
CHAPTER 1

INTRODUCTION

This dissertation describes an environment for the evaluation of computer architectures and archi-

tectural features. The first chapter provides background information for the problem of obtaining pro-

gram measurements. Initially, limitations of past architectural studies are described and the goals for the

dissertation are stated. This is followed by a review of the area of obtaining program measurements.

First, the different classes of program measurements are characterized. Next, the methods used in the

past for obtaining program measurements are described and their strengths and weaknesses are identified.

The applications of analyzing program measurements are then examined and past studies using program

measurements and their contributions are discussed.

The second chapter describes the environment that was constructed for obtaining architectural-

level measurements. The modifications to an existing retargetable optimizer are illustrated and the

manner in which reports are generated from the information collected is shown.

The third chapter describes an architectural study performed with this environment that analyzed

measurements collected from the execution of the same set of test programs on each machine. First, the

different kinds of measurements extracted from each architecture are discussed, background information

about each of the architectures in the study is given, and the set of test programs used in the study is

specified. The measurements obtained from the architectures are then analyzed. The dynamic measure-

ments are first examined and the implications of this information are discussed. Static measurements are

then compared to the corresponding dynamic measurements. Strong linear relationships between most of

the static and dynamic measurements were discovered. Statistical methods were used to produce equa-

tions to estimate each dynamic measurement, which give more useful information on performance, from

its corresponding static measurement, which are easier to obtain. The last section in this chapter com-

pares each of the architectures by attempting to determine the total cost of the execution of the test set.
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The fourth chapter describes some interesting experiments performed with the environment. The

first experiment analyzed six different methods for saving and restoring registers. In one set three of the

schemes do not use data flow analysis to minimize the number of saves and restores, while the three

schemes in the other set do. Within each set a callee save, caller save, and hybrid approach are used.

The next experiment evaluates the effectiveness of passing arguments in registers as a calling sequence

convention. The following experiment abandons complex call and return instructions in favor of more

primitive instructions. The combination of passing arguments through registers and using more primitive

instructions allowed new optimizations to be accomplished on a significant percentage of the executed

calls. The last experiment analyzed the effectiveness of a new technique for reducing the cost of

branches by using registers. This technique has the advantages of reducing the number of instructions

executed, eliminating many pipeline delays, and potentially decreasing the delay due to instruction cache

misses.

The final chapter gives conclusions for the dissertation. The achievement of the goals of the disser-

tation and contributions of this research are discussed.

1.1. Motivation

To effectively evaluate an existing or proposed computer architecture, one must analyze measure-

ments from typical programs that are to be executed by the machine. The analysis of these measurements

can be used to determine the influence of a specific feature on the effectiveness of the architecture and to

compare different architectures. The method used to extract these measurements can impact the accuracy

and quality of architectural evaluations.

Past architectural studies have suffered from one or more limitations due to the methods used for

collecting program measurements. Methods such as simulation and tracing are very time-consuming and

the use of these methods can result in studies analyzing only a small number of executed instructions.

Some studies have compared different architectures without consideration of the compiler for each

machine. Since the quality of the code produced by different compilers can vary, these studies are com-

paring compilers along with architectures. The implementation of several methods for the extraction of
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program measurements can require much effort and time. For instance, the effort to construct a simulator

is comparable to the effort to construct a compiler. The difficulty of implementing these methods may

discourage one from collecting program measurements for architectural evaluations. The extraction of

specific measurements using some methods can be difficult or impossible. Lack of detailed information

can lead to assumptions that may be inaccurate. Many methods prohibit experimentation with an archi-

tectural feature or an architecture that does not yet exist. Such experimentation is vital since it produces

empirical results that can guide architectural design. Thus, some limitations of previous architectural stu-

dies include:

1. a small set of benchmark programs
2. differences in how machine instructions are produced
3. excessive effort required to implement a method to extract measurements
4. inability to obtain certain types of measurements
5. difficulty in performing experiments

The last major architectural study that evaluated several different architectures, the CFA evalua-

tions [FuB77], was performed over thirteen years ago. The CFA evaluations collected a few detailed

measurements from a set of small programs. Many current architectures are now quite different from the

architectures in the previous decade. A thorough evaluation of several current architectures would pro-

vide valuable information to computer architects for modification of existing machines and design of new

ones.

An environment that quickly collects accurate and detailed dynamic measurements from programs

and facilitates experimentation can aid in the interactions between the design of an architecture and a

compiler. An architecture is often designed first without determining if a compiler can make effective

use of the features of the architecture. One area that typifies this problem is the calling sequence conven-

tions imposed by the writer of the compiler and run-time library. These conventions often seem to be

imposed as an afterthought with little analysis and are typically restricted by the available instructions on

the machine for implementing function calls and returns. Using an environment that facilitates the joint

development of an architecture and compiler can result in a more effective implementation.
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There are three goals for this research. The first goal is to provide an environment in which static

and dynamic architectural-level program measurements can be collected without the problems of past

architectural studies. These program measurements include the frequency of occurrence of instructions

and addressing modes, program size information, and register usage. A more detailed description of the

types of measurements is given in a later section. The second goal is to use this environment to perform

an architectural study on several current architectures. This study analyzes the dynamic measurements

collected from each of the architectures and examine the differences between static and dynamic meas-

urements. The last goal is to use the environment to perform experiments in code generation and

machine design. These experiments not only provide insight on the influence of some architectural

features and conventions, but also demonstrate the effectiveness and utility of the environment and sug-

gest areas in which the environment can be extended.

1.2. Review

Classes of program measurements, different methods of obtaining program measurements, applica-

tions of analyzing program measurements, and previous studies using program measurements are exam-

ined in the following sections.

1.2.1. Classes of Program Measurements

Program measurements are an extraction of some of the quantitative attributes from the programs

that are executed on a computer. Classes of program measurements vary depending on two factors. One

is the form or level of the program from which the measurements are extracted, while the other is the

state of the program when the measurements are obtained.

Programs measurements can be obtained at the source and architectural levels. Measurements

obtained from the source code supply information about the usage of the features of the programming

language, whereas, measurements obtained from the assembly or object code provide information about

the usage of the features of the architecture. Source-level measurements can be correlated to

architectural-level measurements. Thus, source-level measurements can be used to provide insight for

architectural decisions on any machine with a compiler for that programming language. This correlation,
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however, is not always obvious. Architectural-level measurements give more precise information about a

specific architecture.

Two states of programs in which measurements can be obtained are the static and dynamic states.

Static measurements refer to the text of a program and count each statement or machine instruction

equally. Dynamic measurements refer to the execution of a program and count each statement or

machine instruction by the number of times that it is executed. Static measurements are easier to obtain

and guarantee complete coverage of the program. Since each statement or machine instruction in a pro-

gram is rarely executed the same number of times, static measurements do not give realistic information

on performance. The dynamic coverage of the program, however, is driven by the test data. If the test

data is not representative of how the program will be used on the machine, then the dynamic measure-

ments are less meaningful.

1.2.2. Methods of Obtaining Program Measurements

There have been several different methods or combination of methods used to collect program

measurements. The factors that may influence the choice of a method include:

1. implementation effort
2. accuracy of measurements
3. types of measurements required
4. computational requirements for obtaining measurements

Several techniques for collecting program measurements are described below.

Program simulation imitates a machine by interpreting the machine instructions [AlW75, BSG77].

Dynamic architectural-level measurements are updated as the simulator interprets each instruction. The

efforts to construct a simulator and a compiler are comparable. The total execution time of a simulated

program is typically hundreds of times slower than if the program is executed directly [HLT87]. The

main advantage of program simulation is its portability. Since a simulator for a specific architecture can

be written in a high-level language, it can be executed on any machine that supports that language. Thus,

measurements can be obtained for a machine that does not yet exist.
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Program tracing records a sequence of events which occur during the execution of a program.

These events may include the sequence of instructions executed and the memory addresses referenced.

Program tracing can be accomplished by several mechanisms and is sometimes available as an option on

a machine. One way to implement tracing is to have the machine interrupted after the execution of each

instruction [DDD81]. The interrupt handler then invokes a user-defined handler that records the trace

information associated with the instruction, which can produce large volumes of output. A filter, a pro-

gram that reads input data, performs some operation on that input, and writes output data, can process the

trace output to obtain the program measurements. The execution of a program with tracing enabled may

run 1000 times slower than one without tracing [HLT87]. An advantage of using tracing is the ability to

collect dynamic architectural-level measurements that require knowledge of the order of the execution of

instructions [Lun77, PeS77, Wie82].

Program sampling periodically interrupts a program for a very short interval of time in order to

inspect its state. Measurements are collected during each of these intervals. Sampling incurs little over-

head since the program being measured is only interrupted for a small percentage of its execution time.

Sampling measurements typically vary with different executions of the same program and thus can only

be used as estimates of complete dynamic measurements. If the state of the program is sampled more

frequently, the accuracy of the measurements improve and the overhead of obtaining measurements

increases. Profiling is the dynamic measurement of the frequency or time spent at each place in a specific

program. The profiling facility of UNIX uses sampling to estimate the execution time required by each

routine in a program [GKM82].

Program monitoring collects dynamic architectural-level program measurements without perturba-

tion of a machine. This method is only possible with a hardware device known as a hardware monitor.

The frequency and time taken by each instruction can be measured with this method [ClL82]. The

advantage of this method is that program measurements can be collected with no overhead in execution

time. The disadvantages include limited measurements and the requirement of a specialized, expensive,

hardware device.
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Program analysis, a simple and fast method, extracts static measurements directly from the text of

a program. Filters can easily be constructed by modifying the parser of a compiler or an assembler to

obtain the measurements. Since this method just collects static measurements, more realistic information

on performance can only be obtained using other methods that collect dynamic measurements [Kat83].

This method has been used to extract static measurements from both source and machine code

[Coo89, Dit80, Knu71, SwS82].

Program instrumentation modifies a program to increment counters during execution. Static infor-

mation, collected by program analysis, is associated with each counter. After the termination of the exe-

cution of the program, each set of static information is weighted by the value of its associated counter to

produce the dynamic measurements. This method has been used to modify the source code of a program

to obtain dynamic source-level measurements [Knu71]. It has also been used to modify assembly or

machine code to obtain both dynamic source-level measurements, if optimizations are not applied across

source-level statement boundaries [Tan78], and dynamic architectural-level measurements [HLT87].

Modification of programs has been accomplished through the use of filters or as an option in compilation.

Since a basic block has only one entry and one exit point, the instructions within a basic block are always

executed the same number of times. Counting the number of times that each basic block is executed to

measure the frequency of executed instructions was proposed by Weinberger [Wei84]. Modification cap-

tures program measurements with little overhead in execution time. One must ensure, however, that the

modifications made to collect measurements do not change the execution behavior of the program.

An emulator has been defined to be a complete set of microprograms which, when embedded in a

control store, define a machine [Ros69]. Emulator instrumentation modifies the microcode of a machine

to update dynamic architectural-level measurements after the execution of each macroinstruction. This

method does not require much runtime overhead as compared to tracing or simulation. For example,

modification to collect instruction frequency information slowed a Mesa emulator by about a factor of six

[McD82]. Another problem is that the microcode of a machine is not always accessible to one desiring to

collect program measurements. Even if it can be accessed, microcode is also difficult to modify and

maintain which would discourage experimentation.
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1.2.3. Applications of Analyzing Program Measurements

Program measurements have been used in architectural applications for the evaluation and

modification of existing architectures and the design of new architectures. The effectiveness of instruc-

tions and addressing modes has been evaluated by examining the frequency in which they occur

[ClL82, Dit80, SwS82, Wie82]. Frequency measurements can be used with timing information to provide

a more accurate estimate of the influence of an instruction or addressing mode on the performance of a

machine [PeS77]. Frequency of occurrence of instructions and addressing modes has also been used as

the criteria for encoding instructions [CoD82, Tan78]. Traces of addresses have been used for cache and

paging design [Win73]. Evaluating dynamic sequences of instructions has been used to propose new

instructions, guide pipeline design, and evaluate instruction buffer size [Lun77, McD82, PeS77, SwS82].

By analyzing program measurements one can use an iterative design method to evaluate the effectiveness

of modifications such as adding a new instruction or changing the number of registers.

Program measurements can be used in several applications in the area of compilers. Frequency

information can indicate if the compiler is not able to find specific instructions or addressing modes.

Measurements indicating the costs of operations and operands can aid in the evaluation of different com-

pilers. These measurements can also help the compiler writer evaluate the effectiveness of different

optimizations. Measurements of the frequency spent at each place in a program have been redirected as

input to the compiler as an aid in compiler optimization [CNO87].

1.2.4. Previous Studies Using Program Measurements

There have been many studies involving program measurements. These studies have varied in

many aspects including the set of benchmark programs used, types of measurements obtained, and

method of data collection.

1.2.4.1. Studies Using Source-Level Program Measurements

Knuth performed one of the earliest and most influential studies of source-level program measure-

ments [Knu71]. He took static source-level measurements of 440 FORTRAN programs and dynamic

source-level measurements of twenty-four FORTRAN programs. The static measurements were
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collected by program analysis and the dynamic measurements were collected by program instrumentation

of the source code. Both the static and dynamic measurements were used to analyze FORTRAN

language feature usage. By examining the static measurements Knuth discovered that most assignment

statements were very simple. He found that 68% of assignment statements had no operators on the

right-hand side and 17.5% had only one operator. Of those assignments with one or more operators, 39%

had the same variable being assigned the value of the expression as the first operand in the expression.

Knuth also discovered that 58% of static variable references were simple scalars. Analysis of the

dynamic measurements showed that 67% of all statements executed were assignment statements. Since a

large percentage of the assignment statements had no operators on the right-hand side, this result implies

that special attention should be given simple data movement instructions on a machine.

Alexander and Wortman [AlW75] collected static and dynamic source-level measurements from

ten XPL programs on a IBM/360. Program analysis was used to collect the static measurements by

modifying the compiler to count the number of times that each feature of the language was used. Using

the static measurements and interpretive execution they were able to produce the dynamic measurements.

The measurements collected were used to analyze XPL language feature usage. Analysis of dynamic

measurements revealed that 42% of the XPL statements executed were assignment statements, 13% were

conditional statements, and 13% were call statements. This showed that a large percentage of instruc-

tions dealt with moving data and that transfers of control occurred frequently. They discovered that 72%

of compiler productions applied were used to parse expressions as opposed to parsing other constructs in

the XPL language. As a result of this finding, several compiler writers use a different technique for pars-

ing expressions to increase the speed of compilation [Flo63, Han85]. Alexander and Wortman also used

the measurements to analyze the IBM/360 instruction set. They discovered that 56% of all numeric con-

stants could be represented in four bits and that the branch destination of over half the branching instruc-

tions executed was no more than 128 bytes distant. These observations imply that short forms of con-

stants and branch address destinations may be effective for reducing the average size of an instruction.

Tanenbaum [Tan78] collected static and dynamic source-level measurements from more than 300

procedures written in SAL on a PDP-11/45. Program analysis was used to collect static measurements by
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modifying the compiler to count the number of times each feature of the source language appeared in the

program. The collection of dynamic measurements was accomplished using program instrumentation by

modifying the compiler to insert instructions in the object code. Using the measurements he analyzed the

use of language features in SAL. He discovered that 41.9% of statements executed were assignment

statements, 36% were if statements, and 12.4% were call statements. Of the assignment statements exe-

cuted, 19.2% stored a constant and 66.3% had no operator on the right side of the assignment. Tanen-

baum found that the addition operator accounted for 57.4% of arithmetic operators used and the com-

parison for equality accounted for 50.6% of relational operators used. Analysis of procedure calls

revealed that 72.1% of the calls executed had two or less arguments. The static measurements also

showed that there were many simple operations that occurred frequently. Given all other factors as being

equal, a smaller program will run faster than a larger one since fewer bits are fetched from memory. A

smaller program can also reduce the number of page faults and cache misses in a memory hierarchy. The

results from the analysis were used to propose a new instruction set and how the instruction set should be

encoded. By encoding the frequently occurring instructions, he reduced program size by a factor of

three.

Cook and Lee [CoL82] collected static measurements using program analysis from more than

120,000 lines of Pascal programs. A filter was constructed by modifying a Pascal parser to collect these

measurements in twelve different contexts. The contexts included procedures, functions, various control

statements, conditional expressions, left and right sides of assignment statements, and argument lists.

They discovered that less than 12% of subprograms were nested inside other subprograms. Analysis of

the measurements also revealed that global variables in enclosing procedures were referenced infre-

quently. These results showed that implementing an expensive mechanism to perform up-level frame

addressing efficiently would not be worthwhile. An investigation of argument passing indicated that 84%

of all procedures had fewer than four local variables, 97% had fewer than four arguments, and 67% of

arguments passed to routines were simple variables and constants. The results of this investigation

implies that short forms of displacement addressing modes would be effectively used and the importance

of a simple push instruction. Cook and Lee discovered that constants accounted for 34% of all
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operands. A large percentage of operands as constants signifies the importance of having an immediate

addressing mode. They found that 86% of for loops contained less than eight instructions. A small

number of instructions in for loops indicates that the iteration variable of the for loop could be kept

in a register since the register could be reused in nonoverlapping for loops and that an instruction

buffer may be effective. An examination of the distribution of integer constants revealed that negative

constants appeared much less frequently than positive constants. Such a skewed distribution suggests

that implementing immediate addressing to allow a symmetric range of negative and positive values may

not be worthwhile. Cook and Lee discovered that 66% of array references could be accomplished in a

single indexing operation when the index is shifted by the size of an element in the array. Therefore, an

aligned indexing addressing mode would be useful. An analysis of assignment statements disclosed that

most of the assignments assigned values to simple variables and had no binary operators. This revealed

that simple data movement instructions would be used frequently.

1.2.4.2. Studies Using Architectural-Level Measurements

Lunde [Lun77] used forty-one programs written in five different high-level languages in collecting

measurements on the DECsystem10. He collected dynamic measurements by analyzing a trace of a

program’s execution. He used these measurements to determine the number of registers needed for the

machine by inspecting the maximum number of registers being used at any point in the program. He

found that, in general, he could generate code that was almost as efficient using only eight of the sixteen

registers available on the DECsystem-10. He discovered that 75% of the instructions executed were from

less than 11% of the possible instructions. This implies that encoding the commonly executed instruc-

tions could be effective to reduce the average size of an instruction. Over 40% of the instructions were

moves between a register and memory. Almost 30% of the instructions executed were branches. As a

result of analyzing these measurements he suggested a need to improve the calling sequence, memory-

to-memory moves, type conversions, and loop control. Lunde also used the trace data to determine the

most frequently occurring pairs and triples of sequentially executed instructions to suggest new instruc-

tions.
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Peuto and Shustek [PeS77] collected dynamic measurements using program tracing from seven

programs executed on an IBM 370 and AMDAHL 470. They used a trace program to capture the charac-

teristics of each instruction that was executed. An analysis program was implemented as a coroutine to

avoid huge trace files. Use of the trace and analysis programs resulted in programs executing 300 times

slower than normal. Peuto and Shustek found that between 50% to 60% of branch destinations were

within 128 bytes of the branch instruction. This showed the usefulness of program-counter-relative

branch instructions. They found that the average number of bytes of instructions executed between suc-

cessful branches was less than thirty-two bytes. This justifies the choice of thirty-two bytes for the

linesize of the cache on both of the machines. They examined pairs of opcodes to suggest new instruc-

tions and possible bottlenecks due to pipeline conflicts. Peuto and Shustek analyzed the dynamic data

gathered from the trace program to estimate the execution time of the programs on the two machines.

They examined the instruction interactions to determine the penalties due to pipeline conflicts. Using the

addresses from operands and instructions, they simulated cache memory to determine the penalties of

cache misses. They determined the percentage of execution time required by each instruction by using

the number of times that an instruction was executed and the estimated speed of the instruction. Peuto

and Shustek found that the most frequently executed instructions were often not the ones which

accounted for most of the execution time. This showed that frequency counts alone can be misleading

when attempting to determine the influence of a specific instruction. The ability to accurately estimate

the execution time of a program can also be used to predict the performance effect of a future change in a

machine.

The Computer Family Architecture committee [FuB77] established a set of criteria to measure

computer architectures. In the CFA architecture evaluations [FSB77], twelve programs were used to

evaluate and rank nine different architectures. The influence of specific architectural features was not

evaluated. Most of the test programs were small, usually requiring less than 200 static machine instruc-

tions. Each test program was hand-coded in the assembly language of each machine. The measurements

used in the evaluation included program size, number of memory transfers, and number of register

transfers. The method of obtaining most of these measurements was to simulate code that was generated
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in an ISP notation [BSG77].

Ditzel [Dit80] performed a static analysis of machine code on the Symbol computer. Using pro-

gram analysis to collect static measurements of object code generated from five programs written in SPL,

he analyzed the instruction frequency, space usage, and jump distances. He found that on the Symbol

computer, a stack machine, most of the program space is used by literals and addresses. He discovered

that 50% of the jump destinations were within thirty-two words of the jump instruction. He suggested the

use of short forms for identifier references, relative jumps, and small constants.

Sweet and Sandman [SwS82] performed a static analysis of Mesa object code. They determined

the more frequently occurring types of instruction operands, types of instructions, and pairs and triples of

instructions. Using an iterative design method they proposed new instructions and determined the effect

of each change. These new instructions were either more compact versions of frequently occurring

instructions or combinations of frequently occurring operations. McDaniel [McD82] collected dynamic

measurements from two Mesa programs on a Dorado personal computer by microcode instrumentation to

measure the frequency of instruction use. He used the measurements for an evaluation that included

instruction formatting, the instruction fetch unit, and pipelining requirements. The Mesa studies showed

that program measurements are useful for a variety of applications.

Wiecek [Wie82] gathered dynamic measurements of VAX-11 instruction set usage from the execu-

tion of six different compilers. She used VAX-11 instruction trace software to trap on each instruction

executed to generate the trace data. Programs were then used to analyze instruction frequency, operand

specifiers, data memory references, register utilization, instruction sequencing, and branch displacements.

The move instruction was the most frequently used instruction and the most frequently used addressing

modes were the simpler modes. These modes were register (39.9%), immediate (15.2%), byte displace-

ment (14.2%), and register deferred (7.8%). These results showed that architectures should effectively

support simpler instructions and addressing modes. Of the eleven most frequently used instructions, the

return and call instructions were the most time consuming. Wiecek also found that there was an average

of 3.9 instructions between branches. These observations demonstrate the large influence of calls and

branches on the execution of programs.
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Cook and Donde [CoD82] used the results from a study of Pascal programs [CoL82] as guidelines

in designing the instruction set for MCODE, a stack machine. This machine is designed to execute

instructions compiled from programs in StarMod, a distributed programming language based on Modula.

The StarMod compiler had already been retargeted to the VAX and the PDP-11. They used a ‘‘set

mode’’ instruction to control whether arithmetic operators were performed as real or integer operations.

They found that the mode of instructions was changed infrequently. Cook and Donde also encoded more

compactly the most frequently used instructions. These modifications resulted in an overall reduction in

program size. They measured the sizes of thirty programs compiled on the three machines. The VAX

code contained over twice the number of bytes required by the code for MCODE and the PDP-11 code

required 50% more space.

Clark and Levy [ClL82] used a hardware monitor on the VAX-11/780 to measure the frequency

and execution time of each VAX-11 instruction. Only ten instructions represented over 60% of the

instructions that were executed. Simple data moves were the most common type of instruction and

branches were the second most frequent. This result again showed that the simpler instructions tend to be

heavily used. They found that programs compiled from different languages or applications have the

potential for using the instruction set differently.

