AUTOMATED EMPIRICAL OPTIMIZATION OF HIGH
PERFORMANCE FLOATING POINT KERNELS

Name: R. Clint Whaley

Department: Department of Computer Science
Major Professor: David Whalley

Degree: Doctor of Philosophy

Term Degree Awarded: Fall, 2004

Using traditional methodologies and tools, the problem of keeping performance-
critical kernels at high efficiency on hardware evolving at the incredible rates dictated
by Moore’s Law is almost intractable. On product lines where ISA compatibility is
maintained through several generations of architecture, the growing gap between the
machine that the software sees and the actual hardware exacerbates this problem
considerably, as do the evolving software layers between the application in question
and the ISA. To address this problem, we have utilized a relatively new technique,
which we call AEOS (Automated Empirical Optimization of Software). In this paper,
we describe the AEOS systems we have researched, implemented and tested. The first
of these is ATLAS (Automatically Tuned Linear Algebra Software), which empirically
optimizes key linear algebra kernels to arbitrary cache-based machines. Our latest
research effort is instantiated in the iFKO (iterative Floating Point Kernel Optimizer)
project, whose aim is to perform empirical optimization of relatively arbitrary kernels

using a low-level iterative and empirical compilation framework.

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS & SCIENCES

AUTOMATED EMPIRICAL OPTIMIZATION OF HIGH
PERFORMANCE FLOATING POINT KERNELS

By

R. CLINT WHALEY

A Dissertation submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Fall Semester, 2004

The members of the Committee approve the dissertation of R. Clint Whaley
defended on November 2, 2004.

David Whalley
Professor Directing Dissertation

Gordon Erlebacher
Outside Committee Member

Theodore Baker
Committee Member

Michael Mascagni
Committee Member

Xin Yuan
Committee Member

The Office of Graduate Studies has verified and approved the above named committee members.

TABLE OF CONTENTS

List of Tables
List of Figures
ADStract

1. INTRODUCTION

1.1 Importance of Kernel Optimization for HPC
1.2 Problems with Traditional HPC Kernel Production Methods
1.2.1 Shortcomings of Hand-tuning
1.2.2 Shortcomings of Traditional Compilation
1.2.3 Addressing Optimization Challenges through Empirical Tech-
DIQUES « . v et et e e e e e e e
1.3 History of Research
1.4 Organization of Paper

2. BASIC DEFINITIONS — AEOS

2.1 Basic AEOS Requirements.,
2.2 Methods of Software Adaptation
2.2.1 Summary of Software Adaptation Methods

3. FOUNDATIONAL WORK —- ATLAS............

3.1 Limits of ATLAS’s Approach.
3.2 AEOS Tuning for the Level 3 BLAS in ATLAS.
3.2.1 Building the General Matrix Multiply from the L1 Cache-
contained Multiply
3.2.1.1 Choosing the Correct Looping Structure
3.2.1.2 Blocking for Higher Levels of Cache
3.2.2 L1 Cache-contained Matmul
3.2.2.1 Instruction Cache Overflow
3.2.2.2 Floating Point Instruction Ordering
3.2.2.3 Reducing Loop Overhead
3.2.2.4 Exposing Parallelism
3.2.2.5 Finding the Correct Number of Cache Misses
3.2.2.6 Source Generator Parameters
3.2.2.7 Putting It All Together — Outline of the Search Heuristic . .
3.2.2.8 Source Generator Search
3.2.2.9 Multiple Implementation Search

il

3.2.3 ATLAS performance 40

3.3 AEOS Framework for the Level 1 and 2 BLAS in ATLAS 41
3.4 Optimizing the Level 2 BLAS 41
3.4.1 Register and Cache Blocking for the Level 2 BLAS........... 42
3.4.1.1 Register Blocking 43
3.4.1.2 Cache Blocking 46
3.4.2 ATLAS’s Level 2 Compute Kernels 47
3.4.3 Building ATLAS’s Level 2 BLAS. 48
3.5 Optimizing the Level 1 BLAS 49
3.6 Historical Context / Related Work, 49
MOTIVATION AND DESIGN OF OUR EMPIRICAL COMPILATION
FRAMEWORK —IFKO i 51
4.1 Motivationo 51
4.2 Design Philosophy 53
4.3 Overview of Framework 55
4.3.1 Anatomy of an Iterative and Empirical Compiler 5%}
4.3.2 Optimizing compiler —FKO o7
4.3.2.1 Input Language (HIL) 57
4.3.3 Tterative Search —iFKO......... 58
4.4 Interfacing ATLAS and iFKO 59
4.5 Related Work. 60
CURRENT IFKO IMPLEMENTATION 64
5.1 Supported Architectures 64
5.2 Interface Overview 66
5.3 Current Analysis and Communication with the Search 68
5.4 Current Fundamental Transformations 69
5.4.1 SIMD Vectorization (SV) i 69
5.4.1.1 Handling Scalarsin SV 72
5.4.2 Loop Unrolling (UR) 73
5.4.3 Optimize Loop Control (LC) 73
5.4.4 Accumulator Expansion (AE) 74
5.4.5 Prefetch (PF) 75
5.4.6 Non-temporal Writes (WNT) 76
5.4.7 Default Values 76
5.5 SIMD Alignment Issues 76
5.5.1 Present Handling of Alignment 7
5.5.2 Handling Alignment Safely, but Inefficiently 78
5.5.3 Fixing Some Alignment Problems through Loop Peeling. 78
5.5.4 Handling Mutual Misalignment 79
5.5.5 Special Alignment Considerations for Constantly Strided Multi-
dimensional Arrays 80
5.5.6 Adding Misalignment Support to the Framework 80
5.6 Current Repeatable Transformations 81

v

5.6.1 Register Allocation (ra) 82

5.6.2 Copy Propagation (Cp)ot 83
5.6.3 Reverse Copy Propagation (re) 83
5.6.4 Useless Jump Elimination (uj) 84
5.6.5 Useless Label Elimination (ul) 84
5.6.6 Branch Chaining (bc) 84
5.6.7 Enforce Load Store (Is) i 84
5.6.8 Remove One Use Loads (ul), .. 85
5.6.9 Last Use Load Removal (lu) 85
5.6.10 Default Values 86
5.7 FKO in Action 86
5.7.1 DDOT Example Illustrating ra, cp, rc, ul, and SV 87
5.7.1.1 SIMD Vectorization 91

5.7.2 DASUM Example [llustrating UR, AE, PF, ul, andls 95
5.7.3 DAXPY Example Illustrating WNT and lu................. 98
5.8 Current Iterative Search 100
6. EXPERIMENTAL RESULTS AND ANALYSIS............... 101
6.1 Problem Domain and Surveyed Routines. 101
6.2 Methodology and Version Information......................... 103
6.2.1 Input Routines. 104
6.3 Overview of Results 105
6.4 General Analysis 110
6.5 Interesting Asides 115
6.6 Learning from Defeat L. 117
6.6.1 iamax for All Architectures 120
6.6.2 Pentium 4E dcopy 121
6.6.3 Pentium 4E dscal 124
6.6.4 Opteron daxpyttt 125

7. FUTURE WORK, SUMMARY AND CONCLUSIONS 127
7.1 Future Work 127
7.1.1 Future Work on FKO 127
7.1.2 Future work on iFKO’s Search 130
7.2 SUMMATY . o ottt e e e e e e e e e e e e 131
7.3 Conclusions 132

APPENDIX: ANSI C AND HIL KERNEL IMPLEMENTATIONS. . 133
REFERENCES 137
BIOGRAPHICAL SKETCH 142

2.1
6.1
6.2
6.3

6.4

6.5

6.6

6.7
6.8

LIST OF TABLES

Summary of software adaptation techniques
Level 1 BLAS summary
Compiler flag and version information by platform

Transformation parameters for 2.8Ghz Pentium 4E, N=80000, all
caches flushed

Transformation parameters for 1.6Ghz Opteron, N=80000, all caches
flushed

Transformation parameters for 2.8Ghz P4E, N=1024, only L1 cache
flushed

Transformation parameters for 1.6Ghz Opteron, N=1024, only L1 cache
flushed

Loss Case SUmMmaryttt e

Better Transformation Parameters Found by Repeated Searches

vi

3.1
3.2
3.3
3.4
3.5

3.6
4.1
4.2
4.3
5.1
0.2
2.3
0.4
2.9
2.6
2.7
2.8
2.9
5.10
5.11
6.1

6.2

6.3

LIST OF FIGURES

One step of matrix-matrix multiply 23
General matrix multiplication with A as innermost matrix 25
General matrix multiplication with B as innermost matrix 25
ATLAS’s empirical search for the Level 3 BLAS 36
Performance of double precision matrix multiply across various archi-

TeCtUTeS . . o e 41
Present ATLAS empirical search for the Level 1 & 2 BLAS 42
Overview of our Empirical and Iterative Compilation System 5%}
ATLAS+iFKO empirical search for the Level 1 & 2 BLAS 61
ATLAS+iFKO empirical search for the Level 3 BLAS 61
Example FKO analysis output for PA4E 68
Dot product before and after UR and LC....................... 74
DDOT before and after Accumulator Expansion 75
Repeatable optimization defaults 86
DDOT Loop in HIL and Assembly with no optimization, and ra 88
DDOT Loop Assembly with ra, cp, and rc....................... 90
DDOT Loop Assembly with ra, cp, rcand ul 91
SIMD Vectorized DDOT Assembly 92
ASUM LOOD . oo 96
DASUM loop unrolled to 4.o 97
DAXPY LOOp . . oo 99
Relative speedups of various tuning methods on 2.8Ghz P4E, N=80000,

out-of-cache 107
Relative speedups of various tuning methods on 1.6Ghz Opteron,

N=80000, out-of-cache 107
Relative speedups of various tuning methods on 2.8Ghz P4E, N=1024,

in-L2-cache 108

Vil

6.4

6.5
6.6
6.7
6.8
6.9
6.10
Al
A2
A3
A4
A5
A6
AT

Relative speedups of various tuning methods on 1.6Ghz Opteron,

N=1024, in-L2-cache 108
BLAS performance in MELOPS 109
Speedup of In-cache over Out-of-cache 109
Percent speedup by transform due to empirical search. 112
Percent speedup by transform due to empirical search (zoomed) 112
Hand-tuned dcopy Assembly Routine for PAE 122
Inner loop of iFKO-tuned P4E dcopy 123
dswap implementations. o oo 133
dcopy implementations. 134
dasum implementations. L 134
daxpy implementations. o o 135
ddot implementations 135
dscal implementations. 136
idamax implementations. 136

viil

ABSTRACT

Using traditional methodologies and tools, the problem of keeping performance-
critical kernels at high efficiency on hardware evolving at the incredible rates dictated
by Moore’s Law is almost intractable. On product lines where ISA compatibility is
maintained through several generations of architecture, the growing gap between the
machine that the software sees and the actual hardware exacerbates this problem
considerably, as do the evolving software layers between the application in question
and the ISA. To address this problem, we have utilized a relatively new technique,
which we call AEOS (Automated Empirical Optimization of Software). In this paper,
we describe the AEOS systems we have researched, implemented and tested. The first
of these is ATLAS (Automatically Tuned Linear Algebra Software), which empirically
optimizes key linear algebra kernels to arbitrary cache-based machines. Our latest
research effort is instantiated in the iFKO (iterative Floating Point Kernel Optimizer)
project, whose aim is to perform empirical optimization of relatively arbitrary kernels

using a low-level iterative and empirical compilation framework.

X

CHAPTER 1

INTRODUCTION

The ultimate goal of this research is to provide compute kernels for the high
performance computing (HPC) community that run at near-peak efficiency, even
as architectures evolve at the frantic pace dictated by Moore’s Law. If a kernel’s
performance is to be made at all robust, it must be both portable, and of even greater
importance these days, persistent. We use these terms to separate two linked, but
slightly different forms of robustness. The platform on which a kernel must run can
change in two different ways: the machine ISA (Instruction Set Architecture) can
remain constant even as the hardware implementing that ISA varies, or the ISA can
change. When a kernel maintains its efficiency on a given ISA as the underlying
hardware changes, we say it is persistent, while a portably optimal code achieves high
efficiency even as the ISA and machine are changed.

Before the results of this research can be evaluated, it is important to demonstrate
that there truly is a problem that needs to be solved, and thus the bulk of this
introduction is dedicated to demonstrating why we have undertaken this line of
research. Therefore, Section 1.1 overviews the need for highly tuned kernels in HPC,
Section 1.2 discusses the traditional approaches to this problem, and gives the reasons
why they are inadequate in practice, which in turn motivates the application of
empirical techniques (the subject of this research), as discussed in Section 1.2.3. After
this motivation, Section 1.3 provides a brief history of this research, and Section 1.4

describes the organization of the remainder of the paper.

1.1 Importance of Kernel Optimization for HPC

High performance computing is differentiated from general computing by its
voracious appetite for computing resources. Despite hardware performance that has
been steadily improving according to Moore’s Law, this is as true today as it was
a decade ago. Scientific modeling provides an illustration of this phenomenon. In
many of these applications, computational power is the main constraint preventing
the scientist from modeling more complex problems, which would then more closely
match reality. As more computational power becomes available, the scientist typically
increases the complexity /accuracy of the model until the limits of the computational
power are reached. Therefore, since many applications have no practical limit of
“enough” accuracy, it is important that each generation of increasingly powerful
computers have well optimized computational kernels, which in turn allow for efficient

execution of the higher-level applications that use them.

1.2 Problems with Traditional HPC Kernel Production
Methods

The traditional path to achieving high performance in HPC involves compilation
research combined with library production. General purpose compilers do not,
in practice, achieve the very high percentages of peak on the complex kernels
demanded by HPC applications (the reasons for this are outlined in Section 1.2.2).
Therefore, since a user cannot write an arbitrary code and expect it to run at the
extreme efficiencies demanded by HPC applications, the community has responded
by emphasizing library production. In particular, APIs for reusable performance
kernels are standardized, allowing these kernels to be hand-tuned by teams of experts
for a given platform. Once these standard kernels are available for the platform of
interest, higher-level applications that leverage them can run at high efficiencies

without extensive additional tuning.

Both hand-tuning of kernels and traditional compilation have severe drawbacks
when employed for performance-critical kernel production, as discussed in the
following sections. Since traditional compilation shares many of the same drawbacks
as hand-tuning, as well as having its own unique problems, we discuss hand-tuning

first.
1.2.1 Shortcomings of Hand-tuning

Hand-tuning performance-critical kernels for each architecture of interest suffers
from two main drawbacks: First, creating software that realizes near peak rates
of execution requires detailed knowledge of a complex set of interrelated factors,
including the operation being optimized, the target architecture(s), and all the
intervening software layers. Even when the implementer possesses such broad
understanding, the interactions between various hardware/software layers guarantee
that significant empirical tuning of the initial kernel will be required. Therefore,
optimizing even the simplest of real-world operations for high performance usually
requires a sustained effort from the most technically advanced programmers, which
are in critically short supply. Second, even when the requisite programming talent
is available, hand-tuning such codes is a time consuming task, so that far too often,
when the optimized libraries are finally ready to come on line, the generation of
hardware for which they are optimized is well on its way towards obsolescence. This
difficulty of keeping software highly optimized in the face of hardware change is a

persistent problem for both hand-tuning and compilers.
1.2.2 Shortcomings of Traditional Compilation

The most fundamental reason traditional compilers do not achieve the high
percentages of peak required by HPC kernels is that it is not what they are

designed to do. Optimizing general-purpose code to this extreme degree would

be counter-productive: It would require substantially greater time to develop the
compiler itself, would have almost no effect on overall performance for most codes,
and would almost certainly increase compilation times to a degree intolerable for
general use.

Even if the compiler were written with this kind of extreme optimization in mind,
traditional compilation techniques would clearly need to be supplemented in some
way. Traditionally, compilers perform transformations based on models that attempt
to capture the relevant details of the underlying architecture. This approach works
well for general purpose computing, but the model needs to be much more detailed
to extract near-peak levels of performance: indeed, it needs to be so detailed that in
practice producing such a model would be almost intractable. Even if a model could
be created that was sophisticated enough to account for the interactions between all
levels of cache, the pipelines of all relevant functional units, and all shared hardware
resources required by a given operation (and it could do such detailed front-end
analysis that all required kernel-specific information was extracted from the code), it
is often the case that much of the data required to build such a model is unknown,
either because the hardware vendor considers it proprietary, or because even the
designers are unable to predict performance due to unforeseen resource interactions.
Therefore, models require significant hand-tuning to each supported architecture;
this is true even in general computing, and the cost would clearly go up dramatically
for a kernel-oriented compiler.

Therefore, to obtain near-peak efficiency for kernels using traditional compilation,
the models must be constantly modified to keep up with hardware being released at
the rate dictated by Moore’s Law. Since compilers are generally very complex applica-
tions, this is just as untenable in the long run as the hand-tuned kernel optimization
discussed in the previous section. Moore’s Law also provides a secondary effect
that makes model-based approaches even more problematic for this type of tuning.

Since software evolves at a much slower rate than Moore’s Law, hardware architects

4

must retain ISA compatibility whenever possible, which can lead to mismatches
between an ISA and the underlying hardware. At the same time, the additional
circuits that can be economically added to a wafer have resulted in architectures
that perform an increasing number of compiler-like transformations in hardware
(eg., dynamic scheduling, out-of-order execution, register renaming, etc.). Due to
this trend, the ISA available to the compiler writer becomes more and more like a
high level language, and thus the close connection between the instructions issued by
the compiler, and the actions performed by the machine, is lost. This phenomenon
makes it increasingly difficult to know a priori if a given transformation will be
helpful, and almost impossible to be sure when it is worth applying a transformation
that yields benefits only in certain situations. The most extreme example of this
trend is embodied in the x86 architecture, whose non-orthogonal CISC instruction
set has, to the frustration of many compiler writers, become the most widely-used
[SA in general-purpose computing.

Another problem with model-based approaches is how to allocate resources in
competing optimization phases. Here heuristics must be employed, which may leave
significant gaps in optimization (eg., reserve several registers when doing register
assignment so that software pipelining can be performed later, etc.). Finally, even if
all these challenges could be surmounted, kernel- and context-specific issues provide
a further barrier to achieving high performance. For instance, tuning a bus-bound
operation requires a different set of priorities than tuning a kernel that is primarily
cpu-bound, the types and number of operands strongly affect the correct optimization
scheme, etc. Profiling can discover some of this information, but quite a few relevant
details cannot be realistically discovered even when the most aggressive traditional
techniques are employed. If such perfect analysis were available, however, these
complicated architectural models would still need to be split into many subcases
to reflect varying usage patterns, worsening an already insupportable maintenance

problem.

1.2.3 Addressing Optimization Challenges through Empirical Techniques

These problems, taken together, led to the implementation of empirically tuned
library generators such as PHiPAC [1], FFTW [2, 3, 4] (these and other packages
are discussed in the related work sections of Chapters 3 and 4) and our own
ATLAS [5, 6, 7, 8, 9, 10] (discussed in Chapter 3). The central idea behind these
packages is that since it is difficult to predict a priori whether or by how much a given
technique will improve performance, one should try a battery of known techniques
on each performance-critical kernel, obtain accurate timings to assess the effect of
each transformation of interest, and retain only those that result in measurable
improvements for this ezract system and kernel. Thus, the need to understand the
architecture in detail is removed: we are probing the system as it stands, just as the
empirical technique of the scientific method probes the natural world, and just as
the scientific method discards disprovable theories, we do not retain transformations
that do not result in sufficient speedup.

This approach allows for a much greater degree of specialization than can be
realistically achieved in any other fashion. For instance, it is not uncommon for
empirical tuning of a given kernel on two basically identical systems, varying only
in the type or size of cache supported, to produce tuned implementations with
significantly different optimizational parameters, and it is almost always the case
that varying the kernel results in widespread optimization differences.

These empirically tuned packages have succeeded in achieving high levels of
performance on widely varying hardware, but in a sense they are still very limited
compared to compilation technology. In particular, they are tied to particular oper-
ations within given libraries, and are therefore not of great assistance in optimizing
other operations that nonetheless require similar levels of performance. It is therefore

no surprise that the compiler community has begun to evaluate the scope for using

empirical techniques in compilation. Chapters 4 and 5 outline our own empirical

compiler research.

