded
and recognized as a simple CR with two induction registers. Enough information
is available for both to compute the range of virtual addresses that will be
accessed by each.

However, there is a problem to be solved in doing the static simulation to pro-
duce the appropriate categorizations for these calculated references. Remember
that the iterative analysis phase of the static simulator that produces the cache
states does not know and does not care about loop iteration information. It has
no way of knowing that the last access to the load at instruction 14 for each
complete execution of the inner loop will not actually update the cache since it
is in an annulled delay slot. A method was devised so that lines brought in by
this array access on the last iteration of the inner loop would not update the
cache. The compiler recognizes the case when this happens and puts a flag in
the DNF file for the load in the delay slot as well as the corresponding load that

was moved outside the loop. When the static simulator sees these flags when
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building the control flow information, it effectively changes these two loads to
a single load that happens at the beginning of the innermost loop — exactly the
way the code appeared before delay slots were filled. This way, when the iter-
ative flow algorithm executes, it produces the correct cache state information.
After the cache states are produced, the loads are put back in their original
form.

In order to produce the appropriate calculated categorizations for these
loads, the categorization phase of the static simulator also has to recognize
them as special cases. When the first load is identified (usually the one that has
been moved out), the corresponding one is located and a single categorization
string for both is produced. This works by using the stored induction variable
register information to step through both of the references at the same time.
During each iteration of the algorithm, the element of the reference that would
come next is considered when determining it the corresponding place in the
categorization string should be a hit or a miss.

For example, if the references have a positive stride, the lowest of the two is
chosen. Next, its individual categorization is determined (hit or miss). Then,
it is incremented according to its stride. This process repeats until the whole
categorization string is produced.

This method works correctly since, even though there are two different loads,
they are both needed to completely iterate through the array. As mentioned
above, the one right before the innermost loop iterates through the first element
of each row, and the one in the delay slot iterations through all of the other

elements in each row.
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After the categorization string is produced it can be used to produce the
correct calculated (c) categorization for each load for every loop level involved.
Modifications were also necessary to allow both the timing analyzer and
the execution simulator to deal correctly with loads in an annulled delay slot.
Changes to both of these took the form of adding extra code that prevents the
load from completing execution as a load in such a case. This prevents extra

time from being counted when the load is a miss but the branch is not taken.



<DNF_File>

<ltemList>

<DNF_Item>

< LocalRef>

<LocalType>

< GlobalRef>

< GlobalType>

< CalcRef>

< CalelnfoLine>

<IndVarLine>

<IndVarList>

Appendix B
Description of the DNF File

<ItemList> <EOF>

<DNF_Item> <EOLN>
<ItemList> <DNF_Item> <EOLN>

<LocalRef> | <GlobalRef> | <CalcRef> | <FuncName> |

< StackSpace> | <FuncCall> | <Parameters> | <BlockNum> |
< LeftSuce> | <RightSuce> | <PredList> | < NumlInstructs> |
<G_Rec> | <Locallnf> | <Looplters>

<LocalType> <rw> <name> <finum> <offset> <type>
<drefnum> <annulled>

LV | LA

< GlobalType> <rw> <name> <finum> <type> <drefnum>
<annulled>

GV | GR

CR <rw> <finum> <type> <drefnum> <annulled> <EOLN>

< CalelnfoLine>

BA <address> <stride> <minditers> <max_ters> <loop>
<caseflag> <EOLN> <IndVarLine>

CM <address> <EOLN> <IndVarLine>

OE <address>

AW <gl> <name> <basereg>

IV <IndVarList> 0
IV <IndVarList> <ReplaceList> 0
IV <ReplaceList> 0

1 <indreg> <loopnum> <stride> <min_iters> <max_iters>
<initval>
<IndVarList> 1 <indreg> <loopnum> <stride> <min_iters>
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< ReplaceList>

<FuncName>
< StackSpace>
< FuncCall>

< Parameters>

< ParamlList>

< BlockNum>
< LeftSucc>
< RightSucc>
< PredList>

< Preds>

< Numlinstructs>

<G_Rec>

<SizeRec>
< Locallnf>
<Looplters>
Where,

<EOQOF>
<EOLN>
<rw>
<name>

<finum>

<max_iters> <initval>

-1 <indreg> <initval>
<ReplaceList> -1 <indreg> <initval>

FN <name>

SP <amount>

FC <name>

PM <number> <ParamList>

<address>
< ParamList> <address>

-— <number> --
SL <number>
SR <number>
P <Preds> -1

<number>

< Preds> <number>
NI <number>

G.<func.num> <name> [ 0 | -1 ] <alignment> <init_flag>
<EOLN> <SizeRec>

G.<func_num> <name> <size> <alignment> <init_flag>
G.0 “size” <size>

LC <name> <offset> <size>

LI <loop_iters>

end-of-file marker
end-of-line marker
tells whether this access is a read (r) or a write (w)

name of local or global variable
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instruction number where found, relative to current function, starting

from 0



<offset>
<type>
<drefnum>

<annulled>
<address>
<stride>
<min_iters>
<max_iters>

<loop>

<caseflag>

<gl>
<basereg>

<indreg>

<loopnum>

<initval>

<amount>

<number>
<func_num>

<alignment>

<slze>
<initflag>
<loop-_iters>

And the tokens are,
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offset into current function activation record
type of memory reference: B, W, R, F, or D

overall data reference number, relative to beginning of each file,
starting from 0