Patterson and Sequin [PaS82, PaP82] collected static and dynamic measurements from eight Pascal

and C programs. Patterson used the results of his study and previous studies in the design of the RISC I

machine. Since the results showed that the simpler instructions and addressing modes are the most fre-

quently used, he used a reduced instruction set to make the instruction cycle fast. He determined that the

register window approach was feasible since most variable references and arguments to functions were

scalars and the average calling depth was not very deep. Since branches occurred very frequently in exe-

cuted instructions, he used a delayed branch technique to avoid pipeline delays. Patterson used the

results of this study and the RISC I and RISC II efforts to suggest new computer design principles

[Pat85] that stress fast instruction cycle time, simple decoding, pipelined execution, and compiler tech-

nology.
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Huck [Huc83] compared four different architectures using program tracing and emulator instru-

mentation. The most complex of the architectures was found to execute the fewest instructions while the

simplest of the architectures had the fastest execution time per instruction. Performance of the architec-

tures was affected by not only differences in the architectures but also other factors such as differences in

compilers. Huck then analyzed the effects of compiler optimization techniques. He discovered that

fixed-point computation and memory references were reduced while branching instructions were typi-

cally unaffected. This showed that as more compiler optimizations are applied, the percentage of control

instruction increases.

Wirth [Wir86] compared three architectures based on code density and simplicity of compilation.

The architectures were the National Semiconductor 32000, Motorola 68000, and Lilith. The same front

end of a Modula-2 compiler was used for all three machines. The same degree of optimization was used

in each back end. Since a stack machine does not have directly addressed registers, optimizations such as

allocating variables and arguments to registers were not performed. The Lilith, a stack machine designed

for executing compiled Modula programs, generated more total instructions, but required fewer total

bytes for the compiled code. The Lilith code generator was also found to be smaller than the compilers

for the other two machines. This study showed that code generators for simple stack machines would

typically be simpler than machines with complex instruction sets and directly addressable registers. This

is due to having fewer instructions that can be selected when generating code and fewer optimizations

that can be performed. The study also revealed that compilers for stack machines would typically pro-

duce smaller executable programs due mostly to arithmetic instructions having implicit operands on the

expression stack.

Cook [Coo89] collected static measurements from Lilith machine instructions that were produced

by compiling Modula-2 programs obtained from system software. These programs included the operat-

ing system, the Modula-2 compiler, and text editors. The compiled software contained over 146,000

instructions. Most of the instructions on the Lilith are represented in a single byte. These short instruc-

tions are partly possible since the Lilith is a stack machine which allows instructions to implicitly refer-

ence operands. Other instructions that occur frequently are encoded to save space. Cook found that
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twenty of the 256 instructions represented 50% of the instructions. This observation suggests that the

scheme of encoding a specific subset of the instructions in the instruction set can be effective. He

discovered that most operations were performed in types defined by the user rather than predefined types.

He studied frequently occurring pairs of instructions to suggest new instructions. He also compared the

distribution of instructions on the Lilith to the functionally equivalent set of instructions for the Mesa

architecture on the Dorado. The Lilith was designed to support Modula-2 and the Dorado was designed

to support Mesa. He found that the differences that occurred in the distribution of instructions between

the two machines were due mostly to code generation strategies and language usage.

Adams and Zimmerman [AdZ89] collected dynamic measurements using program tracing from the

execution of seven programs on an Intel 8086. Only twenty-five instructions, or 25% of the total 8086

instruction set, were responsible for about 91% of all the instructions executed. This shows that only a

fraction of the available instructions are used very frequently. Register to register moves appeared very

frequently. This suggests that the specialized use of registers on the 8086 resulted in many registers

being shuffled around. Adams and Zimmerman compared their results to previous studies on the VAX-

11 [Wie82] and found many of the most frequently used instructions for both machines were the same.

This occurred despite the VAX-11 having a much more complex instruction set.



CHAPTER 2

METHOD FOR GATHERING DATA

To evaluate an instruction set effectively, one must collect measurements from the program’s exe-

cution that can be used to evaluate the influence of specific features of the instruction set. As described

previously, program instrumentation captures this data for subsequent analysis with little overhead. One

way to accomplish program instrumentation efficiently is to modify the back end of the compiler to store

the characteristics of the instructions to be executed and to produce code which will count the number of

times that each instruction is executed. These modifications have been implemented in a portable optim-

izer called vpo (Very Portable Optimizer) [BeD88] and are described in subsequent sections. The

environment that comprises the modified compiler and programs used to produce reports is called ease

(Environment for Architecture Study and Experimentation) [DaW90a] and is illustrated in Figure 1.

Source

File

Front

End

intermediate

code

VPO

system

optimized

rtls

VPO

Block

Updates

assembly with

block counting

block

characteristics

Figure 1: Method for Gathering Data

2.1. Instruction Characteristics

The optimizer, vpo, replaces the traditional code generator used in many compilers and is retar-

geted by supplying a description of the target machine, a yacc grammar. Instructions are stored as char-

acter strings using ISP-like register transfers [BeN71]. For example, the register transfer list (RTL)

r[1] = r[1] + r[2]; cc = r[1] + r[2] ? 0;

typically represents a register-to-register add on a machine. Though each RTL is machine-specific, the

form allows optimization of RTLs to occur in a machine-independent fashion. One optimization per-

-17-
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formed by the compiler is instruction selection. Vpo links instructions that are candidates to be replaced

by a more complex instruction that performs the same function. This is accomplished by symbolically

simulating pairs and triples of linked instructions to produce a combined effect. The machine description

is used as a recognizer to determine if the combined effect is a legal instruction.

The first modification to vpo necessary to collect measurements is to have the optimizer save the

characteristics of the instructions that will be executed. As an instruction is parsed, information about the

characteristics of the instruction is collected and used for semantic checks by vpo. The semantic checks

are modified to store these characteristics with the RTL by invoking a machine-independent routine. The

routine is only invoked if the option for collecting data is set and no semantic errors have occurred. The

routine receives the instruction type and the semantic record containing the fields of the instruction.

After all optimizations have been completed, most of the instructions have been parsed. Those instruc-

tions that have not yet been parsed are then parsed, and their characteristics stored with the instruction.

The information about each instruction is then written to a file. An example of a routine that stores infor-

mation about a Motorola 68020 call instruction is shown in Figure 2.

/*

* call - written by compiler writer to check semantics of call instruction

*/

void call(i1)

struct sem_rec *i1;

{

/* if generating assembly code */

if (dassem)

printf("\tjbsr\t%s\n", i1->sem.call.addr->asmb);

/* else if no semantic errors and measurements are to be collected */

else if (!erflag && swm)

stinstinfo(JSBRI, i1);

}

Figure 2: Storing Instruction Information

2.2. Frequency Counters

The second modification is to have the optimizer generate code after all optimizations have been

performed to count the number of times each instruction is executed. Within each function there are
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groups of instructions, basic blocks, that are always executed the same number of times. There are also

groups or classes of basic blocks that are executed the same number of times and are denoted as execu-

tion classes. Thus, the code that the optimizer generates to count the number of times that each instruc-

tion in an execution class is executed is inserted in only one basic block in the execution class.

An example of inserting frequency counters is given in Figures 3—6. Figure 3 shows a C function.

Figure 4 gives the VAX-11 assembly code that would normally be produced by vpo for that function.

int foo(k)

int k;

{

int i, j[10];

if (k > 5) {

for (i = 0; i < 10; i++)

j[i] = 0;

k = 2;

}

return (k);

}

Figure 3: C function

.text

.globl _foo

_foo:

.word 0x0

.set k.,4

.set j.,-40

subl2 $40,r14

cmpl k.(r12),$5

jleq L14

clrl r2

L17: clrl j.(r13)[r2]

aoblss $10,r2,L17

movl $2,k.(r12)

L14: movl k.(r12),r0

ret

.data

Figure 4: Vax Assembly Code for Function in Figure 3

Figure 5 contains the same assembly code broken into basic blocks. Note that although there are five

basic blocks there are only three execution classes ({1, 5}, {2, 4}, {3}).
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subl2 $40,r14

cmpl k.(r12),$5

jleq L14

clrl r2

clrl j.(r13)[r2]

aoblss $10,r2,L17

movl $2,k.(r12)

movl k.(r12),r0

ret

1

2

3

4

5

Figure 5: Assembly Code of Figure 4 in Basic Blocks

Figure 6 shows the modified Vax assembly code with execution class counters inserted. The name of the

file being compiled, test in this case, is used to distinguish counters from other files in the same execut-

able.

Determining whether a block belongs to an execution class is done in three steps. First, the set of

blocks that dominate the current block must be calculated. This information is already available in vpo if

the option to allocate variables to registers has been set. The second step determines if the current block
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.text

.globl _foo

_foo:

.word 0x0

.set k.,4

.set j.,-40

incl _test_counts

subl2 $40,r14

cmpl k.(r12),$5

jleq L14

incl (_test_counts + 4)

clrl r2

L17: incl (_test_counts + 8)

clrl j.(r13)[r2]

aoblss $10,r2,L17

movl $2,k.(r12)

L14: movl k.(r12),r0

ret

.data

Figure 6: Vax Assembly Code with Frequency Counters

is always a successor to the dominator blocks. This determines if all paths from one block eventually

lead to the current block. The third step checks if the current block is in the same set of loops as the

blocks in the execution class. The information for this step is also already available in vpo. The algo-

rithms for computing both the dominators of blocks and the blocks in a loop are given in ASU86. Figure

7 presents the algorithm for determining the always successor information.

for each block n

set AS(n) to n

while changes to any AS(n)

for each block n

for each block b in AS(n)

for each predecessor p of block b

if all successors of p are in AS(n)

add AS(p) to AS(n)

Figure 7: Calculating Always Successor Information for each Block

Figure 8 shows the dominators (DOM), always successors (AS), and execution classes (EC) for the set of
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blocks in Figure 5.

EC=(DOM∩AS)−DIFFLOOPS

DOM(1) = {1} AS(1) = {1} EC(1) = {1}

DOM(2) = {1,2} AS(2) = {2} EC(2) = {2}

DOM(3) = {1,2,3} AS(3) = {2,3} EC(3) = {3}

DOM(4) = {1,2,3,4} AS(4) = {2,3,4} EC(4) = {2,4}

DOM(5) = {1,5} AS(5) = {1,2,3,4,5} EC(5) = {1,5}

Figure 8: Example of Execution Classes

2.3. Other Modifications

Another measurement needed is instruction size information that is calculated using the assembler

on each machine. Labels are inserted before and after each basic block. The difference between the

label at the end of the block and the label at the beginning of the block represents the number of bytes of

the instructions in the basic block. The size of each basic block in the execution class are then added

together. Figure 9 shows the VAX-11 assembly code from Figure 6 with labels inserted to determine the

size of each execution class. Each element of the sizes array contains the number of bytes in an exe-

cution class.

Some types of measurements require additional code to be generated. For instance, the number of

times that conditional branches are taken can be accurately measured by inserting code after each condi-

tional branch to count the number of times each conditional branch was not taken. This count can then be

subtracted from the number of times that conditional branches are executed to produce the desired meas-

urement. At first glance, it may appear that one can use the frequency counts from the execution classes

to determine this information. With frequency counts alone, however, one cannot produce an accurate

measurement with unstructured code. For example, Figure 10 shows two execution paths that may be

taken thru a set of basic blocks that would produce identical frequency counts. In the first path three con-

ditional branches are not taken, while in the second the three conditional branches are taken.
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.text

.globl _foo

_foo:

.word 0x0

.set k.,4

.set j.,-40

incl _test_counts

LS1_1:

subl2 $40,r14

cmpl k.(r12),$5

jleq L14

LE1_1:

incl (_test_counts + 4)

LS1_2:

clrl r2

LE1_2:

L17:

incl (_test_counts + 8)

LS1_3:

clrl j.(r13)[r2]

aoblss $10,r2,L17

LE1_3:

LS1_4:

movl $2,k.(r12)

LE1_4:

L14:

LS1_5:

movl k.(r12),r0

ret

LE1_5:

.data

.globl _test_sizes

_test_sizes:

.long LE1_1-LS1_1+LE1_5-LS1_5

.long LE1_2-LS1_2+LE1_4-LS1_4

.long LE1_3-LS1_3

Figure 9: Vax Assembly Code with Labels for Size Information
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Path2: 1 => 3 => 2 => 4

Path1: 1 => 2 => 3 => 4

4

3

2

1

T

T

NT

NT

NT

T

Figure 10: Measuring When Conditional Branches Are Taken

Other measurements, such as a trace of addresses of instructions or frequencies of pairs of instruc-

tions, require knowledge of the sequence of blocks that are executed. For these types of measurements a

routine written in a high-level language can be invoked at the beginning of each basic block with the

current block number accessible.

In the past, some instructions in a vpo back-end were generated by the code expander in assembly

language if optimizations could not affect it. Every type of instruction that is executed must now be

represented as an RTL recognizable by the machine description, however, if its execution characteristics

are to be collected.
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Depending upon the type of measurements required, special cases may be necessary. For instance,

the VAX-11 movc instruction moves a variable number of bytes of memory depending upon a value in

an operand. To be able to accurately count the number of memory references made by the execution of

the instruction, the value of the operand is stored with the other characteristics of the instruction. These

special cases only occur when the compiler writer is unable to accurately represent the effects an instruc-

tion in the machine description.

2.4. Processing the Collected Data

The data that is collected is stored and then analyzed at a later time. Separating the collection and

analysis of measurements has a number of advantages. If different evaluations of the data are required,

then collection of the data is required only once. If analysis of the execution of several different pro-

grams is needed, then the data can be collected from each program’s execution separately. Finally, the

analysis of the data is separated from the generation of the data and thus requires fewer modifications to

the back end of the compiler.

At the end of the execution of a program, the number of times that each execution class is executed

is written to a file. The execution counts and the characteristics of the instructions will then both be used

to produce the dynamic measurements. The instruction characteristics can also be used to produce the

static measurements. Figure 11 shows how both static and dynamic measurements can be obtained.
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Figure 11: Producing Reports

If the basic block structures for a program are the same on different machines, then the frequency

counts of the execution classes should also be identical. The only reason for executing the program on a

different machine in this situation is to ensure that the code generated for the program executes correctly.

The basic block structures for a program on different machines, however, may often vary. Code genera-

tion strategies, such as either returning from several points in a function or always branching to one loca-

tion to return, can affect the block structure. Special instructions, such as the movc instruction on the

VAX-11 to accomplish structure assignments that would otherwise require a loop, can also change the

number and structure of basic blocks. Since there is little execution overhead to obtain the frequency

counts, it is simpler to execute the program on each machine instead of trying to first determine if the

basic block structures are identical.

2.5. Discussion

The vpo optimizer for ten different machines, already ported and tested, was modified to collect

measurements as specified in the previous sections. It typically took three or four hours for an experi-

enced person to make the machine-dependent modifications for the compiler on each machine. For the

resulting compiled programs, there is little overhead for collecting data to produce the proposed measure-

ments. For instance, on the VAX-11 the C benchmarks whetstone and dhrystone were executed

with and without data collection. The two benchmarks executed with data collection code inserted

required only 6% and 13% respectively more execution time than they required without data collection
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instructions. The number of counters needed for whetstone was fifty-one. When execution classes

were not used and counters were placed in each basic block, whetstone would have required eighty-

four counters and 9% more execution time.

The generation of reports from the measurements is also mostly machine-independent. Most of the

code from a 500 line C program that produces several different reports has remained unchanged when

implemented on the different machines. These reports gather data on the following:

1. instruction type distribution
2. addressing mode distribution
3. memory reference size distribution
4. register usage
5. condition code usage
6. conditional branches taken
7. data type distribution



CHAPTER 3

ARCHITECTURAL STUDY

Past architectural studies have suffered from many limitations. Some used a small set of bench-

mark programs due to the difficulty of collecting data. For instance, in the CFA architecture evaluations

[FSB77], twelve assembly language programs were used to evaluate and rank nine different architec-

tures. Most of these programs were less than 200 static machine instructions in length.

Many studies that compare architectures do not account for differences in how the machine instruc-

tions are produced. Each test program in the CFA architectural evaluations was hand-coded in the

assembly language of the machine to test a specific feature of an architecture [FuB77]. Thus, the quality

of the test programs depended upon the skill of the programmer and his knowledge of the machine.

Johnson’s Portable C Compiler (pcc) [Joh79] was retargeted to each machine in Patterson’s study

[PaP82]. Thus, Patterson claimed that the different compilers in his study used the same compiler tech-

nology. The quality of the code produced by each pcc compiler, however, depends on the skill of the

compiler writer when constructing tables for code generation and the patterns for peephole optimization.

The methods used to accomplish several of the past architectural studies made it difficult to capture

certain kinds of information and perform various experiments. Data was collected from machine instruc-

tions in many studies without modifying the compiler. The methods used included simulation [BSG77],

trace software [Lun77, PeS77, Wie82], and hardware monitors [ClL82]. Capturing specific types of

measurements, such as the number of registers used only as temporaries, is not possible with these

methods. Furthermore, determining the usefulness of proposed architectural features is difficult without

the ability to modify the compiler and obtain information showing how frequently the proposed features

are used.

Ease has eliminated problems that have limited some past architectural studies. Using ease to col-

lect data, one can use a number of realistic programs and collect the data in a timely fashion. For exam-

ple, on the VAX-11/8600, measurements were collected from the execution of almost 100 million

-28-
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instructions in less than ten minutes. Properties of vpo, the optimizer used in ease, eliminate several

problems. Since code to perform instruction selection and most optimizations is constructed automati-

cally, the quality of the code generated by vpo for each of the architectures has less dependence on the

skill of the implementors than compilers using other techniques [DaW89]. For example, tables are con-

structed by the implementor of a pcc compiler to recognize the different instances of trees from which an

instruction can be generated. Instructions for vpo, however, only have to be represented correctly by the

machine description. Retargeting the compiler to a new machine only requires expanding the intermedi-

ate language statements to RTLs and describing the architecture. Ad hoc case analysis is unnecessary.

Thus, the programs compiled for each of the architectures receive the same degree of optimization.

Because an effort was made to separate the machine-independent code from the machine-dependent code

to facilitate the retargeting of vpo, changing the compiler to implement proposed architectural changes

such as reducing the number of registers available, changing the calling sequence, or eliminating an

instruction or addressing mode is relatively easy to accomplish in the vpo compiler system. Even adding

a new instruction or additional registers usually can be done easily since one RTL can be translated to

one or more machine language instructions.

The following sections describe a study of several architectures that involved collecting measure-

ments from the execution of the same set of test programs on each machine. First, the type of measure-

ments extracted by ease from each architecture is given. Next, the characteristics of each of the architec-

tures in the study is described. The set of test programs used in the study is then specified. Finally, the

measurements obtained from the architectures are analyzed.

3.1. Types of Measurements

There are several kinds of data that can be collected to aid in the design, modification, or evalua-

tion of an instruction set. The following is a list of some of the data that has been collected both statically

and dynamically using the modified version of vpo.
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1. total number of instructions
2. number of each type of instruction
3. instruction size information
4. number of each type of addressing mode used
5. number of memory references
6. number of each different size of memory reference
7. number of each different memory reference addressing mode
8. condition code usage
9. distribution of size of data for each instruction
10. distribution of addressing modes for each field in each type of instruction
11. number of each type of register saved and restored
12. register usage

Dynamic data has been collected on the number of conditional branches taken and not taken and the

number of instructions executed between branches.

These measurements can be used in a variety of ways. The frequency information can be used to

evaluate the usefulness of specific types of instructions, addressing modes, or other architectural features.

It can also be used to help determine how the instructions should best be encoded. The total number of

instructions and memory references can help to evaluate the effect of changing a specific feature of the

architecture.

3.2. Architectures Studied

The architectural study includes the following architectures:

1. DEC VAX-11
2. Harris HCX-9
3. AT&T 3B15
4. Motorola 68020/68881
5. National Semiconductor 32016
6. Intel 80386/80387
7. Concurrent 3230
8. IBM RT/PC
9. Intergraph Clipper
10. SUN SPARC

These architectures differ in a number of ways including the number and complexity of instructions and

addressing modes, the number and use of registers, and degree of orthogonality of the instructions and

addressing modes. The following subsections describe the code that vpo generates and features of the

architectures for each machine in the study. The definition of calling sequence conventions, often
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influenced by the available instructions or mechanisms in the architecture, can also affect the code that is

generated. The calling conventions as defined on the machines were used since the source files of the

run-time library on most of the machines in the study were not accessible.

3.2.1. VAX-11

The VAX-11/780 has an 8K byte cache used to store data and instructions. There are twelve user-

allocable registers. There are six scratch registers and six non-scratch registers. Doubles are referenced

in pairs of registers.

The instruction set for the VAX-11 is considered complex and very orthogonal. The vpo compiler

for the VAX-11 can generate fifty-three different instructions and twenty-two different addressing modes

for instruction operands without regard to datatype. Most arithmetic instructions allow a two-address

(one source and a source that is the same as the destination) or three-address format (two sources and a

destination). The supported data types are:

1. BYTE (8 bits)
2. WORD (16 bits)
3. LONG (32 bits)
4. FLOAT (32 bits)
5. DOUBLE (64 bits)
6. QUAD (64 bits)

A callee-save calling sequence is used (the function that is called has the responsibility of saving and res-

toring registers that are used).

3.2.2. Harris HCX-9

The HCX has an 16K byte data cache as well as an instruction cache that can store up to 4K

decoded instructions. Of the thirteen user-allocable registers, two are scratch registers and eleven are

non-scratch registers. Doubles are referenced in pairs of registers. There is also one floating-point accu-

mulator which is used by all floating-point operations. The clock period is 100 nsecs and there is a three

stage pipeline.
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The fixed-point portion of the instruction set for the HCX is very similar to the VAX-11. The com-

piler for the HCX can generate fifty-four different instructions and twenty-two different addressing

modes for instruction operands without regard to datatype. Most integer arithmetic instructions allow a

two-address or three-address format. Floating point operations are accomplished in a one-address format

(implicit accumulator). The supported data types are:

1. BYTE (8 bits)
2. WORD (16 bits)
3. LONG (32 bits)
4. FLOAT (32 bits)
5. DOUBLE (64 bits)
6. QUAD (64 bits)

A callee-save calling sequence is used.

3.2.3. AT&T 3B15

The AT&T 3B15 has twelve allocable registers, nine general-purpose (fixed-point) and three

floating-point. Three of the general-purpose registers are scratch and all three of the floating-point regis-

ters are scratch. Each floating-point register can contain a single or double-precision value.

The instruction set for the 3B15 is very similar to the VAX. The compiler implemented for the

3B15 can generate fifty-five different instructions and eleven different addressing modes for instruction

operands without regard to datatype. As in the VAX-11, most arithmetic instructions allow a two-

address or three-address format. Unlike the VAX-11, there are no indexed addressing modes. The sup-

ported data types are:

1. BYTE (8 bits)
2. HALF (16 bits)
3. WORD (32 bits)
4. FLOAT (32 bits)
5. DOUBLE (64 bits)

A callee-save calling sequence is used.

AT&T has designed several machines based on the 3B architecture. There are also a few differ-

ences in the set of instructions for some of these machines in this family. AT&T defined a set of
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machine-independent instructions, the IS25 Instruction Set, to allow assembly programs to be portable

between each of the machines. Only machine-independent instructions within the 3B family were gen-

erated by vpo due to portability considerations and lack of documentation on machine-dependent instruc-

tions. In some cases machine-independent instructions are expanded by the assembler into several

machine-dependent instructions.

3.2.4. Motorola 68020/68881

There are different versions of the 68020 and 68881 floating-point coprocessor for the SUN-3/60

available from Motorola. For these experiments the 68020 has a 256 byte on-chip instruction cache. The

twenty-two user-allocable registers are separated into three classes to save bits in the instruction format.

There are eight data (integer) registers, eight floating-point registers, and six address registers. Each of

these classes has two scratch registers. Floating-point registers can contain either single or double-

precision values.