1.3 History of Research

The author began this line of research while a he was a full-time researcher at the
University of Tennessee, Knoxville (UTK). In this initial work, the emphasis was on
achieving portably optimal code for a restricted set of linear algebra routines. This
research culminated in the ATLAS [6, 7, 8, 9, 10] project. After ATLAS proved
so successful in optimizing a given set of operations, the obvious question was how
it could be generalized, and this has led to the research we have conducted here at
Florida State University (FSU) on iFKO (iterative Floating Point Kernel Optimizer).
This work is aimed at generalizing empirical optimization to arbitrary floating point
kernels, and concentrates on achieving persistently optimal code.

The ATLAS work is included in this dissertation for two main reasons. Most
importantly, it combined with iFKO comprise the author’s contribution to the
emerging field of empirical optimization, and this first effort both supports and
lends direction to our current research. Secondly, while the majority of the ATLAS
framework was indeed developed at UTK, significant ATLAS work was done here
at FSU as well, including FSU grant #1327-592-45, and the publications of [10, 11].
Work on the grant led particularly to some intensive assembly hand-tuning to exploit
SIMD vectorization, and this and related efforts strongly influenced the design and

implementation of iFKO.

1.4 Organization of Paper

The remainder of this paper is organized in the following way: Chapter 2
introduces the terminology used to describe these empirical techniques, Chapter 3

overviews our ATLAS work, Chapter 4 uses this foundation to motivate and explain

our empirical compilation research, Chapter 5 describes the current implementation
of our empirical compilation framework, and Chapter 6 provides experimental results.
Note that the ATLAS and iFKO chapters contain their own related work section, as
these efforts are distinct in both approach and time. Finally, Chapter 7 summarizes

our findings and contributions as well as discussing areas for future work.

CHAPTER 2

BASIC DEFINITIONS - AEOS

Many groups have begun to utilize automated and empirical approaches to
optimization, resulting in a plethora of differing terminologies, including “self-tuning
libraries”, “adaptive software”, “empirical compilation”, “iterative compilation”, etc.
While these approaches differ strongly in details, in order to fall into the classification

related to our research they must have some commonalities:

1. The search must be automated in some way, so that an expert hand-tuner is

not required.

2. The decision of whether a transformation is useful or not must be empirical, in
that an actual timing measurement on the specific architecture in question is
performed, as opposed to the traditional application of transformations using

static heuristics or profile counts

3. These methods must have some way to vary/adapt the software being tuned.

With these broad outlines in mind, we lump all such empirical tunings under the
acronym AEOS, or Automated Empirical Optimization of Software, and Section 2.1
outlines the requirements of such systems, while Section 2.2 discusses the studied

methods of software adaptation.

2.1 Basic AEOS Requirements

The basic requirements for supporting high performance kernel optimization using

AEOS methodologies are:

e [solation of performance-critical routines: Just as with traditional libraries, the
performance-critical sections of code must be isolated (usually into subroutines,

which dictates the need for an standardized APT).

e A method of adapting software to differing environments: Since AEOS depends
on iteratively trying differing ways of performing the performance-critical
operation, the author must be able to provide implementations that instantiate
a wide range of optimizations. This may be done very simply, for instance by
having parameters in a fixed code which, when varied, correspond to differing
cache sizes, etc., or it may be done much more generally, for instance by
supplying a highly parameterized source generator which can produce an almost
infinite number of implementations. No matter how general the adaptation
strategy, there will be limitations or built-in assumptions about the required
architecture which should be identified in order to estimate the probable
boundaries on the code’s flexibility. Section 2.2 discusses software adaptation

methods in further detail.

e Robust, context-sensitive timers: Since timings are used to select the best code,
it becomes very important that these timings be accurate. Since few users can
guarantee single-user access, the timers must be robust enough to produce
reliable timings even on heavily loaded machines. Furthermore, the timers
need to replicate as closely as possible the way in which the given operation
will be used. For instance, if the routine will normally be called with cold
caches, cache flushing will be required. If the routine will typically be called
with a given level of cache preloaded, while others are not, that too should be
taken into account. If there is no known machine state, timers allowing for

many different states, which the user can vary, should be created.

10

o Appropriate search heuristic The final requirement is a search heuristic which
automates the search for the most optimal available implementation. For
a simple method of code adaptation, such as supplying a fixed number of
hand-tuned implementations, a simple linear search will suffice. However, when
using sophisticated source generators with literally hundreds of thousands of
ways of doing an operation, a similarly sophisticated search heuristic must
be employed in order to prune the search tree as rapidly as possible, so that
the optimal cases are both found and found quickly (obviously, few users will
tolerate heavily parameterized search times with exponential growth). If the
search takes longer than a handful of minutes, it needs to be robust enough
to not require a complete restart if hardware or software failure interrupts the

original search.

2.2 Methods of Software Adaptation

We employ three different methods of software adaptation. The first is widely used
in programming in general, and it involves parameterizing characteristics which vary
from machine to machine. In linear algebra, the most important of such parameters
is probably the blocking factor used in blocked algorithms, which, when varied, varies
the data cache utilization. In general, parameterizing as many levels of data cache
as the algorithm can support can provide remarkable speedups. With an AEOS
approach, such parameters can be compile-time variables, and thus not cause a
runtime slowdown. We call this method parameterized adaptation.

Not all important architectural variables can be handled by parameterized
adaptation (simple examples include instruction cache size, choice of combined or
separate multiply and add instructions, length of floating point and fetch pipelines,
etc), since varying them actually requires changing the underlying source code. This

then brings in the need for the second method of software adaptation, source code

11

adaptation, which involves actually generating differing implementations of the same
operation.

There are at least two different ways to do source code adaptation. Perhaps the
simplest approach is for the designer to supply various hand-tuned implementations,
and then the search heuristic may be as simple as trying each implementation in turn
until the best is found. At first glance, one might suspect that supplying these multi-
ple implementations would make even this approach to source code adaptation much
more difficult than the traditional hand-tuning of libraries. However, traditional
hand-tuning is not just the mere application of known techniques it may appear
when examined casually. Knowing the size and properties of your level 1 cache is
not sufficient to choose the best blocking factor, for instance, as this depends on
a host of interlocking factors which defy often a priori understanding in the real
world. Therefore, it is common in hand-tuned optimizations to utilize the known
characteristics of the machine to narrow the search, but then the programmer writes
various implementations and chooses the best.

For the simplest AEOS implementation, this process remains the same, but the
programmer adds a search and timing layer to accomplish what would otherwise be
done by hand. In the simplest cases, the time to write this layer may not be much if
any more than the time the implementer would have spent doing the same process
in a less formal way by hand, while at the same time capturing at least some of
the flexibility inherent in AEOS-centric design. We will refer to this source code
adaptation technique as multiple implementation. Due to its obvious simplicity, this
method is highly parallelizable, in the sense that multiple authors can meaningfully
contribute without having to understand the entire package. In particular, various
specialists on given architectures can provide hand-tuned routines without needing to
understand other architectures, the higher level codes (e.g. timers, search heuristics,

higher-level routine which utilize these basic kernels, etc). This makes multiple

12

implementation a very good approach if the user base is large and skilled enough
to support an open source initiative along the lines of, for example, Linux.

The second method of source code adaptation is source generation. In source
generation, a source generator (i.e., a program that writes other programs) is
produced. This source generator takes as parameters the various source code
adaptations to be made. As before, simple examples include instruction cache size,
choice of combined or separate multiply and add instructions, length of floating point
and fetch pipelines, and so on. Depending on the parameters, the source generator
produces a routine with the requisite characteristics. The great strength of source
generators is their ultimate flexibility, which can allow for far greater tunings than
could be produced by all but the best hand-coders. However, generator complexity
tends to go up along with flexibility, so that these programs rapidly become almost
insurmountable barriers to outside contribution.

In our own past efforts, we have therefore combined these two methods of
source adaptation, where a kernel-specific source generator is provided for maximal
architectural portability. Multiple implementation is utilized to encourage outside
contribution, and allows for extreme architectural specialization via assembly imple-
mentations.

Source generators that generate high-level (and thus portable) languages such as
FORTRAN or ANSI C (as opposed to low-level and non-portable languages such as
assembly) have the advantage of being able to optimize a given operation for any
architecture which possesses the requisite compiler. However, such source generators
are specific to the kernel being tuned, and thus we can say they are architec-
ture/platform independent, but routine/operation specific. Multiple implementation
is obviously routine specific as well, and is architecture dependent (assembly) or
independent (high level languages) depending on the implementation language.

Therefore, our past efforts have resulted in a AEOS-enabled library that is largely

platform independent, but operation specific. In our iFKO work, we generalize these

13

techniques using a third method of software adaptation, which will be more platform
specific, but routine independent. In addition, to augment our present strengths,
we believe it is important have a mechanism to exploit particular architectural
features not necessarily available in high level languages such as ANSI C. This
was accomplished using an iterative and empirical compiler, hereafter shortened to

empirical compiler.
2.2.1 Summary of Software Adaptation Methods

In summary, we use three tools in order to perform the required software
adaptation (we hereafter treat multiple implementation and source generation as
separate techniques, even though they are sub-classes of source code adaptation),
and their strengths and weaknesses are summarized in Table 2.1. All three of these

methodologies can be further augmented by parameterized adaptation.

Table 2.1: Summary of software adaptation techniques

ADAPTATION | PLATFORM | ROUTINE | OUTSIDE AUTOMATIC
METHOD INDEP. INDEP. CONTRIB. | ADAPTABILITY
Multiple YES NO EASY LOW
Implementation

Source YES NO DIFFICULT | HIGH

Generator

Empirical NO YES DIFFICULT | INTERMEDIATE
Compiler

We have previously discussed all of the columns of this table except the last,
automatic adaptability. This column gives an indication on how likely the method
is to provide good performance as the package is moved to differing architectures.
Multiple implementation has the lowest adaptability, since users rarely write imple-
mentations for architectures they are not using. There is still some adaptability,

and the closer the new architecture is to one of the ones previously seen, the better

14

multiple implementation will perform. However, multiple implementation is very
likely to provide poor performance in the face of fundamental architectural change.
In contrast, a general source generator, which can be built to be very flexible indeed,
is very likely to be able to adapt to all but the most extreme changes in architecture.

The empirical compiler is given an intermediate adaptability rating. In order to
use the full capabilities of the compiler, the backend must be ported, which is an
obvious constraint on adaptability. More specifically, an empirical compiler should
adapt well to varying architectures that implement a given ISA (i.e., it delivers
persistent optimization), but the backend must be ported to all ISAs of interest in
order to adapt to varying ISAs.

This table also provides the basis for understanding why all three mechanisms are
desirable. The source generator is the most flexible in overall adaptability, multiple
implementation allows for outside contribution and hand tuning, and an empirical
compiler provides the opportunity to tune a wider array of kernels.

Because an automated search can try many more techniques than even the
most motivated hand-tuner, we believe iFKO will ultimately make hand-tuning on
supported platforms unnecessary. While iFKO’s transformation palette is incom-
plete, however, multiple implementation (where iFKO is considered just another
compiler) can be used to provide so-far unsupported optimizations. Further, multiple
implementation provides an easy way to quickly try various optimization strategies,

in order to find transformations worth adding to iFKO.

15

CHAPTER 3

FOUNDATIONAL WORK —- ATLAS

ATLAS is the project from which our current understanding of AEOS method-
ologies grew, and now provides a test bed for their further development and testing.
The initial goal of ATLAS was to provide a portably efficient implementation of
the BLAS[12, 13, 14, 15, 16]. ATLAS now provides at least some level of support
for all of the BLAS, and the first tentative extensions beyond this one API have
been taken (for example, the most recent ATLAS release contained some higher level
routines from the LAPACK [17] API). Since the BLAS represent the kernels which
are empirically tuned, this paper will concentrate on ATLAS’s BLAS support.

The BLAS (Basic Linear Algebra Subroutines) are building block routines for
performing basic vector and matrix operations. The BLAS are divided into three
levels: Level 1 BLAS do vector-vector operations, Level 2 BLAS do matrix-vector
operations, and the Level 3 BLAS do matrix-matrix operations. The performance
gains from optimized implementations is strongly affected by the level of the BLAS.

In the Level 1 BLAS, no memory reuse is possible, and therefore many Level 1
BLAS are completely memory-bound if they do not operate on in-cache data. For
some Level 1 BLAS, prefetch and related techniques can still produce impressive
speedups; however, some operations are so memory-bound that the bus is always
saturated regardless of prefetch arrangements, so that out-of-cache speedups are es-
sentially unrealizable. Even in these routines, however, it is important to perform all
applicable computational optimizations, as inadequate computational optimization

may cause additional delay in issuing the critical fetch operations.

16

In the Level 2 BLAS, memory blocking can allow for reuse of the vector operands,
but not, in general, of the matrix operand (the exception is that some matrix types,
for instance symmetric or Hermitian, can effectively use each matrix operand twice).
Reducing the vector operands from O(N?) to O(N) represents considerable savings
over naive code, but due to the irreducible matrix costs, the memory load remains
of the same order (O(N?)) as the operation count. Therefore, the Level 2 BLAS can
enjoy modest speedup (say, roughly in the range of 10-300% for out-of-cache timings),
both because memory blocking is effective, and because the loops are complex enough
that more compilers begin having problems doing the floating point optimizations
automatically.

Finally, the Level 3 BLAS can display orders of magnitude speedups. To simplify
greatly, these operations can be blocked such that the natural O(N?) fetch costs
become essentially O(N?). Further, the triply-nested loops used here are almost
always too complex for the compiler to figure out without hints from the programmer
(eg, some explicit loop unrolling), and thus the O(N?) computation cost can be
greatly optimized as well.

The following sections discuss our handling of all BLAS levels in ATLAS. Because
of the amount of effort required to provide high-quality AEOS software, it becomes
critical to find the smallest possible kernels which can be leveraged to supply all
required functionality. Thus, each section describes the low level performance kernels,
the techniques used to create them, and how these kernels are utilized to produce all

required functionality.

3.1 Limits of ATLAS’s Approach

As previously mentioned, any AEOS approach is bound to have some restrictions
on its adaptability. ATLAS is no exception, and the following assumptions need to

hold true for ATLAS to perform well:

17

1. Adequate ANSI C compiler: ATLAS is written entirely in ANSI/ISO C, with
the exception of the FORTRAN 77 interface codes (which are simple wrappers
written in ANSI FORTRAN 77, calling the C internals for computation).
ATLAS does not require an excellent compiler, since it uses source generation
to perform many optimizations typically done by compilers. However, too-
aggressive compilers can transform already optimal code into suboptimal code,
if flags do not exist to turn off certain compiler optimizations. On the other
hand, compilers without the ability to effectively use the underlying ISA (eg.,
inability to utilize registers, even when the C code calls for them), will yield

poor results as well.

2. Hierarchical memory: ATLAS assumes a hierarchical memory is present. Best
results will be obtained when both registers and at least an L1 data cache are

present.

Of these two, an adequate C compiler is the most important restriction. Even
lack of hierarchical memory would at worst turn some of ATLAS’s blocking and
register usage into overheads. Even with this handicap, ATLAS’s source adaptation
may still yield enough performance to provide an adequate BLAS. If the ANSI C
compiler is poor enough, however, this can result in the computational portion of
the algorithms being effectively unoptimized. Since the computational optimizations
are the dominant cost of a blocked Level 3 BLAS, this can produce extremely poor
results. Note that multiple implementation, with its support for assembly as well as
ANSI C, can be used to get around even this restriction. If the machine in question
does not share an ISA with a previously seen machine, however, we will be back to

the familiar problem of having optimization wait on hand-tuning.

18

3.2 AEOS Tuning for the Level 3 BLAS in ATLAS

All thirty routines of the Level 3 BLAS (for each real data type there are six
Level 3 BLAS, and nine routines for each complex data type) can be efficiently
implemented given an efficient matrix-matrix multiply (for details on how this is
done, [10] discusses ATLAS’s particular implementation, and other approaches are
given in [18, 19, 20, 21]). Thus the main performance kernel is general matrix
matrix multiply (hereafter shortened to matmul, or the BLAS matmul routine name,
GEMM). As subsequent sections show, however, GEMM itself is further narrowed
down to an even smaller kernel before source generation takes place.

The BLAS supply a routine GEMM, which performs a general matrix-matrix
multiplication of the form C < aop(A)op(B) + BC, where op(X) = X or X*. C' is
an M x N matrix, and op(A) and op(B) are matrices of size M x K and K x N,
respectively.

In general, the arrays A, B, and C will be too large to fit into cache. Using a
block-partitioned algorithm for matrix multiply, it is still possible to arrange for the
operations to be performed with data for the most part in cache by dividing the
matrix into blocks. For additional details see [22].

Using this BLAS routine, the rest of the Level 3 BLAS can be efficiently
supported, so GEMM is the Level 3 BLAS computational kernel. In ATLAS, this
BLAS-level GEMM is written as a series of high level codes which use compile- or
run-time variables to adapt to cache levels. These high-level codes get most of their
adaptation from a lower-level kernel (discussed in Section 3.2.2), which is adapted
to the architecture using parameterized adaptation, multiple implementation, and

source generation.

19

3.2.1 Building the General Matrix Multiply from the L1 Cache-contained
Multiply

This section describes the non-generated code, whose only variance across plat-
forms come from parameterization. These codes are used to form the BLAS’s general
matrix-matrix multiply using a L1 cache-contained matmul (hereafter referred to as
the L1 matmul).

Section 3.2.2 describes the L1 matmul and its generator in detail. For our present
discussion, it is enough to know that ATLAS has at its disposal highly optimized
routines for doing matrix multiplies whose dimensions are chosen such that cache
blocking is not required (i.e., the hand-written code discussed in this section deals
with cache blocking; the generated code assumes things fit into cache).

When the user calls GEMM, ATLAS must decide whether the problem is large
enough to tolerate copying the input matrices A and B. If the matrices are large
enough to support this O(N?) overhead, ATLAS will copy A and B into block-major
format. ATLAS’s block-major format breaks up the input matrices into contiguous
blocks of a fixed size Ny, where Np is chosen as discussed in Section 3.2.2 in order
to maximize L1 cache reuse. Once in block-major format, the blocks are contiguous,
which eliminates TLB problems, minimizes cache thrashing and maximizes cache
line use. It also allows ATLAS to apply alpha (if alpha is not already one) to the
smaller of A or B, thus minimizing this cost as well. Finally, the package can use the
copy to transform the problem to a particular transpose setting, which for load and
indexing optimization, is set so A is copied to transposed form, and B is in normal
(non-transposed) form. This means our Ll-cache contained code is of the form
C <+ ATB, C < ATB + C, and C < AT'B + BC, where all dimensions, including
the non-contiguous stride, are known to be Ng. Knowing all of the dimensions of the
loops allows for arbitrary unrollings (i.e., if the instruction cache could support it,
ATLAS could unroll all loops completely, so that the L1 cache-contained multiply

had no loops at all). Further, when the source generator knows the leading dimension

20

of the matrices (i.e., the row stride), all indexing can be done explicitly, without the
need for expensive integer or pointer computations.

If the matrices are too small, the O(N?) data copy cost can actually dominate
the algorithm cost, even though the computation cost is O(N?). For these matrices,
ATLAS will call an L1 matmul which operates on non-copied matrices (i.e. directly
on the user’s operands). The non-copy L1 matmul will generally not be as efficient
as the copy L1 matmul; at this problem size the main performance bottleneck is
memory, and so the lack of computational efficiency (mainly due to the additional
pointer arithmetic required in order to support the user-supplied leading dimension)
will likely only show up on in-cache operations.

The choice of when a copy is dictated and when it is prohibitively expensive is an
AEOS parameter; it turns out that this crossover point depends strongly both on the
particular architecture, the matmul kernel selected, and the shape of the operands
(matrix shape effectively sets limits on which matrix dimensions can enjoy cache
reuse). To handle this problem, ATLAS simply compares the speed of the copy and
non-copy L1 matmul for variously shaped matrices, varying the problem size until
the copying provides a speedup (on some platforms, and with some shapes, this point
is never reached). These crossover points are determined at install time, and then
used to make this decision at runtime. Because it is the dominant case, this paper
describes only the copied matmul algorithm in detail.

There are presently two algorithms for performing the general matrix-matrix
multiply. The two algorithms correspond to different orderings of the loops; i.e.,
is the outer loop over M (over the rows of A), and thus the second loop is over N
(over the columns of B), or is this order reversed. The dimension common to A and
B (i.e., the K loop) is currently always the innermost loop.

Let us define the input matrix looped over by the outer loop as the outer or
outermost matrix; the other input matrix will therefore be the inner or innermost

matrix. Both algorithms have the option of writing the result of the L1 matmul

21

directly to the matrix, or to an output temporary C. The advantages to writing to

C rather than C are:

1. Address alignment may be controlled (i.e., the code can ensure during the

malloc that C begins on a cache-line boundary).