1 if this memory reference is in an annulled delay slot; 0 otherwise
expression that gives the base address of the reference

stride of the loop (length of each subitem)

minimum number of loop iterations necessary to go through array
maximum number of iterations needed to go through array

block number of the header block of the loop containing the rtl with
this memory reference

special cases of data references in annulled slots are recognized by
the compiler to facilitate dealing with them in the static simulator;
this is the number of the special case, or 0 if the data ref is not in
a delay slot or was not recognized.

tells whether the following name is a global (g) or a local (1)

s if this local name is relative to the stack pointer and £ if it is
relative to the frame pointer

register used as induction variable

number of the loop containing this induction register; the same
number used 1n the path file

expression that gives the initial value of this induction variable

amount of space reserved on the stack for the activation record for
this function

an integer number
number of function containing this global declaration

a number giving the alignment requirements of this global variable,
i.e., 8 if the variable must be aligned on an 8-byte boundary

number of bytes required to store this global/local
1 if variable is initialized, 0 otherwise

maximum number of iterations of loop in which the current block is
contained; will only appear in blocks that are loop headers

LV Local Variable. It is used to indicate that this particular local reference is relative to the
stack pointer, r[14].

LA Local Argument. It indicates that this local is relative to the frame pointer, r[30].

GYV Global Variable. Indicates that this is a global reference consisting of just a global
variable name that must be looked up in the global records list.
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GR Global Reference. This is a global reference of the form <name> + <offset>, where
<offset> is an integer number.

CR Calculated Reference. This will be a reference for which there will not be a simple single
address. There will be one or two lines following this line giving more information
about the range of addresses that may be accessed.

BA Stands for Base Address. This is basically the same thing as the CM line below but with
additional information. This line still gives a base address in the form of an address
string, but it also gives a stride and minimum and maximum number of iterations.
The range of addresses that this calculated reference may access as well as the order
in which they will be accessed can be computed using this information.

CM Stands for Code Motion. An expanded address string for a given data reference is stored
during code motion in a special information list. If later in the compilation process,
the compiler is not able to fully expand a data reference (see above) this list will be
searched. If an earlier (and better) address expansion for this data reference is found
on the list, it is output on the CM line.

OE Stands for Original Expansion. The compiler attempts to expand all data references that
it determines not to be simple local or global variables. This expansion happens after
all optimizations, including the filling of delay slots, have occurred. If this expansion is
not successful it searchs for information about this data reference that may have been
stored earlier in the compilation process as a side effect of code motion. If it finds this
information a CM or a BA line (see below) will be output. If not, then the original
expansion is output on the OE line.

AW This line means that there was no way to tell the order and manner in which each element
of the memory reference may be accessed. Hence, when this reference is encountered it
is assumed that the particular element at the time may be anywhere within the address
space of the reference. A global or local base address of the reference is given.

IV Induction Variables. This line lists each induction register found for the loop in which
the calculated reference given in the preceding BA or CM line was found. For each
induction register preceded by a 1 in the list, this line gives the stride, minimum and
maximum number of loop iterations, and the initial value in address string form. The
1 means that this information should be used to calculate a range of virtual addresses
that may be accessed by this calculated reference. However, if the register is preceded
by a -1, only the initial value is given, since it is to be used directly in place of the
register in the address string in the preceding BA or CM line to compute a single
virtual address. The -1 is used to handle a special case in which access to the first
element of an array may have been moved outside of a loop due to optimizations.

FN Function Name. This line gives the name of a new function, signaling that all of the
following control-flow and data reference information is for program constructs and
data references within this function.

SP Stack Space. This precedes a number giving the amount of space that will be used by
the activation record for this function. It is used when computing relative offsets for
local data.

FC Function Call. This is control-flow information that shows that a call to the named
function will happen at the point in the program where this line occurs.

PM Actual Parameter Information. This line gives the number of and the best possible
expansion of all actual parameters to the function called in the preceding FC line.

—-- Block Number Marker. Each basic block is marked by a number between these markers.
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SL Left Successor. This precedes the basic block number of the left successor block of the
current basic block. Used for fall-through.

SR Right Successor. This precedes the basic block number of the right successor block of
the current basic block. Used for branching.

P Predecessors. This is the list of predecessor blocks of the current basic block. It 1is
terminated by a -1.

NI Number of Instructions. This precedes a number giving the total number of instructions
in this basic block.

G. Global Record. This begins a line that gives information collected in the front-end of the
compiler about static data.

LC Local Information. This line gives the name and relative offset within the activation
record of all local data objects within the current function.

LI Loop Iterations. This line gives the number of iterations of the loop in which the current
block is the header. It will only be in blocks that are loop headers.
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