The instruction set for the 68020 is moderately complex and unorthogonal. For example, the only

immediate values allowed for the shift instruction is between 1 and 8. Many instructions do not allow

operands to reference memory or specific addressing modes. These types of restrictions are to allow

tighter encoding of instructions and less use of area on the chip. The vpo compiler for the 68020 can gen-

erate forty-five different instructions and nineteen different addressing modes for instruction operands

without regard to datatype. Arithmetic instructions typically have a two-address format (one source and

a source that is the same as the destination). The supported data types are:

1. BYTE (8 bits)
2. WORD (16 bits)
3. LONG (32 bits)
4. FLOAT (32 bits)
5. DOUBLE (64 bits)

A callee-save calling sequence is used.
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3.2.5. National Semiconductor 32016

The instruction set for the 32016 is considered moderately complex and very orthogonal. The vpo

compiler for the 32016 can generate forty-seven different instructions and seventeen different addressing

modes for instruction operands without regard to datatype. Most arithmetic instructions allow a two-

address format. The supported data types are:

1. BYTE (8 bits)
2. WORD (16 bits)
3. LONG (32 bits)
4. FLOAT (32 bits)
5. DOUBLE (64 bits)

There are sixteen user-allocable registers divided into two classes, eight integer registers (three scratch)

and eight floating-point registers. A callee-save calling sequence is used for integer registers. A caller-

save calling sequence, however, is used for floating-point registers (the calling function has the responsi-

bility of saving and restoring registers). Doubles are referenced in even-odd pairs of registers.

3.2.6. Intel 80386/80387

The vpo optimizer was also ported to the 80386 and 80387 floating-point coprocessor. The fetch-

ing and execution of an instruction is implemented in eight different units that operate in parallel. The

80386 integer registers overlap for different datatypes. There are six long (32 bit) registers (three

scratch), four word (16 bit) registers, and eight byte (8 bit) registers. In the 80387 there are eight

floating-point registers implemented as a stack.

The instruction set for the 80386 is considered unorthogonal. Several operations are required to be

performed in specific registers. Typically an instruction can only reference memory with at most one

operand. The compiler for the 80386 can generate forty-eight different instructions and fourteen dif-

ferent addressing modes for instruction operands without regard to datatype. Most arithmetic instructions

allow a two-address format. The supported data types are:
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1. BYTE (8 bits)
2. WORD (16 bits)
3. LONG (32 bits)
4. FLOAT (32 bits)
5. DOUBLE (64 bits)

A callee-save calling sequence is used for integer registers and a caller-save calling sequence is used for

floating-point registers that are alive across calls.

3.2.7. Concurrent 3230

The compiler implemented for the Concurrent 3230 can generate 101 different instructions and

eleven different addressing modes. The large number of different types of instructions was due to

mnemonic instruction opcodes being used to depict the type and size of the operands. For instance, the

following instructions represent addition operations:

1. a - add a value from memory to a register
2. ar - add a register to a register
3. ai - add a constant to a register
4. ais - add a 4-bit constant to a register
5. ah - add a halfword value from memory to a register
6. am - add a register to memory
7. ahm - add a register to a halfword of memory

Arithmetic operations are accomplished in a two-address format. The supported data types are:

1. LONG (32 bits)
2. FLOAT (32 bits)
3. DOUBLE (64 bits)

Whenever a BYTE (8 bits) or WORD (16 bits) is loaded from memory it is converted to a LONG type.

The Concurrent 3230 has sixteen general-purpose registers, eight single-precision floating-point

registers, and eight double-precision floating-point registers. A caller-save calling sequence is used.

3.2.8. IBM RT/PC

The IBM RT/PC system processor and floating-point accelerator have a reduced set of operations

and addressing modes. The compiler implemented for the IBM RT/PC can generate sixty-two different

instructions and eight different addressing modes. The instruction opcodes are used to depict the type
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and size of the operands. For instance, the following instructions represent addition operations:

1. a - add a register to a register
2. ai - add a 16-bit constant to a register
3. ais - add a 4-bit constant to a register

The supported data types are:

1. LONG (32 bits)
2. FLOAT (32 bits)
3. DOUBLE (64 bits)

Whenever a BYTE (8 bits) or WORD (16 bits) is loaded from memory it is converted to a LONG type.

Memory is only accessed by load and store instructions. All branches have the option of allowing the

instruction immediately following the branch to be executed while the instruction at the branch address is

being fetched. Multiplication by a register is expanded into sixteen multiplication step instructions. Mul-

tiplication by a constant is expanded into a sequence of shift, add, and subtract instructions.

The IBM RT/PC system processor has sixteen general-purpose registers. Only twelve of the six-

teen registers can be allocated for general use by the compiler. Four of these registers are scratch and

eight are non-scratch.

The system uses an unusual calling sequence. Only one register is used for the functions of both a

stack and a frame pointer. The maximum number of longwords passed as arguments to other functions is

required to be known to determine the offsets of local variables and temporaries. Up to four longwords

are passed in the four scratch registers. If more than four longwords are required then they are passed on

the stack. A double-precision or structure argument may have to be partially passed both in registers and

the stack.

Immediate operands are limited to sixteen bits for most instructions. Constants requiring more than

sixteen bits must either be constructed or loaded from memory in a constant pool. The addresses of any

globals that are referenced in the function are also kept in a constant pool. A general-purpose register is

dedicated for use as a constant pool pointer.
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The floating-point accelerator has sixteen user-allocable registers. Only twelve of the sixteen

registers can be allocated for general use by the compiler. Doubles are referenced in even-odd pairs of

floating-point registers. All of these registers are scratch. All floating-point instructions are initiated by

the system processor by load and store instructions using memory-mapped I/O. A floating-point value

that is transferred between a floating-point register or memory must pass through a general-purpose regis-

ter.

3.2.9. Intergraph Clipper

The Intergraph Clipper is considered a reduced instruction set machine. The compiler imple-

mented for the Clipper can generate forty-nine different instructions and nine different addressing modes

without regard to datatype. The supported data types are:

1. LONG (32 bits)
2. FLOAT (32 bits)
3. DOUBLE (64 bits)

There are many similarities between the IBM RT/PC and the Clipper. BYTE (8 bits) or WORD (16 bits)

values loaded from memory are converted to a LONG type. Memory is only referenced by load or store

instructions. Unlike the RT, there are no delayed branches and floating-point instructions are encoded

directly into the instruction set.

The Clipper has fifteen general-purpose registers and eight registers that can contain single-

precision or double-precision values. Six of the general-purpose registers and four of the floating-point

registers are scratch.

Like the RT, the Clipper has no frame or argument pointer and passes some of the arguments

through registers. The Clipper allows arguments to be passed through up to two general-purpose or

floating-point registers depending on the argument type. Structure arguments are always passed on the

stack.



-38-

3.2.10. SUN SPARC

The SUN SPARC has a reduced set of operations and addressing modes. The compiler imple-

mented for the SPARC can generate forty-one different instructions and seven different addressing

modes without regard to datatype. The supported data types are:

1. LONG (32 bits)
2. FLOAT (32 bits)
3. DOUBLE (64 bits)

As in the other RISC machines in the study, the IBM RT/PC and the Clipper, the SPARC only allows

references to memory by load or store instructions (where references to BYTEs (8 bits) or WORDs (16

bits) can be accomplished). The delayed branch for the SPARC has two differences from the delayed

branch for the IBM RT/PC. Unlike the SPARC, the RT allows the option of not executing the instruction

following the branch for each type of branch instruction. The SPARC instead has an option to not exe-

cute the instruction following a conditional branch when the conditional branch is not taken.

The SPARC is the only machine in this study to use register windows. Each of the eight windows

has access to four different sets of eight registers listed below.

1. global
2. output
3. local
4. input

There are sixteen unique registers in each window where the output registers of one window overlap the

input registers of the next window. This overlap allows arguments to passed through the scratch output

registers and be received in the non-scratch input registers. The eight non-scratch locals registers are

unique to each window while each window can access the same eight scratch global registers. Twenty-

seven of the registers that were described are allocable. Two input and two output registers are used for

function linkage and one of the global registers always contains a value of zero.
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3.3. Test Set

Using ease, realistic programs can be compiled and executed without excessive delay. The test set

used in this study consists of nineteen C programs, forty-five files, and over 23000 lines of source code.

For most machines, when the test set is run, over 100 million instructions are executed. At this time only

a C front end, vpcc [Wat86], has been used with the vpo optimizer. Programs written in other high-level

languages would provide additional useful information. Since many UNIX systems mainly execute com-

piled C programs, a set of C programs can still be fairly representative. Table 1 summarizes the test set

used in this study. Both the number of lines of code and intermediate code operations [DaW88] are

given. The number of lines of code of two identical programs may vary depending upon the comments

and style used by the programmers. Since the number of intermediate code operations is not affected by

these factors, it may be a more accurate measure for judging the relative sizes of the programs.

Class Name Description or Emphasis Lines of Code Inter Opers

cal Calendar Generator 204 1341
cb C Program Beautifier 359 2645
compact Huffman Coding File Compression 420 3593
diff Differences between Files 972 8868
grep Search for Pattern 532 3201
nroff Text Formatting Utility 6948 34627
od Octal Dump 894 5161
sed Stream Editor 1692 13571
sort Sort or Merge Files 914 6564
spline Interpolate Smooth Curve 338 2472
tr Translate Characters 133 1374
wc Word Count 104 638

Unix System Utilities

dhrystone Synthetic Benchmark Program 731 1421
matmult Multidimen Arrays and Simple Arith 113 605
puzzle Recursion and Array Indexing 235 2586
sieve Simple Iteration and Boolean Arrays 54 362
whetstone Arithmetic Operations 327 2447

Benchmark Programs

mincost VLSI Circuit Partitioning 494 3715
vpcc Very Portable C Compiler 8417 62038

User Code

Table 1: Test Set
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3.4. Analysis of Measurements

One method of comparing different machines is to measure the time it takes to execute programs.

Execution times are typically easy to obtain and represent one number for evaluation. Execution times,

however, may also provide imprecise information. For instance, ten executions of a program can result

in ten different execution times. The elapsed time can change dramatically since the load on the machine

can vary with each execution. Most operating systems provide the feature of estimating the portion of the

elapsed time used by the executing user program. The user time, though more accurate than the elapsed

time, can still vary. The estimation of time spent by each program is typically accomplished by examin-

ing which process is currently executing at periodic intervals. In order not to cause much overhead, these

intervals are typically greater than the time required for switching processes. This variance can be

greater than the effect from a change in the compiler or architectural implementation. Therefore, the

ability to obtain more accurate measurements would be desirable.

Comparing execution times can also be misleading when attempting to compare architectures since

there are many other facets of a machine that can affect execution speed. For instance, Figure 12 shows

the execution rate when executing the benchmark dhrystone on each of the architectures.
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Figure 12: Number of Dhrystones that each Machine Executes

The VAX-11/780 required almost seven times the execution time of the HCX-9 to execute the bench-

mark dhrystone. There are no floating-point operations required in dhrystone. The set of fixed-point

instructions on the VAX is very similar to the set of fixed-point instructions on the HCX. Other features
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of the HCX, such as a large instruction cache and faster clock rate, are probably responsible for the most

of the difference in execution times between the two machines. Therefore, it would be more appropriate

to measure the frequency of use of a specific architectural feature in order to determine its influence,

rather that just measuring the execution time of the machine.

3.4.1. Analysis of Dynamic Measurements

Various aspects of the dynamic measurements of the architectures in the study were analyzed. The

insights that were obtained from the analysis is given in the following sections.

3.4.1.1. Instruction Path Length

The instruction path length is the total number of instructions executed. In general, the more com-

plicated the instruction set, the shorter the path length became as shown in Figure 13. Note that each

floating-point instruction in the RT floating-point accelerator is initiated by two fixed-point instructions

using memory-mapped I/O. This scheme increased the instruction path length for the RT by 1.6%. The

RT and SPARC were the only machines that used a delayed branch. Figure 13 shows the instruction path

length of each machine by solid lines. It also shows by dashed lines the adjusted instruction path length

of each machine assuming there is an implied no-operation instruction after each transfer of control that

is not a delayed branch.
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3.4.1.2. Instruction Path Size

The instruction path size is the total number of bytes of instructions that were executed. The path

size divided by the total number of instructions executed (instruction path length) determines the average

number of bytes per instruction, as depicted in Figure 14 and Table 2. Note that since machine-

independent instructions for the 3B15 family were used, some of these instructions are expanded into

several machine-dependent instructions.
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Figure 14: Instruction Path Size

Machine Bytes per Instruction

VAX-11 4.14
HCX 3.98
3B15 4.15

68020 3.52
32016 3.52
80386 3.15
3230 3.61

RT 2.59
CLIPPER 3.61

SPARC 4.00

Table 2: Average Bytes per Instruction Executed
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Except for the 3230, the Clipper, and the SPARC, machines with a smaller number of executed

instructions had both a greater number of bytes per instruction and a smaller number of total executed

instruction bytes. The number of instructions executed by the 3230, the Clipper, and the SPARC was

only 74%, 72%, and 81% respectively of the number of instructions executed by the RT. Yet the 3230

instruction path size was over 3% larger than the instruction path size for the RT and the Clipper instruc-

tion path size was less than 1% smaller. This suggests that the encoding of instructions for the 3230 and

the Clipper could be improved. The SPARC instruction path size was over 26% larger than the instruc-

tion path size of the RT. Since there was no attempt at encoding instructions for the SPARC, every

instruction is four bytes in length.

3.4.1.3. Instruction Type Distribution

Instructions were arbitrarily divided into 4 classes.

DATA MOVEMENT
ARITH/LOGICAL
CONTROL
CALL SEQUENCE

These classes overlap somewhat. For instance, some ARITH/LOGICAL and DATA MOVEMENT

instructions set condition codes that are used for control purposes (like a compare instruction). The per-

centages of instructions in each class for each machine are summarized in Table 3. The DATA MOVE-

MENT instructions for the 68020, 32016, 80386, 3230, and RT were the most frequently used class. The

ARITH/LOGICAL and CONTROL classes were used more frequently than the DATA MOVEMENT

class for the VAX-11, HCX, and 3B15. This occurred for these three machines since they allow many

complicated instructions (for instance, three-address instructions) and are orthogonal with respect to

referencing registers or memory. Machines with a more complicated instruction set had a larger percen-

tage of CONTROL type instructions. The number of CONTROL type instructions varied much less

between machines than DATA MOVEMENT and ARITH/LOGICAL instructions. A similar number of

CONTROL instructions on each machine shows that there has been little emphasis on creating more

complicated instructions used for transfer of control.
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Per Cent Per Cent Per Cent Per Cent
Machine

DATA MOVEMENT ARITH/LOGICAL CONTROL CALL SEQUENCE

VAX-11 27.75 28.39 37.93 5.92
HCX 28.34 32.01 34.22 5.43
3B15 27.85 36.92 30.64 4.59

68020 42.74 18.46 28.73 10.07
32016 45.14 11.65 32.42 10.79
80386 49.43 18.17 26.63 5.77
3230 55.22 20.03 19.61 5.13

RT 49.06 29.72 17.48 3.74
CLIPPER 50.54 22.14 22.38 4.95

SPARC 43.52 35.00 16.56 4.91

Table 3: Instruction Class Distribution

3.4.1.4. Addressing Mode Distribution

The simpler addressing modes were consistently used most frequently on all machines. Table 4

shows the percentage of referencing registers, immediate values, and labels for the seven machines.

Per Cent of Total
Machine

Operand References

VAX-11 69.16
HCX 74.87
3B15 76.09

68020 72.87
32016 69.63
80386 69.07
3230 72.80

RT 71.35
CLIPPER 83.15

SPARC 88.55

Table 4: Registers, Immediates, and Labels as a Per Cent of Total Operand References

Displacement from a register was also common due to the frequent reference of locals and arguments.
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3.4.1.5. Memory References

A majority of memory references were consistently LONGs on all the machines despite having

several character and floating-point intensive programs. The VAX-11 and Clipper had fewer LONG

memory references than the other machines due to use of the movc instruction that was counted as mov-

ing blocks of memory as characters (bytes). The RT required that DOUBLE values be loaded and stored

as two FLOAT memory references. The results of memory references by size is given in Table 5.

Per Cent Per Cent Per Cent Per Cent Per Cent
Machine

BYTE WORD LONG FLOAT DOUBLE

VAX-11 10.83 1.16 86.28 1.65 0.08
HCX 5.90 1.16 90.97 1.87 0.09
3B15 6.04 1.19 89.46 3.07 0.25

68020 6.02 1.31 89.78 2.20 0.70
32016 5.28 1.28 90.23 3.04 0.17
80386 7.03 1.10 89.04 2.71 0.13
3230 5.19 0.94 92.58 1.16 0.14

RT 4.71 0.93 92.71 1.65 0.00
CLIPPER 14.20 1.65 81.58 2.26 0.31

SPARC 5.73 1.45 89.03 3.53 0.26

Table 5: Memory Reference Size Distribution

The most common addressing mode used for memory references was displacement (referencing

locals and arguments). Direct addressing modes were also used to frequently reference memory

(referencing globals). Typically about three tenths of all operand references were to memory. The

exceptions were the Clipper, RT, and SPARC, which passed up to two, four, and six arguments respec-

tively to functions in registers. This reduced the number of references to memory since there were fewer

operands that were pushed on or referenced from the run-time stack. Also since the three machines only

referenced memory through loads and stores, there was a greater percentage of register references. This

is shown in Table 6.
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Machine Per Cent with Memory Reference

VAX-11 27.35
HCX 28.06
3B15 29.37

68020 26.14
32016 28.77
80386 28.74
3230 29.63

RT 8.57
CLIPPER 18.10

SPARC 16.33

Table 6: Per Cent of Operand References to Memory

The number of times memory was referenced by each machine is shown in Figure 15. The number

of memory references due to referencing variables and spills of temporaries is shown in solid lines. The

additional number of memory references due to saving and restoring allocable registers is shown in

dashed lines. The additional number of memory references due to handling function linkage (stack

pointer, frame pointer, program counter, etc.) is shown in dotted lines. Memory references for function

linkage on some machines are not required for other machines. For instance, the 32016 adjusts the stack

pointer by an adjsp instruction after each call. The additional memory references in the VAX-11 over

the HCX was mostly due to ease treating the movc instruction as only referencing bytes. Over 3.9% of

the memory references in the RT were due to initiating the floating-point instructions by two fixed-point

instructions using memory-mapped I/O. Global addresses could not be encoded directly in the format for

the RT instructions. Each global address had to be loaded from a constant pool. Loads of global

addresses accounted for approximately 12% of the memory references on the RT. These methods for

implementing floating-point operations and global addresses allowed the average number of bytes per

instruction on the RT to be reduced. Since the SPARC used register windows, it had a very small number

of memory references for saving and restoring allocable registers and function linkage. The SPARC had

very few FLOAT and DOUBLE variables allocated to registers since all thirty-two of the floating-point

registers were scratch. FLOAT and DOUBLE variables also occurred infrequently. Since the SPARC

had the most allocable general-purpose registers, more variables were allocated to registers on the
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SPARC than any other machine in the study. This resulted in the SPARC having the fewest number of

memory references. The Clipper had the next smallest number of memory references due to a number of

factors which includes having many allocable general-purpose registers, passing some arguments through

registers, and not having a frame or argument pointer.
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Figure 15: Number of Memory References

The number of bytes transferred to and from memory may be a more meaningful measurement.

Figure 16 shows similar information as in Figure 15 except that the number of bytes transferred is given.
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3.4.1.6. Saves and Restores

All the machines except for the 3230 used a callee-save calling sequence for fixed-point registers.

The number of saves and restores varied greatly as shown in Table 7. The 3230 value was calculated by

dividing the total number of registers saved before each call by the total number of call instructions exe-

cuted. The caller-save method used resulted in a smaller number of registers saved and restored since

fewer variables were allocated to registers. The reduced instruction set of the RT resulted in more regis-

ters being used. This shows that a calling sequence convention can have a significant impact on the total

number of memory references. The SPARC value was calculated by determining the number of spills

and reloads of registers when the number of available windows was exceeded. The small number of

saves and restores for the SPARC demonstrates that register windows can effectively reduce the number

of memory references for saving and restoring the state of functions between calls.

Machine Number Per Call Per Cent of Total Memory References

VAX-11 1.19 9.89
HCX 1.73 15.90
3B15 0.92 6.11

68020 1.50 12.79
32016 1.32 10.67
80386 1.09 7.60
3230 0.81 5.47

RT 2.04 11.68
CLIPPER 1.60 13.89

SPARC 0.08 0.00

Table 7: Number of Saves and Restores of Allocable Registers

The number of saves and restores are affected by the number of total allocable registers and the

number of scratch registers as shown in Table 8. They are also affected by how registers can be used.

There are twelve registers on the 3230 and RT and eight registers on the 68020, 32016, 80386, and

Clipper that can only be used to hold floating-point values. The number of allocable registers on the

SPARC is represented by the number of registers accessible from a single function (window). Of the

forty-five scratch registers, thirty-two are floating-point. With the eight windows on the SPARC there are
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actually 151 allocable registers.

Machine Scratch Nonscratch Total

VAX-11 6 6 12
HCX 2 11 13
3B15 6 6 12

68020 6 15 21
32016 3 13 16
80386 3 11 14
3230 23 0 23

RT 16 8 24
CLIPPER 10 13 23

SPARC 45 14 59

Table 8: Allocable Machine Registers

3.4.1.7. Register Usage

The number of registers used per call varied depending mostly on the number of registers that were

available to the register allocator. The RISC machines, the RT, Clipper, and SPARC, were unique in

having more registers allocated to arguments than to local variables. This was due to the RT, Clipper,

and SPARC calling sequences which allow up to four, two, and six arguments respectively to be passed

in registers. The RT was unusual in the higher number of registers used as temporaries per call. This

was partially caused by the unusual RT calling sequence requiring the use of three registers as tem-

poraries. Since the RISC machines only reference memory via load and store instructions, all calcula-

tions had to be performed in registers. Referencing a scratch register used as an argument also was

counted as a temporary use. This resulted in more registers used as temporaries. Register usage per call

is shown in Table 9.
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Machine Locals Arguments Temporaries Total

VAX-11 1.22 0.49 1.39 3.10
HCX 1.25 0.48 1.49 3.22
3B15 1.06 0.47 1.60 3.14

68020 1.22 0.43 1.93 3.57
32016 1.10 0.49 1.62 3.21
80386 0.78 0.24 1.91 2.93
3230 0.88 0.33 1.97 3.18

RT 1.16 1.35 5.65 8.16
CLIPPER 1.25 1.26 2.43 4.94

SPARC 1.29 1.75 4.98 8.02

Table 9: Register Usage Per Call

One may conclude from the above table that only three or four allocable registers are needed for a

machine such as the VAX-11. Though the average number of registers used per call was 3.10, the stan-

dard deviation was 2.31. Figure 17 shows there are several instances when additional registers are used.
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Figure 17: Distribution of Total VAX-11 Registers Used Per Call

3.4.1.8. Condition Code Usage

Disregarding the instructions whose purpose is to set the condition codes and have no other effect

(e.g. VAX-11: bit, cmp, tst), condition codes were not used very often. The results of using
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condition codes that are set as side-effects is shown in Table 10. Setting the condition codes as a side-

effect for the SPARC is explicitly specified as an option for arithmetic and data movement instructions.

There are no instructions that set the condition codes as a side-effect for the 32016. Also data movement

instructions, which set condition codes as side-effects on other machines, do not set the condition codes

on the 80386, RT, or the Clipper. Since the 3230 compares a value to zero by loading it into a register,

there was a higher use of condition code side-effects on the 3230.

Machine Per Cent CC Side Effect Used

VAX-11 2.79
HCX 2.29
3B15 2.61

68020 3.04
32016 0.00
80386 0.58
3230 6.76

RT 0.66
CLIPPER 0.26

SPARC 0.00

Table 10: Usage of Condition Codes Set as Side Effects

3.4.1.9. Branch Instructions

Conditional branches were taken consistently on all machines about two thirds of the time. The

average number of instructions between branches (and calls) varied depending on the complexity of the

instructions on the different architectures as shown in Table 11.
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Instructions Executed Instructions Executed
Machine

Between Branches Between Calls

VAX-11 3.81 30.67
HCX 4.29 33.62
3B15 5.12 40.06

68020 5.23 42.30
32016 5.17 40.16
80386 5.99 45.90
3230 7.68 57.05

RT 10.14 67.38
CLIPPER 7.23 55.10

SPARC 7.88 47.28

Table 11: Average Number of Instructions Executed between Branches

3.4.1.10. Data Type Distribution

LONGs were used extensively by all the architectures. Of instructions associated with a data type,

the percentage of instructions manipulating LONGs was very high. This occurred since the default

integer type for C on each of the architectures in the study was a LONG (32 bits). The percentage of

long operand references from the total number of operand references was not quite as high as instructions

manipulating LONGs. Some of the more complicated addressing modes had a greater proportion of other

data types. The only addressing mode not referenced as a LONG most of the time was the auto-

increment addressing mode on the VAX-11 and 68020. For this addressing mode, the byte data type was

used more frequently due to the loops involving character processing in some of the test set programs.