2. Data is contiguous, eliminating possibility of unnecessary cache-thrashing due

to ill-chosen leading dimension (assuming a non-write-through cache).

The disadvantage of using C is that an additional write to C' is required after
the L1 matmul operations have completed. This cost is minimal if GEMM makes
many calls to the L1 matmul (each of which writes to either C' or C), but can add
significantly to the overhead when this is not the case. In particular, an important
application of matrix multiply is the rank-K update, where the write to the output
matrix C' can be a significant portion of the cost of the algorithm. For the rank-K
update, writing to C essentially doubles the write cost, which is clearly unacceptable.
The routines therefore employ a heuristic to determine if the number of times the
L1 matmul will be called in the K loop is large enough to justify using C’, otherwise
the answer is written directly to C.

Regardless of which matrix is outermost, both algorithms try to allocate enough
space to store the Ny x N output temporary, C (if needed), 1 panel of the outermost
matrix, and the entire inner matrix. If this fails, the algorithms attempt to allocate
smaller work arrays, the smallest acceptable workspace being enough space to hold
C’, and 1 panel from both A and B. The minimum workspace required by these
routines is therefore 2K Np, if writing directly to C, and Ng*+ 2K Np if not. If this
amount of workspace cannot be allocated, the previously mentioned non-copy code
is called instead.

If there is enough space to copy the entire innermost matrix, there are several

benefits to doing so:

e Fach matrix is copied only one time.

22

o If all of the workspaces fit into L2 cache, the algorithm enjoys complete L2

reuse on the innermost matrix.

e Data copying is limited to the outermost loop, protecting the inner loops from

unneeded cache thrashing.

Of course, even if the allocation succeeds, using too much memory might result in
unneeded swapping. Therefore, the user can set a maximal amount of workspace that
ATLAS is allowed to have, and ATLAS will not try to copy the innermost matrix if
this maximum workspace requirement is exceeded.

If enough space for a copy of the entire innermost matrix is not allocated, the
innermost matrix will be entirely copied for each panel of the outermost matrix (i.e.,
if A is our outermost matrix, ATLAS will copy B [M/Ng] times). Further, our
usable L2 cache is reduced (the copy of a panel of the innermost matrix will take up
twice the panel’s size in L2 cache; the same is true of the outermost panel copy, but
that will only be seen the first time through the secondary loop).

Regardless of which looping structure or allocation procedure used, the inner loop
is always along K. Therefore, the operation done in the inner loop by both routines

is the same, and it is shown in Figure 3.1.

N K
N
A B o
M C M < | B K
C39 As 1|43 9 2,2
539

Figure 3.1: One step of matrix-matrix multiply

If GEMM is writing to C, the following actions are performed in order to calculate
the Np x Np block C;;, where ¢ and j are in the range 0 < ¢ < [M/Ng],
0<j<[N/Nsg]:

23

1. Call L1 matmul of the form C' <— AB to multiply block 0 of the row panel i of
A with block 0 of the column panel j of B.

2. Call L1 matmul of form C' < AB + C' to multiply block k& of the row panel ¢
of A with block & of the column panel j of B, Vk,1 < k < [K/Ng]|. The L1
matmul is performing the operation C' <+— AB + C', so as expected this results

in multiplying the row panel of A with the column panel of B.

3. C now holds the product of the row panel of A with the column panel of B, so
ATLAS now performs the block write-back operation C; ; < C; ; + SCi ;.

If ATLAS is writing directly to C', this action becomes:

1. Call L1 matmul of the correct form based on user-defined g (eg. if f == —1,
use C' <= AB — (') to multiply block 0 of the row panel i of A with block 0 of

the column panel j of B.

2. Call L1 matmul of form C' <+ AB + C' to multiply block k£ of the row panel ¢
of A with block k of the column panel j of B, Vk,1 < k < [K/Ng].

Building from this inner loop, ATLAS has differing loop orderings which provide
two algorithms for the full matmul. Figures 3.2 and 3.3 give the pseudo-code for
these two algorithms, assuming the write is directly to C' (writing to C is only
trivially different). For simplicity, this pseudo-code skips the cleanup necessary for
cases where dimensions do not evenly divide Ng. The matrix copies are shown as if
coming from the notranspose, notranspose case. If they do not, only the array access

on the copy changes.

24

work = allocate((M+NB) *K)
if (allocated(work)) then
PARTIAL_MATRIX = .FALSE.
copy A into block major format
else
PARTIAL_MATRIX = .TRUE.
work = allocate (NB*2xK)
if (.NOT.allocated(work)) call small_case_code
return
end if
NBNB = NB * NB
do j =1, N, NB
Bwork = ALPHA*B(:,J:J+NB-1); Bwork in block major format
doi=1, M, NB
if (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in block major format
ON_CHIP_MATMUL (Awork (1:NB*NB), Bwork(1:NB*NB), BETA, C(i:i+NB-1, j:j+NB-1), 1ldc)
do k = 2, K, NB
ON_CHIP_MATMUL (Awork ((k-1)*NBNB+1:k*NBNB) , Bwork ((k—-1)*NBNB+1:k*NBNB),
1.0, C(i:i+NB-1, j:j+NB-1), ldc)
end do
end do
end do

Figure 3.2: General matrix multiplication with A as innermost matrix

work = allocate(N*K + NBx*K)
if (allocated(work)) then
PARTIAL_MATRIX = .FALSE.
copy B into block major format
else
PARTIAL_MATRIX = .TRUE.
work = allocate (NB*2%K)
if (.NOT.allocated(work)) call small_case_code
return
end if
NBNB = NB * NB
doi=1, M, NB
Awork = ALPHA*A(i:i+NB-1,:); Awork in block major format
doj =1, N, NB
if (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in block major format
ON_CHIP_MATMUL (Awork(1:NBNB), Bwork(1:NBNB), BETA,
Cwork(i:i+NB-1, j:j+NB-1), 1ldc)
do k = 2, K, NB
ON_CHIP_MATMUL (Awork ((k-1)*NBNB+1:k*NBNB) , Bwork ((k-1)*NBNB+1:k*NBNB),
1.0, Cwork(i:i+NB-1, j:j+NB-1), 1dc)
end do
end do
end do

Figure 3.3: General matrix multiplication with B as innermost matrix

25

3.2.1.1 Choosing the Correct Looping Structure

When the call to the matrix multiply is made, the routine must decide which
loop structure to call (i.e., which matrix to put as outermost). If the matrices are
of different size, L2 cache reuse can be encouraged by deciding the looping structure

based on the following criteria:

1. If either matrix will fit completely into the usable L2 cache, put it as the

innermost matrix (algorithm gets L2 cache reuse on the entire inner matrix).

2. If neither matrix fits completely into L2 cache, put largest matrix as the
outermost matrix (algorithm gets L2 cache reuse on the panel of the outer

matrix, if it fits in cache, and memory usage is minimized).

The size of the usable L2 cache is not directly known by ATLAS (although the
AEOS variable CacheEdge described in Section 3.2.1.2 will often serve the same
purpose) and so these criteria are not presently used for this selection. Rather, in
order to minimize workspace, and maximize the chance that condition one above
occurs, the smallest matrix will always be used as the innermost matrix. If both
matrices are the same size, A is selected as the innermost matrix (this implies a

better access pattern for C').

3.2.1.2 Blocking for Higher Levels of Cache

Note that this paper defines the Level 1 (L1) cache as the “lowest” level of cache:
the one closest to the processor. Subsequent levels are “higher”: further from the
processor and thus usually larger and slower. Typically, L1 caches are relatively small
(eg., 8-32KB), employ least recently used replacement policies, have separate data
and instruction caches, and are often non-associative and write-through. Higher
levels of cache are more often write-back, with varying degrees of associativity,
differing replacement polices, and often contain both instruction and data.

ATLAS detects the actual size of the L1 data cache. However, due to the wide

variance in high level cache behaviors, in particular the difficulty of determining how

26

much of such caches are usable after line conflicts and data/instruction partitioning
is done, ATLAS does not presently detect and use a explicit Level 2 cache size as
such. Rather, ATLAS employs a empirically determined value called CacheEdge,
which represents the amount of the cache that is usable by ATLAS for its particular
kind of blocking.

Explicit cache blocking for the selected level of cache is only required when the
cache size is insufficient to hold the two input panels and the Ng x Np piece of
C. This means that users will have optimal results for many problem sizes without
employing CacheEdge. This is expressed formally below. Notice that conditions 1
and 2 below do not require explicit cache blocking, so the user gets this result even
if CacheEdge is not set.

Therefore, the explicit cache blocking strategy discussed in case 4 below assumes
that the panels of A and B overflow a particular level of cache. In this case, the
problem can be easily partitioned along the K dimension of the input matrices
such that the panels of the partitioned matrices A, and B, will fit into the cache.
This means that we get cache reuse on the input matrices, at the cost of writing C'
additional times.

It is easily shown that the footprint of the algorithm computing a Ng x Ng section
of C' in cache is roughly 2K N + N2, where 2K Ny stores the panels from A and B,
and the section of C'is of size N2, If the above expression is set equal to CacheEdge,
and solved for K, it will yield the maximal K (call this quantity K,,) which will,
assuming the inner matrix was copied up front, allow for reusing the outer matrix
panel N/Npg times. This partitioning transforms the original matrix multiply into
|K/K,,| rank-K,, updates.

Since the correct value of CacheEdge is not known a priori, ATLAS empirically
determines it at install time by using large matrices (whose panel sizes can be
expected to overflow the cache, and thus bring up the need for explicit, rather than

implicit, L2 or higher blocking), and simply trying various settings. Extremely large
27

caches will probably not be detected in this manner (i.e., if the user cannot allocate
enough memory to cause a panel to overflow the cache, the large cache will not be
detected), and some higher-level caches provide relatively small benefits and so may
not be detected, in which case CacheEdge is set to a 4 MB (this is large enough not
to depress performance even for very large problems on systems without L2 caches,
and it results in less memory usage).

Assuming that matrix A is the innermost matrix, and we are discussing cache level
L, of size S, and that main memory is classified as a level of “cache” greater than
L, there are four possible states (depending on cache and problem size, and whether
CacheEdge is set) which ATLAS may be in. These states and their associated memory

access costs are:

1. If the entire inner matrix, a panel of the outer matrix, and the Ng x Npg section

of C fits into the cache (eg. MK + KNy + Np* < Sp):

e K(M+N)+ MN reads (of A, B and C, respectively) from higher level(s)
cache

. —MA],\; K writes to first level of non-write-through cache; higher levels of cache

receive only the final M N writes

2. If the cache cannot satisfy the memory requirements of 1, it may still be large
enough to accommodate the two active input panels, along with the relevant
section of C'

(eg., 2KNp + Np? < S, AND ATLAS copies the entire inner matrix)
OR (3K Ngp + Ng? < S; AND ATLAS copies a panel of the inner matrix in

the inner loop, thus doubling the inner panel’s footprint in the cache)):

o NK + MN—]\]Z{ + MN reads (B, A and C, respectively) from higher level(s)

of cache

28

MNK

[] Ng

writes to first level of non-write-through cache; higher levels of cache

receive only the final M N writes

3. If the cache is too small for either of the previous cases to hold true, (eg.,
2K Ng + Ng? > S1) and CacheEdge is not set, and thus no explicit level L

blocking is done, the memory access becomes:

° —ZA;[VJZK + MN reads (A, B, and C) from higher level(s) of cache

° —M]\],\; K \yrites to first level of non-write-through cache; higher levels of cache

receive only the final M N writes

4. Finally, if the first two cases do not apply (eg., 2K Ng + Np* > S;), but
CacheEdge is set to Sp, ATLAS can perform cache blocking to change the

memory access from that given in 3 to:

o NK + MN—A;K + MK—]\;K (B, A, C) reads from higher level(s) of cache

. —M]\]f\; K writes to first level of non-write-through cache; higher levels of cache

MNK

X, writes

receive at most

As mentioned above, case 4 is only used if CacheEdge has been set, and cases 1 and 2
do not apply (i.e, it is used as an alternative to case 3). At first glance changing case
3 to 4 may appear to be a poor bargain indeed, particularly since writes are generally
more expensive than reads. There are, however, several mitigating factors that make
this blocking nonetheless worthwhile. If the cache is write-through, case 4 does not
increase writes over case 3, so it is a clear win. Second, ATLAS also does not allow
K,, < Npg, and in many cases K,, > Np, so the savings are well worth having. With
respect to the expense of writes, the writes are not flushed immediately; This fact

has two important consequences:

1. The cache can schedule the write-back during times when the algorithm is not

using the bus.

29

2. Writes may be written in large bursts, which significantly reduces bus traffic;

this can tremendously optimize writing on some systems.

In practice, case 4 has been shown to be at least roughly as good as case 3 on
all platforms. The amount of actual speedup varies widely depending on problem
size and architecture. On some systems the speedup is negligible; on others it can
be significant: for instance, it can make up to 20% difference on DEC 21164 based
systems (which have three layers of cache). Note that this 20% improvement is
merely the difference between cases 3 and 4, not between ATLAS and some naive
implementation, for instance.

The analysis given above may be applied to any cache level greater than 1; it is
not for level 2 caches only. However, this analysis is accurate only for the algorithm
used by ATLAS in a particular section of code, so it is not possible to recur in order
to perform explicit cache blocking for arbitrary levels of cache. To put this another
way, ATLAS explicitly blocks for L1, and only one other higher level cache. If an
architecture has 3 levels of cache, ATLAS can explicitly block for L.L1 and L2, or L1
and L3, but not all three.

If ATLAS performs explicit cache blocking for level L, that does not mean that
level L + 1 would be useless; depending on cache size and replacement policy, level
L + 1 may still save extra read and writes to main memory through implicit cache

blocking.
3.2.2 L1 Cache-contained Matmul

The only source generator required to support the Level 3 BLAS produces
a L1 cache-contained matmul. The operation supported by the kernel is still:
C + aop(A)op(B)+BC, where op(X) = X or XT. C'is an M x N matrix, and op(A)
and op(B) are matrices of size M x K and K x N, respectively. However, by L1

cache-contained we mean that the dimensions of its operands have been chosen such

30

that Level 1 cache reuse is maximized (see below for more details). Therefore, the
generated code blocks for the L1 cache using the dimensions of its operand matrices
(M, N, and K), which, when not in the cleanup section of the algorithm, are all
known to be Np.

In a multiply designed for L1 cache reuse, one of the input matrices is brought
completely into the L1 cache, and is then reused in looping over the rows or columns
of the other input matrix. The present code brings in the matrix A, and loops over
the columns of B; this was an arbitrary choice, and there is no theoretical reason it
would be superior to bringing in B and looping over the rows of A.

There is a common misconception that cache reuse is optimized when both input
matrices, or all three matrices, fit into L1 cache. In fact, the only win in fitting all
three matrices into L1 cache is that it is possible, assuming the cache is write-back,
to save the cost of pushing previously used sections of C' back to higher levels of
memory. Often, however, the L1 cache is write-through, while higher levels are not.
If this is the case, there is no way to minimize the write cost, so keeping all three
matrices in L1 does not result in greater cache reuse.

Therefore, ignoring the write cost, maximal cache reuse for our case is achieved
when all of A fits into cache, with room for at least two columns of B and 1 cache
line of C. Only one column of B is actually accessed at a time in this scenario; having
enough storage for two columns assures that the old column will be the least recently
used data when the cache overflows, thus making certain that all of A is kept in place
(this obviously assumes the cache replacement policy is least recently used).

While cache reuse can account for a great amount of the overall performance win,

it is obviously not the only factor. For the L1 matmul, other relevant factors are:

e instruction cache overflow
e floating point instruction ordering

e loop overhead

31

e exposure of possible parallelism

e the number of outstanding cache misses the hardware can handle before

execution is blocked

3.2.2.1 Instruction Cache Overflow

Instructions are cached, and it is therefore important to fit the L1 matmul’s
instructions into the L1 instruction cache. This means optimizations that generate
massive amounts of instruction bloat (completely unrolling all three loops, for

instance) cannot be employed.

3.2.2.2 Floating Point Instruction Ordering

When this paper discusses floating point instruction ordering, it will usually be
in reference to software pipelining. Most modern architectures possess pipelined
floating point units. This means that the results of an operation will not be
available for use until X cycles later, where X is the number of stages in the
floating point pipe (typically somewhere around 3-8). Remember that our L1 matmul
is of the form C < ATB + C; individual statements would then naturally be
some variant of C[X] += A[Y] x B[Z]. If the architecture does not possess a fused
multiply/add unit, this can cause an unnecessary execution stall. The operation
register = A[Y] * B[Z] is issued to the floating point unit, and the add cannot
be started until the result of this computation is available, X cycles later. Since the
add operation is not started until the multiply finishes, the floating point pipe is not
utilized.

The solution is to remove this dependence by separating the multiply and add,
and issuing unrelated instructions between them (requiring the loop to be skewed,
since the multiply must now be issued X cycles before the add, which comes X
cycles before the store). This reordering of operations can be done in hardware

(out-of-order execution) or by the compiler, but this will oftentimes generate code

32

that is not as efficient as doing it explicitly. More importantly, not all platforms have
this capability (for example, gce on a Pentium), and in this case the performance

win can be large.

3.2.2.3 Reducing Loop Overhead

The primary method of reducing loop overhead is through loop unrolling. If it is
desirable to reduce loop overhead without changing the order of computations, one
must unroll the loop over the dimension common to A and B (i.e., unroll the K loop).
Outer loop unrolling, with its associated duplication of the inner loop results in very
little overhead reduction unless it is combined with fusing the replicated innermost
loops. This technique is known as unroll-and-jam [23], and it changes the memory

reference pattern (and provides much greater opportunity for register blocking).

3.2.2.4 Exposing Parallelism

Many modern architectures have multiple floating point units. There are two
barriers to achieving perfect parallel speedup with floating point computations in
such a case. The first is a hardware limitation, and therefore out of our hands: All
of the floating point units will need to access memory, and thus, for perfect parallel
speedup, the memory fetch will usually also need to operate in parallel.

The second prerequisite is that the compiler recognize opportunities for paral-
lelization, and this is amenable to software control. The fix for this is the classical
one employed in such cases, namely through unrolling the M and/or N loops,
and choosing the correct register allocation (using scalar replacement and scalar

expansion [24]) so that parallel operations are not constrained by false dependencies.

3.2.2.5 Finding the Correct Number of Cache Misses
Any operand that is not already in a register must be fetched from memory.
If that operand is not in the L1 cache, it must be fetched from further up in the

memory hierarchy, possibly resulting in large delays in execution. The number of

33

cache misses which can be issued simultaneously without blocking execution varies
between architectures. To minimize memory costs, the maximal number of cache
misses should be issued each cycle, until all memory is in cache or used. In theory,
one can permute the matrix multiply to ensure that this is true. In practice, this
fine a level of control would be difficult to ensure (there would be problems with
overflowing the instruction cache, and the generation of such a precise instruction
sequence, for instance). So the method ATLAS uses to control the cache-hit ratio is

the more classical one of M and N loop unrolling.

3.2.2.6 Source Generator Parameters
The source generator is heavily parameterized in order to allow for flexibility in

all of the areas. In particular, the options are:

e Support for A and/or B being either standard form, or stored in transposed

form

e Register blocking of “outer product” form (the most optimal form of matmul
register blocking). Varying the register blocking parameters provides many

different implementations of matmul. The register blocking parameters are:

— a, : registers used for elements of A,

— b, : registers used for elements of B

Outer product register blocking then implies that a, X b, registers are then used
to block the elements of C'. Thus, if NV, is the maximal number of registers
discovered during the floating point unit probe, the search needs to try all a,

and b, that satisfy a,b, + a, + b, < N,.

e Loop unrollings: There are three loops involved in matmul, one over each of
the provided dimensions (M, N and K), each of which can have its associated

unrolling factor (my, 1y, k,). The M and N unrolling factors are restricted to

34

varying with the associated register blocking (a, and b,, respectively), but the
K-loop may be unrolled to any depth (i.e., once a, is selected, m, is set as well,

but k, is an independent variable).
Choice of floating point instruction:

— combined multiply/add with associated scalar expansion

— separate multiply and add instructions, with associated software pipelin-

ing and scalar expansion

User choice of utilizing generation-time constant or run-time variables for all
loop dimensions (M, N, and K; for non-cleanup copy L1 matmul, M = N =
K = Npg). For each dimension that is known at generation, the following

optimizations are made:

— If unrolling meets or exceeds the dimension, no actual loop is generated

(no need for loop if fully unrolled).

— If unrolling is greater than one, correct cleanup can be generated without

using an if (thus avoiding branching within the loop).

Even if a given dimension is a run-time variable, generator can be told to

assume particular, no, or general-case cleanup for arbitrary unrolling.

For each operand array, the leading dimension can be a run-time variable or
a generation-time constant (for example, it is known to be Np for copied L1

matmul), with associated savings in indexing computations

For each operand array, the leading dimension can have a stride (stride of 1 is

most common, but stride of 2 can be used to support complex arithmetic).

The generator can eliminate unnecessary arithmetic by generating code with

special alpha (1, -1, and variable) and beta (0, 1, -1, and variable) cases. In

35

addition, there is a special case for when alpha and beta are both variables, but

it is safe to divide beta by alpha (this can save multiple applications of alpha).

e Various fetch patterns for loading A and B registers

3.2.2.7 Putting It All Together — Outline of the Search Heuristic
It is obvious that with this many interacting effects, it would be difficult, if not
impossible to predict a priori the best blocking factor, loop unrolling etc. ATLAS’s

matmul kernel search is outlined in Figure 3.4.

R
O
ITJ Master Search » Optimized matmul kerne
1 |
Y Y
N Mult. Tmp. | Source Gen.
E Search (linear Search (heur.)
]]:3) 2 l Y ¥ : Y
D Multiple Tester/ Source
Implementation Timer Generator
[. [|
I L
OL Il
UA
T T
I1
N N YYY
P o | ANSIC | %
P Compiler
L Y
‘% Assembler & Linker
D Y
E Timer
P Executable

Figure 3.4: ATLAS’s empirical search for the Level 3 BLAS

Our master search first calls the generator search, which uses a heuristic to
probe the essentially infinite optimization space allowed by the source generator,
and returns the parameters (eg., blocking factor, unrollings, etc) of the best case

found. The master search then calls the multiple implementation search, which

36

simply times each hand-written matmul kernel in turn, returning the best. The best
performing (generated, hand-tuned) kernel is then taken as our system-specific L1
cache-contained kernel.

Both multiple implementation and generator searches pass the requisite kernel
through a timing step, where the kernel is linked with a AEOS-quality timer, and
executed on the actual hardware. Once the search completes, the chosen kernel is
then tested to ensure it is giving correct results, as a simple sanity test to catch errors
in compilation or kernels.

For both searches, our approach takes in some initial information such as L1 cache
size, types of instructions available, types of assembly supported, etc., to allow for an
up-front winnowing of the search space. The timers are structured so that operations
have a large granularity, leading to fairly repeatable results even on non-dedicated
machines. All results are stored in files, so that subsequent searches will not repeat
the same experiments, allowing searches to build on previously obtained data. This
also means that if a search is interrupted (for instance due to a machine failure),
previously run cases will not need to be re-timed. A typical install takes from 1 to 2
hours for each precision.

During installation, ATLAS runs some tests to determine what assembly di-
alect(s) an architecture supports. This information is then used during the multiple
implementation search to avoid long error reports as contributed assembly kernels
fail to compile on unsupported platforms.

The first step of the master search probes for the size of the L1 cache. This is
done by performing a fixed number of memory references, while successively reducing
the amount of memory addressed. The most significant gap between timings for
successive memory sizes is declared to mark the L1 cache boundary. For speed, only
powers of 2 are examined. This means that a 48K cache would probably be detected

as a 32K cache, for instance. We have not found this problem severe enough to justify

37

the additional installation time it would take to remedy it. With this information,
both searches have a good bound on the blocking factors to try.

Next, ATLAS probes to determine information regarding the floating point units
of the platform. First ATLAS needs to understand whether the architecture possesses
a combined muladd unit, or if independent multiply and add pipes are required.
To do this, ATLAS generates simple register-to-register code which performs the
required multiply-add using a combined muladd and separate multiply and add
pipes. Both variants are tried using code which implies various pipeline lengths.
ATLAS then replicates the best of these codes in such a way that increasing numbers
of independent registers are required, until performance drops off sufficiently to
demonstrate that the available floating point registers have been exceeded. With
this data in hand, ATLAS is ready to begin actual L1 matmul timings.

Further details on the multiple implementation and generator searches are pro-
vided in the following sections. When both searches are completed, the master
search designates the fastest of these two kernels (generated and hand-written) as

the architecture-specific kernel for the target machine.

3.2.2.8 Source Generator Search

The general timings done by the master search provide the generator search with
the L1 cache size, the kind of instructions to issue (MAC or separate multiply and
add), the pipeline depth (for software pipelining and associated scalar expansion) and
a rough estimate of the number of available floating point registers. This information
may then be used as constraints on the search space.

The size of the L1 cache provides the search with an upper bound on the blocking
factors to examine. Knowing the type of floating point instruction the underlying
hardware needs cuts the cases to be searched in half, while the maximum number of
registers implies what register blockings are feasible, which in turn dictates the M

and/or N loop unrollings to perform. The pipeline length provides an upper bound on

38

the amount of software pipelining and associated scalar expansion to perform. Thus,
the matmul search (and indeed many other searches) is shortened considerably by
doing these general architecture probes.

In practice, K loop unrollings of 1 or K have tended to produce the best results.
Thus ATLAS times only these two K loop unrolling during our initial search. This
is done to reduce the length of install time. At the end of the install process, ATLAS
attempts to ensure optimal K unrollings have not been missed by trying a wide range
of K loop unrolling factors with the best case code generated for the unrollings factors
of 1 or K.

The theoretically optimal register blocking in terms of maximizing flops/load are
the near-square cases that satisfy the aforementioned equation a,.b, + a, + b, < N,
(see Section 3.2.2.6 for details). Since the ATLAS generator requires that a, = m,
and b. = n,, these M and N loop unrollings are then used to find an initial blocking
factor. The initial blocking factor is found by simply using the above discussed loop
unrollings, and seeing which of the blocking factors appropriate to the detected L1
cache size produce the best result.

With this initial blocking factor, which instructions set to use (muladd or separate
multiply and add), and a guess as to pipeline length, the search routine loops over
all M and N loop unrollings possible with the given number of registers. Once an
optimal unrolling has been found, ATLAS again tries all blocking factors, and various

latency and K-loop unrolling factors, and chooses the best.

3.2.2.9 Multiple Implementation Search

After the generated search is found, we perform a linear search on the available
hand-tuned matmul routines. Many of these routines allow the blocking factor to be
compile- or run-time constants, and so to reduce the search time, blocking factors as
near as possible to the one chosen by the generator search will be used (hand-written

matmul routines which take variable blocking factors are allowed to restrict the range

39

and multiples of the blocking factor, so in these cases we choose the blocking factor
closest to that found in the generator search). When the best case is discovered, if it
allows for multiple blocking factors, the entire Np search space is checked with the

specific kernel, to ensure that the hand-written code is using its best blocking factor.
3.2.3 ATLAS performance

Figure 3.5 shows the performance of double precision matrix multiply of order
500 across multiple architectures. These timings are now a couple of years old, but
spot timings on various architectures has shown that the overall trend is unchanged.
The matrix size of 500 is simply a midrange problem size with no particular special
properties; it is not the best problem size in terms of ATLAS performance. As
ATLAS is not the main focus of this dissertation, we omit more complete timing
results (see [7, 8, 10] for more in-depth timings).

This graph compares performance of ATLAS, vendor, and the Fortran 77 reference
BLAS. The reference BLAS are naive implementations of the standard, written in the
most straightforward way possible and therefore are not optimized for any particular
platform. The vendor BLAS are libraries supplied by individual hardware vendors,
and can be taken to represent the apex of hand-optimization for a given platform.
Not all platforms possess vendor-supplied BLAS (eg., AMD Athlon), and on these
platforms ATLAS can only be compared to the reference BLAS.

The first thing to notice here is the large performance gap between the reference
implementations and the tuned codes. For instance, on the Athlon platform, we see
that there is currently no vendor-supplied BLAS, and that the reference BLAS run
more than fifteen times slower than the ATLAS code. This gap may help supply an
intuitive idea of the importance of optimized libraries to scientific computing.

The next point of interest is the consistency of ATLAS’s performance across all of
these architectures. On some platforms ATLAS is somewhat faster than the vendor,

and on others ATLAS loses somewhat, but it is competitive everywhere, and in all

40

cases, we see order-of-magnitude speedups over code that relies completely on the
compiler for optimization. This is all the more impressive when one considers that
a vendor library may have a history almost as long as that of the company, while

ATLAS tunes itself in only a couple of hours.

1000.0 1

800.0

600.0

MFLOPS

400.0

200.0

>
& <& > A

2 o h <
> Q o5 0

" e et g
S © & i N N 0 S
S 5 < S = «° «° & & S S SN &
& & & 3 < N & & s M &
‘;‘g N & o &8 * <& < < > ~ N «
Architecturs Y « <

Figure 3.5: Performance of double precision matrix multiply across
various architectures

3.3 AEOS Framework for the Level 1 and 2 BLAS in
ATLAS

ATLAS presently uses multiple implementation (augmented by parameterization)
to tune both the Level 1 and Level 2 BLAS. Therefore Figure 3.6 shows the search
framework for both the Level 1 and Level 2 BLAS levels.

We give a brief overview of the details of tuning each level in turn below.

3.4 Optimizing the Level 2 BLAS

The Level 2 BLAS perform matrix-vector operations of various sorts. All routines
have at most one matrix operand, and one or two vector operands. In order to
concentrate on the iFKO work, space considerations rule out covering ATLAS’s
Level 2 BLAS implementation in any real detail. Therefore, this section will explain

the theoretical underpinnings of all Level 2 optimizations: the basic memory access

41

f){ L Mult. Tmp. Optimized
U Search (linear kernel
T |

I Y Y

N Multiple Tester/

E Implementation Timer

D | -

E
e e e
OL

UA

T T

I1I

N N Y Y

P o | ANSIC | 4{
P Compiler

L Y Y

A :

T Assembler & Linker

D Y

E Timer

P Executable

Figure 3.6: Present ATLAS empirical search for the Level 1 & 2 BLAS

techniques that allowing the vector operand(s) main memory access to be reduced
from O(N?) to O(N). We then describe, in the broadest possible strokes, how these

and other optimizations are used by ATLAS.
3.4.1 Register and Cache Blocking for the Level 2 BLAS

If no register or cache blocking were done, the Level 2 operations would require
O(N?) data access on each operand. With the appropriate register and cache
blocking, the vector operands’ access can be reduced to O(N). Obviously enough, the
O(N?) matrix access cannot be reduced, since the matrix is actually of size O(N?).

To understand this in detail, we look at the matrix vector multiply operation. In
the BLAS, the matrix-vector multiply routine performs y < aop(A)z + By, where
op(A) = A, A" or AT and A has M rows and N columns. For our discussion, it is

enough to examine the case y < Ax + y, where A is a square matrix of size V.

42

This operation may be summarized as 3. (y; = Z;vzl Ajjxj + y;). From this
equation it is clear that calculating an element of y requires reading the entire
N-length vector x, reading and writing the ¢th element of y N times, and reading
the entire N length row 7 of the matrix A. Since there are N elements of y, it follows
that this algorithm requires N? reads of A, N? reads of 2, N? reads and N? writes of
y. Just as with the Level 3 operations, the number of references cannot be changed
without changing the definition of the operation, but by using appropriate cache and
register blockings, the number of the references that must be satisfied out of main
memory or higher levels of cache can be drastically reduced.

The minimum number of main memory references required to do this operation
results in accessing each element from main memory only once, which reduces the
accesses from (3N? reads + N? writes) to (N? + N reads + N writes).

As an interesting aside, even this trivial analysis is sufficient to understand the
large performance advantage enjoyed by the Level 3 over the Level 2 BLAS routines.
All Level 2 BLAS require O(N?) FLOPs (Floating Point Operations); a completely
optimal implementation can at best reduce the number of main memory accesses
to the same order, O(N?). The Level 3 BLAS, in contrast, require O(N?) FLOPs,
but can reduce the number of main memory accesses to a lower order term, O(N?).
Since most modern machines have relatively slow memory when compared to their
peak FLOP rate, this analysis dictates that Level 3 BLAS will achieve a much higher
percentage of the peak FLOP rate than the Level 2 BLAS.

Getting back to Level 2 BLAS, we now examine the register and cache blocking,

which are used in order to reduce the vector accesses.

3.4.1.1 Register Blocking
Registers are scalars which are directly accessed by the floating point unit. In
a way, registers thus correspond to a “Level 0” cache. Given an infinite number

of registers, only one main memory access per element would be required for all

43

operations. Unfortunately, the number of user-addressable floating point registers
available in most ISAs typically varies between 8 and 32, and thus all but the most
trivial operations will overflow the registers.

For this reason, register blocking alone can reduce either the y or x access term
from O(N?), to O(N), but not both. This is easily seen using the simplified GEMV
operation introduced in the previous section. The basic algorithm required to reduce

the accesses of y to O(N) is most easily shown in the following pseudo-code:

doI =1, N
r = y(I)
doJ =1, N
r += A(I,J) * x(J)
end do
end do

This is an “inner product” or dot product-based matrix vector multiply. If we
unroll the I loop and use R, registers to hold the elements of y, we can reduce the

N2
Ry

N? accesses of x to %, by using a register to reuse the element x(J) R, times for
each load.

Unrolling the loop like this essentially creates a hybrid algorithm, in the sense
that the I?, y access constitute a small outer product. However, since registers cannot
hold both y and x throughout the algorithm, one or the other must be flushed as the
loop progresses (thus necessitating multiple loads to registers), and since we drop the
value of x and maintain y in the registers, this “hybrid” algorithm is still essentially

inner product.

44

Reducing the x component to O(N) accesses requires the “outer product” or
AXPY-based (AXPY being a Level 1 BLAS routine performing the operation
y < ax + y) version of GEMV:

do J =1, N
r = x(J)
do I =1, N
y(I) += A(I,J) * r
end do
end do

This gives us N read accesses on x, and, just as with the inner product, unrolling
the J loop and using R, registers to hold the elements of x, we can reduce the accesses
of y to %—j reads and writes, by using an additional register to reuse y(I) R, times.

Therefore, strictly for register blocking purposes, the inner product formulation
is superior to the outer product: the total number of reads of both formulations is
O(N?) + O(N), but the number of writes is O(N) for inner product, but O(N?) for
outer product. In practice, when array columns are stored contiguously, a heavily
unrolled AXPY-based algorithm may in fact be used, since it better utilizes hardware
prefetch, cache line fetch, TLB access, etc. As mentioned before, however, such
details are beyond the scope of this paper, so we will assume the register blocking
used will be inner product formulation.

As another practical note, the number of registers available for doing multiple
AXPYs or dot products is severely limited, even beyond the 8 or 32 ISA (instruction
set architecture) limit. In the inner product formulation, where R, registers are used
to form the R, simultaneous dot products, at least two registers must be available
for loading elements of x and A. Further registers will be used in order to support
software pipelining and fetch scheduling. Large unrollings also mean accessing
many more memory locations simultaneously, which can swamp the memory fetch
capabilities of the architecture. This means that I, is usually kept to a relatively

small number (typically in the range of 2 — 8).

45

In summation, register blocking reduces one vector access to O(N) cost; the
vector usually chosen for this reduction is the output vector (i.e., an inner product
type register block), due to its higher cost. In order to reduce the remaining vector
to O(N), we must apply cache blocking.

While it is tempting to regard register blocking as a special case of cache blocking,
their implementations are fundamentally different. As we will see, cache blocking can
be easily accomplished simply by parameterizing the relevant code, so that properly
blocked sections of the operands are accessed. Register blocking, as this section has
demonstrated, relies on source adaptation, since varying it requires changing the loop
order, number of registers, loop unrollings, etc., all of which change the code in ways

that cannot be supported via simple parameterization.

3.4.1.2 Cache Blocking

As previously discussed, register blocking has reduced the access of y to O(N),
leaving the x access at O(N?). Therefore, loading to registers O(N?) times cannot
be avoided. However, the optimal algorithm will guarantee that main memory
satisfies only O(N) of these requests, leaving lower levels of cache to satisfy the
rest.

Again, GEMV can be used to better understand this idea. The register block is
doing R, simultaneous dot products, so that the y access is NV reads and N writes,
while the z fetch to registers is %—:. Since x is reused in forming each successive
dot product, z is a candidate for cache reuse. It is easily seen that forming R, dot
products accesses R, elements of y, all N elements of =, and R, x N elements of A.
Thus the footprint in cache of one step of this algorithm is roughly R, + N + R,N.

Therefore, we can effectively guarantee L1 cache reuse by partitioning the original
problem so that the footprint in cache is small enough that the relevant portion of x

is not flushed between successive sets of dot products. Therefore, the correct blocking

for x may be determined by solving an equation, whose simplified expression would

46

be: Ry + N, + RyN, = S1 = N, = %, where Sy is the size, in elements, of the
Level 1 cache, and N, is the partitioning of x for which we are solving.

In practice, this equation is more complicated: some memory unrelated to the
algorithm will always be in cache, there will be problems associated with cache
line conflicts, etc. In addition, the equation needs to be adapted to the underlying
register blocking so that the initial load of the next step does not unnecessarily flush
x. However, these details, while important in extracting the maximal performance,
are not required for conceptual understanding, and so are omitted here.

With the correct partitioning (N,) known, the original N x N GEMYV is then
blocked into [N/N,| separate problems of size N x N, (the last such problem will
obviously be smaller if N, does not divide N evenly). The data access to main
memory is then [N/N,|N reads and writes of y, N reads of X, and N? reads of A.

N, is typically very close to IV in size, and so this algorithm is very near optimal
in its memory access. N, will typically be in the range 350 - 1500, so even very large
problems still have extremely small coefficients on the y access term. Note that any
problem with N < N,, will achieve the optimal result (N? access of A, N access of ©
and y) without any need for any cache blocking (register blocking is still required).

There is little point in explicitly blocking for higher levels of cache in the
Level 2 BLAS. However, if the machine possesses a level of cache large enough to
hold the footprint of the entire L1-blocked algorithm (with the previously stated
simplifications, this is roughly N,N + N, + R,), y will be reused without need for
explicit blocking, and the main memory access will be reduced to its theoretical

minimum.
3.4.2 ATLAS’s Level 2 Compute Kernels

As we have seen, ATLAS employs one low-level compute kernel (the L1 matmul),
from which the BLAS’s more general GEMM routine is built. The L1 matmul and

GEMM are then used in turn to generate the rest of the Level 3 BLAS. With this
47

method, only this one relatively simple kernel needs to be supported using source
adaptation, and its performance dictates that of the entire Level 3 BLAS.

The same strategy is employed for the Level 2 BLAS, but two types of compute
kernels are needed rather than one. Just as with the L1 matmul, these kernels
perform register blocking and various floating point optimizations, but do no cache
blocking, as it is assumed that the dimensions of the arguments have been blocked

by higher level codes in order to ensure L1 cache reuse. The compute kernels for the

Level 2 BLAS are:
e L1 matvec: An Ll-contained matrix vector multiply, with four variants:

1. No Transpose — matrix A’s rows are stored in rows of input array

2. Conjugate (complex only) — matrix A’s rows are stored in conjugated form

in rows of input array

3. Transpose — matrix A’s rows are stored in columns of input array

4. Conjugate Transpose (complex only) — matrix A’s rows are stored in
conjugated form in columns of input array

e L1 updatel: An Ll-contained rank-1 update

Both of these kernels further supply three specialized f cases (0, 1, and variable).
3.4.3 Building ATLAS’s Level 2 BLAS

This section presents a very rough outline of how ATLAS supports the Level
2 BLAS. The install of the Level 3 BLAS precedes that of the Level 2, and from
this process ATLAS knows the size of the L1 cache. Thus, using a slightly more
complicated version of the equations given in Section 3.4.1.2, ATLAS can obtain a
good estimate of the correct Level 1 cache partitioning to use. With this in hand,

ATLAS is ready to find the best compute kernels for the Level 2 BLAS.

48

Presently, ATLAS relies solely on multiple implementation to support these
kernels (e.g. source generation is not employed). Therefore, the search simply
tries each implementation in turn, and chooses the best. The conjugate forms of
the L1 matvec have the same performance characteristics as their non-conjugate
equivalents, so ATLAS need search only 3 differing kernels: notranspose matvec,
transpose matvec, and L1 updatel.

Using these best algorithms, ATLAS empirically discovers the optimum per-
centage of the L1 cache to use. These empirically-discovered blockings and kernel
implementations are then used to build the Level 2 BLAS routines GEMV and GER
(much as GEMM was built using the L1 matmul), and all of this information and
these building blocks are then used to produce the rest of the Level 2 BLAS.