3.4.1.11. Instruction Field Distribution

Many of the instruction fields used only a small subset of the available addressing modes. To

allow any addressing mode to be used in each operand of each type of instruction simplifies the task of

the compiler since there are few special cases. If the cost of the machine can be reduced or the speed of

the machine increased by not allowing infrequently used addressing modes for specific operands of

specific instructions, then perhaps the reduced cost and/or increased speed of the architecture might

outweigh the increased cost of the compiler.
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3.4.1.12. Summary of Dynamic Measurement Analysis

There are several observations that can be made from the analysis of dynamic measurements. The

machines with the least number of instructions had both the ability to reference three unique operands

and to reference memory in each field of each instruction. These machines, despite having more bytes

per instruction, had fewer total number of bytes of instructions that were executed. This suggests if

reducing code size is a high priority, then three-address instructions and the ability to reference memory

in each field are important architectural features.

It was found that both simpler instructions and addressing modes were used most frequently. Data

movement instructions, typically simple instructions, were the most frequently used class of instructions

for most machines. The register addressing mode dominated all of the machines in the study. These

results support the RISC contention that complex instructions and addressing modes are rarely used and

may be a liability in an instruction set [Pat85].

Both operations and operands dealt with mostly LONGs. Several of the machines in the study,

including all of the RISCs, do not support operations directly on bytes or halfwords. For these machines

only values in memory were allowed to contain bytes or halfwords. Though byte or halfword arithmetic

executes more quickly than longword arithmetic, performing the operations in longwords was beneficial

since more effective encoding could occur.

The number of memory references were affected by many factors. One factor is the number of

allocable registers. For instance, the fixed-point portion of the VAX-11 and HCX-9 architectures are

very similar. The HCX-9 has thirteen allocable registers and the VAX-11 has only twelve. This differ-

ence of one register resulted in slightly more variables being allocated to registers for the HCX-9 and

more saves and restores. The HCX-9 also had 9% fewer bytes transferred to and from memory than the

VAX-11. The method for saving and restoring registers also can affect the number of memory refer-

ences. The only machine with a caller-save method was the 3230, which had the fewest variables allo-

cated to registers and the most memory references. Another influential factor was the method for han-

dling function linkage. For instance, almost 25% of the VAX-11 memory references resulted from func-

tion linkage. The Clipper, which used much more primitive call and return instructions, required only
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one fourth the number of memory references for function linkage as the VAX-11. This suggests that

using primitive call and return instructions may be more effective than using their complex counterparts.

Constructing global addresses on the SPARC was accomplished by referencing the high and low portions

of the address in two separate instructions. About 12% of the memory references for the RT were a

result of their method of loading a global address from a constant pool. This did not reduce the number

of instructions since a separate load instruction was required to get the address. Thus, it seems that the

method of constructing a global address used on the SPARC for machines that cannot reference a global

address directly is superior to using a constant pool since no memory reference is required.

There are several interesting observations that can be made concerning register usage. Machines

that passed arguments through registers resulted in substantially more arguments being allocated to regis-

ters. This phenomenon is examined in an argument-passing experiment described later in this disserta-

tion. The average number of registers per call referenced for most machines was quite small, yet the

deviation was high. Since there are many instances when several registers can be used, this suggests that

the number of registers available should be greater than the average used per call. A final observation is

that machines with the ability to reference memory in each field of each instruction resulted in fewer

registers used as temporaries. Fewer references to temporaries occurred since calculations by complex

arithmetic instructions could reference memory directly. Thus, the most effective percentage of registers

that should be designated as scratch on a CISC machine may be less than on a RISC machine.

Types of branch instructions varied little with each architecture. This resulted in a similar number

of branch instructions executed for each architecture. Machines with more complex instructions had

fewer instructions of other classes and thus had fewer instructions between branches. This observation

implies that CISC machines would have fewer instructions to place behind delayed branches. Machines

with condition codes that are set as side-effects of instructions were rarely used by conditional branches.

A machine architect should consider the increased cycle times of instructions, the space and cost in

firmware or hardware, and the added complexity before designing instructions that set condition codes as

side-effects. Since conditional branches were consistently taken about two thirds of the time, instructions

at the target of a conditional branch would be useful more often to fill the delay slot of a conditional
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branch than instructions following the branch. This supports the SPARC delayed branch with the annul

option, which only executes the instruction following the branch if the branch is taken.

There were also some machine-independent observations. One was that 56% of the functions

invoked were leaves. Functions that do not call other functions are known as leaf functions. On average

leaf functions had fewer variables and arguments than non-leaf functions. These observations can

influence the design of the method for saving and restoring registers, passing arguments through registers,

and the complexity of call and return instructions. The impact of a high frequency of leaf functions on

these calling sequence conventions are examined later in this dissertation.

3.4.2. Static Versus Dynamic Measurements

Dynamic measurements are generally considered to give more accurate data than static measure-

ments for measuring the influence of architectural features [Kat83, SwS82]. Comparisons between static

and dynamic measurements collected from the execution of the test set showed that for each of the

machines there are consistent differences between the results of the two types of measurements.

3.4.2.1. Instruction Type Distribution

Consistently on all the different machines, the dynamic measurements had a greater percentage of

compare and conditional jump instructions. There was, however, a smaller percentage of call and uncon-

ditional jump instructions than the static measurements. This is shown in Table 12.

Use of conditional and looping constructs increases the dynamic percentage of compare and condi-

tional jump instructions. The compare and conditional jump instructions generated from an if state-

ment will be executed twice the number of times of the average of the instructions generated from the

then block and else block. Also, compare and conditional jump instructions are generated inside of

loops from the compilation of the test condition in looping constructs.

Use of conditional and looping constructs decreases the dynamic percentage of unconditional jump

instructions. An unconditional jump instruction is generated at the end of the then block of an if-

then-else construct to jump across the else block. Unconditional jumps are also used to imple-
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Compares Conditional Jumps
Pct Pct Pct PctMachine

Static Dynamic
Diff

Static Dynamic
Diff

VAX-11 11.88 16.37 4.49 13.53 18.05 4.52
HCX 11.42 14.98 3.56 12.88 16.49 3.61
3B15 11.57 13.81 2.24 12.78 15.06 2.28

68020 9.28 12.03 2.75 10.93 13.86 2.93
32016 11.18 14.70 3.52 11.19 14.70 3.51
80386 9.96 12.64 2.68 10.04 12.72 2.68
3230 4.73 5.70 0.97 7.97 10.66 2.69

RT 6.81 7.21 0.40 7.38 7.90 0.52
CLIPPER 8.98 9.89 0.91 9.96 10.59 0.63

SPARC 4.89 5.25 0.36 8.27 9.60 1.33

Calls Unconditional Jumps
Pct Pct Pct PctMachine

Static Dynamic
Diff

Static Dynamic
Diff

VAX-11 10.15 3.16 -6.99 5.65 2.82 -2.83
HCX 9.81 2.89 -6.92 5.24 2.16 -3.08
3B15 9.43 2.44 -6.99 5.16 1.95 -3.21

68020 8.14 2.31 -5.83 5.97 2.54 -3.43
32016 8.35 2.43 -5.92 6.03 2.54 -3.49
80386 7.35 2.13 -5.22 5.50 2.04 -3.46
3230 5.96 1.72 -4.24 3.24 1.43 -1.81

RT 5.79 1.46 -4.33 3.95 1.17 -2.78
CLIPPER 7.42 1.78 -5.64 5.45 1.69 -3.76

SPARC 6.49 2.07 -4.42 4.59 1.71 -2.88

Table 12: Static and Dynamic Measurements of Compare, Call, and Jump Instructions

ment break statements inside switch constructs. Since the unconditional jumps generated in these

situations are not always executed each time an if-then-else or switch statement is entered, the

percentage of dynamic unconditional jump instructions is decreased. Unconditional jumps are also gen-

erated from the compilation of looping constructs. If the termination condition is not known for the first

iteration of a for loop construct, then an unconditional jump is generated to jump to the bottom of the

loop where the termination condition is tested. Unconditional jumps are also used to implement break

statements to exit loops. Thus, the percentage of unconditional jump instructions is decreased since the

unconditional jumps in these two situations are at most only executed once each time the loop is entered.

In many typical programs there are functions that are only called in special circumstances, such as

error handling routines. In other cases some functions are invoked infrequently. For instance, functions
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to read and write data may only be invoked early and late respectively in the execution of the program.

Thus, these functions may be invoked outside the loops which are responsible for most of the dynamic

instructions. Leaf functions are often invoked from more than one place. The static percentage of func-

tions entered that were leaf functions was only 17%. The dynamic percentage of functions that were

leaves was 56%. Since for typical executions many functions are infrequently or never called and leaf

functions (those with no call instructions) are invoked more frequently, the percentage of dynamic call

instructions is reduced.

Differences between the percentages of static and dynamic return instructions, shown in Table 13,

varied depending upon the code generation strategy used by the compiler for the machine. The first code

generation strategy, used by the VAX-11, HCX, and 3230 compilers, generated one or more static return

instructions per function. Since at most one return can be executed each time a function is entered, the

dynamic percentage of instructions that were returns was less than the static percentage. The compilers

for the other machines generated at most one static return instruction per function since other instructions

were required to restore the state of the calling function. In order to use less static space for the program,

an unconditional jump to the return sequence was often required. Using the second code generation stra-

tegy resulted in an increase from the static to dynamic percentage of return instructions.

Pct Pct
Machine

Static Dynamic
Diff

VAX-11 4.08 2.82 -1.26
HCX 4.00 2.58 -1.42
3B15 3.86 2.18 -1.68

68020 1.61 2.06 0.45
32016 1.65 2.19 0.54
80386 1.44 1.90 0.46
3230 2.39 1.43 -0.96

RT 1.13 1.20 0.07
CLIPPER 1.46 1.59 0.13

SPARC 1.18 1.38 0.20

Table 13: Static and Dynamic Measurements of Returns
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The integer add and subtract operations are frequently used arithmetic instructions. Add instruc-

tions are commonly generated from compilation of the iteration portion of a for loop construct.

Because instructions inside of loops are executed more often than instructions outside of loops, the per-

centage of arithmetic instructions is increased. The static and dynamic percentages of add and subtract

instructions are shown in Table 14. Note that the percentages of add instructions on the 68020 and 80386

were adjusted to exclude instructions used to adjust the stack pointer after a call. Since the dynamic per-

centage of call instructions is smaller than the static percentage, an architecture that uses an add instruc-

tion to adjust the stack pointer after a call will result in a smaller increase in the dynamic percentage over

the static percentage of add instructions. The static and dynamic percentages of subtract operations were

less predictable. These percentages depended upon many factors that include the direction that the run-

time stack grows when allocating space for local variables on the stack, the instruction used to allocate

space on the stack, and the availability of other instructions that may accomplish a subtract operation

through use of a displacement addressing mode.

Integer Adds Integer Subs
Pct Pct Pct PctMachine

Static Dynamic
Diff

Static Dynamic
Diff

VAX-11 6.65 13.72 7.07 2.96 3.19 0.23
HCX 7.15 14.49 7.34 4.07 5.32 1.25
3B15 8.90 19.55 10.65 2.30 2.21 -0.09

68020 3.13 7.49 4.36 1.57 2.10 0.53
32016 2.30 4.19 1.89 0.47 0.75 0.28
80386 2.53 6.10 3.57 1.72 2.28 0.56
3230 3.30 7.59 4.29 0.99 1.68 0.69

RT 8.25 15.53 7.28 0.65 2.28 1.63
CLIPPER 4.06 8.88 4.82 2.15 1.95 -0.20

SPARC 9.70 14.28 4.58 1.67 3.36 1.69

Table 14: Static and Dynamic Measurements of Integer Adds and Subtracts
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The static and dynamic measurements for integer multiply and divide instructions were also exam-

ined. These measurements are shown in Table 15. The compiler for the RT either converts a multiply by

an integer constant into a series of shifts, adds, and subtracts or performs 16 multiply steps. The compiler

for the SPARC also converts multiplies by an integer constant. Multiplies by a register are implemented

by invoking a library function. Divides on both the RT and SPARC are implemented by invoking a

library function. Therefore, measurements of the multiply and divide instruction for the RT and SPARC

were not included.

Integer Multiplies Integer Divides
Pct Pct Pct PctMachine

Static Dynamic
Diff

Static Dynamic
Diff

VAX-11 0.77 2.61 1.84 0.52 0.34 -0.18
HCX 0.76 2.36 1.60 0.51 0.30 -0.21
3B15 0.57 1.91 1.34 0.35 0.22 -0.13

68020 0.50 1.84 1.34 0.43 0.24 -0.19
32016 0.52 1.96 1.44 0.43 0.25 -0.18
80386 0.47 1.67 1.20 0.39 0.24 -0.15
3230 0.37 1.35 0.98 0.31 0.18 -0.13

RT N/A N/A N/A N/A N/A N/A
CLIPPER 0.46 1.40 0.94 0.38 0.18 -0.20

SPARC N/A N/A N/A N/A N/A N/A

Table 15: Static and Dynamic Measurements of Integer Subtracts and Multiplies
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Table 16 shows the static and dynamic percentages of logical instructions to accomplish bitwise

and, bitwise or, and shift instructions. A left shift instruction is often used to implement array indexing.

Array elements are typically processed in a loop. Thus, the dynamic percentage of shift instructions was

larger than the static percentage of shift instructions. The percentages of bitwise and instructions were

less predictable since the bitwise and operation was used for a variety of purposes on different machines.

For instance, on the RT a bitwise and operation was required to accomplish a floating-point comparison.

Some machines used the bitwise and operation to extract bit fields and conversion to smaller integral

types. The bitwise or instruction for the SPARC was used in constructing global addresses and constants

requiring more than twelve bits.

Bitwise Ands Bitwise Ors Shifts
Pct Pct Pct Pct Pct PctMachine

Static Dyn
Diff

Static Dyn
Diff

Static Dyn
Diff

VAX-11 1.78 2.26 0.52 0.45 0.11 -0.34 1.28 4.55 3.27
HCX 2.02 2.44 0.42 0.44 0.10 -0.34 1.60 5.69 4.09
3B15 1.26 1.33 0.07 0.43 0.09 -0.34 2.90 10.55 7.65

68020 1.94 2.12 0.18 0.37 0.08 -0.29 0.44 1.48 1.04
32016 1.85 2.05 0.20 0.38 0.09 -0.29 0.25 1.53 1.28
80386 0.95 1.04 0.09 0.34 0.08 -0.26 0.31 1.33 1.02
3230 0.79 0.86 0.07 0.27 0.06 -0.21 2.05 7.61 5.56

RT 1.13 0.97 -0.16 0.24 0.04 -0.20 2.09 8.10 6.01
CLIPPER 1.52 1.34 -0.18 0.34 0.06 -0.28 2.07 7.61 5.54

SPARC 1.31 1.21 -0.10 4.47 4.68 0.21 2.29 10.04 7.75

Table 16: Static and Dynamic Measurements of Ands, Ors, and Shifts
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The static and dynamic measurements for floating-point operations were also examined. Though

floating-point adds, subtracts, multiplies, and divides were not used frequently, the direction of increase

or decrease between the static and dynamic percentages was consistent on all machines. These measure-

ments are shown in Table 17.

Float Adds Float Subtracts
Pct Pct Pct PctMachine

Static Dynamic
Diff

Static Dynamic
Diff

VAX-11 0.15 0.44 0.29 0.11 0.06 -0.05
HCX 0.15 0.39 0.24 0.11 0.05 -0.06
3B15 0.14 0.33 0.19 0.10 0.05 -0.05

68020 0.12 0.34 0.22 0.09 0.04 -0.05
32016 0.12 0.34 0.22 0.09 0.04 -0.05
80386 0.12 0.29 0.17 0.08 0.04 -0.04
3230 0.09 0.18 0.09 0.06 0.01 -0.05

RT N/A N/A N/A N/A N/A N/A
CLIPPER 0.11 0.24 0.13 0.08 0.03 -0.05

SPARC 0.09 0.21 0.12 0.06 0.03 -0.03
Float Multiples Float Divides

Pct Pct Pct PctMachine
Static Dynamic

Diff
Static Dynamic

Diff

VAX-11 0.18 0.28 0.10 0.09 0.12 0.03
HCX 0.17 0.25 0.08 0.08 0.11 0.03
3B15 0.16 0.21 0.05 0.07 0.09 0.02

68020 0.14 0.20 0.06 0.07 0.09 0.02
32016 0.15 0.22 0.07 0.07 0.09 0.02
80386 0.13 0.18 0.05 0.06 0.08 0.02
3230 0.11 0.12 0.01 0.05 0.06 0.01

RT N/A N/A N/A N/A N/A N/A
CLIPPER 0.13 0.15 0.02 0.06 0.07 0.01

SPARC 0.11 0.13 0.02 0.05 0.06 0.01

Table 17: Static and Dynamic Measurements of Floating-Point Instructions
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3.4.2.2. Addressing Mode Distribution

There were consistent differences between dynamic and static measurements of addressing modes

across all the machines examined. Dynamic measurements had a greater percentage of register mode

usage and a smaller percentage of immediate mode usage as shown in Table 18.

Register Addr Mode Immediate Addr Mode
Pct Pct Pct PctMachine

Static Dynamic
Diff

Static Dynamic
Diff

VAX-11 29.64 40.57 10.93 23.99 19.29 -4.70
HCX 34.53 47.53 13.00 23.39 19.11 -4.28
3B15 32.27 49.87 17.60 24.17 18.16 -6.01

68020 41.42 50.81 9.39 17.22 14.14 -3.08
32016 41.97 44.95 2.98 19.52 15.72 -3.80
80386 42.47 50.08 7.61 14.38 10.25 -4.13
3230 49.47 60.25 10.78 13.79 12.28 -1.51

RT 58.67 69.54 10.87 19.49 16.38 -3.11
CLIPPER 57.45 65.55 8.10 13.53 11.43 -2.10

SPARC 54.96 64.62 9.66 24.54 18.62 -5.92

Table 18: Static and Dynamic Measurements of Register and Immediate Modes

Typically, instructions in loops are executed more frequently than instructions which are not in

loops. Immediate values are often used to initialize variables outside of loops. This reduces the percen-

tage of immediate mode usage in dynamic measurements. Vpo used a cost function to attempt to place

the most frequently used variables in registers. The cost function weighted memory references in loops

more heavily. Since variables with the most estimated memory references were assigned to registers,

there were many register references inside of loops which increased the percentage of register mode

usage in dynamic measurements.

Other addressing modes used on most machines include register deferred, displacement, and direct

modes. The static and dynamic measurements for these modes are shown in Table 19. Note that there is

no direct addressing mode on the RT or SPARC. Addresses of globals on the RT were stored in a con-

stant pool and were referenced using displacement and register deferred modes. Addresses of globals on

the SPARC were constructed by two instructions. The dynamic percentage use of the displacement mode
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on the 3230 was smaller than the static percentage since the displacement mode was used in saving and

restoring registers around call instructions. The displacement mode was also used for pushing arguments

on the run-time stack for the RT, CLIPPER, and SPARC. Because the dynamic percentage of call and

push instructions was smaller than the static percentage, the dynamic use of displacement mode was also

smaller. The displacement mode also varied for the SPARC since displacements could represent at most

twelve bits.

Register Deferred Displacement Direct
Pct Pct Pct Pct Pct PctMachine

Static Dyn
Diff

Static Dyn
Diff

Static Dyn
Diff

VAX-11 3.43 4.08 0.65 6.87 8.41 1.54 15.52 7.65 -7.87
HCX 3.31 4.35 1.04 5.36 6.21 0.85 14.66 6.69 -7.97
3B15 4.13 6.80 2.67 7.97 9.20 1.23 14.56 5.68 -8.88

68020 2.49 3.27 0.78 6.85 7.24 0.39 14.21 7.14 -7.07
32016 2.58 4.28 1.70 8.55 10.57 2.02 20.26 8.71 -11.55
80386 2.59 3.35 0.76 10.37 13.25 2.88 11.66 5.51 -6.15
3230 3.41 4.47 1.06 19.27 11.42 -7.85 7.95 3.52 -4.43

RT 6.68 6.09 -0.59 14.98 7.80 -7.18 N/A N/A N/A
CLIPPER 3.73 5.74 2.01 6.68 5.90 -0.78 10.14 3.68 -6.46

SPARC 2.26 3.11 0.85 7.72 5.07 -2.65 N/A N/A N/A

Table 19: Static and Dynamic Measurements of Other Addressing Modes

3.4.2.3. Bytes per Instruction

On all the machines, except the SPARC, the dynamic measurements consistently resulted in a

smaller number of bytes per instruction than the static measurements. The static and dynamic number of

bytes per instruction were the same since the architects of the SPARC designed every instruction to be

the same size (four bytes). This is shown in Table 20. As noted earlier, the dynamic measurements

showed a smaller percentage of instruction operands referencing memory and a greater percentage of

instruction operands referencing registers. Memory references require more bits in an operand field than

register references. This decreases the number of bytes per instruction in dynamic measurements. Note

that the number of bytes per instruction for the 3B15 was larger than the other machines since code was

generated for the machine-independent instruction set. Some of these instructions expanded into several
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machine-dependent instructions. The difference between the static and dynamic bytes per instruction is

of course dependent on the scheme used for encoding instructions on each machine.

Machine Static Dynamic Diff

VAX-11 4.41 4.14 -0.27
HCX 4.40 3.98 -0.42
3B15 5.66 4.15 -1.51

68020 4.00 3.52 -0.48
32016 3.98 3.52 -0.46
80386 3.52 3.15 -0.37
3230 4.22 3.61 -0.62

RT 3.01 2.59 -0.42
CLIPPER 4.14 3.61 -0.53

SPARC 4.00 4.00 0.00

Table 20: Bytes per Instruction

3.4.2.4. Memory References

There were a few differences in the measurements of memory references that were consistent for

the machines examined. On all the architectures in this study there was a greater percentage of dynamic

byte memory references than static byte memory references due to the loops involving character process-

ing for several programs in the test set. The dynamic measurements had a smaller percentage of

operands referencing memory than the static measurements due to variables used heavily inside of loops

being allocated to registers.

3.4.2.5. Register Usage

Dynamic measurements consistently showed a greater percentage use of scratch registers (as

opposed to non-scratch registers) and a smaller number of saves and restores per call on all the architec-

tures in the study as shown in Table 21. It is interesting that the 3230, the only machine that used a

caller-save method for saving and restoring general-purpose registers, was also the only machine that had

more dynamic than static saves and restores. Since the 3230 used a caller-save method, all of its registers

are scratch.
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Saves/Restores per Call Per Cent Use of Scratch Registers
Machine

Static Dynamic Diff Static Dynamic Diff

VAX-11 1.60 1.19 -0.41 47.12 61.49 14.37
HCX 2.16 1.73 -0.43 34.61 46.13 11.52
3B15 1.38 0.92 -0.46 39.46 56.40 16.94

68020 1.97 1.50 -0.47 47.68 58.12 10.44
32016 1.63 1.32 -0.31 44.25 54.34 10.09
80386 1.36 1.11 -0.25 53.45 62.74 9.29
3230 4.55 4.82 0.27 100.00 100.00 0.00

RT 4.19 4.04 -0.15 55.22 57.75 2.53
CLIPPER 2.01 1.60 -0.41 57.27 67.70 10.43

SPARC N/A N/A N/A 52.47 55.64 3.17

Table 21: Static and Dynamic Measurements of Register Information

Leaf functions are often used as utility or library functions and are invoked from more than one

place in the program. They are also often invoked from a loop in non-leaf functions. Therefore, leaf

functions are usually invoked more frequently than non-leaf functions. Only 17% of the functions in the

test set were leaf functions, yet 56% of the invoked functions were leaves. Vpo allowed scratch registers

in leaf functions to be allocated to local variables and arguments. Therefore, dynamic measurements for

machines with callee-save methods showed a greater percentage use of scratch registers and a smaller

number of saves and restores per call. Note that there are no saves and restores in a leaf function using a

caller-save method.

3.4.2.6. Correlations and Regression Models

Typically static measurements are easier to obtain than dynamic measurements. By examining the

differences between static and dynamic measurements, one could estimate dynamic measurements from

static measurements on other architectures [DRW89]. If it is determined that there is a high linear corre-

lation between a static and dynamic measurement, then a linear equation can be derived that can effec-

tively use a static measurement to predict the corresponding dynamic measurement. A statistical pack-

age, SPSS [Nor86], was used to determine the correlation between static and dynamic measurements and

to produce an estimator of dynamic measurements using regression analysis. The static-dynamic percen-

tage pairs for each machine were used as input to SPSS to compute the Pearson correlation coefficient, an
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indicator of linear relationship. This coefficient can have a possible range from -1 to 1. When the value

is near either extreme of the range, a linear relationship is suggested.

For instance, the static-dynamic pairs for bitwise and instructions from Table 16 resulted in a Pear-

son correlation coefficient of 0.9517. The regression analysis method of least squares was used to deter-

mine a line that minimizes the sum of squared distances from the observed data points representing

static-dynamic pairs from that line. This regression line is represented by the equation

dynamic=b 0static+b 1

where b 0=0.33 and b 1=−0.43 are the linear coefficients from least-squares fitting. This line is shown

along with the data points representing static-dynamic pairs of bitwise and instruction percentages in Fig-

ure 18.
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Figure 18: Percentage of Bitwise And Instructions

In the presentation of correlation coefficients in Table 22, asterisks are used to designate those for

which the data support rejection of a hypothesis of no correlation at a very strong significance level.

Significance level is the probability that a sampling of values of uncorrelated random variables would

yield results at least as suggestive of a linear relationship as those obtained. In Table 22 one asterisk
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indicates that the data give sufficient evidence to reject a one-sided hypothesis at a significance level of

.01, while two asterisks indicate rejection at a .001 significance level. Regression analysis achieves an

estimator of each dynamic measurement consisting of a constant multiple of the static measurement plus

a constant. Table 22 also shows the estimate of the constant coefficient (b 0) by which a given static

measurement is to be multiplied as well as that for the additive constant (b 1). The measurements for

unconditional jumps and returns were broken into two extra categories. The first category indicates that

several return instructions can appear within a function. The second category only allows one return in a

function. The second category was used for machines that required additional instructions before the

return to restore the state of the calling function. At each point a return was needed, an unconditional

jump was generated to the bottom of the function. This resulted in a smaller number of static instruction

bytes. The RT and the SPARC were not used for multiplies and divides since these machines did not

have these instructions. The RT was not used for the register deferred, displacement, and direct address-

ing modes since direct addresses were implemented as register deferred and displacement. The SPARC

was also not used for the displacement and direct addressing modes. A direct address on the SPARC is

constructed by two instructions. The displacement addressing mode only allowed displacements that

could be represented in twelve bits. The RT was not included in the floating-point instructions since

floating-point operations were implemented using memory-mapped I/O. The SPARC was not included

for saves and restores since this machine uses register windows. The SPARC was also not included in

the sample for bytes per instruction since all instructions on the SPARC are four bytes in length. Note

also that the measurements from the 3230 were omitted for displacement addressing mode, saves/restores

per call, and use of scratch registers since a caller-save calling sequence was used.
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Num Correlation Coefficient Coefficient
Measurement

Cases Coefficient b 0 b 1

Instructions

calls 10 .9323** 0.31 -0.23
compares 10 .9814** 1.46 -1.95

conditional jumps 10 .9597** 1.43 -2.09
unconditional jumps - 1 4 .8775 0.47 -0.17
unconditional jumps - 2 6 .9233* 0.60 -1.22

returns - 1 4 .9445 0.72 -0.32
returns - 2 6 .9530* 1.74 -0.73

integer adds 10 .9401** 1.65 1.95
integer subtracts 9 .8404* 0.95 0.76

integer multiplies 8 .9564** 2.91 0.28
integer divides 8 .9229* 0.69 -0.04

shifts 10 .9876** 3.74 0.13
bitwise ands 10 .9517** 1.30 -0.33

bitwise ors 9 .9435** 0.28 -0.02
float add 9 .9435** 3.51 -0.12

float subtract 9 .9044** 0.70 -0.02
float multiply 9 .9730** 2.11 -0.11

float divide 9 .9899** 1.55 -0.02

Address Modes

register addrmode 10 .9333** 0.88 15.63
immediate addrmode 10 .9710** 0.72 1.48

register deferred addrmode 9 .8973** 1.69 -0.85
displacement addrmode 7 .9830** 1.45 -1.85

direct addrmode 8 .9402* 0.46 -0.22

Miscellaneous

saves/restores per call 8 .9962* 1.08 -0.52
use of scratch registers 9 .7870* 0.63 27.82

bytes per instruction 8 .9771** 0.98 -0.38

Table 22: Correlations and Linear Estimators

This line, together with other statistics, can be used to derive a confidence interval estimate of the

population mean dynamic figure for any given static figure within the static range of our sample. The for-

mula [BLG83] for such an estimate is:
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b 0staticgiven + b 1 ± t 1−α/2;n−2 Se√ddddddddn
1hh+

(n−1)Sstatic
2

(staticgiven−staticmean)2
hhhhhhhhhhhhhhhhhhh

where

b 0, b 1 are the linear coefficients for the least-squares fit;

staticgiven is the given static level at which prediction is desired;

1−α is the degree of confidence associated with the interval estimate;

t γ ; df is the abscissa value associated with the standard Student-t distribution with df
degrees of freedom below which lies 100γ percent of the area under the distribution
curve;

Se is the standard error of the estimate;

n is the sample size;

staticmean is the mean of the static sample figures; and

Sstatic is the static sample standard deviation.

So, for instance, to estimate the true mean dynamic cmp statement percentage given a static cmp per-

centage of 9.17, a static sample mean of 9.07, a static sample standard deviation of 2.71, and a standard

error of the estimate of 0.82, we might use the results shown in Table 22 and the formula above to get a

95 percent confidence interval of

1.46 (9.17) − 1.95 ± (2.31)(0.82)√ddddddd10
1hhh +

9(2.71)2

(9.17 − 9.07)2
hhhhhhhhhhhh

or about

11.44 ± 0.60.

Note that this is an estimate of the population mean rather than an estimate of an individual outcome. An

individual prediction interval would be considerably wider and is found by a formula similar to that given

for the mean above.

b 0staticgiven + b 1 ± t 1−α/2;n−2 Se√ddddddddd1+
n
1hh+

(n−1)Sstatic
2

(staticgiven−staticmean)2
hhhhhhhhhhhhhhhhhhh

Calculation of an individual 95% confidence interval of the cmp instruction results in the interval

11.44 ± 1.99.

Note, too, that such estimates are appropriate only within the sample static ranges for each measure.

To test if the coefficients shown in Table 22 could accurately predict dynamic measurements from

their static counterparts, a 95% individual confidence interval for each category was calculated. A 95%
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confidence interval for a specific category indicates that there is a 95% chance that given a static value,

the dynamic value would be in that specified range. The input data to the test programs for the 68020

was changed, the test programs executed, and new measurements collected. Only one of the twenty-four

categories of measurements, bitwise ands, resulted in a dynamic value that fell outside of its confidence

interval. Thus, given a large enough test set, these linear relationships are not totally dependent on the

test data which determine the execution paths taken. The low and high ranges of the confidence interval

and the actual dynamic value from the new measurements on the 68020 are shown in Table 23.

Measurement Low High Actual

Instructions

calls 2.18 3.20 2.34
compares 9.45 13.43 12.39

conditional jumps 11.06 15.76 14.87
unconditional jumps - 2 1.63 3.11 2.55

returns - 2 1.57 2.37 2.12
integer adds 2.39 11.45 7.40

integer subtracts 0.43 3.95 1.91
integer multiplies 1.27 2.09 1.99

integer divides 0.16 0.32 0.30
shifts -0.05 3.37 1.11

bitwise ands 2.00 3.04 1.91
bitwise ors 0.06 0.10 0.10

float add 0.23 0.37 0.33
float subtract 0.02 0.06 0.04
float multiply 0.17 0.21 0.21

float divide 0.04 0.10 0.09

Address Modes

register addrmode 43.01 62.23 50.10
immediate addrmode 11.57 15.73 13.95

register deferred addrmode 2.25 5.17 3.01
displacement addrmode 5.91 9.73 6.77

direct addrmode 4.51 8.05 7.28

Miscellaneous

saves/restores per call -0.83 4.05 1.33
use of scratch registers 48.00 67.72 60.96

bytes per instruction 3.24 3.82 3.52

Table 23: Confidence Intervals and Results for the 68020
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3.4.3. Comparing the Architectures

The actual time required to perform each type of instruction on a given machine depends upon the

actual hardware implementation. Some vendors do not supply the execution times for each instruction

due to privacy or difficulty in obtaining exact figures. Using execution times to compare architectures

may result in misleading conclusions. In the CFA studies [FuB77] the performance of the architectures

were evaluated by only three simple measures.

1. S : Number of static bytes used to represent a program.
2. M : Number of bytes transferred to and from memory.
3. R : Number of bytes transferred between registers.

Perhaps part of the reason for using such simple measures was the difficulty of collecting more detailed

information. This architectural study does not suffer from that limitation.

Another use of the obtained measurements is to compare the effectiveness of the architecture of

each machine by attempting to determine the total architectural cost of the execution of the test set. To

only compare architectures and not hardware implementations, each machine instruction was associated

with a generic instruction. For instance, the ‘‘add2’’ instruction on the VAX-11 and the ‘‘a’’ instruc-

tion on the RT were both associated with the generic ADD_INST instruction. Each generic instruction is

assigned a cost. Similarly every addressing mode on each machine was associated with a generic

addressing mode with a specified cost. These costs were derived by examining the relative times of dif-

ferent types of operations and addressing modes published from different vendors.

3.4.3.1. Instruction Costs

The instruction cost results are shown in Figure 19 and 20. The dotted area represents the instruc-

tion costs when delayed branches are not taken into account. This area is calculated by assuming that a

portion of the execution of each instruction following a delayed branch is overlapped with the execution

of the delayed branch. This portion is the execution cost of a move instruction. The dashed area

represents the instruction costs when delayed loads are not taken into account. This area is also calcu-

lated by assuming that the execution cost of a move instruction is overlapped with the execution of the

delayed load. The high total of instruction costs for the 3230 was partially due to saving and restoring
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registers by its caller-save method, which accounted for over 10.5% of the instruction costs. These

figures show the effectiveness of pipelining loads and branches for the three RISC machines. Figure 20

illustrates that the machines with more complicated instructions had a greater cost per instruction.

400

500

600

700

800

instruction
costs

in
millions

VAX-11 HCX 3B15 68020 32016 80386 3230 RT CLIP SPARC

Number at top of bars is ratio to VAX-11.

1.00 1.01
1.08

1.03 1.02
1.06

1.33

.

.

.. . . . . ..
.
.

1.08

1.19

.

.

.

.. . . . ..
.
.
.

1.07

Figure 19. Number of Instruction Cost Units for each Machine

-0

2

4

6

cost
per

instruction

VAX-11 HCX 3B15 68020 32016 80386 3230 RT CLIP SPARC

Number at top of bars is ratio to VAX-11.
1.00

0.91
0.82

0.76 0.80
0.70 0.71

... . . . . ...
0.43

0.66

... . . . ...
0.52
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3.4.3.2. Operand Costs

The operand cost results are shown in Figures 21 and 22. The machines with more complicated

addressing modes had a larger cost per operand. Since there were fewer executed instructions and thus

fewer operands in the more complicated machines, in general the total operand costs for these machines

were smaller. The number of operand costs for the Clipper and SPARC were reduced to due to the large
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number of available registers on each of these machines. The SPARC had a higher number of operand

costs than the Clipper since global addresses had to be constructed using two immediate values. The RT

had a large number of operand costs due to its use of a constant pool for generating global addresses.
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3.4.3.3. Memory Costs

The memory costs were obtained by assigning a cost to each memory reference. In general, RISC

machines reference memory less often than CISC machines due to a greater number of available regis-

ters. The RT was an exception due to its use of a constant pool for generating global addresses. Each

time a global address is needed, the RT loads the desired address from memory. This is shown in Figure
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23.
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3.4.3.4. Total Costs

Figure 24 shows the total generic cost for each machine. The total cost was obtained by adding the

instruction, operand, and memory costs.
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Without some consideration given to the actual implementation, these results can be misleading.

The results seem to imply the machines with the more complicated instructions and addressing modes

will perform almost as well as RISC machines. The results are very different if one only considers

whether a machine is implemented using microprogramming or not.
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Microprogramming a complicated instruction set, such as the VAX-11, has advantages. The more

complicated instructions take longer to execute than the simpler instructions. However, to avoid an

instruction cycle time as long as required to implement the most time-consuming complex instruction,

each macroinstruction can be implemented as a set of microinstructions. This reduces the average execu-

tion time for a macroinstruction. Instructions can be implemented more easily and cheaply in a

microprogram than in a hardwired control unit. Also the instruction set of a machine can be modified

without modifying the underlying hardware.

The main disadvantage to using microprogramming is that it is slower than a hardwired unit. A

microcoded control unit typically uses the opcode of the macroinstruction as an address in a table in the

control store memory. Each entry in the table is a jump to the beginning of a microroutine. At the end of

the microroutine control is returned to execute the next macroinstruction.

The RT, Clipper, and SPARC are machines that can be implemented without microprogramming.

Memory is only referenced by load and store instructions. This results in all other operations except for

branches being executed in one machine cycle. Since these instructions take approximately the same

amount of time, microprogramming would only increase the execution time of the instruction cycle.

Since each of these instructions are simple, they can also more easily be hardwired.

Figures 25 and 26 show the adjusted instruction costs and total costs assuming all the machines

except for the RT, Clipper, and SPARC are microprogrammed. The assumption is that each instruction

on the RISC machines is less expensive since there is no requirement to branch to the microroutine and

return from it. Therefore a cost of 1 unit will be subtracted from each instruction executed on these three

machines.
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3.4.3.5. Conclusions

These results should be viewed as very rough estimations. If one accepts the stated assumptions,

the results from estimating execution costs seem to imply that the RISC machines are more efficient. It

appears that the greater number of instructions executed by the RISCs is more than compensated by

effective pipelining of loads and branches. The ability for an architecture to be implemented effectively

without microprogramming also reduced the execution costs of the RISC machines. Since RISC

machines are simpler than CISCs and should be in general easier to design and build, a RISC approach to

new architectures may be advisable.
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Other factors may be included when comparing each architecture. For instance, the static or

dynamic number of bytes of instructions could be included. A machine supporting different size instruc-

tions, however, increases instruction decoding time, lengthens the instruction pipeline, and complicates

paging algorithms [Hen84, Pat85]. Machines with complex instructions may result in more chip area

being used. The design and implementation costs of the hardware supporting architectural features could

also be considered. It is very difficult to determine the appropriate weightings for each of these factors.



CHAPTER 4

EXPERIMENTS IN CODE GENERATION AND MACHINE DESIGN

Many experiments can easily be performed using the environment that has been developed as part

of this dissertation. One area that was examined is methods for saving and restoring registers. Some of

the questions addressed are:

(1) What is the effect of using a caller-save calling sequence versus a callee-save calling sequence?

(2) How many scratch registers should a machine with a callee-save calling sequence have?

(3) How much of a performance gain is obtained by using data flow analysis to minimize the number

of saves and restores?

(4) Would a combination of a caller-save and callee-save calling sequences be more effective?

Other aspects of the calling sequence can be examined. After noting that more than 6.5% of

memory references found on the VAX were caused by pushing argument values onto the run-time stack,

perhaps other schemes for passing arguments may prove to be more efficient. The architectures in the

study implement calling sequences with instructions that vary in complexity. Some machines, such as the

VAX-11 and HCX-9, use very complex call and return instructions. Other machines, such as the Clipper,

use simpler instructions. Some questions that were investigated are:

(1) Is it beneficial to pass arguments in registers without interprocedural analysis?

(2) How often are each of the functions performed by complex call and return instructions necessary?

(3) Would the use of more primitive instructions result in more effective code?

(4) Can additional optimizations be accomplished with primitive call and return instructions?

Branches have been found to be expensive on all of the architectures in the study. One reason for

this is that the address calculation and fetching of the branch target is accomplished at the point that the

transfer of control is to occur. Therefore, the following ideas were explored.

-78-
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(1) Is it feasible to separate the address calculation and fetching of the branch target from the transfer

of control?

(2) By exposing such a separation to the compiler, can additional optimizations occur?

(3) Would such a separation reduce pipeline delays?

This chapter consists of four experiments. The first is an evaluation of methods to save and restore

registers. The next experiment measures the effectiveness of passing arguments through registers as a

calling sequence convention. This is followed by an experiment using primitive call and return instruc-

tions in combination with passing arguments through registers. The last experiment evaluates a new

technique for reducing the cost of branches by using registers.

4.1. Methods for Saving and Restoring Registers

There is a sequence of actions that is required to implement a function call. This sequence of

actions, or calling convention, is an important aspect of both machine design and programming language

implementation. Poor architectural support for subprogram calls, or poor design of the calling conven-

tion, can result in slower programs and may lead programmers to avoid the subprogram abstraction

mechanism.

An important component of a calling convention is how to preserve the values of the registers that

may be used across function calls. Without link-time optimizations [Wal86], interprocedural register

allocation [Cho88] or special hardware, such as register windows [PaS82] or dynamic masks [HuL86],

there are two methods commonly used to save and restore the values in registers that may be destroyed

by the called function. One method delegates the responsibility for saving and restoring the values of the

registers to the called function. Upon entry to the called function, the values of the registers that are used

and need to be preserved are stored. The values of these registers are then loaded upon exiting the called

function. For languages that support recursion, the register values are usually saved in and restored from

the activation record of the called function. Since the responsibility of saving and restoring the register

values is delegated to the called or callee function, this method is known as callee-save.
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The other method delegates the responsibility for saving and restoring the registers to the calling

function. The calling function stores the values of the registers on the run-time stack before a call

instruction. After the call instruction, the function loads the values from the run-time stack into the regis-

ters. Since the responsibility of saving and restoring the register values is assigned to the calling or caller

function, this method is known as caller-save.

There are many factors to consider when choosing a method to save and restore the values in regis-

ters across function calls. Choosing a method often involves trading off implementation simplicity for

run-time efficiency. To a large extent, design decisions are driven by the architectural support supplied

by the target machine and the intuition (bias) of the implementor. This section describes the results of a

set of controlled experiments which were used to evaluate several methods for saving and restoring regis-

ters [DaW91]. Our experiments show that a hybrid approach, a combination of callee and caller

methods, produces the most effective code.

4.1.1. Related Work

There has been some previous work studying methods for saving and restoring registers. In seek-

ing to show that their register window mechanism would efficiently support high-level languages, Patter-

son and Sequin measured how deeply calls are nested at run-time [PaS82]. They found that the average

calling depth during the execution of a program was not very great. Their hardware approach, register

windows, avoids saving and restoring registers by switching to a new window at each call. Saves and

restores are required only when no more windows are available. With eight register windows, in our

investigation less than one percent of the calls and returns required a window to be stored and loaded

from memory.

Lang and Huguet [HuL86] analyzed the effectiveness of a simple caller-save method, a simple

callee-save method, and six other schemes involving a dynamic mask. Each bit set in a single dynamic

mask indicates a register whose value needs to be retained by functions currently active. A static mask,

associated with each function, indicates the set of registers it uses. The set of registers saved and restored

is computed by taking the intersection of the dynamic and static masks. For each of these schemes, vari-
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ables were preallocated to registers. They found that the dynamic mask could reduce the total number of

saves and restores. They also found that the dynamic mask schemes benefited from a larger set of regis-

ters by assigning registers in a round-robin fashion as functions were being compiled.

Chow [Cho88] investigated linking program units together in a compilation environment to allow

interprocedural register allocation. He divided the registers of a machine into caller and callee-save sets.

Using a technique called shrink-wrapping, the saves and restores for callee-saved registers were placed

only around regions where the registers were used. By processing the functions in a depth-first ordering

of the call graph, the interprocedural register allocator avoided using registers that could be active at the

same time in other functions. It also was used to pass arguments through registers. With a sufficient

number of registers, Chow found that the cost of saving and restoring registers at procedure calls could

be significantly reduced.

4.1.2. Methods Investigated

The technique used to save and restore register values across function calls can affect performance

and influence the design of the instruction set of a machine. The advantages and disadvantages of the

possible implementations are not obvious. To better understand the tradeoffs, six possible implementa-

tions for saving and restoring register values across function calls were examined. These six methods

will be referred to as:

1. simple callee
2. simple caller
3. simple hybrid
4. smarter callee
5. smarter caller
6. smarter hybrid

The three simple methods do not use data flow analysis to minimize the number of saves and restores

while the smarter methods do.

4.1.2.1. Simple Callee

The simple callee method, due to its simplicity, is probably the most common method used for sav-

ing and restoring registers. The set of allocable registers is broken into two groups, scratch and non-
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scratch. Local variables and arguments may be allocated to non-scratch registers. Scratch registers are

not guaranteed to retain their values across function calls. Consequently, they are only used to hold tem-

porary values, to compute intermediate results, and to return values from the called function to the calling

function. Only the non-scratch registers that are used in the function are saved and restored upon func-

tion entry and exit respectively.

This is the calling sequence generated by pcc-based C compilers [Joh79] on a VAX-11 running

4.3BSD Unix and on a SUN-3 running SunOS 4.0. For both of these compilers, a register declaration of

a local variable or argument results in that variable being allocated to a non-scratch register if one is

available. On the VAX-11, a mask with a bit set for each register to be saved is stored at the beginning

of each function. The calls instruction scans the mask pushing the contents of the indicated registers

onto the run-time stack. On function exit, the ret instruction restores the values into the appropriate

registers. On the SUN-3, a Motorola 68020-based machine, special instructions are used to save and

restore the non-scratch registers referenced by the called function. These instructions also use a bit mask

to specify the registers to save and restore.

4.1.2.2. Smarter Callee

The smarter callee method is similar to the simple callee method with one difference. Instead of

placing the saves and restores of non-scratch registers at the function entry and exit respectively, saves

and restores are placed only around the region where the registers are used. For instance, if the lives of a

non-scratch register are contained within a conditional, such as an if statement, then the save and restore

of that register are also placed within the code generated for the if statement. If the execution path when

the function is invoked does not enter this region of code, then the save and restore are not performed

unnecessarily. Saves and restores, however, are never placed within loops.

4.1.2.3. Simple Caller

The simple caller method places local variables and arguments in any allocable register. With this

approach there is no notion of partitioning the available registers into scratch and non-scratch sets. The

life of every available register does not extend across function calls and thus all registers are scratch.
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Any register that is used to hold a local variable or argument is saved immediately preceding a call and

restored immediately following a call.

4.1.2.4. Smarter Caller

The smarter caller method uses data-flow analysis to minimize the number of saves and restores.

This analysis allows two different optimizations to be performed. The first optimization eliminates saves

and restores that are unnecessary. The second optimization attempts to move necessary saves and

restores out of loops. These optimizations are explained in the section that describes the implementation

of this approach.

4.1.2.5. Simple Hybrid

How a variable to be allocated to a register can be saved and restored most efficiently depends on

how the variable is used within a function. In some cases, it would be cheaper to allocate a variable to a

callee-save register to save and restore the register as in a callee-save convention. This occurs when the

life of the variable overlaps with call instructions. In other cases, it would be cheaper to allocate a vari-

able to a caller-save register. This occurs when the life of the variable does not overlap with call instruc-

tions. Often both types of variables exist within a single function.