3.5 Optimizing the Level 1 BLAS

Unlike the Level 2 and 3 BLAS, the Level 1 BLAS, due to their simple nature,
are not generally reducible to one or two simpler kernels. Therefore, each Level 1
routine must be essentially optimized individually. For some kernels, the complex
case can utilize the real case, and occasionally one Level 1 routine will simplify to
another due to a setting of a particular parameter, but this is the exception rather

than the rule. For further details on Level 1 optimization, see [25].

3.6 Historical Context / Related Work

ATLAS was not the first project to harness empirical techniques in the interest
of high performance kernels. The first such project that we are aware of was
PHIPAC [1], released in December of 1995. Like early ATLAS, this project focused
on using a source generator to produce varying ANSI C programs for performance
tuning of matrix multiply. Due to an overly-complicated kernel, an inadequate

winnowing of the search space, and insufficiently accurate timing techniques, PHiPAC

49

never achieved the performance and portability inherent in the AEOS concept, but
nonetheless served as an inspiration for following work.

The second project, released in March 1997, to utilize this basic idea was
FFTW [3, 4], which applied similar techniques to FFTs. The first version of
ATLAS [6, 7, 8, 9], tuning matrix multiply only, was released in December of 1997.
Subsequent versions added support for tuning all the BLAS, and later, a subset of
the LAPACK [17] API as well. In 2000, the SPIRAL [26] project began utilizing

empirical techniques to tune signal processing libraries.

20

CHAPTER 4

MOTIVATION AND DESIGN OF OUR
EMPIRICAL COMPILATION FRAMEWORK -
IFKO

This chapter outlines our design and approach for empirical compilation. Sec-
tion 4.1 motivates and describes our approach, and Section 4.2 expounds on the
design philosophy that is used to drive the research. With these guiding principles
established, Section 4.3 provides an overview of the compilation framework, and
Section 4.4 describes how the framework can be interfaced with ATLAS. The

following chapter describes our current implementation of this design.

4.1 Motivation

This section outlines and motivates the approach we have employed in our
empirical compilation research. Key features of our compilation framework, and

their broad motivation, include:

1. Our compiler is both iterative and empirical, for all the reasons explained in

the introduction.

2. Qur transformations are done in the backend, at a very low level, allowing
for the exploitation of extremely low-level architectural features such as SIMD
vectorization, CISC instruction formats, special register features, as well as
enabling the compiler to avoid architecture-specific resource limitations, etc.,

all of which can be critical in achieving extremely high performance.

ol

3. The search is part of the compilation framework, rather than being managed
by an external program such as a library generator. In this way, each new
supported kernel necessarily increases the generality of the search, leading in
the long run to a compilation framework capable of dealing with a much wider
range of operations than the union of studied kernels, as happens when each

set, of optimization targets employs its own search.

4. We provide for extensive user markup, that allows a kernel writer to provide
the compilation framework with information that is difficult or impossible to
discover using front-end analysis (eg. aliasing information between pointers
passed in as formal parameters to a library routine). This approach allows
us to concentrate on the backend rather than on front-end analysis, as well
as providing an opportunity to perform transformations that would be illegal

without such user markup.

This approach is a direct consequence of our experience with ATLAS, and we
have been careful to ensure that iFKO’s design is synergistic with that of ATLAS.
iFKO was designed to remove the two major limitations inherent in our ATLAS
work: (1) ATLAS is operation/kernel specific, and (2) low-level architectural features
(eg. SIMD vectorization, CISC instruction sets, etc.) are often not automati-
cally exploited due to reliance on the native compiler. Generalizing the empirical
optimization into a floating-point specialized compiler is a direct consequence of
ATLAS’s kernel specificity, and our concentration on low-level optimization arises
naturally from our frustration in having to employ hand-tuning in order to fully
exploit architectural features such as SSE (Intel’s SIMD vectorization).

iFKO presently does most of its optimization on the innermost loop. Given the
extensive list of loop transforms available in the literature, many readers may be
surprised that inner-loop optimization is not fully realized by modern optimizing
compilers, but our direct ATLAS experience (supplemented by hand tuning to get

52

around such problems) demonstrated that the majority of the lost performance
opportunities when using source generation instead of hand tuning came from the
inner loop, and thus iFKO’s initial goal is to handle innermost loop optimization
as efficiently as possible. As another example of such synergy, we can afford to
put off some higher level (and outer-loop) transforms such as blocking, because the
ATLAS framework does them at higher levels (eg., the blocking is not done by the
kernel routine, as explained in Section 3.2). This does not mean that iFKO should
never support transformations such as blocking, since iFKO is designed to be more
general than ATLAS. Rather, this synergy allows FKO to (initially) target those
transformations that cannot be easily handled by a framework such as ATLAS. This
plan for focusing our implementation efforts is described more fully in the following
design philosophy section.

One drawback of doing the transformations at a low level is that while it provides
even greater persistent optimization, it is a barrier to portable optimization, as the
compiler is not helpful until it has been ported to the target ISA. Again, however,
ATLAS’s source generator provides for portable optimization on truly unknown
architectures, and so this drawback (due to operating at a low level, which is
mandated by the required levels of performance) is ameliorated. This is discussed

further in Section 4.4.

4.2 Design Philosophy

A compiler specialized for HPC kernel optimization must make the effect of each
transformation, and the interaction between transformations, as optimal as possible.
If the compiler cannot capture roughly the same amount of optimization from a
given series of transformations as hand-tuned kernel production typically does, the
HPC community is unlikely to use the compiler for its intended purpose at all.

Therefore, unlike in general-purpose compilation, it is better to do a limited number

23

of transformations extremely well than to support many transformations that do not
fully realize their potential. This is particularly true in our case, since we can rely on
the ATLAS framework for many transformations that iFKO does not yet support.
Therefore, our overriding focus must be “narrow and deep”, rather than “broad and
shallow”.

This may seem counterintuitive in at least one way: one of the great strengths of
empirical optimization is that it can employ an extensive array of transformations,
even ones that cause significant slowdown in some instances (since only successful
optimizations will be retained by the empirical search), and as the palette of
supported optimizations is expanded, the generality and efficiency of the framework
naturally increase. Therefore, while it is clear that a “deep” focus is mandated in
order to achieve the required level of performance, in the end we must be broad as
well. However, it is impossible to begin with “broad and deep”, and so we must
accept a narrow focus in order to demonstrate the effectiveness of this approach,
and as the number of supported transformations increase, the audience for which the
framework supplies a real solution grows as well.

Therefore, in each area of iIFKO’s design, we add features as the studied kernels
demand them, allowing us to narrowly focus on each optimization study in turn. As
each set of optimization targets brings in new requirements, iFKO is expanded to
handle them, and thus the framework will indeed eventually be both broad and deep.

There are four general areas in iFKO that must be expanded in this way (this
discussion employs terminology that is further explained in Section 4.3). These areas
are: (1) the transformations supported by the optimizing compiler, FKO, (2) the
analysis performed by FKO, which directs and limits the iterative search, (3) the
number, type and interactions between sub-searches supported in the master search of
the iterative compiler, iFKO, and (4) the type and number of user markups supported
by our HIL (FKO'’s input language), which also serve to guide and limit the search

of the optimization space.

o4

As an example, our present implementation concentrates on inner loop trans-
forms, and relies on ATLAS for outer-loop transformations such as blocking, but as
we enlarge the target kernels to those that have not been explicitly blocked, iFKO
must be expanded to support it. Further, because the x86 architecture is relatively
insensitive to scheduling issues, we do not presently support software pipelining,
which will clearly become critical as the framework is fully supported on architectures
such as the SPARC.

Because our initial work concentrates on inner-loop transformations, we have
chosen the Level 1 BLAS as our initial optimization targets (See 6.1 for further
details). For these simple operations, the main markup required is identification
of the loop which should be empirically optimized. On kernels with more complex
dependencies, dependence markup will be added. Similarly, as operations expand to
include more deeply nested loops, more complicated prefetch algorithms will need to

be tried by the search, etc.

4.3 Overview of Framework

4.3.1 Anatomy of an Iterative and Empirical Compiler

iFKO

I analysis results I

I I

| plroblem1 — |

N paramsBpecialized | | _, .
Input | HIL + flags | Search Compiler | Timers/
Routine I 7| Drivers | HIL dptimizeqd | Testers

LM > (FKO) assembly”

! performance/test fresults

Figure 4.1: Overview of our Empirical and Iterative Compilation System

Figure 4.1 shows the basic outline of our empirical and iterative compilation
system. Just as in a traditional compiler, iFKO is provided with a routine to be
compiled, and perhaps some user-selected compiler flags (though these will usually
be search-controlling options, rather than the more common optimization phase

options). iFKO is composed of two components: (1) a collection of search drivers, and

95

(2) the compiler specialized for iterative empirical floating point kernel optimization
(FKO).

The search first passes the input kernel to be optimized to FKO for analysis. FKO
then provides feedback to the master search based on this analysis. The analysis
phase together with any user input essentially establishes the optimization space
to be searched, and the iterative tuning is then initiated. For each optimization
of interest that takes an empirically tuned parameter (eg., the unrolling factor in
loop unrolling), the search invokes FKO to perform the transformation, the timer
to determine its effect on performance, and the tester to ensure that the answer is
correct (unnecessary in theory, but useful in practice).

Input can be provided both by mark-up in the routine itself, and by flag selection
from the user. These inputs can be used to place limits on the search, as well as to
provide information specialized for an individual usage pattern (such as whether the
operands are pre-loaded in cache, the size of the problem to time, etc.). Note that
iFKO has intelligent defaults for these values, so such user direction is optional. The
‘HIL’ in Figure 4.1 stands for high-level intermediate language, and is the language
(specialized for floating point kernel optimization) which FKO accepts as input.

This graph also points out a significant overhead still associated with our iterative
compiler. While the compiler makes the search and optimization kernel-independent,
it depends on externally supplied timers, which are at least somewhat kernel-specific,
and can be quite complex when they are written to allow for the capturing of
context-sensitive usage patterns (eg., allowing a selection of cold and warm cache
states, differing operand sizes and types, etc). In our case, we utilize ATLAS’s
preexisting AEOS-quality timers for this purpose, but an interesting area of future
work would investigate the extent to which such timers could be described in a
high-level way (or ultimately, even discovered through analysis of the submitted

kernel), and automatically generated.

o6

4.3.2 Optimizing compiler — FKO

The heart of this project is an optimizing compiler called FKO (Floating point
Kernel Optimizer). This compiler is very similar to a traditional optimizing compiler
in design, but it has been specialized in several ways. First, of course, it is designed
specifically for maximizing performance of floating point kernels, which strongly
affects our choice of optimizations, and their interactions, as previously discussed.
This focus on kernel optimization has also led us to adopt a specialized input
language, as described in Section 4.3.2.1. FKO has been further specialized for
iterative and empirical use. The main way this is reflected in the design is that
the compiler must be able to analyze the submitted kernel, and communicate this
analysis to the master search, so the appropriate optimization techniques can be

selected. The analysis presently provided by FKO is described in Section 5.3.

4.3.2.1 Input Language (HIL)

Our input language is kept close to ANSI C in form, so that the task of kernel
implementation is comparable to writing a reference implementation in languages
such as ANSI C or Fortran 77 (common kernel languages). However, we want to keep
our HIL simple enough so that we can concentrate on back-end optimization, as well
as to specialize it to some degree for our problem domain. Therefore, we provide
an opportunity for user mark-up that can provide information that is normally
discovered (if it can be determined at all) by extensive front-end analysis. For the
simple operations surveyed in this paper, the only mark-up used was the identification
of the loop upon which to base the iterative search (iFKO could optimize all inner
loops this way, but this could potentially cause insupportable slowdown in tuning
more complex kernels, and so we require that a loop be flagged as important before
it is empirically tuned).

Although our input language resembles ANSI C, its usage rules are closer to

Fortran 77, which has a more performance-centric design. For instance, aliasing of

57

output arrays is disallowed unless annotated by mark-up. Beyond this, the main
interesting feature of our HIL is the ability to provide markup, which is presently
quite limited. Therefore, for the sake of brevity, a full description of the input
language is omitted here, but examining Appendix A, which shows the corresponding
ANSI C and HIL implementations of the kernels optimized in Section 5, provides a
reasonable understanding of our HIL.

We refer to our input language as a HIL (high-level intermediate language), both
to stress that our focus is on the low-level backend, and because, given the success
of this backend research, it seems likely that an interesting associated project would
involve performing front-end analysis in order to automatically generate HIL inputs
based on higher level language implementations, at least for those kernels that can
be sufficiently analyzed in this way. This line of research could be extended to
attempting to automatically find kernels and extract them from applications, as in

the early work reported in [27].
4.3.3 Iterative Search — iFKO

In order to make our compiler iterative (adding the i’ to FKO), we must add
a search layer which attempts to find the best available optimization parameters
for a given kernel. Finding the best values for N, empirically tuned transformations
consists of finding the points in an Ny dimensional space that maximize performance
(thus the phrase “searching the optimization space”). There are several ways of
performing this search, including simulated annealing and genetic algorithms. We
currently use a much simpler technique, a modified line search. In a pure line
search, the Np-D problem is split into Np separate 1-D searches, where the starting
points in the space correspond to the initial search parameter selection (in our case,
FKO defaults). Obviously, this approach results in a very poor search of the space
by volume. However, because compiler writers understand the properties of these

transformations, we are able to select reasonable start values for the search, and

o8

because we understand many of the interactions between optimizations, we are
able to relax the strict 1-D searches to account for interdependencies (eg., when
two transformations are known to strongly interact, do a restricted 2-D search).
With these straightforward modifications, line searches are quite effective in practice
(ATLAS, one of the most successful empirical projects, still uses a modified line
search), even though they are completely inadequate in theory. At the same time,
the line search has a very simple design, which in turn makes updating it to support
additional transformations and explore new ideas much easier. Thus, we will utilize
more advanced search techniques only once enough transformations are available to

make their use compelling. Our current iterative search is outlined in Section 5.8.

4.4 Interfacing ATLAS and iFKO

As previously described, iFKO has been designed to work synergistically with
(though not be limited to) ATLAS, and this can be more fully appreciated by
understanding how iFKO and ATLAS can be interfaced. iFKO may be naturally
added to ATLAS using ATLAS’s preexisting multiple implementation support. As
far as ATLAS is concerned, iFKO is simply another kernel compiler taking as input
a particular language (our HIL, instead of the assembly and C kernels currently used
by ATLAS). The fact that iFKO is itself iterative and empirical, affects ATLAS’s
own empirical search not at all (except in install time, obviously).

Figures 4.2 and 4.3 show how ATLAS’s present iterative searches (as shown
in Figures 3.6 and 3.4) can be augmented to interface with iFKO. Because iFKO
cannot adapt to unknown ISAs, it should make sense to retain the high level
(ANSI C) multiple implementation kernels for operations that ATLAS does not
support through source generation. In the long run, however, iFKO should make
retaining system-specific assembly kernels for ISAs where iFKO is supported unnec-

essary.

29

Because ATLAS’s current Level 1 and 2 BLAS tuning uses only parameterization
and multiple implementation, their support should be particularly improved by
adding iFKO explicitly to the package. On the ISAs for which iFKO is ported,
this automated tuning should provide much more adaptability than can be supplied
through even the most extensive battery of hand-tuned implementations. On the
other hand, ATLAS’s Level 3 search employs both source generation and multiple
implementation, and so iFKO should primarily help in reducing the need for hand-

tuning in order to exploit architecture-specific features.

4.5 Related Work

Chapter 3 discusses the work closely related (both in time and topic) to our
original ATLAS work. Given the demonstrated success of these packages, there has
been increasing interest in the compiler community in applying similar techniques in
a compiler-oriented setting. However, our approach is the first of which we are aware
to perform all transformations at low level in the backend (many researchers instead
generate code in high level languages, just as ATLAS does), and at the same time
actually have the search as part of the compiler (many projects put the search in a
library generator). As discussed in Section 4.1, we believe these two factors are key
in realizing the full benefits of these techniques.

The OCEANS (Optimizing Compilers for Embedded Applications) group has
done some work in the area of iterative compilation. A brief declaration of effort
was published in [28]. The idea is that like high-performance libraries, embedded
applications are an area where very long compilation times can be successfully
amortized, and so is a rich area for iterative and empirical optimization. Unlike with
high performance libraries, code size is an extremely important consideration, and

so differing optimization strategies should be expected. Subgroups of this extensive

60

g. Mult. I.mp. Optimized
U Search (linear) kernel
T [

I Y Y VY

N Multiple Tester/

E Implementation| Timer

D | I >

E

}E - _ _y } - - 44 - - - _i
R P iFKO

OL Search

U A [

T T

I1I

N N

DD

E E YyY

cr. [EKo] | [CANSIC |
P Compiler Compiler

L Y Y Y

A .

T Assembler & Linker

D ¥

E Timer

P Executable

Figure 4.2: ATLAS+iFKO empirical search for the Level 1 & 2 BLAS

R
(0]
g Master Search » Optimized matmul kernel
I
I Y Y
N Mult. Imp. | Source Gen.
B Search (linear) Search (heur.)
D I I
E Y Y l Y Y
P Multiple Tester/ Source
Implementation| Timer Generator
[> []
rdr — T — = 1+ - —AF — — —
OL
Y Y
U A
T T iFKO J
I 1 Search
L, |
NN | > Y YYY
|]3D_ . _ _ 1 kKO __ | | 1 ANSIC | = _ __ 4
P Compiler Compiler
L Y Y Y
A .
T Assembler & Linker
D ¥
E Timer
P Executable

Figure 4.3: ATLAS+iFKO empirical search for the Level 3 BLAS

61

author list later published various iterative compilation-related papers, as outlined
below.

In [29] the authors do an initial study of iterative compilation on three very
restricted operations. The main compilation techniques appear to be blocking/tiling,
and loop unrolling. Almost no detail is provided about the compilation system;
indeed, it is never stated that the transformations were not performed by hand in
some manner. The main thrust of the paper is on how to search the essentially infinite
optimization space. This work is thus very far from our newer research, although it
is very close to the work already done (ATLAS uses a relaxed line search to probe
a more complicated space, and provides unrestricted versions of two of the three
mentioned kernels). While the ultimate goal of the project is still cited as embedded
systems, all results are given on general purpose hardware (again, a subset of the
architectures we previously surveyed in [6, 7]).

A more fleshed out study was presented in [30]. In this work, they report a
general purpose compiler, which produces FORTRAN 77 as the output language
(thus allowing for architectural independence). This fact alone differentiates this
work from ours, since we are concentrating on the backend and low-level architectural
optimization. In contrast, the studied transformations in this paper are all high-level:
blocking, unrolling, and array padding.

In [31], the authors again consider mainly loop unrolling and blocking factors;
since these optimizations require little backend information, this is again done at a
high level.

The work in [32, 33] is closer to our own research in that it involves both high
and low level optimizations, and that they concentrate on simple computational
loops. However, this work examines in detail only two optimizations (loop unrolling
and software pipelining), and is concerned with embedded systems. As such, they

optimize for a combination of code size and performance.

62

Probably the group that comes closest to our approach in gestalt is the SPIRAL
project [34, 35]. They have a compiler that takes in a mathematical description of in
a digital signal processing algorithm, and generates varying ANSI C or FORTRAN
77 implementations. Thus, they work mainly at the high level, and in a different
field. However, authors affiliated with this group have done some low-level work (as
in [36]), but this is done in a traditional compiler used to compile the generated
source.

There has also been research on applying empirical techniques to general-purpose
computing. In order to do so, the cost of the tuning must be greatly reduced, and
thus a less empirical and much more targeted approach is called for, as in [37],
where the main goal is to ameliorate the competing resource problem between
optimization phases in a more traditional compilation framework. This work is
targeted at general-purpose compilation, and is not intended to produce kernel-level

performance.

63

CHAPTER 5

CURRENT IFKO IMPLEMENTATION

This chapter describes our current FKO implementation. Section 5.1 discusses
our target architectures, Section 5.2 overviews the interface to FKO, and Section 5.3
outlines the analysis communicated to the iFKO’s search. We next survey the
transformations presently supported by FKO, which are split into two types. Sec-
tion 5.4 describes FKO’s fundamental transformations, which are applied only one
time and in a known order (thus easing the extra analysis required for some of
these optimizations), while Section 5.5 goes into some detail on the complexities of
handling alignment issues for one of our critical fundamental optimization, SIMD
vectorization. Section 5.6 outlines the repeatable transformations, which may be
applied multiple times and in almost any order. Each transformation is outlined in
its own section, but since it is the empirical application of these techniques, not the
techniques themselves that are the main research element of this work, we do not go
into excessive detail. In order to clarify the actual operation of these transformations,

Section 5.7 shows examples of their effect on the kernels surveyed in this paper.