The simple hybrid method is a combination of the simple callee and simple caller methods. The set

of available registers is divided into two classes. One class, non-scratch registers, is saved and restored

by the simple callee method. The cost of saving and restoring a non-scratch register is always two

memory references. The other class, scratch registers, is saved and restored by the simple caller method.

The save/restore cost of a scratch register is twice the number of memory references as estimated calls

executed within the function. The compiler allocates variables to the class with an available register

which has the least estimated save and restore cost.

4.1.2.6. Smarter Hybrid

The smarter hybrid method is similar to the simple hybrid method. The difference is that this

method is a combination of the smarter callee and smarter caller methods. The set of available registers
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is partitioned into one set of non-scratch registers that is saved and restored by the smarter callee method

and a second set of scratch registers that is saved and restored by the smarter caller method.

4.1.3. Environment for Experimentation

For these experiments, we measured the number of instructions executed, the number of memory

references, and the size of the object code. The experiments were performed on a VAX-11 and a

Motorola 68020. On both machines, C compilers were constructed for each of the six methods. The only

calling convention changes made to the run-time library were those required to implement the new save

and restore methods. Other conventions, such as passing arguments on the stack instead of in registers,

were not altered.

The number of instructions executed is affected by two factors. Typically, as more variables are

allocated to registers, the number of instructions used for saving and restoring registers increases. On the

other hand, as frequently used variables are allocated to registers, the number of instructions aside from

those used for saving and restoring registers decreases. This occurs since vpo reattempts code selection

after register allocation and often more optimizations are possible once a variable has been allocated to a

register. For instance, the VAX-11 and Motorola 68020 auto-increment and auto-decrement addressing

modes are only realizable if a variable is allocated to a register. Use of these addressing modes results in

fewer instructions being executed.

The number of dynamic memory references is also affected by the number of variables allocated to

registers. As more variables are allocated to registers, the number of memory references for saving and

restoring registers increases. Conversely, the number of other types of memory references, loading and

storing values from variables, decreases.

The test set used for both architectures contained the same nineteen programs described for the

architectural study. For each method, all source files of each program were recompiled on the VAX-11.

To more accurately determine the impact of each method, the source files from the C run-time library

were also recompiled. The test set comprised a total of 250 source files (including files from the C

library). The C library on the SUN-3 was not used in data collection since the sources for the library rou-
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tines were not available. Thus, the test set used for the Motorola 68020 was the same nineteen programs

consisting of only forty-five source files. Data was collected from each of the files compiled by vpo.

Since the C library was not used for data collection on the Motorola 68020, the results for the VAX-11

more accurately reflect the effectiveness of each method of saving and restoring registers.

4.1.4. Implementation

For each method, the vpo compiler attempts to allocate local variables and arguments to registers if

expected benefits outweigh the save/restore cost. The benefits are determined by estimating the number

of times that a variable will be referenced each time the function is invoked. References inside of loops

are weighted by the loop nesting level. The following subsections describe the implementation of each

method.

4.1.4.1. Simple Callee

In the simple callee scheme, a local variable is allocated to an available non-scratch register if the

compiler estimates that the variable will be referenced at least three times. Similarly, an argument is allo-

cated to an available non-scratch register if the compiler estimates that the argument will be referenced at

least four times. An additional reference is required for arguments due to the initial load of the argument

from the run-time stack to the register.

4.1.4.2. Smarter Callee

For the smarter callee approach, local variables and arguments are allocated to registers in the same

manner as the simple callee method. The only difference between the two methods is the placement of

the saves and restores. The placement of these instructions were determined by using the data flow equa-

tions for a method called shrink-wrapping described in Cho88.

4.1.4.3. Simple Caller

Unlike the simple callee method, the number of saves and restores in the simple caller method

varies depending upon the estimated number of calls made by the function. In the simple caller method a

local variable is allocated to an available register if vpo estimates that placing the variable in the register
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will result in fewer overall memory references. This only occurs if the number of estimated references to

the variable is greater than the estimated number of saves and restores (twice the estimated number of

calls made). An argument is allocated to an available register if the number of references is estimated to

be greater than the number of saves and restores plus one. As in the simple callee method an additional

reference is required for arguments due to the initial load of the argument from the run-time stack to the

register.

4.1.4.4. Smarter Caller

The estimated number of saves and restores of registers associated with an argument or local vari-

able for the smarter caller method is determined in the algorithm described below. Each step in the algo-

rithm refers to one or more examples of specific program flow graph situations, illustrated in Figures 25

through 30. Each arrow between instructions in these figures represent a sequence of instructions that

can be executed within the function.

for each register at each call site in a function

(1) Determine if there is a potential use of the register after the call. If there is no use (only sets or returns as
shown in Figure 27), then there is no need to save and restore the register associated with the call.

(2) Determine if there is a use of the register that follows the current call with no intervening call. If not (only
sets, calls, and returns as shown in Figure 28), there is no need to restore the register after the current
call since it will be restored after a following call.

(3) Determine the cost of a restore before each use that follows the current call and is not preceded by
another call. If these restores cost less than a restore following the current call, then place restores
before each of these uses. Otherwise, place a restore immediately after the current call. These choices
are illustrated in Figure 29. If there is a use of a register that can follow the current call and the use can
also be reached without the current call being executed, then the restore is always placed after the
current call. This is illustrated in Figure 30.

(4) Determine if there is a set of the register that precedes the current call with no intervening call. If not
(only calls or function entry as shown in Figure 31), there is no need to save the register.

(5) Determine the cost of a save after each set that precedes the current call with no intervening call.
Determine the cost of a restore after each call that precedes the current call with no intervening set of the
register. If these saves following each set cost less than a save preceding the current call and the
restores following preceding calls, then place saves after each of these sets. Otherwise, place a save
before the current call and a restore following the preceding calls. This choice is shown in Figure 32.

This algorithm is first used to order the arguments and local variables from the greatest estimated benefit

to the smallest estimated benefit from allocating the variable to a register. After variables have been allo-

cated to registers and all optimizations have occurred, the algorithm is used to insert the appropriate saves
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and restores. Thus, the smarter caller method reduces the cost of saving and restoring registers in two

ways. First, it saves and restores a register only when necessary. Second, it moves the saves and restores

to follow the previous sets and to precede the subsequent uses if it is beneficial. This has the effect of

moving saves and restores out of loops.

4.1.4.5. Simple Hybrid

For the simple hybrid method, vpo calculates the number of saves and restores as in both the simple

callee and the simple caller methods. When attempting to allocate a local variable or argument to a regis-

ter, if a register from each set is available, then the costs of saving or restoring the register by the two

methods are compared. If it is beneficial to use the register, the method resulting in the least cost is used.

4.1.4.6. Smarter Hybrid

The smarter hybrid approach is similar to the simple hybrid approach. In this approach vpo calcu-

lates the number of saves and restores as in both the smarter callee and the smarter caller methods and

uses the method that has the greatest benefit for allocating a local variable or argument to a register.

4.1.5. Partitioning Registers

Before one can evaluate the effectiveness of a callee-save or hybrid calling sequence, the allocable

registers must be divided into two sets. One set of registers, designated as non-scratch, are guaranteed to

retain their values across calls, and the other set of registers, designated as scratch, are not. If the set of

allocable registers in a callee-save calling sequence is partitioned such that there are too many scratch

registers, then not enough variables can be allocated to registers. If there are too many non-scratch regis-

ters, then saves and restores of non-scratch registers used only as temporaries will be required. An inap-

propriate partitioning in a hybrid calling sequence can also result in poorer performance due to fewer

variables allocated to registers.

There has been little attention given to determining the best allocation of scratch and non-scratch

registers in a callee-save calling sequence. For instance, the fixed-point portions of the Digital Equip-

ment Corporation’s VAX-11 and the Harris Corporation’s HCX-9 architectures are very similar. Yet the
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VAX-11 4.3 BSD C run-time library was implemented with six of its twelve user-allocable registers as

scratch while the HCX-9 C run-time library was implemented with only two of its thirteen user-allocable

registers as scratch. It appears that six registers were designated as scratch on the VAX-11 since the

movc instruction is hardwired to use r0 through r5.

The callee and hybrid methods involve partitioning the set of available registers into two classes.

For these methods, the number of scratch registers was varied to determine the most effective combina-

tion of scratch and non-scratch registers. It was found on the VAX-11 that the optimal number of scratch

registers from the twelve allocable general-purpose registers was five for the simple callee method, six

for the smarter callee method, and eight for the hybrid method. The Motorola 68020 has eight allocable

data registers, and six allocable address registers. The most effective number of scratch registers for this

machine was discovered to be two data and two address for the simple callee method, three data and two

address for the smarter callee method, and four data and three address for the hybrid method. The default

number of scratch registers for each register type on this machine was two. Even though the C library on

the SUN-3 could not be recompiled, the number of scratch registers can be increased.

To determine if the most effective percentages of allocable registers designated as scratch for

twelve registers would be best even if the number of registers available changed, vpo for the VAX-11

was modified to produce code assuming that the machine had four, eight, and sixteen user-allocable

registers. Modifying the compiler to produce code with four or eight registers simply required specifying

the reduced number of user-allocable registers to the register allocator. Having more registers than actu-

ally exist required slightly more work. The nonexistent registers were associated with a set of local vari-

ables in each function. If a nonexistent register was referenced directly as an operand, then the

corresponding local variable was used. If an instruction referenced a nonexistent register that was part of

a more complex addressing mode, then the corresponding local variable was loaded into an available

register preceding the instruction and the available register was referenced in the instruction instead. If

there was a side effect of referencing the register, the autoincrement and autodecrement addressing

modes, then additional instructions were generated to update the corresponding local variable. Six exist-

ing registers, the maximum number of registers that could be referenced in a single instruction for the
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VAX-11 vpo compiler, were also associated with a set of local variables. This ensured that there was

always an available register in which one could load a local variable that corresponded to a nonexistent

register.

Table 24 shows the results of varying both the number of user-allocable registers and the number

of scratch registers for the simple callee, simple hybrid, and smarter hybrid methods. The smarter callee

results are not shown since the simple callee results were approximately the same. Note that at least two

scratch registers are required on the VAX-11 to return a double-precision floating-point value. These

results imply that the number of user-allocable registers has little effect on the most effective percentage

of scratch registers (about 40% for simple callee, 50% for simple hybrid, and 75% for the smarter

hybrid). Only for the smarter hybrid with four registers did the percentage vary significantly.

method simple callee simple hybrid smarter hybrid

user-allocable scratch memory scratch memory scratch memory
registers registers references registers references registers references

2 98458465 2 96064606 3 93403276
4

3 111117829 3 96354469 4 91751729

2 78974787 3 76202403 5 73310177
3 78846670 4 75810477 6 728411358
4 79774990 5 76581581 7 73308924

4 75512463 5 71894964 7 68958314
5 75099786 6 71754355 8 6888018412
6 75752791 7 71968620 9 68987123

5 72855408 6 69337708 11 65653992
6 72841124 7 69229771 12 6513985416
7 72924722 8 69302664 13 65593297

Table 24: Results of Scratch/Non-Scratch Combinations

Many callee-save calling sequences seem to be designed using the idea that only a couple of

scratch registers are necessary. In several ports of pcc [Joh79], only two scratch registers are used even

when additional scratch registers are available. There are instances on some machines where more than

two scratch registers are required for calculations to avoid spills. Special instructions that require a

number of registers, such as the move character instruction on the VAX-11, impact the number of
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desirable scratch registers. When no special instructions or calls that can update scratch registers are

detected within a function, local variables and arguments can be allocated to scratch registers. Since over

half the functions entered in the test set met this criteria, this also indicates the need for more scratch

registers. By measuring the effect of varying the number of scratch registers, the appropriate number

may be determined.

4.1.6. Comparison of the Different Methods

Figures 33 through 38 show the results of using the six different methods on the two machines. For

the methods requiring the registers to be partitioned into scratch and non-scratch registers, the best com-

bination as previously determined in the section on partitioning registers was used.

The type of instruction or mechanism available in the architecture to save and restore registers may

bias the results for a particular method. For instance, it would be an unfair comparison if the mask asso-

ciated with the VAX-11 calls instruction was used for simple callee method and a comparable stra-

tegy for the simple caller method was not employed. To illustrate the effects of the mechanism used to

save and restore registers on each of the methods, results are presented in three different ways. The

number above each bar is the ratio relative to the simple callee approach for that type of measurement.

When there was not room to place the ratio above the bar, it was placed below the bar.

The solid lines represent measurements assuming that the saves and restores are not accomplished

by separate instructions. Thus, for a callee-save method a mask is associated with each routine to save

and restore non-scratch registers used in a function as is done with the calls instruction on the VAX-

11. In a caller-save method it was assumed that a mask would be associated with each call instruction to

save and restore scratch registers that are assigned to local variables and arguments. Since saves and

restores in the smarter methods may be desired at locations other than the function entry, function exit,

and calls, this measurement is not appropriate for these three methods. Though use of these masks

decreases the number of instructions, the number of memory references is increased since two memory

references to save and restore the mask would be required for each function entered. For the simple

hybrid method, the caller mask is ored with the callee mask as a routine is invoked and entered, the regis-
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ters corresponding to those bits saved, and the ored mask also saved. When a return instruction is exe-

cuted the ored mask is loaded from memory and the set of registers are restored. Two bytes for the mask

at the beginning of each function were added for callee-save methods and two bytes for the mask associ-

ated with each call instruction were added for caller-save methods.

Results are presented using two other mechanisms to save and restore registers. The dashed lines

represent measurements assuming that special instructions are available that can save and restore a set of

registers. Measurements indicating that saves and restores are accomplished as separate mov instruc-

tions are represented with dotted lines. For the three smarter methods it was assumed that these mechan-

isms would save and restore a specific register always in the same location for an invocation of a function

since the set of registers being restored at a given point may not match the last set of registers saved.

Since the number of memory references is the same if either special instructions or separate instructions

are used to save and restore registers, dotted lines are not shown in the results depicting the number of

memory references. A separate instruction to save or restore a register required four bytes on each

machine. For each method, these mov instructions would reference a memory location reserved on the

run-time stack for that register. Special instructions to save or restore a group of registers were assumed

to require four bytes on the VAX-11. The movem instruction, used to save or restore a set of a and d

registers for the Motorola 68020, required four bytes.

For the VAX-11, Figures 33 through 35 display the total number of instructions executed, the total

number of memory references performed, and the static code size. For each measure, the simple callee

and smarter callee methods produced similar results. There was only a 0.3% reduction in the number of

memory references by using the smarter callee method. The smarter caller method, however, performed

better than its corresponding simple implementation. In terms of instructions executed, the simple caller,

simple hybrid, smarter caller, and smarter hybrid are roughly equivalent. However, the smarter caller

and the hybrid approaches are clearly superior in reducing the number of memory references. It is

interesting to note that there was a 4 to 3 ratio of restores to saves in the smarter caller method. More

restores may occur when a loop with a call has uses and no sets of a register. While the restore has to

remain in the loop, the save is placed before the head of the loop. Both the smarter caller and hybrid
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approach reduced the code size by approximately six percent, when individual instructions were used to

save and restore each register.
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Figure 35: Static Code Size - VAX-11

Figures 36 through 38 display the number of instructions, number of memory references, and static

code size for the Motorola 68020. The simple caller method resulted in the most instructions executed

and the most memory references. Again the improvement in the smarter callee method over the simple

callee method was very slight. Both smarter methods resulted in fewer instructions and memory refer-

ences than their simpler counterparts. Unlike the VAX-11, the simple hybrid was slightly better than the

smarter caller. The poorer performance of the caller methods for the 68020 occurred since the C library

on the SUN-3, which contains many leaf functions, could not be used in data collection. The smarter

hybrid method had the fewest instructions and memory references and required the least space.
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The results for both machines were also affected by the mechanisms in the architecture used to

save and restore registers. The reduction in the number of instructions executed from using masks as

compared to using separate instructions in the simple methods was achieved at the expense of additional

memory references. Special instructions to save and restore a set of registers appear to be an efficient

compromise. These special instructions also reduced the number of instructions executed in the smarter

methods. This shows that even though dataflow analysis was used to place saves and restores at more

beneficial locations in the code, many saves and restores still tended to cluster together.

The availability of hardware support can influence the choice of a method for saving and restoring

registers. The VAX-11 calls instruction, for example, favors using a callee-save approach. Our

experience from implementing compilers for a wide variety of machines has shown that the different

methods require different support. For instance, the saving and restoring of registers in the callee-save
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methods could be implemented more efficiently with instructions that specify a range of registers as

opposed to instructions that use a mask to specify the registers to save and restore. This type of instruc-

tion should execute faster (no need to scan the mask), and can be encoded in fewer bits than an instruc-

tion that uses a bit mask. On the other hand, a caller-save approach favors the use of a bit mask since a

contiguous range of registers to save and restore may not occur at each call (indeed it would be rare that

it was a contiguous range).

A callee-save method could encode a save/restore instruction without specifying the memory loca-

tion by referencing memory at the location specified in the stack pointer and automatically updating the

stack pointer accordingly. Such an instruction would not be useful in a caller-save method without a

frame pointer since arguments are typically placed on the stack at each call.

4.1.7. Future Work

There are still areas involving methods for saving and restoring registers that can be investigated.

At the time these experiments were performed, vpo allocated local variables and arguments to a single

register (or register pair). Techniques known as graph coloring [CAC81, ChH84] can be used to assign

registers to the live ranges of variables rather than to the entire variable. Thus, if the live ranges of two

variables do not overlap, then both live ranges can be assigned to the same register. Such a technique

could reduce the number of saves and restores in a callee-save method since fewer non-scratch registers

may be used. There could be benefits in both callee-save and caller-save methods by being able to allo-

cate more variables to registers.

Another area to be investigated is how these methods perform on different machines. We have

performed experiments on a VAX-11 and Motorola 68020. Both of these machines are considered Com-

plex Instruction Set Computers (CISCs). It would be interesting to perform these experiments on

Reduced Instruction Set Computers (RISCs) as well. For instance, most RISC machines only reference

memory by load or store instructions. This would result in an increase in the use of registers as tem-

poraries. Some of these machines also pass arguments through some of the available scratch registers.

Again, scratch registers would be used more frequently. Thus, the most effective partitioning of scratch
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and non-scratch registers in a callee-save or hybrid approach may have a higher number designated as

scratch.

A final area to be investigated would be the influence of the type of application or programming

language on the effectiveness of these methods. Applications which tend to use more local variables in

each function, often found in scientific applications, would perform more efficiently with save/restore

methods, such as the hybrid methods, that allow more variables to be allocated to registers. Programs in

applications or languages that tend to be more call-intensive may make more use of non-scratch registers.

4.1.8. Conclusions

This study evaluated six different schemes for saving and restoring register values across function

calls. Shrink-wrapping, the approach used in the smarter callee method, has been shown to be effective

when interprocedural analysis is used [Cho88]. The benefit of using callee dataflow analysis, however,

appears to be minimal when optimizations are limited to within the scope of a function. The results from

using shrink-wrapping in this paper are comparable to the results reported by Chow for C programs com-

piled without interprocedural analysis [Cho88]. Therefore, unless some interprocedural optimization is

used, such as interprocedural register allocation or inlining, the complexity of implementing shrink-

wrapping outweighs the benefits. Caller dataflow analysis, however, was shown to be very effective. For

both machines there was over a 10% reduction in the number of memory references by using the smarter

caller method instead of the simple caller method.

The hybrid approaches produced better results than using a single method for saving and restoring

registers. The results indicate that there are typically some situations where registers can best be saved

and restored by a callee method, and other situations where the registers are best handled using a caller

save/restore method. The smarter hybrid approach produced the best overall results. Its implementation

is only slightly more complicated than the smarter caller approach (if shrink-wrapping is not used) and

our measurements showed that it resulted in the fewest number of instructions to be executed and the

fewest number of memory references to be performed. It also produced the smallest code on the

Motorola 68020. If speed of execution is the most important factor, then the smarter hybrid approach
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would be the method of choice. The simple hybrid method is an attractive choice if simplicity and com-

piler speed are the most important factors. While only slightly more complicated than the simple callee

and simple caller methods, the simple hybrid approach produces code that is almost as effective as a

smarter caller-save approach and it is much simpler to implement. Our production compilers use the sim-

ple hybrid approach.

4.2. Parameters Passed in Registers as a Calling Sequence Convention

A significant percentage of memory references when executing programs are due to pushing

parameters onto a run-time stack and referencing those parameters from the run-time stack. This section

describes an experiment that changes the calling sequence on a machine to allow passing up to six param-

eters in registers.

4.2.1. Related Work

Passing parameters through registers is not a new idea. In 1978 Tanenbaum discovered from

dynamic measurements of 300 procedures in SAL that 72.1% of the calls executed had two or less argu-

ments and 98% were passed in five or less arguments [Tan78]. A hardware approach to this problem is

to allow parameters to be passed to routines in registers by use of overlapping sets of registers in register

windows [Pat85]. Lisp compilers have been implemented with arguments passed in registers since the

early 1980s [GrB82]. There have been several approaches to allow parameter passing through registers

involving interprocedural analysis [BeD88, Cho88, Wal86].

4.2.2. Environment for Experimentation

Vpo was modified to collect measurements on the VAX-11. As stated previously, the VAX-11 has

twelve user-allocable registers (r0-r11) which are used to contain both integer and floating-point

values. The calling sequence was modified to pass up to six parameters through the scratch registers.

Double-precision floating-point parameters require two registers. At the point of the call, the compiler

starts with the last parameter that would be pushed onto the run-time stack and stores it in a scratch regis-

ter (r5 if an integer, r4 if a double). The compiler continues placing parameters in scratch registers
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until there are no more arguments or available scratch registers. Any parameters that cannot be passed

through registers are pushed onto the run-time stack. The registers containing the arguments are stored in

memory as a local variable at the function entry. Since the compiler knows the order of the arguments, it

can store the correct register in the appropriate variable. This modification does not affect the availability

of the scratch registers since they cannot be used across calls.

Using reference estimates, vpo allocates the most frequently used variables to registers. Two

memory references are saved if the parameter is allocated to a register. The memory references that are

eliminated are the pushing of the value on the run-time stack in the calling function and loading the value

from the stack into a register in the called function. If the parameter is not allocated to a register, an addi-

tional instruction is required over the traditional scheme of using the run-time stack for passing parame-

ters. The number of memory references in this case is unchanged.

A greater number of arguments should be allocated to registers using this scheme. Vpo will not

allocate a local variable or parameter to a register unless the number of estimated references is greater

than the cost of allocating the variable to a register. The save and restore cost of both local variables or

parameters allocated to registers is two memory references. An additional cost of one memory reference

is estimated for a parameter since the parameter has to be loaded from the stack into a register. Thus, vpo

requires at least four estimated references of a parameter passed on the run-time stack for the parameter

to be allocated to a register. Parameters passed through registers do not require loading from the run-

time stack. An additional memory reference will also be found since the register containing the parame-

ter is stored in memory at the function entry. Thus, a parameter passed through a register that is refer-

enced only twice in a function can be allocated to a register by the compiler.

A number of special conditions had to be resolved to implement the new calling sequence. There

are a set of routines which could not be compiled by vpo, since their source code was not available.

These system calls were identified and parameters were always passed to these routines on the run-time

stack. The set of routines in the C run-time library that accept a varying number of arguments on the

run-time stack (e.g. printf, scanf, etc) were also identified. This set of routines depends on the calling

sequence convention of how parameters are passed. For instance, they are dependent on the direction
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that the run-time stack grows and the order in which arguments are evaluated. Any parameter to these

routines that was optional was passed on the run-time stack. Structure arguments are pushed on the run-

time stack by vpo using movc instructions. Thus, structure arguments in the new calling sequence were

always passed on the stack.

Data was collected using both the default calling sequence convention of passing arguments on the

stack and passing arguments through registers. The C run-time library was also compiled by vpo and

measurements collected to allow a more accurate estimate of the effect of passing parameters through

registers. The test set consisted of nineteen programs and 250 files. This was the same set of test pro-

grams used in the architectural study.

4.2.3. Results

Table 25 shows the results of running the test suite using the two calling sequences. The results

show that passing arguments through registers can effectively reduce the number of memory references.