5.1 Supported Architectures

As described in Section 4.2, we must have a relatively narrow area of focus
in order to achieve success. However, it is important that persistent framework
shortcomings are not introduced due to such tunnel vision. Therefore, FKO was
designed and written to support four different ISAs. Once the basic framework

was implemented and working, we concentrated on the x86 in order to achieve

64

results, and we will probably not return to the other architectures until this work
is considerably more advanced. However, since we are working at such a low
level, doing the initial design with several very different ISAs helped avoid creating
an inflexible or overly-specialized backend. Therefore, iFKO’s basic framework is

presently supported on four ISAs:

1. TA-32[38, 39]: Also known as x86 or x86-32, this is probably the most widely
used ISA in general-purpose computing, including a diverse array of machines
such as the Pentium line (PPRO, II, III, 4, 4E), the AMD Athlon, Athlon-64,
Opteron, etc. Normally in this paper we use the generic term x86 to apply to
both the TA-32 and x86-64 ISAs, and we will call this architecture x86-32 or
[A-32 when we mean to exclude the x86-64.

2. 286-64 [40, 41] or IA-32e [42]: 64 bit extension of the x86 ISA originally
designed and implemented by AMD. Intel has recently begun supporting it on
their line of chips, but they call it IA-32e (Intel Architecture 32 bit extended)
in order to distinguish it from their x86-incompatible IA64 (Itanium line) ISA,
while still avoiding using the AMD terminology. Machines implementing this
ISA include AMD’s Athlon-64 and Opteron, as well as the Intel’s newest Pen-
tium 4 variant. All machines implementing x86-64 run IA-32 code unchanged as
well. When used in 64-bit mode, x86-64 also offers 16 integer and SSE registers,
which is a vast improvement over [A-32’s eight. Note that FKO explicitly
supports x86-64 (i.e. it does not run on an x86-64 architecture merely through
[A-32 compatibility mode), thus allowing us to exploit the additional registers,
new (more efficient) calling sequence, and the fact that integer registers are 64

bits wide.

3. PowerP(C [43, 44]: This ISA is used in embedded systems, Apple’s G4 and G5

line, and IBM’s workstations and supercomputers.

65

4. UltraSPARC [45, 46]: We also support FKO on the Sun UltraSPARC.

Presently, our framework can generate code for all of these architectures. How-
ever, SIMD vectorization, a key computational optimization, is presently supported
only on the x86 architectures, and we have targeted our transformation selection to
this ISA family. We will examine the PowerPC next, but will do so only once our
goals are more fully met on the x86 ISAs.

Presently, FKO’s floating point instructions always use SSE (i.e., we do not
exploit the x87 FPU). When SIMD vectorization cannot be applied, we use SSE’s
scalar instructions. This decision was made because newer machines stress SSE at
the expense of the x87 unit, and supporting the x87 register stack is a significant
overhead. This does, however, mean that FKO cannot generate valid floating point
code for machines prior to the Pentium III, as they do not possess vector units. We
currently do not plan on adding x87 support, mostly because the unit tends to get
worse performance on modern machines. For instance, on the Pentium line, even
SSE scalar code has twice the theoretical peak of x87 code, and on x86-64 machines,
the x87 did not receive additional registers. Therefore, x87 support will be added

only if this trend of marginalizing the x87 unit is reversed in future architectures.

5.2 Interface Overview

As previously mentioned, our HIL provides a special markup that allows the user
to identify the key (innermost) loop that should serve as a basis for the empirical
tuning search. Let us call this special loop the optloop. Some FKO optimizations
can only be applied to this loop (including all fundamental optimizations), while
others can be applied to any section of code. FKO’s present interface allows the
specification of two scopes for transformation application: (1) apply to optloop only,

and (2) apply to entire function (we refer to this as global application).

66

Like any compiler, FKO takes a host of flags which affect the application of
optimizations. Fundamental transformations are either on or off, and if selected they
are applied to the optloop, and in a known order, and so they are controlled with
simple flags as in a traditional compiler. Repeatable transformations, on the other
hand, may be applied repeatedly, in any order, and to any scope, and we may wish
to control this from the empirical search. Therefore, while our interface presently
allows specifying only global or optloop scope, the order and number of applications
for repeatable phases can be more fully controlled. Repeatable transformations are
specified in a grouping referred to as an optimization block, where individual phases
are applied until they no longer change the code, or a maximum application count is
reached (to prevent infinite loops in the case of transforms that interfere or reverse
each other, or indeed to avoid any repetitive application when set to 1). Global
optimization blocks are specified with the compiler flag -G, and optloop blocks are
specified by -L. The arguments composing both types of optimization blocks are
blknum, an integer label identifying the block, maxN, the maximum number of times
to apply the indicated optimizations, nopt, the number of optimizations in the
block, followed by the list of optimizations to apply (which may be either single
optimizations or other optimization blocks). The starting blknum must be 1, but
other block numbers may be chosen arbitrarily, as indicated by the optimization

lists. A full description would probably not be useful here, but for example the flags:
-G11223-L2102racp-G310 2 ra cp

result in first applying register assignment and copy propagation at most 10 times to
the optloop, stopping sooner if an iteration is completed without any code changes,
followed by doing the same thing to the function as a whole. Section 5.6.10 provides

further examples of optimization block usage.

67

NCACHES=1 NCACHES=1

LINESIZES : 128 LINESIZES : 128
OPTLOOP=1 OPTLOOP=1

MaxUnroll=0 MaxUnroll=0

LoopNormalForm=1 LoopNormalForm=1

Vectorizable=1 Vectorizable=1

Moving FP Pointers: 2 Moving FP Pointers: 2
’X?: type=d prefetch=1 sets=0 uses=1 ’X?: type=d prefetch=1 sets=0 uses=1
’Y’: type=d prefetch=1 sets=0 uses=1 ’Y’: type=d prefetch=1 sets=1 uses=1

Scalars used in loop: 3 Scalars used in loop: 3
’dot’: type=d sets=1 uses=1 accum=1 ’alpha’: type=d sets=0 uses=1 accum=0
’y?’: type=d sets=1 uses=1 accum=0 ’y?: type=d sets=2 uses=2 accum=0
’x’: type=d sets=1 uses=1 accum=0 ’x’: type=d sets=2 uses=2 accum=0

(a) FKO Analysis for ddot (Figure A.5) (b) FKO Analysis for daxpy (Figure A .4)

Figure 5.1: Example FKO analysis output for P4E

5.3 Current Analysis and Communication with the Search

Unlike a traditional compiler, a compiler used in an iterative search needs to
be able to communicate key aspects of its analysis of the code being optimized, as
this strongly affects the optimization space to be searched. Currently, FKO reports
information such as the numbers of available cache levels and their line sizes. It also
reports the loop (if any) identified for tuning in the iterative search. For this loop, it
then reports the maximum safe unrolling, and whether it can be SIMD vectorized.
For each floating point scalar and array accessed in the loop, the analysis further
reports its type, sets and uses. Finally, the analysis returns a list of all such scalars
that are valid targets for accumulator expansion (see Section 5.4), and all such arrays
that are valid targets for prefetch (by default any array whose references increment
with the loop, but the user can override this behavior, for instance to prohibit prefetch
on arrays known to be cache-resident, using mark-up). Figure 5.1(a) and (b) shows
the results of this analysis when run on ddot (Figure A.5) and daxpy (Figure A.4),

respectively.

68

5.4 Current Fundamental Transformations

As previously mentioned, fundamental optimizations are applied only on the opt-
loop, and in a known order, and the following subsections present these fundamental
optimizations in the order in which they are applied. For each such transformation,
we list an abbreviation which is used in the paper to refer to this optimization.
Fundamental optimizations are applied before other optimizations both because they
require more high-level analysis than the repeatable optimizations, and because
their transformations are higher level as well (SIMD vectorization, which is fairly
architecture-specific, is the exception to this rule). Therefore, when examples are
needed to clarify a fundamental optimization, we will normally do so in ANSI C,
even though the compiler, of course, performs these transforms on our LIL (low level
intermediate language).

After the optimizations are surveyed, Section 5.4.7 discusses the default values

used for these parameters in the empirical search, as well as how they are controlled

in FKO.
5.4.1 SIMD Vectorization (SV)

SIMD Vectorization (SV) transforms the loop nest (when legal) from scalar
instructions to vector instructions. Vector instructions operate on multiple elements
of a given type at the same time (thus the ‘Single Instruction Multiple Data’ of SIMD
vectorization). Applying SV typically results in keeping the number of instructions
in the loop constant, but its effect on loop control and computation done per iteration
is similar to unrolling by the vector length (4 for single precision, 2 for double). This
extremely modest vector length is the primary distinguishing factor between SIMD
vectorization and vectorization for traditional vector machines, but this difference is

of such magnitude that significantly different optimization strategies are required.

69

Both the x86 and PowerPC architectures have SIMD vector units which are
supported through ISA extensions. On both machines, the vector length is 128
bits. The PowerPC vector unit (AltiVec unit), however, cannot operate on double
precision floats, and so can operate on four single precision floats or a varying number
of integral values at a time. FKO presently supports SIMD vectorization only on the
x86, and so the following discussion focuses on it exclusively.

The x86 vector units are utilized through a series of ISA extensions including
MMX (MultiMedia eXtensions), 3DNow!, SSE (Streaming SIMD Extensions), SSE2,
and SSE3. MMX deals primarily with operating on integer vectors (unimportant to
our present discussion), while 3DNow! is an AMD specification that has been largely
superseded by SSE, and so we will not describe it here. SSE, or SSE1, mainly added
support for operating on single precision vectors, SSE2 added double precision vector
support, and SSE3 includes some extra vector permutation code, and instructions
specialized for complex arithmetic.

As mentioned, the vector length for all current machines is 128 bits, which allows
for parallel operation on four single precision values, or two double precision values.
Thus we say the vector length (veclen) is two for double precision, and four for
single. All current machines can employ these instructions to do veclen floating point
operations (FLOPs)/cycle. Therefore, the theoretical peak will be four FLOPs/cycle
for single precision, and two FLOPs/cycle for double.

Vector instructions are available not only for computation, but for loads and stores
as well. Loads and stores must be 128-bit aligned to get maximal performance, and
special workarounds must be employed when the data is not so aligned. Optimally
handling alignment issues is a complicated issue in its own right, and is therefore
discussed separately in Section 5.5.

Some substantial analysis is required to ensure that SV is legal, and so it is the
optimization we apply first. Performing SV before any other optimization allows

us to assume the input code is in the restricted format generated by our front-end,

70

which considerably eases the burden of analysis. The transformation is either applied
to the loop as a whole, or it is not applied at all (i.e. we do not mix floating point

vector and scalar code in the loop). Our current implementation therefore requires:

—_

. All arrays accessed in the loop are 128 bit aligned,

2. All arrays being vectorized are accessed contiguously in successive iterations of

the loop,

3. The dependence distance between successive elements of such arrays is

> veclen,

4. All floating point computation in the loop is of the same precision, and consists

of solely of a mixture of absolute value, add and multiply,

5. Scalars applied to vectorized arrays must meet the criteria given in Sec-

tion 5.4.1.1.

All of these requirements except alignment are determined by analysis (see
Section 5.5 for details on alignment), and SIMD vectorization is not performed when
the loop does not meet these criteria. Note that this “all-or-nothing” approach has
been chosen as it is well-matched to the kinds of operations we are interested in
(except for a few Level 1 BLAS, all of the BLAS may be fully vectorized in this
way). As we expand the supported kernels to less regular and/or non-contiguous
operations, we may want to employ a more general strategy, where more arbitrary
vectorization opportunities are searched for after a series of optimizations (including
loop unrolling), as in [36]. However, this style of vectorization, while more flexible in
application, is also more fragile, in that other optimizations can make it more and
more difficult to fully vectorize the loop. Therefore, if we are unable to capture the
same functionality as a fundamental optimization, this style of vectorization would

be added as an additional repeatable transformation when and if it is needed.

71

Since vectorizing the loop is computationally similar to unrolling by wveclen, this
transformation also produces a cleanup loop (dumped to the end of the function)
which handles those cases where the number of iterations of the loop are not even
multiples of veclen. Let N be the number of times the loop will iterate (N is almost
always a run-time variable). SIMD vectorization adds a conditional branch on N
both before (to handle N < weclen) and after the vectorized loop (to handle N
mod veclen # 0). Section 5.4.2 shows an example of creating such cleanup code for

an unrolling of four, and Section 5.7.1.1 shows vectorization at a lower level.

5.4.1.1 Handling Scalars in SV

SV is applied primarily to arrays whose access changes with the loop iteration,
but the loop body will almost always include references to scalar (single value)
temporaries that are involved in the computations on these arrays. These scalar
values must be changed to vector values by the compiler. Essentially, any temporary
or variable whose address does not move with the loop is treated as a scalar for this
purpose. Scalars that are live on loop entry or exit must be transformed from scalar
to vector on loop entry, and from vector to scalar on exit, and how this is legally
done depends on usage, as outlined below.

Input scalars whose first use is assignment or multiplication should have all vector
values initialized to the scalar value, whereas scalars used as a target of vector adds
(accumulators) should have only one value set to the scalar value, and the rest of the
vector should be set to zero.

Output scalars reverse this process. Because it is always the case in our kernels,
our present implementation only vectorizes code where any output scalars are
accumulators. If their last use was an accumulator, the individual vector values
must be summed after the loop to produce the required result.

On loops with multiple basic blocks, it is possible to have mixed first (last) usage

in differing blocks that represent different paths of flow through the loop. If this

72

mixed usage occurs (eg., a variable’s first use in one path is assignment, but first
use elsewhere is as an accumulator), then vectorization will not be applied. There
are no cases in the present kernels, and we know of none in all of the BLAS, where
this problem prevents vectorization. However, if mixed usage becomes a problem,
transformations such as scalar expansion and loop unswitching [24] can be employed

to enable SV.
5.4.2 Loop Unrolling (UR)

Loop Unrolling [24] (UR) duplicates the loop body of the loop N, times. Since
it is performed after SIMD vectorization the computational unrolling is actually
N, = veclen when vectorization is also applied.

If it is possible to do so, our unrolling avoids repetitive index and pointer
updates, as well as having only one test/branch for the unrolled loop. Just as with
vectorization, a cleanup loop is automatically generated to handle when the iteration
count is not a multiple of the unroll factor, and conditional branches are inserted so
that the correct answer is always produced regardless of the iteration count. As a
minor optimization, if a loop is both vectorized and then unrolled, only one cleanup
loop is generated and used.

Figure 5.2 shows a simple dot product loop before and after unrolling to 4. Note
that the loop control optimization discussed in the following section is always applied
during unrolling as well, resulting in loop index reversal when the loop index is not

referenced in the loop.
5.4.3 Optimize Loop Control (LC)

Optimize Loop Control (LC) is the only fundamental optimization that is always
applied when legal, and it attempts to optimize the loop branching and index
computation when possible. On the x86, this primarily consist of transforming

the loop from the form for(i=0; i<N; i++) to the equivalent for(i=N; i; i--)

73

if (N < 4) {
i=N;
goto CU;
}
for (i=N-3; 1 > 0; 1 -= 4) {
dot += X[0] * Y[0];
dot += X[1] * Y[1];
dot += X[2] * Y[2];
dot += X[3] * Y[3];
X +=4; Y += 4;

+
i += 3;
if (i !'= 0) goto CU;
return(dot) ;
for (i=0; i < N; i++) { CU:
dot += X[0] * Y[O]; for (; i; i--) {
X++; dot += X[0] * Y[0];
Y++; X++; Y++;
} }
return(dot) ; return(dot)
(a) before loop unrolling (b) after loop unrolling

Figure 5.2: Dot product before and after UR and LC

when i’s only use in the loop is for loop control. This second formulation avoids
a comparison required by the first on the x86 (and indeed, most architectures), as
well as enabling the compiler to avoid assigning N to a register throughout the body
of the loop. This transformation also handles the index computations necessary to

correctly handle loop unrolling and vectorization efficiently.
5.4.4 Accumulator Expansion (AE)

Accumulator Expansion (AE): In order to avoid unnecessary pipeline stalls, AE
uses a specialized version of scalar expansion [24] to break dependencies in scalars that
are exclusively the targets of floating point adds within the loop. Figure 5.3(a) shows
a dot product loop that has been unrolled by a factor of 2. If the FPU is pipelined,

and the pipe length is greater than one, this code will result in an unneeded pipeline

74

DUt s W N

1 dot = start; dotl = 0.0;
dot = start; 2 for (i=0; i <N; i +=2) {
for (i=0; i <N; i +=2) { 3 dot +=XJ[0] * Y[O0];

dot +=X[0] = Y[O]; 4 dotl +=X[1] % Y[1];
dot +=XJ[1] = Y[1]; 5 X+=2; Y += 2
X +=2; Y 4= 2; 6}
} 7 dot += dot1;
(a) Without AE (b) With AE=2

Figure 5.3: DDOT before and after Accumulator Expansion

stall. After line 3 is executed, the register holding dot will not be available to add
into as required by line 4 for pipeline length cycles, and so line 4 will cause a delay
each time through the loop. Accumulator expansion removes this dependency by
using multiple scalars to store the accumulator, as shown in Figure 5.3(b). Note that
for a machine with a FPU pipeline length of four, for example, we would probably
want to unroll to at least that length, and use four registers, rather than the two
shown in this simple example.

In this example, we have shown dot being initialized to a start value. Notice
that the additional accumulators generated by AE must be set to zero (line 1
of Figure 5.3(b)), and summed into dot after the loop is complete (line 7 of
Figure 5.3(b)).

5.4.5 Prefetch (PF)

The next fundamental transformation is prefetch (PF). This transformation can
prefetch any/all/none of the arrays that are accessed within the loop, select the type
of prefetch instruction to employ, vary the distance from the current iteration to
fetch ahead, as well as provide various simple scheduling methodologies. Prefetches
are scheduled within the unrolled loop because many architectures discard prefetches
when they are issued while the memory bus is busy, and so they can be an exception to
the general rule that modern x86 architectures are relatively insensitive to scheduling

(due to their aggressive use of dynamic scheduling, out-of-order execution, register

)

renaming, etc.). Note that prefetching one array can require multiple prefetch
requests in the unrolled loop body, as each x86 prefetch instruction fetches only

one cache line of data.
5.4.6 Non-temporal Writes (WINT)

Our final fundamental transformation is non-temporal writes (WINT), which
employs non-temporal write instructions on the specified output array. Non-temporal
writes are designed to be useful when the value written will not be accessed again
soon, but its implementation varies strongly by architecture (for instance, on the
Opteron WNT is only useful for write-only arrays, but it is useful for any output

array that does not need to be retained in the cache on the P4E).
5.4.7 Default Values

There are two types of “default” values for these optimizations. One is which
fundamental transformations are automatically applied by FKO without special flags,
and only LC is handled in this way. All other fundamental transformations are
applied only when the requisite flag is passed to FKO. The other “default” of interest
is what values iFKO employs during the empirical search, and these defaults are as
follows: Let L be the line size of the first prefetchable cache, and L, the number of
elements of a given type in such a line (for example, if L = 32 bytes, L. would be 4
for a double precision scalar, 8 for a single precision scalar, or 2 for a SIMD vector of
either type), then the initial values for the iFKO’s search are: SV="Yes’ (if legal),
WNT="No’, PF(type,dist) = ('prefetchnta’, 2 x L), UR=L,, AE="None’.

5.5 SIMD Alignment Issues

As previously mentioned, vector loads and stores are by default assumed to be

128-bit aligned. The current FKO implementation assumes such alignment whenever

76

SV is applied. FKO already possesses all the transformations necessary to handle
non-aligned access safely, but we currently assume alignment because we do not have
the required infrastructure to handle these cases efficiently. Since we can leverage
higher level routines to ensure that these alignment requirements are met, we will
add non-aligned considerations explicitly to FKO only once we have expanded the
framework so that they may be handled efficiently as well as safely.