This simple change to the calling sequence convention resulted in 8.4% fewer memory references. The

reduced number of memory references resulted from not having to push arguments onto the run-time

stack and referencing those arguments from the run-time stack. This savings was possible due to an

increase from an average of 0.57 to 1.51 arguments allocated to registers per function invoked. There

was also 1.0% more instructions executed. Use of a link-time optimizer, such as VLINK [BeD88], could

remove these extra instructions.

measurement default params through regs

instructions 104,886,495 106,616,578
memory references 73,085,389 63,415,387

total memory references 96,148,682 88,103,262
param regs per call 0.57 1.51

Table 25: Results of the Two Calling Sequences
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Passing parameters in registers has been recognized as beneficial in the past. There has been a

variety of schemes used to implement this feature including register windows and link-time optimiza-

tions. Registers windows, though effective, has many disadvantages that include the area required on the

chip for the large number of registers, the increase in instruction cycle time due to longer access to a

register due to having to go through a register window pointer register, and increased process switching

time [Hen84]. Link-time optimization requires fairly complex software and increases the time in the

compilation process. By simply changing the calling sequence a significant improvement can be obtained

without expensive hardware or software. A few recent RISC machines pass arguments through registers

as a calling sequence convention. Some of these machines allow only a subset of the available registers

for passing arguments. For instance, the Clipper only allows at most two arguments to be passed through

registers. This experiment has shown that all of the scratch registers in a callee-save calling sequence can

be used to pass arguments without affecting the availability of these registers.

4.3. Using Simpler Call and Return Instructions

If a machine allows recursion, a run-time stack containing information about the state of each

active function typically is maintained. To save space and reduce the total number of instructions for

maintaining this information, complex call and return instructions have been used in many architectures.

Use of these complex instructions for implementing a calling sequence may result in shorter but more

inefficient programs. Many of the executed calls do not require all of the functions performed by these

complex instructions. Use of these complex instructions also results in missed optimizations available

with more primitive instructions. This section describes an experiment that abandons complex call and

return instructions available on a machine in favor of more primitive instructions.

4.3.1. Related Work

There has been much work in the past to attempt to speed up function calls. A variety of instruc-

tions are available on different architectures to accomplish function linkage. Register windows have

been used as a hardware approach to avoiding access to a run-time stack when the calling depth is shal-

low [Pat85]. Link-time optimizations have been used to avoid more complex call and return instructions
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in specific situations [BeD88]. Er [Er83] discussed three different schemes for optimizing function calls

when the call is the logical last statement in the calling function. Powell [Pow84] stated that his

Modula-2 compiler produced code that executed faster when a more expensive procedure call mechanism

was replaced with a simpler, faster one.

4.3.2. Primitive Instructions Used to Implement Calls and Returns

The VAX-11 calls and ret instructions save and restore the number of longwords of argu-

ments, the register mask, the program counter, the frame pointer, and the argument pointer. The number

of longwords of arguments is used by the ret instruction to adjust the stack pointer back to the value

prior to the caller pushing arguments onto the stack. The register mask is read by the calls instruction

from the first word in the function and is used by the two instructions to save and restore allocable non-

scratch registers.

The VAX-11 vpo compiler used in the previous experiment for passing arguments through regis-

ters was modified to use more primitive call and return instructions. The modified compiler uses the

VAX-11 jsb and rsb instructions which only save and restore the program counter. The pushr and

popr instructions are used to save and restore allocable non-scratch registers, the frame pointer, and the

argument pointer. The frame pointer and argument pointer, if used, are adjusted by subtract instructions

in the called function. The stack pointer, adjusted by subtract instructions in both schemes at the function

entry to allocate space for locals and temporaries, is restored by an add instruction in the new scheme

before each rsb instruction. These changes are illustrated by the example in Figure 39.
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calls $2,_foo

...

.globl _foo

_foo:

.word 0x0FC0

subl2 $4,sp

...

ret

=>

jsb _foo

addl2 $8,sp

...

.globl _foo

_foo:

subl2 $4,sp

pushr $0x3FC0

addl3 $32,sp,ap

addl3 $32,sp,fp

...

popr $0x3FC0

addl2 $4,sp

rsb

Figure 39: Primitive Instructions for Implementing Calls and Returns

Fewer data memory references should occur using the more primitive instructions. A large percen-

tage of total memory references can be attributed to handling function linkage. In contrast to the calls

and ret instructions, pushr and popr only save and restore the frame pointer and argument pointer

if they are used. With the six scratch registers being used to pass arguments, very few of the compiled

routines will use the argument pointer. This also means that the stack pointer rarely requires adjustment

after a jsb instruction. The frame pointer need not be adjusted if all locals are allocated to registers.

More than 55% of the routines executed in the test set were leaves. Many of these leaves have all of its

local variables allocated to scratch registers and thus will not require use of the pushr and popr

instructions for saves and restores.
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4.3.3. Optimizations Available

By using the primitive jsb and rsb instructions in combination with passing arguments through

registers, many optimizations on calls can now be accomplished. Because arguments are passed through

registers, typically at the point of the call the stack pointer is only adjusted to place the return address on

the stack. Optimizations can be accomplished when such a call is immediately followed by an uncondi-

tional jump, the sequence of instructions to return to the caller, or another call.

A call followed by an unconditional jump can be optimized to avoid executing the unconditional

jump. The jsb instruction pushes the address of the next instruction on the stack and jumps to the

beginning of the function. To avoid the unconditional jump, the destination of the unconditional jump

following the call can be pushed on the stack and then an unconditional jump to the routine can be used.

When the called routine executes its rsb instruction, control will be transferred to the destination of the

original unconditional jump. This is shown by the example in Figure 40.

jsb _foo

jbr L1

=>

pushl $L1

jmp _foo

Figure 40: Optimization of a Call Followed by an Unconditional Jump

A call followed by the sequence of instructions to return to the caller can be optimized to avoid the

execution of the rsb instruction. The rsb instruction pops the return address off the run-time stack

and branches to that address. To avoid execution of the rsb instruction, the sequence of instructions to

return to the caller preceding the rsb are placed before the jsb, the rsb is removed, and the jsb is

replaced by an unconditional jump. This results in the stack pointer being adjusted to point to the return

address currently on the stack. Thus, two memory references are also avoided since there is no push and

pop of the return address. This is illustrated in Figure 41.
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jsb _foo

popr $0x40C0

addl2 $40,sp

rsb

=>

popr $0x40C0

addl2 $40,sp

jmp _foo

Figure 41: Optimization of a Call Followed by a Return Sequence

Before attempting this type of optimization for a language such as Pascal, one must ensure that the

called routine does not reference a variable declared in the calling routine. If such a variable is contained

in the activation record of the calling routine, then its space should not be deallocated from the run-time

stack until after the called routine references the variable.

A call to the current function followed by a return is known as tail recursion. The call and the

sequence of instructions used to implement the return can be replaced by a branch to the function entry

following any instructions used to save the state of the caller. This is illustrated in Figure 42.

Sometimes a sequence of calls occurs with no intervening instructions. Instead of returning to the

calling routine after executing each called routine, control can be transferred directly to the beginning of

the next routine to be invoked in the sequence. To avoid executing these calls, the address of the instruc-

tion following the last call is pushed on the stack, the address of each call except for the first is pushed on

the stack in reverse order, and an unconditional jump is made to the first function called. When the first

function executes its rsb instruction, control will be transferred to the beginning of the second function

to be called since its address was on the stack. When the last function executes its rsb instruction, con-

trol will be transferred to the instruction following the last call. An example of this optimization is shown

in Figure 43.
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.globl _foo

_foo:

subl2 $4,sp

pushr $0x20C0

addl3 $12,sp,fp

...

movl r6,r5

jsb _foo

popr $0x20C0

addl2 $4,sp

rsb

=>

.globl _foo

_foo:

subl2 $4,sp

pushr $0x20C0

addl3 $12,sp,fp

LB1:

...

movl r6,r5

jmp LB1

Figure 42: Optimization of Tail Recursion

jsb _foo1

jsb _foo2

jsb _foo3

=>

pushl $L1

pushl $_foo3

pushl $_foo2

jmp _foo1

L1:

Figure 43: Optimization of a Sequence of Calls

To enable the three types of optimizations with calls to be performed more frequently, the compiler

will attempt to move instructions immediately following a call to before the call. An instruction can only

be moved to precede a call if it does not:
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1. adjust the stack pointer
2. reference a scratch register
3. reference a global variable
4. reference a variable that has been used indirectly
5. set condition codes that will be subsequently used
6. change the program counter

The same test programs and test data used in the previous experiment of passing arguments

through registers was used in this experiment. Data was collected and the results were compared.

4.3.4. Results

Data was collected using the default calling sequence, passing arguments through registers, and

passing arguments through registers along with using more primitive call and return instructions. Table

26 compares the results of the three different versions.

params through regs
measurement default params through regs

and primitive insts

instructions 104,886,495 106,616,578 111,117,985
calls 2,995,675 2,995,675 2,476,404

function linkage memrefs 23,513,272 23,513,272 6,172,169
total memory references 96,148,682 88,103,262 70,762,159

Table 26: Results of the Three Calling Sequences

The results in Table 26 show the benefits of using more primitive call and return instructions. By

not performing all of the functions associated with the more complex call and return instructions, there

were 19.7% fewer memory references than the version that only passed arguments through registers.

There were also 4% more instructions executed. These additional instructions are simpler and less costly

than the fewer complex instructions they replaced. Using the new optimizations and movement of

instructions before calls, 17.3% (statically 17.6%) of calls were optimized into other instructions. Of

these calls that were optimized, 43.4% (statically 45.7%) were followed by a return sequence, 35.4%

(statically 30.3%) were followed by an unconditional jump, and 21.1% (statically 24.1%) were followed

by another call. Tail recursion optimizations, which have received some attention in the past, was found
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to occur very infrequently in the test set. Compilation techniques for other paridigms may apply tail

recursion more often. For instance, some Scheme compilers translate the source code into an intermedi-

ate form, continuation-passing style, where tail recursion is explicit [KKR86].

Maintaining the state of each active function on a run-time stack has been recognized as expensive

in the past [Lun77, Wie82]. To address this problem, a variety of complex instructions have been imple-

mented on different machines. It has been shown that many of the functions performed by these complex

instructions are unnecessary a large percentage of the time. By using the primitive instructions along

with passing arguments through registers, new optimizations were available on 12% of the calls. By

moving instructions that follow a call to instead precede the call, when it is possible, it was found that

these optimizations were available on over 17% of calls. By simply changing the calling sequence to use

more primitive instructions in combination with passing arguments through registers a significant

improvement can be obtained. This improvement for a few benchmark programs is shown in Table 27,

which compares the execution times of the benchmarks between the original version of the compiler and

the version modified to pass parameters through registers and use more primitive call and return instruc-

tions. Dhrystone, a call-intensive program, had a significant improvement (the number of dhrystones is

shown inside parenthesis). The other benchmarks, which had less frequently occurring call instructions,

had a smaller performance gain.

params through stack params through regs
program

and complex insts and primitive insts

dhrystone 8 (5952) 6 (7537)
matmult 0.583 0.567

puzzle 1.650 1.617

Table 27: Comparison of Execution Times
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4.4. Reducing the Cost of Branches by Using Registers

Branch instructions cause many problems for machines. Branches occur frequently and thus a

large percentage of the machine time is spent branching to different instructions. Branches can result in

the pipeline having to be flushed, which reduces its effectiveness and makes pipelines with few stages

more attractive. During this delay while the next instruction is to be fetched, no useful work is accom-

plished on many machines. Since many branch target addresses are a significant distance away from the

branch instruction (e.g. calls), the processor will often have greater delays due to cache misses.

A technique is presented that can eliminate much of the cost due to branches by using a new set of

registers [DaW90b]. A field is dedicated within each instruction to indicate a branch register containing

the address of the next instruction to be executed. Branch target address calculations are accomplished in

separate instructions from the instruction causing the transfer of control. By exposing to the compiler the

calculation of branch target addresses as separate instructions, the number of executed instructions can be

reduced since the calculation of branch target addresses may be moved out of loops. Much of the delay

due to pipeline interlocks is eliminated since the instruction at a branch target is prefetched at the point

the address is calculated. This prefetching of branch targets can also decrease the penalty for cache

misses. The following sections describe this technique in more detail.

4.4.1. Review

Due to the high cost of branches, there has been much work proposing and evaluating approaches

to reduce the cost of these instructions. One scheme that has become popular with the advent of RISC

machines is the delayed branch. While the machine is fetching the instruction at the branch’s target, the

instruction behind the branch is executed. For example, this scheme is used in the Stanford MIPS

[HeG83] and Berkley RISC [PaS82] machines. Problems with delayed branches include requiring the

compiler or assembler to find an instruction to place behind the branch and the cost of executing the

branch itself.

A technique to reduce the cost of executing the branch itself is branch folding. This has been

implemented in the CRISP architecture [DiM87a]. Highly encoded instructions are decoded and placed
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into a wide instruction cache. Each instruction in this cache contains an address of the next instruction to

be executed. Unconditional branches are folded into the preceding instruction since the program counter

is assigned this new address for each instruction. Conditional branches are handled by having two poten-

tial addresses for the next instruction and by inspecting a static prediction bit and the condition code flag

to determine which instruction to take. If the setting of the condition code (the compare) is spread far

enough apart from the conditional branch, then the correct instruction can be fetched with no pipeline

delay. Otherwise, if the incorrect path is chosen, then the pipeline must be flushed. The problems with

this scheme include the complex hardware needed to implement the machine and the large size needed

for an instruction cache since each decoded instruction is 192 bits in length.

An approach to reduce delays due to cache misses is to prefetch instructions into a buffer [RaR77].

The conditional branch instruction causes problems since one of two target addresses could be used

[RiF72]. One scheme involves prefetching instructions both behind the branch and at the target of the

branch [LeS84]. This scheme requires more complicated hardware and must also deal with future condi-

tional branch instructions. Other schemes use branch prediction in an attempt to choose the most likely

branch target address [LeS84]. If the incorrect path is selected, then the execution must be halted and the

pipeline flushed.

4.4.2. Overview of Using the Branch Register Approach

As in Wilke’s proposed microprogrammed control unit [WiS53] and the CRISP architecture

[DiM87b], every instruction in the branch register approach is a branch. Each instruction specifies the

location of the next instruction to be executed. To accomplish this without greatly increasing the size of

instructions, a field within the instruction specifies a register that contains the virtual address of the

instruction to execute next.

For instructions specifying that the next instruction to be executed is the next sequential instruction,

a branch register is referenced which contains the appropriate address. This register is, in effect, the pro-

gram counter (PC). While an instruction is being fetched from the instruction cache, the PC is always

incremented by the machine to point to the next sequential instruction. If every instruction on this
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machine is thirty-two bits wide, then this operation can always be performed in a uniform manner. Once

an instruction has been fetched, the value of the branch register specified in the instruction is used as an

address for the next instruction. At the point the PC is referenced, it will represent the address of the next

sequential instruction. An example of this is shown in the RTL below, where b[0] (a branch register)

has been predefined to be the PC.

r[1] = r[1] + 1; b[0] = b[0]; /* go to next sequential instruction */

Since references to b[0] do not change the address in b[0], subsequent examples of RTLs will not

show this assignment.

If the next instruction to be executed is not the next sequential instruction, then code is generated to

calculate and store the virtual address of that instruction in a different branch register and to reference

that branch register in the current instruction. Storing the virtual address of a branch target instruction

into a branch register on this machine also causes the address to be sent to the instruction cache to pre-

fetch the instruction. The prefetched instruction will be stored into the one of a set of instruction registers

that corresponds to the branch register receiving the virtual address and the address in the branch register

will be incremented to point to the instruction after the branch target. The instruction register i[0],

that corresponds to the branch register b[0], which is used as the program counter, is always loaded

with the next sequential instruction.

The first two stages in the pipeline for this machine are the instruction fetch and decode stages.

During the decode stage of the current instruction, the bit field specifying one of the branch registers is

also used to determine which instruction register to use in the decode stage of the next instruction. When

a branch register is referenced in an instruction to indicate that a transfer of control is to occur, the next

instruction is executed from the corresponding instruction register. Assuming there is also an execute

stage in the pipeline, the dataflow paths between the pipeline stages, registers, and cache are illustrated in

Figure 44.
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Figure 44: Dataflow for Branch Register Machine

4.4.3. Generating Code for Transfers of Control

The following sections describe how code can be generated to accomplish various transfers of con-

trol using branch registers.

4.4.3.1. Calculating Branch Target Addresses

For any instruction where the next instruction to be executed is not the next sequential instruction,

a different branch register from the PC must be specified and the virtual address it contains must have

been previously calculated. Assuming each instruction on this machine is thirty-two bits wide, a virtual

address of thirty-two bits cannot be referenced as a constant in a single instruction. Instead, most instruc-

tions could use an offset from the PC to calculate branch addresses. The compiler knows the distance

between the PC and the branch target if both are in the same routine. The calculation of a branch target
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address in a single instruction is shown in the following RTLs:

b[1] = b[0] + (L2 - L1); /* store address of L2 */
L1: .

.

.
L2: .

For calls or branch targets that are known to be too far away, the calculation of the branch target

address requires two instructions. One part of the address is computed by the first instruction and then

the other part in the second. Global addresses are calculated in this fashion for programs on the SPARC

architecture [SSS87]. An address calculation requiring two instructions is illustrated by the following

RTLs:

r[5] = HI(L1); /* store high part of addr */
b[1] = r[5] + LO(L1); /* add low part of addr */
.
.

L1: r[0] = r[0] + 1; /* inst at branch target */
.
.

4.4.3.2. Unconditional Branches

Unconditional branches would be handled in the following manner. First, the virtual address of the

branch target would be calculated and stored in a branch register. To perform the transfer of control, this

branch register would be moved into the PC (b[0]), which causes the instruction at the target address to

be decoded and executed next. While the instruction at the branch target is being decoded, the instruction

sequentially following the branch target is fetched. An example of an unconditional branch is depicted in

the following RTLs:

b[2] = b[0] + (L2 - L1); /* store addr of L2 */
L1: .

.

.
r[1] = r[1] + 1; b[0] = b[2]; /* next inst at L2 */
.
.

L2: .
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4.4.3.3. Conditional Branches

Conditional branches would be generated by the following method. First, the virtual address of the

branch target is calculated and stored in a branch register. At some point later, an instruction determines

if the condition for the branch is true. Three branch registers are used in this instruction. One of two

registers is assigned to the destination register depending upon the value of the condition. To more effec-

tively encode this compare instruction, two of the three registers could be implied. For instance, the

RTLs in the following example show how a typical conditional branch could be handled. The destination

branch register is b[7], which is by convention a trash branch register. The other implied branch regis-

ter, the source register used when the condition is not true, is b[0], which represents the address of the

instruction sequentially following the transfer of control. An instruction following this conditional

assignment would reference the destination branch register.

b[2] = b[0] + (L2 - L1); /* store addr of L2 */
L1: .

.

.
b[7] = r[5] < 0 -> b[2] | b[0]; /* if cond true then assign b[2] to b[7]

else assign b[0] */
r[1] = r[1] + 1; b[0] = b[7]; /* next inst at addr in b[7] */
.
.

L2:

4.4.3.4. Function Calls and Returns

Other transfers of control can also be implemented efficiently with this approach. For example,

function calls and returns can be handled by specifying virtual addresses for branch registers. Since the

beginning of a called function is an unknown distance from the PC, its virtual address is calculated in two

instructions and stored in a branch register. Then, an instruction at some point following this calculation

would reference that branch register. To accomplish a return from a function, the address of the instruc-

tion following the call would be stored in an agreed-on branch register (for example b[7]). Every

instruction that references a branch register that is not the program counter, b[0], would store the

address of the next physical instruction into b[7]. If the called routine has any branches other than a

return, then b[7] would need to be saved and restored. When returning to the caller is desired, the
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branch register is restored (if necessary) and referenced in an instruction. An example that illustrates a

call and a return on this machine is given in the following RTLs.

r[2] = HI(_routine); /* store high part of addr */
b[3] = r[2] + LO(_routine); /* add low part of addr */
.
.
r[0] = r[0] + 1; b[0] = b[3]; b[7] = b[0]; /* next inst is first inst in routine */
.
.

_routine:
.
.
r[0] = r[12]; b[0] = b[7]; /* return to caller */

4.4.3.5. Indirect Jumps

For implementation of indirect jumps, the virtual address could be loaded from memory into a

branch register and then referenced in a subsequent instruction. The following RTLs show how code

could be accomplished for a switch statement.

r[2] = r[2] << 2; /* setup r2 as index in table */
r[1] = HI(L01); /* store high part of L01 */
r[1] = r[1] + LO(L01); /* add low part of L01 */
b[3] = L[r[1] + r[2]]; /* load addr of switch case */
.
.
r[0] = r[0] + 1; b[0] = b[3]; /* next inst is at switch case */

L01: .long Ldst1
.long Ldst2
.
.

4.4.4. Compiler Optimizations with Branch Registers

Initially, it may seem there is no advantage to the method of handling branches on this machine.

Indeed, it appears more expensive since an instruction is required to calculate the branch target address

and a set of bits to reference a branch register is sacrificed from each instruction to accomplish transfers

of control. However, one only needs to consider that the branch target address for unconditional jumps,

conditional jumps, and calls are constants. Therefore, the assignment of these addresses to branch regis-

ters can be moved out of loops. Since the transfers of control occur during the execution of other instruc-
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tions, the cost of these branches after the first iteration of loops disappears.

Since there is a limited number of available branch registers, often not every branch target can be

allocated to a unique branch register. Therefore, the branch targets are first ordered by estimating the fre-

quency of the execution of the branches to these targets. The estimated frequency of execution of each

branch is used, rather than the execution of each branch target instruction, since it is the calculation of the

virtual address used by each branch that has the potential for being moved out of loops. If there is more

than one branch to the same branch target, then the estimated frequency of each of these branches are

added together.

First, the compiler attempts to move the calculation of the branch target with the highest estimated

frequency to the preheader of the innermost loop in which the branch occurs. The preheader is the basic

block that precedes the first basic block that is executed in the loop (or the head of the loop). At this

point the compiler tries to allocate the calculation of the branch target address to a branch register. If the

loop contains calls, then a non-scratch branch register must be used. If a branch register is only associ-

ated with branches in other loops that do not overlap with the execution of the current loop, then the

branch target calculation for the branch in the current loop can be allocated to the same branch register.

If the calculation for a branch target can be allocated to a branch register, then the calculation is associ-

ated with that branch register and the preheader of that loop (rather than the basic block containing the

transfer of control) and the estimated frequency of the branch target is reduced to the frequency of the

preheader of the loop. Next, the calculation of the branch target with the current highest frequency is

then attempted to be moved out of its innermost loop. This process continues until all branch target cal-

culations have been moved out of loops or no more branch registers can be allocated.

To further reduce the number of instructions executed, the compiler attempts to replace no-

operation (noop) instructions, that occur when no other instruction can be used at the point of a transfer

of control, with branch target address calculations. These noop instructions are employed most often

after compare instructions. Since there are no dependencies between branch target address calculations

and other types of instructions that are not used for transfers of control, noop instructions can often be

replaced.
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Figures 45 through 47 illustrate these compiler optimizations. Figure 45 contains a C function.