As discussed later, producing a highly-tuned non-aligned code takes explicit
tuning for the non-aligned case (i.e., the tuning decisions made for the aligned
code will not, in general, be valid for the non-aligned), and so we first concentrate
on tuning the aligned cases, letting ATLAS handle getting them so aligned. The
following sections discuss these alignment issues in further detail. First, Section 5.5.1
discusses how we use ATLAS to guarantee alignment so that we can assume
correct alignment in kernels generated by FKO. After this overview, we discuss the
actual transformations that can be employed (both by ATLAS presently, and FKO
ultimately) to correctly handle these cases. Section 5.5.2 discusses a safe method that
works for all cases, but results in inefficient code. Section 5.5.3 provides an overview
of how loop peeling can be used to force alignments in those cases where all relevant
memory addresses have the same alignment. Section 5.5.4 then describes how this can
be extended to handle mutual misalignment, and Section 5.5.5 discusses some possible
refinements that can be applied when the pointers in question arise from a constantly
strided multidimensional array (a very common case). Finally, Section 5.5.6 describes

how we envision adding this complicated support to the framework.
5.5.1 Present Handling of Alignment

In our present use of FKO, we exploit ATLAS’s framework to guarantee align-
ment. All of ATLAS’s timers and testers optionally accept flags that tell them to
force particular alignments, and so we encounter no problems during tuning. When

it is time to use the FKO-generated kernels to build an ATLAS-tuned library, we
7

use multiple implementation to add the routine to ATLAS. At this stage, we write
wrapper code by hand that guarantees particular alignment(s), using the techniques
discussed in the following sections. Also, the ATLAS framework already guarantees
alignment for the Level 3 BLAS kernels, and so we know we don’t need to handle

these cases for some of our more important targets.
5.5.2 Handling Alignment Safely, but Inefficiently

Since vectorization has an implicit computational unrolling, a scalar cleanup loop
(which has no vector alignment requirements) is always generated. Trivially, we could
add a branch to this cleanup anytime our operands are not appropriately aligned.
While this would mean that the code would handle all cases correctly, the non-aligned
case would not only be scalar code, but largely untuned scalar code at that. It is for

this reason that we do not use this mechanism.
5.5.3 Fixing Some Alignment Problems through Loop Peeling

A subset of alignment problems may be addressed through simple loop peel-
ing [24]. Again, we have most of the infrastructure needed for this, in that peeling
can reuse with very little modification the unrolling and cleanup infrastructures.

In peeling for alignment, iterations of the loop are peeled and conditionally
executed based on alignment, but the iterations that are peeled are scalar iterations,
so that we do the appropriate number of scalar iterations until the relevant pointers
are 128-bit aligned, and then we enter the vectorized loop.

This method fully solves the problem if and only if all vectorized pointers
have the same alignment. If two or more vectors are mutually misaligned (eg, Py
mod 128 = 32 and P; mod 128 = 64), then at least one pointer is still misaligned,

and more complicated techniques are required, as described in the following sections.

78

5.5.4 Handling Mutual Misalignment

If two or more pointers are mutually misaligned, the general solution is to force
the alignment of one of the pointers via peeling as before, and then generate code
that assumes the given array/pointer is aligned, and any others are not. Obviously,
if one array is accessed more than the others (for instance, if one array both used
and set while other arrays are use only), then that array is the obvious target for
peeling for alignment.

To make this more concrete, assume we are accessing two single precision arrays,
X (read only) and Y (both read and written), and that X mod 128 = 32 and YV
mod 128 = 64. In this case we use loop peeling to force Y to be aligned to 128
(which in this example would result in doing two scalar iterations of the loop before
entering the vectorized loop). With Y forced to the correct alignment, we would now
empirically tune a sub-kernel specialized for aligned Y and non-aligned X.

There are at least two general techniques to try in these cases. On the x86, there
are non-aligned vector loads, which are slower than the aligned loads. Therefore, the
first technique would involve using non-aligned loads on X, but then it makes sense
to do some scheduling to reflect the fact that X access is slower than Y access. For
instance, we might want to software pipeline all X accesses so that this iteration
fetches the next iteration’s X data.

Another, even more aggressive, technique is to instantiate the various possibilities
of X misalignment, and then use aligned access on X, but permute the data before
applying it to Y. This in fact is required for the PowerPC, where the AltiVec unit
does not support non-aligned load. Again, if we are required to permute one array’s
data before use, we will probably want to software pipeline it so that waiting on the

permute does not create a bottleneck.

79

As can be seen, handling the non-aligned case represents a more significant tuning
problem than SV itself, and this is the main reason we have not yet handled it

efficiently in FKO.

5.5.5 Special Alignment Considerations for Constantly Strided Multidi-
mensional Arrays

Constantly strided multidimensional arrays are common in floating point kernels.
For instance, the Level 2 and 3 BLAS operate on constantly strided two-dimensional
arrays. The non-unit stride of these arrays, in elements of the native type, is called
the lda (Leading Dimension of Array). When outer loop unrolling is performed on
such arrays, the inner loop then gets multiple pointers, which may be mutually
misaligned, depending on lda. To make this more concrete, consider a double
precision column-major array with [da = 7. Since there are two double precision
elements in a SIMD vector, all contiguous columns will be mutually misaligned by
64 bits. However, every second column will have the same alignment.

More generally, if there are N, native elements in a SIMD vector, a particular
column j is guaranteed to have the same alignment as column j+ N, regardless of [da.
Further, if (Ida x sizeof()) mod 128 = 0, then all columns have the same alignment.
NOTE: swap the word ‘row’ for ‘column’ in the above analysis for row-major arrays.

We can use these insights to reduce alignment complexities when unrolling outer
loops, or more generally, anytime we can discover that inner-loop pointers come from

constantly strided arrays.
5.5.6 Adding Misalignment Support to the Framework

As this discussion has made clear, well-tuned misalignment support is a compli-
cated issue. Support will undoubtedly be phased in as we develop iFKO. For instance,
the peeling and safety cases discussed in Sections 5.5.3 and 5.5.2 will probably

80

be added soon, since we already have the needed infrastructure, and peeling, in
particular, does completely solve the problem for kernels that access only one array.

The next step will require significant overhead, and will probably only be
undertaken when we have some actual usage that require it. In this step, we would
add explicit tuning for non-aligned cases, which requires extensions throughout the
framework, including the search, the transformations supported, and instructions
available in code generation.

Once we are able to explicitly tune for misalignment, we will still initially use
multiple implementation to choose when to call particular versions (each tuned in
separate iIFKO invocations). Once sufficient performance and generality is available
in this tuning, we can automate the search of all misalignment subcases and the

generation of the wrapper code as well.

5.6 Current Repeatable Transformations

Repeatable transformations can not only be applied multiple times, but are
typically applied in a series (or optimization block) which is repeated while they are
still successfully transforming the code. This is useful for synergistic optimizations
(eg., register allocation and copy propagation). All of these operations may be applied
to a scope (a set of basic blocks, typically a given loop nest or the entire function).
FKO’s present interface allows the user to specify that these optimizations be applied
to the optloop, or globally to the entire function. As we will see in Section 5.6.10,
most of these transformations are by default first exhaustively applied to the optloop,
and then applied globally as well.

We presently support repeatable transformations for improving register usage
and control flow. In register usage optimization, we support register allocation
(Section 5.6.1) and various types of copy propagation (Sections 5.6.2 and 5.6.3).
Several of our register usage improving transformations (Sections 5.6.7, 5.6.8 and

5.6.9) are in fact peephole optimizations that exploit the fact that the x86 is not
81

a true load/store architecture (relatively important when the ISA has only eight
registers, but the underlying hardware may have more than a hundred). Finally, we
perform branch chaining (Section 5.6.6), useless jump elimination (Section 5.6.4),
and useless label elimination (Section 5.6.5), which, when applied together, merge

basic blocks (critical after extensive loop unrolling).
5.6.1 Register Allocation (ra)

This is our most complex repeatable transformation. It performs interference
graph based register allocation on an relatively arbitrary scope (a scope being a list
of basic blocks). This optimization is applied both within and across basic blocks.
We assume that the scope has a single preheader (a single predecessor block that
must be passed through in order to reach all blocks in the scope), but allow for
multiple successors to the scope, which we call post-tails. We use loop terms such as
header and tail because our most important scopes are indeed loop bodies.

If a variable is live on scope entry, then the register load of that variable is hoisted
to the preheader of the scope, and if a variable is live on scope exit, and a store is
required, then the register-to-memory store is pushed into the relevant post-tail(s).
The most common scope is a loop body, and when applied in this way to a variable
live throughout the loop, all associated memory accesses will be hoisted/pushed out
of the loop.

Presently, FKO by default applies ra to the loop identified for empirical tuning,
and then to the entire function. As we consider more deeply nested loops, we will
apply ra to each loop level in turn, starting from the innermost. Performing ra on
the innermost loop first ensures that the inner loop’s register needs are completely
met, before outer loops are considered, which is critical in floating point kernels,
where long-running loops are the common case. Until registers are exhausted, ra
and copy propagation applied to outer loops will continue to expand the live range

to the maximum extent, and eventually moving the load (store) to beginning (end)

82

of the function, if possible. Thus, this rather complicated version of ra provides an
efficient algorithm for register spilling in the case of register exhaustion, as well as
allowing us to postpone implementation of a more generalized loop-invariant code

motion.
5.6.2 Copy Propagation (cp)

Copy propagation [24] is a technique for removing unnecessary register-to-register
moves, often generated by preceding optimization phases, such as register allocation.
Our implementation operates both inter- and intra-block, and performs several
related transformations. Trivially, it deletes any such move where the source and
destination are the same register.

In it’s main use, our copy propagation phase proceeds through the scope in
forward order, looking for register-to-register moves. If the source register is dead
at this point, we delete the register-to-register move, and replace all succeeding
references of the destination register with the source register, until either the source
becomes live again, or the destination is dead. If the source is still live, we do the
same, but stop the propagation if the destination register is set. When we are forced
to stop the propagation before the destination register’s live range is complete, we
put the register-to-register move back into the code, but as far down in the scope as
possible (hopefully out of a critical path, for instance). If copy propagation must be

halted on the next instruction after the move, no change is made.
5.6.3 Reverse Copy Propagation (rc)

Our current reverse copy propagation (rc) operates only within a basic block.
We look for register-to-register moves where the source register is dead, but starting
at the bottom of the block and proceeding towards the beginning. When we find

such a move, we find the initialization of the source’s live range, and if it is in this

83

block, we delete the move and change all references to the source register between
that initialization and the move to the destination register.

Thus, this transformation is designed to complement cp, in that cp attempts to
maximize live ranges (and thus minimize moves) by finding moves and extending the
source’s live range forward in the code, while this optimization instead extends the
destination’s live range backwards. When applied together, this can remove obstacles
to copy propagation caused by register reuse, which would otherwise require register

renaming.
5.6.4 Useless Jump Elimination (uj)

This transformations removes any unconditional jumps to blocks that are posi-

tioned directly after the jump.
5.6.5 Useless Label Elimination (ul)

Removes local labels that are either not referenced in the routine, or have no
executable statements between them and another label. In this latter case, all
references to the removed label are replaced by the retained label. This has the

effect of removing empty basic blocks when possible.
5.6.6 Branch Chaining (bc)

Replaces branches to unconditional jumps (or a chain of such jumps) with a

branch to the final target.
5.6.7 Enforce Load Store (Is)

The x86 is not a true load/store ISA, and thus many of its non-load instructions
allow memory addresses as sources. This transformation removes any such in-memory

usage, replacing them with the more standard load to register, followed by register

84

use. This is useful in exposing the possibility of register reuse (with correlated
hoisting/pushing) to the other optimization phases. An example of how this can

be useful is given in Section 5.7.2.
5.6.8 Remove One Use Loads (ul)

This is an x86-specific peephole optimization which searches for loads to a register
whose live range is complete on the first use (it cannot be applied to sets, as the
x86 ISA does not provide non-store instructions that accept destination operands
that address memory). When an in-memory version of the instruction exists, ul
then deletes the explicit load, and changes the use to an in-memory version of the
instruction. This reduces register pressure, and is therefore almost always worth

applying on these systems.
5.6.9 Last Use Load Removal (lu)

Like ul, this is an x86-specific peephole optimization employed to reduce register
pressure. As discussed, lu replaces single-use instructions with their in-memory
equivalents. For registers that are accessed multiple times, we can sometimes avoid an
unnecessary load by changing the last use of the register to an in-memory instruction.
This is done by changing the order of the instruction, so that a multiple-use register
is overwritten on its last use (i.e., we change the use of that register to a set, and the
register now contains a live range that was originally in another register). Because we
swap the source and destination, the instruction that we are changing to in-memory
must be commutative, or we cannot apply lu. This is probably the hardest of all
the repeatable optimizations to explain, and so a review of the actual example of its

application given in Section 5.7.3 may be needed for more complete understanding.

85

Local s while (CHANGES)
while (CHANGES) | {
Global ra
Global be Global cp
Global uj Global rc
Global ul Global ul
} Global lu
while (CHANGES) | }
{
Loop ra
Loop cp
-L1041s 2 3 4 Looprc
-G 2 10 3 bc uj ul Loop ul
-L 3 10 5 ra cp rc ul lu Loop lu
-G 4 10 5 ra cp rc ul 1lu }
(a) as command-line args (b) as pseudocode

Figure 5.4: Repeatable optimization defaults

5.6.10 Default Values

Presently, the iterative search does not vary the repeatable optimizations, and
always uses the defaults (applied after any fundamental optimizations), which are

summarized in Figure 5.4.

5.7 FKO in Action

In this section we use actual code generated by FKO to illustrate how some
of these transformations work in practice. Section 5.7.1 uses ddot (Figure A.5) to
demonstrate register allocation, copy propagation, one use load elimination, and,
most importantly, SIMD vectorization. Section 5.7.2 then uses dasum (Figure A.3)
to illustrate prefetch, enforce load/store, and the linked transformations of loop
unrolling and useless label elimination. Finally, Section 5.7.3 employs daxpy (Fig-
ure A.4) to explore the use of non-temporal writes and last use load removal.

Because this is actual code generated by FKO, it is in [A-32 assembly, which
is not as accessible as the ANSI C examples shown previously. However, many

of the lower-level optimizations (eg., SIMD vectorization, register allocation, copy

86

propagation, etc.) are difficult to illustrate in high level languages. Comments are
provided that explain the general effects of lines of interest, and we provide a few
notes here as an aid for those interested in examining these examples in greater detail.

Assembly for the x86 is two operand (in most cases; it is, after all, CISC), and
in the gnu dialect generated by FKO, the last operand is always the destination.
As previously mentioned, FKO uses SSE for both scalar and vector instructions.
All examples use double precision data, and double precision SSE instructions end
in the suffix d. Scalar SSE instructions’ second to last character is s, and vector
instructions (which operate in parallel on multiple scalars) have this character set to
p- Thus, [movsd, mulsd, addsd| are SSE opcodes to perform scalar double precision
move, multiply and add, respectively, and their vector equivalents are [movpd, mulpd,
addpd|. Integer instructions are typically suffixed by 1 (for long, as this ISA has its
roots in 8-bit operation). Constants are prefixed by $, registers by %, and the SSE

registers are xmm0 through xmm7, while the stack pointer is esp.
5.7.1 DDOT Example Illustrating ra, cp, rc, ul, and SV

In this section, we use the Level 1 BLAS kernel ddot to illustrate register
allocation/assignment (ra), copy propagation (cp), reverse copy propagation (rc),
remove one use loads (ul), and SIMD vectorization (SV). The ddot kernel performs
a vector product operation, and its HIL loop is shown in Figure 5.5(a).

Figure 5.5(b) shows the same region of code in assembly, when generated by
FKO without any optimization other than optimize loop control, which is always
applied when legal. For this architecture, reversing the loop allows us to avoid a
comparison instruction, and so we see in lines 26-30 that the loop given in our HIL,
which was of the form for(i=0; i < N; i++), has been transformed to one of the
form for(i=N; i; i--).

Note that our front-end generates simplistic load /store versions of each operation:

for any computation, all operands are loaded from memory, then the computation is

87

LOOP i =0, N
LOOPBODY

x = X[0];

y = Y[0];

dot +=x *x y;

X +=1;

Y +=1;
LOOP_END
RETURN dot ;

(a) Relevant HIL Loop

© 0 N O o A W N

1.local _LOOP.0

2 _LOOP 0:

s# x =X[0];

4 movl 36(%esp),%edx
5 movsd (%edx) ,%xmm0
6 movlpd %xmm0,16(%esp)
#y = Y[0]

8 movl 32(%esp),%edx
9 movsd (%edx),%xmmO
10 movlpd %xmm0,8(%esp)
n# dot +=x * vy,

12 movsd 16(%esp),%xmm0
13 movsd 8(%esp),%xmml
14 mulsd %xmm1,%xmmO

15 movsd (%esp),%xmm2
16 addsd %xmmO,%xmm2

17 movlpd %xmm2,(%esp)
s# X 4+=1

19 movl 36(%esp),%edx
20 addl $8, %edx

21 movl Y%edx,36(%esp)
2# Y +=1

23 movl 32(%esp),%edx
24 addl $8, %edx

25 movl Y%edx,32(%esp)
26# while(—1) ;

27 movl 44(%esp) ,%edx
28 subl $1, %edx

29 movl Yedx ,44(%esp)
30 jne _LOOP.0

31 .local _LOOP_END_O
32 _LOOP_END_JO:

(b) Assembly, no optimization other
than LC

Figure 5.5: DDOT Loop in HIL and Assembly with no optimization, and

ra

[N

Hoisted loads from ra
movl 48(%esp),%ebp
movsd 4(%esp),%xmm2
movl 36(%esp),%eax
movl 40(%esp),%ecx

6 .local _LOOP_0

7 _LOOP0:
S x =X[0];
9 movl Y%ecx,%edx

10
11
127
13
14
15
167
17
18
19
20
21
22
237
24
25
26
27
28
29
30
317
32
33
34
35

movsd (%edx),%xmmO
movsd %xmmO,%xmm1
y = Y[0]

movl %eax,%edx
movsd (%edx),%xmmO
movsd %xmmO,%xmm3
dot +=x * y;

movsd %xmm1,%xmmO
movsd %xmm3,%xmml
mulsd %xmml,%xmmO
movsd %xmm2,%xmm2
addsd %xmmO,% xmm2
movsd %xmm2,%xmm2

X+=1

movl %ecx,%edx
addl $8, %edx
movl %edx,%ecx
Y +=1

movl %eax,%edx
addl $8, %edx
movl %edx, % eax
while(——1);

movl %ebp,%edx
subl $1, %edx
movl Y%edx ,%ebp
jne _LOOP_0

36 .1local _LOOP_END_O
37 _LOOP_END_0:

38

39

88

Pushed store from ra
movlpd %xmm2,4(%esp)

(c) Assembly, after ra

performed, and then result is stored back to memory. Lines 3-17 are all involved in
performing a simple dot += X[0]*Y[0], for instance. At this point, registers are live
only across a single computation, and so there is no reuse. FKO relies on repeatable
optimizations to improve register usage, as the shown in the following examples.

Figure 5.5(c) shows the same assembly, but this time we have applied register
assignment/allocation. In lines 2-5 we see that the loads of the variables i (the loop
index), dot, X (pointer to first vector), and Y (pointer to second vector) have been
hoisted out of the loop. Further, since dot is live on output and written in the loop,
the store of dot back to memory has been pushed out of the loop, to line 39. At
this point, the size of the code supporting the loop has been expanded, as we have
added the hoisted/pushed code, while changing affected loads to register-register
moves. Not only do we have repetitive moves, but notice that line 22 actually moves
a register to itself! Cleaning up all these unnecessary register moves is the job of the
various copy propagation forms.

Figure 5.6(a) shows this same code, but we have applied forward copy propagation
(cp) as well as ra, and we have done them in this order, and continued to apply them
together until they no longer transform the code. While this has reduced the number
of unnecessary moves, there are still some obvious ones, as in lines 9 and 10, where
the fact that we reused the xmmO register has forced us to retain the move to xmmi.
Adding reverse copy propagation (rc) to the optimization block handles these kinds of
renaming problems, as shown in Figure 5.6(b), where line 8 loads the value directly
into xmm1. Reverse copy propagation started with the register-to-register move at
line 10 of Figure 5.6(a), and determined that the source’s live range began on line 9.
The move on line 10 was then deleted, and and the destination register (xmm1) was

substituted for the source register (xmm0) on line 9, leading to line 8 of Figure 5.6(b).