Figure 46 shows the RTLs produced for the C function for a conventional RISC machine with a delayed

branch. Figure 47 shows the RTLs produced for the C function for a machine with branch registers. In

order to make the RTLs easier to read, assignments to b[0] that are not transfers of control and updates

to b[7] at instructions that are transfers of control are not shown. The machine with branch registers

had one less instruction due to a noop being replaced with a branch target address calculation. Since

branch target address calculations were moved out of loops, there were only eleven instructions inside of

loops for the branch register machine as opposed to sixteen for the machine with a delayed branch.

int foo(a)

int a;

{

int i, j, k;

j = 0; k = 0;

for (i = 0; i < 5; i++)

if (a < i)

j++;

if (j == 5)

for (i = 0; i < 10; i++) {

if (a < -5)

k += 6;

else

k += 7;

}

return k;

}

Figure 45: C function
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r[4] = L[r[31] + a.]; /* load arg a into reg */

r[5] = 0; /* j = 0; */

r[3] = 0; /* k = 0; */

r[2] = 0; /* i = 0; */

L16: cc = r[4] ? r[2]; /* compare a to i */

PC = cc >= 0, L14; /* if was >= then goto L14 */

r[2] = r[2] + 1; /* i++ (delay slot filled) */

r[5] = r[5] + 1; /* j++ */

L14: cc = r[2] ? 5; /* compare i to 5 */

PC = cc < 0, L16; /* if was < then goto L16 */

cc = r[5] ? 5; /* compare j to 5 */

PC = cc != 0, L19; /* if was != then goto L19 */

NL = NL; /* noop (delay slot not filled) */

r[2] = 0; /* i = 0; */

L22: cc = r[4] ? -5; /* compare a to -5 */

PC = cc >= 0, L23; /* if was >= then goto L23 */

r[2] = r[2] + 1; /* i++ (delay slot filled) */

PC = L20; /* goto L20 */

r[3] = r[3] + 6; /* k += 6; (delay slot filled) */

L23: r[3] = r[3] + 7; /* k += 7; */

L20: cc = r[2] ? 10; /* compare i to 10 */

PC = cc < 0, L22; /* if was < then goto L22 */

NL = NL; /* noop (delay slot not filled) */

L19: PC = RT; /* return to caller */

r[0] = r[3]; /* set return value to k (delay slot filled)*/

Figure 46: RTLs for C Function with Delayed Branches
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b[4] = b[7]; /* save return address */

b[2] = b[0] + (L16 - LC5); /* calc address of L16 */

LC5: b[1] = b[0] + (L14 - LC2); /* calc address of L14 */

LC2: r[4] = L[r[31] + a.]; /* load arg a into reg */

r[5] = 0; /* j = 0; */

r[3] = 0; /* k = 0; */

r[2] = 0; /* i = 0; */

L16: b[7] = r[4] >= r[2], b[1] | b[0]; /* if a >= i then b[7] = L14 */

r[2] = r[2] + 1;b[0] = b[7]; /* i++; PC = b[7] */

r[5] = r[5] + 1; /* j++ */

L14: b[7] = r[2] < 5, b[2] | b[0]; /* if i < 5 then b[7] = L16 */

b[7] = b[0] + (L19 - LC1);b[0] = b[7]; /* calc address of L19; PC = b[7] */

LC1: b[7] = r[5] != 5, b[7] | b[0]; /* if j != 5 then b[7] = L19 */

b[1] = b[0] + (L23 - LC0);b[0] = b[7]; /* calc address of L23; PC = b[7] */

LC0: b[3] = b[0] + (L20 - LC4); /* calc address of L20 */

LC4: b[2] = b[0] + (L22 - LC3); /* calc address of L22 */

LC3: r[2] = 0; /* i = 0; */

L22: b[7] = r[4] >= -5, b[1] | b[0]; /* if j != 5 then b[7] = L23 */

r[2] = r[2] + 1;b[0] = b[7]; /* i++; PC = b[7] */

r[3] = r[3] + 6;b[0] = b[3]; /* k += 6; PC = L20 */

L23: r[3] = r[3] + 7; /* k += 7; */

L20: b[7] = r[2] < 10, b[2] | b[0]; /* if i < 10 then b[7] = L22 */

NL = NL;b[0] = b[7]; /* noop; PC = b[7] */

L19: r[0] = r[3];b[0] = b[4]; /* return k; */

Figure 47: RTLs for C Function with Branch Registers

4.4.5. Reduction of Pipeline Delays

Most pipeline delays due to branches on conventional RISC machines can be avoided on this

machine since branch target instructions are prefetched. Figure 48 contrasts the pipeline delays with a

three stage pipeline for unconditional transfers of control on a pipelined machine without a delayed

branch, with a delayed branch, and with branch registers. The three stages in the pipeline in this figure

are:

1. Fetch
2. Decode
3. Execute

The branch target instruction cannot be fetched until its address has been calculated. For the first two

machines, this occurs in the execute stage of the jump instruction. A conventional RISC machine without

a delayed branch would have an N-1 delay in the pipeline for unconditional transfers of control where N

is the number of stages in the pipeline. The next instruction for the machine with a delayed branch and
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Figure 48: Pipeline Delays for Unconditional Transfers of Control

the machine with branch registers represents the next sequential instruction following the jump instruc-

tion. Thus, a RISC machine with a delayed branch, where the branch is delayed for one instruction,

would have an N-2 delay in the pipeline. Finding more than one useful instruction to place behind a

delayed branch is difficult for most types of programs [McH86].

A jump instruction for the machine with branch registers is an instruction that references a branch

register that is not the PC (b[0]). The branch register referenced is used during the decode stage of the

jump instruction to determine which one of the set of instruction registers is to be input as the next

instruction to be decoded. While the jump instruction is being decoded, the next sequential instruction is
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being fetched and loaded into i[0], the default instruction register. If b[0] had been referenced, then

i[0] would be input to the decode stage. Since a different branch register is referenced for the jump

instruction, its corresponding instruction register containing the branch target instruction would be input

to the next decode stage. Thus, assuming that the branch target instruction has been prefetched and is

available in the appropriate instruction register, the machine with branch registers would have no pipeline

delay for unconditional transfers of control regardless of the number of stages in the pipeline.

The example in Figure 49 shows the actions taken by each stage in the pipeline stage for an uncon-

ditional transfer of control in the branch register machine, assuming that the jump sequentially follows

the previously executed instruction. The subscript on the actions denotes the stage of the pipeline. In the

first stage, the jump instruction is fetched from memory and the PC is incremented to the next sequential

instruction. In the second stage, the jump instruction is decoded and the next sequential instruction after

the jump is fetched from memory. In the third stage, the jump instruction is executed, the prefetched

instruction at the branch target in i[4] is decoded, and the instruction sequentially following the branch

target is fetched. Since the address in a branch register is incremented after being used to prefetch an

instruction from the cache, the branch register contains the address of the instruction after the branch tar-

get.
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Figure 49: Pipeline Actions for Unconditional Transfer of Control
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Figure 50 contrasts the pipeline delays for conditional transfers of control for the same three types

of machines. As for unconditional transfers of control, the conventional RISC machine without a delayed

branch would have a N-1 pipeline delay and the RISC machine with a delayed branch would have a N-2

pipeline delay for conditional transfers of control. The compare instruction for the machine with branch

registers will assign one of two branch registers to a destination branch register depending upon the result

of the condition in the compare. It will also make an assignment between the corresponding instruction
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COMPARE F D E

F D E

F D E
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Figure 50: Pipeline Delays for Conditional Transfers of Control
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registers. The conditional jump instruction represents the instruction following the compare instruction

that references the destination branch register of the compare instruction. The branch register referenced

is used during the decode stage of the conditional jump instruction to cause the corresponding instruction

register to be input as the next instruction to be decoded. Therefore, the decode stage of the target

instruction cannot be accomplished until the last stage of the compare instruction is finished. This results

in an N-3 pipeline delay for conditional transfers of control for a machine with branch registers.

The example in Figure 51 shows the actions taken by each stage in the pipeline for a conditional

transfer of control, assuming that the compare instruction sequentially follows the previously executed

instruction. In the first stage, the compare instruction is fetched from memory and the PC is incremented

to the next sequential instruction. In the second stage, the compare instruction is decoded and the jump

instruction is fetched from memory. In the third stage, the compare instruction is executed (resulting in

assignments to both b[7] and i[7]), the jump instruction is decoded, and the instruction sequentially

following the jump is fetched. If the condition of the compare is not true, then b[7] and i[7] receive

the same values from the fetch operation. In the fourth stage, either the target instruction or the next

instruction after the jump is decoded and the instruction after the instruction being decoded is fetched.

To avoid pipeline delays, even when the branch target instruction is in the cache, the branch target

address must be calculated early enough to be prefetched from the cache and placed in the instruction

register before the target instruction is to be input to the decode stage. Assuming there is a one cycle

delay between the point that the address is sent to the cache at the end of the execute stage and the

instruction is loaded into the instruction register, this would require that the branch target address be cal-

culated at least two instructions previous to the instruction with the transfer of control when the number

of stages in the pipeline is three. This is shown in Figure 52.

4.4.6. Experimental Evaluation

In an attempt to reduce the number of operand memory references, many RISC machines have

thirty-two or more general-purpose registers (e.g. MIPS-X, ARM, Spectrum). Without special compiler

optimizations, such as inlining [Sch77] or interprocedural register allocation [Wal86], it is infrequent that
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Figure 51: Pipeline Actions for Conditional Transfer of Control

ADDR CALC

ED

F

EDF

EDF

EDF

INST

JUMP

NEXT

TARGET

Figure 52: Prefetching to Avoid Pipeline Delays

a compiler can make effective use of even a majority of these registers for a function. In a previous study

we calculated the number of data memory references that have the potential for being removed by using

registers. We found that 98.5% could be removed by using only sixteen data registers. In order to evalu-
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ate this scheme, two machines were designed and then emulated using ease. The same set of test pro-

grams shown previously were used for this experiment.

The first machine used in the evaluation of the branch register approach served as a baseline to

measure the second machine. The baseline machine was designed to have a simple RISC-like architec-

ture. Features of this machine include:

1. 32-bit fixed-length instructions
2. reference to memory only by load and store instructions
3. delayed branches
4. 32 general-purpose data registers
5. 32 floating-point registers
6. three-address instructions
7. simple addressing modes

Figure 53 shows the instruction formats used in the baseline machine.

The second machine was a modification of the first to handle branches by using branch registers.

Features of the branch register machine that differ from the baseline machine include:

10 5

ignored rs2

Format 3 (Remaining instructions, i = 1):

Format 2 (sethi, j ignored):

j

2 1956

immediaterd

Format 1 (branch indirect, i=1):

Format 1 (branch with disp, i=0):

Format 3 (Remaining instructions, i = 0):

opcode cond i displacement

6 4 1 21

opcode

opcode cond i

6 4 1

rs1ignored

516

rsl i

5 1

opcode rd

6 5

immediate

15

rsl i

5 1

opcode rd

6 5

Figure 53: Instruction Formats for the Baseline Machine
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1. only 16 general-purpose data registers
2. only 16 floating-point registers
3. 8 branch registers
4. 8 instruction registers
5. no branch instructions
6. a compare instruction with an assignment
7. an instruction to calculate branch target addresses
8. smaller range of available constants in some instructions

If one ignores floating-point registers, there are approximately the same number of registers on each

machine. Figure 54 shows the instruction formats used in the branch register machine. Since the only

differences between the baseline machine and the branch register machine are the instructions to use

branch registers as opposed to branches, the fewer number of data registers that can be referenced, and

the smaller range of constants available, the reports generated by ease can accurately show the impact of

using registers for branches.

The branch register machine executed 6.8% fewer instructions and yet performed 2.0% additional

data memory references as compared to the baseline machine. The ratio of fewer instructions executed to

Format 1 (cmp with immed, i = 0):

Format 1 (cmp with reg, i = 1):

10 4144

rs2

3

br

3

br

1444

Format 2 (sethi, inst addr calc):

19 3

br

4

7 4
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Format 3 (Remaining instructions, i = 1):

6

immediaterd

Format 3 (Remaining instructions, i = 0):

opcode

rsl i

1

opcode rd

6

immediate

rsl iopcode rd

6

46

condopcode bs1 rs1 i brimmediate

3 4 1 11 3

46

condopcode bs1 rs1 i br

3 4 1 3

Figure 54: Instruction Formats for the Branch Register Machine
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additional data references for the branch register machine was 10 to 1. Approximately 14% of the

instructions executed on the baseline machine were transfers of control. The reduction in the number of

instructions executed was mostly due to moving branch target address calculations out of loops. Another

factor was replacing 36% (almost 2.6 million) of the noops in delay slots of branches in the baseline

machine with branch target address calculations at points of transfers of control in the branch register

machine. There were also additional instructions executed on the branch register machine to save and

restore branch registers. The additional data references on the branch register machine were due to both

fewer variables being allocated to registers and saves and restores of branch registers. Table 28 shows

the results from running the test set through both machines.

millions of millions
instructions of datamachine

executed references

baseline 183.04 61.99
branch register 170.75 63.22
difference -12.29 +1.23

Table 28: Dynamic Measurements from the Two Machines

By prefetching branch target instructions at the point the branch target address is calculated, delays

in the pipeline can be decreased. In the baseline machine, there were 7.95 million unconditional transfers

of control and 17.69 million conditional transfers of control. Assuming a pipeline of three stages, not

uncommon for RISC machines [GiM87], then each branch on the baseline machine would require at least

a one-stage delay. Also assuming that each instruction can execute in one machine cycle, and no other

pipeline delays except for transfers of control, then the test set would require about 208.83 million cycles

to be executed on the baseline machine. As shown previously in Figures 48 and 50, the branch register

machine would require no delay for both unconditional and conditional branches in a three stage pipeline

assuming that the branch target instruction has been prefetched. As shown in Figure 52, the branch target

address must be calculated at least two instructions before a transfer of control to avoid pipeline delays

even with a cache hit. We estimate that only 13.86% of the transfers of control that were executed would
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result in a pipeline delay. Thus, the branch register machine would require about 22.09 million (10.6%)

fewer cycles to be executed due to fewer delays in the pipeline alone. There would be greater savings for

machines having pipelines with more stages. For instance, we estimate that the branch register machine

would require about 30.04 million (12.8%) fewer cycles to be executed due to fewer delays in the pipe-

line alone assuming a pipeline with four stages.

4.4.7. Hardware Considerations

An instruction cache typically reduces the number of memory references by exploiting the princi-

ples of spatial and temporal locality. However, when a particular main memory line is referenced for the

first time, the instructions in that line must be brought into the cache and these misses will cause delays.

When an assignment is made to a branch register, the value being assigned is the address of an instruction

that will likely be brought eventually into the instruction cache.

To take advantage of this knowledge, each assignment to a branch register has the side effect of

specifying to the instruction cache to prefetch the line associated with the instruction address. Prefetch

requests could be performed efficiently with an instruction cache that would allow reading a line from

main memory at the same time as requests for instruction words from the CPU that are cache hits are

honored. This could be accomplished by setting a busy bit in the line of the cache that is being read from

memory at the beginning of a prefetch request and setting it to not busy after the prefetch has completed.

To handle prefetch requests would require a queuing mechanism with the size of the queue equal to the

number of available branch registers. A queue would allow the cache to give priority to cache misses for

sequential fetches over prefetch requests that do not have to wait. Directing the instruction cache to bring

in instructions before they are used will not decrease the number of cache misses. It will, however,

decrease or eliminate the delay of loading the instruction into the cache when it is needed to be fetched

and executed.

The machine must determine if an instruction has been brought into an instruction register and thus

is ready to be decoded after the corresponding branch register is referenced in the preceding instruction.

This can be accomplished by using a flag register that contains a set of bits that correspond to the set of
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instruction registers. The appropriate bit could be cleared when the request is sent to the cache and set

when the instruction is fetched from the cache. Note that this would require the compiler to ensure that

branch target addresses are always calculated before the branch register is referenced.

4.4.8. Future Work

There are many interesting areas involving branch registers that remain to be explored. The best

cache organization to be used with branch registers needs to be investigated. An associativity of at least

two would ensure that a branch target could be prefetched without displacing the current instructions that

are being executed. A larger number of words in a cache line may be appropriate in order to less often

have cache misses of sequential instructions while instructions at a branch target are being loaded from

memory into the instruction cache. Another feature of the cache organization to investigate is the total

number of words in the cache. Since instructions to calculate branch target addresses can be moved out

of loops, the number of instructions in loops will be fewer. This may improve cache performance in

machines with small on-chip caches.

The exact placement of the branch target address calculation can affect performance. The begin-

ning of the function could be aligned on a cache line boundary and the compiler would have information

about the structure of the cache. This information would include

1. the cache line size
2. the number of cache lines in each set
3. the number of cache sets in the cache

Using this information the compiler could attempt to place the calculation where there would be less

potential conflict between cache misses for sequential instructions and cache misses for prefetched

branch targets. By attempting to place these calculations at the beginning of a cache line, the potential

for conflict would be reduced.

Prefetching branch targets may result in some instructions being brought into the cache that are not

used (cache pollution). Since most branches tend to be taken [LeS84], we have assumed that this penalty

would not be significant. By estimating the number of cycles required to execute programs (which

includes cache delays) on the branch register machine and the baseline machine, the performance penalty
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due to cache pollution of unused prefetched branch targets could be determined.

Other code generation strategies can be investigated. For instance, if a fast compare instruction

could be used to test the condition during the decode stage [McH86], then the compare instruction could

update the program counter directly. A bit may be used in the compare instruction to indicate whether to

squash [McH86] the following instruction depending upon the result of the comparison. Eight branch

registers and eight instruction registers were used in the experiment. The available number of these

registers and the corresponding changes in the instruction formats could be varied to determine the most

cost effective combination.

4.4.9. Conclusions

Using branch registers to accomplish transfers of control has been shown to be potentially effec-

tive. By moving the calculation of branch target addresses out of loops, the cost of performing branches

inside of loops can disappear and result in fewer executed instructions. By prefetching the branch target

instruction when the branch target address is calculated, branch target instructions can be inserted into the

pipeline with fewer delays. By moving the assignment of branch registers away from the use of the

branch register, delays due to cache misses of branch targets may be decreased. The performance of a

small instruction cache, such as the cache for the CRISP architecture [DiM87b], could also be enhanced

since the number of instructions in loops will be fewer. Enhancing the effectiveness of the code can be

accomplished with conventional optimizations of common subexpression elimination and code motion.

A machine with branch registers should also be inexpensive to construct since the hardware would be

comparable to a conventional RISC machine.



CHAPTER 5

CONCLUSIONS

The first goal for this research was to provide an environment in which program measurements can

be obtained without the problems of past architectural studies. This goal has been achieved by modifying

vpo (Very Portable Optimizer) to capture instruction characteristics during compilation and to insert code

to capture frequency counts during execution. Since instructions to increment counters were only

inserted once for each set of basic blocks that are executed the same number of times, this method exe-

cutes faster than any other known method that collects similar information. Because the information

about instructions is collected as a side-effect of the compiler parsing instructions, the method only

requires 10 to 20 percent overhead in compilation time. Since most of the modifications to vpo to collect

measurements has been accomplished in a machine-independent fashion, the machine-dependent

modifications can be ported to a new machine in a few hours. Detailed reports can be quickly produced

for a variety of static and dynamic measurements. Because the method collects measurements on RTLs,

rather than assembly or machine instructions, measurements can be collected on new instructions or

many other architectural features that do not yet exist as long as they can be modeled on existing features.

The second goal was to use the environment to evaluate several architectures after establishing this

environment on several current machines. Ease was ported to the following architectures:

1. DEC VAX-11
2. Harris HCX-9
3. AT&T 3B15
4. Motorola 68020/68881
5. National Semiconductor 32016
6. Intel 80386/80387
7. Concurrent 3230
8. IBM RT
9. Intergraph Clipper
10. SUN SPARC

Measurements were obtained and analyzed for each of the above architectures. No other architectural

study had the combination of 1) using a large set of test programs, 2) examining several current

-131-



-132-

architectures, 3) eliminating most compiler bias, 4) extracting and analyzing detailed measurements, and

5) comparing entire architectures by using generic costs.

It was found there were strong linear relationships between most of the static and dynamic meas-

urements. Each of these relationships was examined and observations were discussed about why they

occurred. Typically static measurements are easier to obtain and dynamic measurements give more use-

ful information on performance. Therefore, regression analysis was used to produce an equation that

estimates each dynamic measurement from its corresponding static measurement.

The last goal was to demonstrate the effectiveness of the environment by performing code genera-

tion and machine design experiments. Six different methods for saving and restoring registers between

function activations were examined for the VAX-11 and 68020. The number of scratch and non-scratch

registers for each method in each architecture was varied. It was found for those methods that either

combined callee and caller-save approaches or performed more caller-flow analysis, additional scratch

registers resulted in more effective code. Methods that used callee-flow analysis within the scope of a

function to reduce the numbers of saves and restores had little impact. Since there are instances in a

function when both a callee-save or a caller-save may be most effective, hybrid methods that combine

both approaches produced better code.

The VAX-11 compiler was modified to pass up to six arguments through the scratch registers. It

was found that all of the scratch registers could be used to pass arguments without displacing the use of

these registers for other purposes. Passing arguments through registers as a calling sequence convention

resulted in many more arguments being allocated to registers. Since most arguments were allocated to

registers and at least two memory references were eliminated for each argument, the total number of

memory references were reduced.

The VAX-11 compiler was also modified to use more primitive call and return instructions in addi-

tion to passing arguments through registers. It was discovered that many of the functions performed by

the complex call and return instructions on the VAX-11 were unnecessary a large percentage of the time.

Since arguments were passed through the scratch registers, the stack pointer was rarely adjusted after a

call. This allowed optimizations to be applied when the primitive call instruction was followed by an
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unconditional jump, a sequence of instructions to return to the caller, or another call. By moving instruc-

tions when possible to proceed a call, these optimizations were available on 17.3% of the calls. The com-

bination of passing arguments through registers, using primitive call and return instructions, and applying

the new optimizations available resulted in over one fourth of the memory references from the execution

of a set of test programs being eliminated.

To demonstrate that ease could be used for machine design, a new technique for reducing the cost

of branches by using registers was investigated. In an attempt to reduce the number of operand memory

references, many RISC machines have thirty-two or more general-purpose registers. Without special

compiler optimizations, such as inlining or interprocedural register allocation, it is infrequent that a com-

piler can make effective use of even a majority of these registers for a function. To demonstrate the

effectiveness of the branch register technique, two machines were designed and emulated using ease.

The first machine was designed as a conventional simple RISC machine with delayed branches and

thirty-two general-purpose registers used for data references. The second machine used the branch regis-

ter technique for transfers of control and had sixteen data registers and sixteen registers used for branch-

ing. The measurements collected from the two machines show that the branch register technique has the

potential for effectively reducing the cost of transfers of control.

The results of this dissertation should be useful in several areas. The method used to collect meas-

urements executes efficiently and requires only simple modifications to the machine-dependent portions

of a vpo optimizer. Thus, this method can be used to collect measurements by different compilers for

future experiments or analysis. The raw measurements from the architectural study can be used by

researchers or designers to draw their own conclusions on the effectiveness of architectural features. The

differences observed between static and dynamic measurements may be used to estimate one type of

measurement if the other type is unavailable. The insights gained from the analysis and experiments may

be useful to architects designing new machines or modifying existing ones. They may also be useful to

compiler writers to aid in designing a calling sequence or determining what types of optimizations may

be most effective.
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Abstract

This dissertation describes an environment for the evaluation of computer architectures and

architectural features. Retargeting ease (Environment for Architecture Study and Experimentation) for a

new machine requires little effort and permits detailed architectural-level measurements to be collected

quickly. Ease uses a portable optimizer that performs transformations on a machine-independent

representation of a program. Since code to perform instruction selection and most optimizations is

constructed automatically, the quality of the code generated by the compiler has less dependence on the

skill of the implementors than compilers constructed using other techniques. This allows different

architectures to be compared with little compiler bias. The environment facilitates experimentation with

new architectural features since the compilers using this system may be easily modified and instructions

are represented in a hardware description language.

Ease was used to perform an architectural study of ten contemporary architectures. Three of the

architectures are CISC machines, three are RISC machines, and the remaining four are of intermediate

complexity. Both static and dynamic measurements were collected from a large set of test programs.

Observations of the dynamic measurements collected from the architectures are discussed. By assigning

generic costs to instructions and addressing modes that are similar across the different architectures, the

costs of executing the test set for each architecture were compared.

Ease was used to perform several other studies that provided valuable information. These studies

included finding linear relationships between specific static and dynamic machine code measurements

and experiments to evaluate different code generation strategies. To demonstrate that ease could be used

for machine design, a new technique for reducing the cost of branches by using registers was

investigated.
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