The code is starting to look much better, but we can reduce register pressure

by making one of the loads implicit. Exploiting the CISC ISA in this way is the
89

1
2
3
4
5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Hoisted loads from ra
movl 48(%esp),%ebp
movsd 4(%esp),%xmm2 1 movl 48(%esp),%ebp
movl 36(%esp),%eax 2 movsd 4(%esp),%xmm2
movl 40(%esp),%ecx 3 movl 36(%esp),%eax
.local _LOOP.O 4 movl 40(%esp),%ecx
-LOOP_0: 5 .local _LOOP_0
x =X[0]; s .LLOOP_0
movsd (%ecx),%xmm0 # x = X[0];
movsd %xmmO,%xmm1 8 movsd (%ecx),%xmml
vy =Y[0] off y = Y[0]
movsd (%eax),%xmmO 10 movsd (%eax),%xmm3
dot +=x * y; n# dot +=x * y;
mulsd %xmmO,%zxmm1 12 mulsd %xmm3,%xmm1
addsd Y%xmml,%xmm2 13 addsd Y%xmml,%xmm2
X+=1 u# X+4+=1
addl $8, %ecx 15 addl $8, J%ecx
Y+=1 w6#E Y +=1
addl $8, %eax 17 addl $8, %eax
while(——1) ; s# while(——i) ;
subl $1, %ebp 19 subl $1, %ebp
jne _LOOP_0 20 jne _LOOP.0
.local _LOOP_END_O 21 .local _LOOP_END_O
_LOOP_END._O: 22 _LOOP_END_O:
Pushed store from ra 23 H Pushed store from ra
movlpd %xmm2,4(%esp) 24 movlpd %xmm2,4(%esp)
(a) Assembly, after ra and cp (b) Assembly, after ra, cp and rc

Figure 5.6: DDOT Loop Assembly with ra, cp, and rc

job of remove one use loads (ul), which merges a computation and load into one
instruction. Note that reducing register pressure is not an obvious benefit in the
current loop, but after additional transformations such as unrolling and accumulator
expansion, it can become critical. Even absent such changes, additional benefit may
be provided both by the increased code density and having the additional register
available for later use in global application of ra.

Figure 5.7 demonstrates ul. In order to make the examples more compact, we
hereafter omit the hoisted/pushed load/stores and the computation identifying com-
ments. Therefore, Figure 5.7(a) recapitulates Figure 5.6(b) without such instructions,
and Figure 5.7(b) shows the same code after ul is added to the optimization block.

We see that we have one less instruction in the loop, and the register xmm3 is no

90

1.1local _LOOP.0

> _LOOPO: 1.local _LOOP_0
3 movsd (%ecx),%xmml 2 _LOOP.O:
4 movsd (%eax),%xmm3 3 movsd (%ecx),%xmml
5 mulsd %xmm3,%xmml a mulsd (%eax),%xmml
6 addsd Y%xmml,%xmm2 5 addsd Y%xmml,%xmm2
7 addl $8, %ecx 6 addl $8, %ecx
8 addl $8, %eax 7 addl $8, %eax
9 subl $1, %ebp 8 subl $1, %ebp
10 jne _LOOP_0 9 jne _LOOP.0
(a) DDOT Loop Assembly withra, (b) DDOT Loop Assembly with ra,
cp, and rc cp, rc, and ul

Figure 5.7: DDOT Loop Assembly with ra, cp, rc and ul

longer used. This is because the load of xmm3 from line 4 of Figure 5.7(a) has been

merged into the computational instruction on line 4 of Figure 5.7(b).

5.7.1.1 SIMD Vectorization

The next step is to show how SIMD Vectorization is applied. Since SV makes
global changes to the function, it is not easily understood by viewing isolated code
fragments, and therefore Figure 5.8 shows the complete assembly generated after
vectorization. For the sake of both clarity and brevity, we have applied all repeatable
optimizations using the defaults given in Section 5.6.10.

Vectorization creates many complexities, one of which is the need to keep vectors
aligned to 128 bits. This is problematic in that the IA-32 ABI (Application Binary
Interface) only guarantees stack pointer alignment to 32 bits. Thus, in lines 7 and
8, we shift off the last 4 bits of the stack pointer so that it is known to be aligned
to 128 (note that the stack grows downward in this ISA, and so this just results in
expanding our local frame by a bit). On this architecture FKO normally employs
the frame pointer as a general purpose register (otherwise, the compiler would only
have six available integer registers, as two would be tied up pointing to the stack).
However, since how much the shifts change the stack pointer is not known at compile
time, we must save the old stack pointer, or we will unable to recover it (in order

to restore the stack pointer on function exit, or to access parameters passed to the

91

38 _LOOPO:

39 movapd (%eax), %xmmO
10 mulpd (%ecx), %xmmO
a1 addpd %xmm0O, % xmm2
42 addl $16, %ecx
13 addl $16, %eax
1.text 14 subl $2, %ebp
> .globl ATL.UDOT s jg _LOOP.O
3sATLUDOT: a6 F Reduce accumulator vector for
4# Ensure 128 bit alignment of dot
stack ptr a7 movl %ecx,%ebx
5 movl %esp,%edx 18 movl Yeax,%ecx
6 subl $128, %esp 49 pshufd $0xee,%xmm2,%xmm1
7 shrl $4, %esp 50 addpd Y%xmml, % xmm2
8 shll $4, %esp 51 movlpd %xmm2, 80(%esp)
9 movl Y%edx ,8(%esp) 52 movsd 80(%esp),%xmm0
1# Save registers & ld old stack 3 movsd %xmmO,%xmm?2
ptr new reg 54 subl $—1, %ebp
11 movl %ebp,(%esp) 55 movl %ebp,%eax
12 movl %ebx ,4(%esp) 56 jne _IFKOCDO__LOOP_0
13 movl 8(%esp),%ebp 57 .1local _CUDONE_LOOP.0
147 para 0, name=N 58 _CUDONE_LOOP 0:
15 movl 4(%ebp) ,%edx 597 set return val, restore regs
16 movl %edx,%eax , and return
17# para 1, name=X 60 .1local _IFKO_EPILOGUE
18 movl 8(%ebp),%edx 61 IFKO_EPILOGUE:
19 movl Y%edx,%ecx 62 movsd %xmm2,104(%esp)
20# para 2, name=incX : UNUSED 63 f1d1 104(%esp)
21# para 3, name=Y 64 movl (%esp),%ebp
22 movl 16(%ebp) ,%edx 65 movl 4(%esp),%ebx
234 para 4, name=incY : UNUSED 66 movl 8(%esp),%esp
2a# Initialize locals to 67 ret
constants 6s .local _CUNE_LOOP.0
25 xorpd %zxmmO,%xmmO 6o .CUNE_LOOPJ:
264 END OF FUNCTION PROLOGUE 70 addl $1, %eax
27 subl $1, %eax 71 movsd %xmmO,%xmm?2
28 jle _CUNE__LOOP.0 72 movl %edx,%ebx
20H Init accumulator vector for 73 .1local _IFKOCDO__LOOP_0
dot 7a IFKOCDO__LOOP_0:
30 movsd %xmmO,%xmm2 75 movsd (%ecx),%xmmO
31 xorpd %xmm0,%xmmO 76 mulsd (%ebx),%xmm0
32 movsd %xmm2, % xmmO 77 addsd %xmmO,%xmm2
33 movl %eax,%ebp 78 addl $8, %ecx
34 movapd %xmmO, % xmm2 79 addl $8, %ebx
35 movl %ecx,%eax 80 subl $1, %eax
36 movl %edx,%ecx 81 jne _IFKOCDO0O_-.LOOP_0
s .local _LOOP.0 © jmp .CUDONE_LOOP.0

Figure 5.8: SIMD Vectorized DDOT Assembly

92

routine). Therefore, we see that line 5 copies the original stack pointer to a temporary
register before the stack pointer is modified. This temporary register is then used to
store the old stack pointer to the newly allocated stack frame (line 9), allowing the
original stack pointer to be a target for register allocation like any other local (it is
loaded to a new register on line 13).

Line 25 initializes dot to zero for use in the loop. However, the dot that has just
been set is a scalar. The loop, however, has been vectorized, and so it needs dot
in a vector register. This is done on lines 31, 32 and 34. A careful examination of
these lines reveals that they are, in fact, not needed. This is easily discoverable in
the assembly, but not apparent in our LIL. These lines are not needed because for
FKO on the x86, vector and scalar registers are aliased, and so we can use normal
moves to transfer them, and in this case, both our scalar and vector dot registers
wind up assigned to the physical register xmm2. However, our LIL assumes that
scalar and vector registers are separate (as indeed they often are, for instance on
the PowerPC, or indeed on the x86 if we used the x87 FPU for scalar floating point
computation), and thus by default goes through memory when transferring between
scalar and vector registers. In this case, FKO has avoided going through memory, but
still retains some useless register-to-register moves. We will need to introduce some
more architecture-specific information into the copy propagation phases (indicating
exactly how scalar and vector registers are aliased) to avoid these moves. Because
these scalar/vector conversions are always introduced outside the main loop, we
have not bothered to introduce this system-dependent optimization yet, but we will
probably do so eventually, particularly as we examine more complex kernels (where
outer-loop transforms become more critical, as the inner loop is deeply nested).

Lines 31 and 32 are themselves the result of a series of optimizations. They started
out as a store to memory of the scalar value, followed by a read into a vector register,
but copy propagation knows how to move a value from a scalar register to the lower

64 bits of the vector register, as shown in line 32. However, this leaves the upper 64

93

bits untouched, and so the target vector register must be zeroed before the move,
which is what instruction 31 is doing. Line 34 is a vector-to-vector register move,
moving the constructed vector register xmmO to its eventual target, xmm2. Note that
we cannot construct the vector value in xmm2 directly, due to live range conflicts.
While our LIL treats vector and scalar registers as separate sets, it of course has
accurate dependency information, and so it knows that when xmm2 is used as to
hold a scalar value (in this case the scalar value of dot), whichever vector register
that corresponds to it cannot be assigned until that scalar live range is complete.
Since the scalar version of xmm2 is not dead until vector construction is complete,
and construction takes multiple instructions, we have to use the temporary vector
register xmmO.

Lines 49-53 (after the vectorized loop) do the opposite: they take the vector values
of dot, and reduce them to a scalar value. After the loop, however, this requires
summing the two partial results as well as moving the data between scalar/vector
types. Therefore, line 49 moves the upper 64 bits of the vector register xmm2 into the
lower 64 bits of xmm1, and we then add them together on line 50, so that the complete
dot is in the lower 64 bits of xmm2. Unfortunately, FKO was unable to remove the
store and load to memory this time, and so line 51 stores dot to memory from a
vector register, line 52 reads it from that location into a temporary scalar register,
and line 53 moves it to its final scalar destination register. Again, there are many
optimizations we can apply to make this more efficient, but we have not yet done so
since it outside the loop.

Lines 38-45 contain the vectorized loop. We see that this loop is essentially the
same as the scalar loop shown in Figure 5.7(b), with two notable exceptions. First,
all scalar instructions have been replaced by their vector equivalents. Second, the
update of the pointers is by 16 bytes (128 bits) rather than 8, and the index is updated
by subtracting two rather than one. This is because vectorization is equivalent to a

scalar unrolling of two for double precision.

94

Because it is equivalent to a computational unrolling of 2, we must have a cleanup
loop for odd values of N, and we must introduce the appropriate branches to this
cleanup loop, just as we do in unrolling. Lines 74-82 comprise the scalar cleanup
loop. Lines 27 and 28 supply the pre-loop branch to cleanup (to handle the case of
N < 2), and lines 54 and 56 do the same for post-vector-loop cleanup (for the case
N > 2 but N mod 2 # 0).

Lines 60-66 comprise the function epilogue, which restores the callee-saved
registers (including the stack pointer), and returns. Lines 62 and 63 reveal another
complexity of this architecture. The [A-32 ABI requires functions returning floating
point values to store them as the top register of the x87’s register stack. Moving
between SSE registers and x87 registers requires going through memory, so line 62
stores the return value (dot) from an SSE register, and line 63 loads it to the x87
register stack top.

In our pre-loop test, we subtracted UR-1 from the start value of the loop index
in order to get the numbers correct for efficient unrolled loop indexing. If we never
enter this loop, however, this value must be added back in, which is why the pre-loop
tests jumps to the block on lines 69-72, rather than directly to the cleanup loop, as
the post-loop test does.

Note that since the cleanup loop and corresponding conditionals are generated,
FKO has considerable freedom to choose where to add these blocks. Therefore,
we have have added them in such a way that the fall-through cases assume that the
vectorized loop is entered, and loop cleanup is not required (thus not adding overhead

to the most efficient case).
5.7.2 DASUM Example Illustrating UR, AE, PF, ul, and 1s

In this section we use dasum (Figure A.3) to illustrate various optimizations.
First, we use a simple example to show how the enforce load/store 1s transformation

can be useful, and then a more detailed listing is given in order to demonstrate how

95

N oo s W

1 movapd 16(%esp),%xmm3

1.local _LOOP.O 2 .local _LOOP.0

LOOP i = 0, N »_LOOP.O: s LOOP.0:

LOOPBODY 3 movsd (%ecx),%xmm0 4 movsd (%ecx),%xmm0
x = X[0]; 4 andpd 16(%esp),%xmm0 s andpd %xmm3,% xmm0
x = ABS x; 5 addsd %xmm0,%xmm?2 6 addsd %xmm0,%xmm?2
sum += x; 6 addl $8, %ecx 7 addl $8, %ecx
X+=1; 7 subl $1, %eax 8 subl $1, %eax

LOOP_END 8 jne _LOOP_0 9 jne _LOOP.0

(a) As HIL (b) Without ls (c) With Is
Figure 5.9: ASUM Loop

loop unrolling (UR), accumulator expansion (AE), prefetch (PF), and useless label
elimination (ul) work together.

Figure 5.9(a) shows the dasum written in our HIL. Line 3 loads the array value,
line 4 takes its absolute value, and line 5 adds this into the running sum (dasum is
the absolute value sum of an array). Figure 5.9(b) shows this same inner loop in
assembly. Here, we are using all of the default optimizations, except we have turned
off Is. Line 3 of this listing loads the array value, line 4 takes its absolute value (more
on this below), and line 5 adds the absolute value into the running sum.

In order to understand this code, we need to understand how absolute value is
performed using SSE, which does not have an explicit absolute value instruction.
Fortunately, a bitwise and can be used to produce such an operation. First, we
construct a 128 bit integral value that has all bits set to 1, except the sign bit of
each veclen floating point elements, which are instead set to 0. Absolute value of a
scalar or vector may then be produced by performing a bitwise and of this integral
value and the register holding the number to be absolute valued. Because we want
to be able to issue absolute value with minimal register use, the front-end generates
the in-memory version of the instruction, as shown on line 4 of Figure 5.9(b) (where
the integral value has been written to the stack location 16 (%esp)). Inside a loop,
however, this can lead to repetitive memory reads. By running enforce load store as

shown in the architectural defaults, the code in Figure 5.9(c) is created, where this

96

xorpd %xmm1,%=xmm1 1 xorpd %xmm1,%xmm1
movsd %xmml,%xmm3 2 movsd %xmm1,%xmm3
.local _LOOP.0 3# Shadow accum init
_LOOP.0: 4 xorpd %xmmO,%xmmO
movsd (%ecx),%xmmO 5 movsd %xmmO,%xmmé4
andpd Y%xmm2,%xmmO 6.local _LOOP.0
addsd %xmmO,%xmm3 7 _LOOP0:
.local _IFKOCD1__.LOOP_0 8 prefetchnta 256(%eax)
JFKOCD1._.LOOP_0: 9 movsd (%eax),%xmmO

movsd 8(%ecx),%xmmO 10 andpd %xmm2,%xmmO

andpd %xmm2,%xmmO 11 addsd %xmmO,%xmm4

addsd %xmmO,%xmm3 12 movsd 8(%eax),%xmm0
.local _IFKOCD2__.LOOP_0 13 andpd %xmm2,%xmm0
IFKOCD2__LOOPL0: 14 addsd %xmm0,%xmm3

movsd 16(%ecx),%xmm0 15 movsd 16(%eax),%xmm0

andpd Y%xmm2,%xmmO 16 andpd Y%xmm2,%xmmO

addsd %xmmO,%xmm3 17 addsd %xmmO,%xmm4
.local _IFKOCD3__LOOP_0 18 movsd 24(%eax),%xmm0
IFKOCD3__LOOPLO0: 19 andpd %xmm2,%xmmO

movsd 24(%ecx),%xmm0 20 addsd %xmmO,%xmm3

andpd %xmm2,%xmmO 21 addl $32, %eax

addsd %xmmO,%xmm3 22 subl $4, %ebp

addl $32, %ecx 23 jg -LOOP.0

subl $4, %eax 2a# Accumulator reduce

jg -LOOP.0 25 addsd Y%xmm4,%xmm3

(a) Unrolled to 4 (b) With UR=4, ul, PF, and AE=2
Figure 5.10: DASUM loop unrolled to 4

implicit load has first been changed back to an explicit load by 1s, and then register
assignment has hoisted the load of the integral value out of the loop.

Figure 5.10(a) shows the dasum loop that has been unrolled to 4, but without
applying useless label elimination. We see that the loop simply repeats Figure 5.9(c)
four times, with a few minor changes. First, UR does not just blindly repeat the
loop control and pointer updates, but instead changes the address references using
constants in the loop, and does these updates only one time. Notice that the loads
from the array X have an offset, as shown on lines 5, 10, 15, and 20 of Figure 5.10(a).
We can then add UR x sizeof() = 4 * 8 = 32 to the X pointer at the bottom of
the loop (line 23). If we updated the pointer between each access, there would be a

potential slowdown, since an integer add would need to be performed before each of

97

the last three loads. In the present formulation, the architecture is free (assuming
register renaming is done by the hardware) to issue all four loads in parallel. Line
24 shows that the update of the loop index is now by 4, rather than 1.

When duplicating the loop body, any labels must be made distinct, and so we
see that the labels of the duplicated blocks (lines 9, 14 and 19) have a standard
prefix added to them. These extra labels are in fact useless in this operation. If
labels aren’t being used, we want to remove them, since most optimizations are more
robust within a basic block than when applied across blocks.

Figure 5.10(b) shows the same loop, but we have applied ul, PF and AE=2.
The useless label elimination verifies that the duplicated labels are not referenced
anywhere in the code, and removes them, resulting in a loop consisting of a single
basic block again. On this architecture, the cache line size is 128 bytes, or 16 double
precision elements, and so one prefetch instruction (line 8) is sufficient.

Our final transformation of interest is accumulator expansion. Notice that the
summation updates (lines 7, 12, 17 and 22) of Figure 5.10(a) all update the same
register, xmm3, but in Figure 5.10(b), we alternate between uses of xmm4 and xmm3
(lines 11, 14, 17 and 20). This means that the extra register must be initialized
before the loop (lines 4 and 5), and added back into the total after the loop (line 25).

5.7.3 DAXPY Example Illustrating WNT and lu

Figure 5.11(a) shows the main daxpy loop in our HIL, while Figure 5.11(b) shows
the assembly generated by FKO when vectorization is applied, and all repeatable
defaults other than last use removal (lu) are applied.

The correspondence of these two loops is easy to see: in both loops, the first
two lines of the loop body load the input values from their respectively arrays, the
third multiplies by the X value by alpha, and the fourth adds the result to the value

obtained from Y. We then store the value back to Y, and increment the array and

98

1.local _LOOP.O 1.local _LOOP.O

1LOOP i = 0, N 2 LOOPLO: 2 LOOPO:

2 LOOP_BODY 3 movapd (%eax), %xmm1 3 movapd (Yeax), % xmml

3 x = X[0]; 4 movapd (%ecx), %xmm3 4 mulpd Yoxmm2, % xmm1

4 y =Y[0]; 5 mulpd %xmm2, % xmm1 5 addpd (Yoecx) , Yoxmm1l

5 X = X % 6 addpd Y%xmm1, % xmm3 6 movl Yoecx,%edx
alpha ; 7 movl Yecx,%edx 7 movntpd Yxmml, (% edx)

6 y +=x; 8 movapd %xmm3, (%edx) 38 addl $16, %ecx

7 Y[0] = y; 9 addl $16, %ecx 9 addl $16, %eax

8 X+=1; 10 addl $16, %eax 10 subl $2, %ebp

o Y 4=1; 11 subl $2, %ebp n o jg -LOOP.0

10 LOOP_END 12 jg _LOOP0

(c) As assembly, with WNT
(a) As HIL (b) As vectorized assembly & lu
Figure 5.11: DAXPY Loop

index counters (since Figure 5.11(b) has been vectorized, it increments by twice as
much as Figure 5.11(a)).

On the P4E, if this loop traverses enough memory to overflow the cache, it is
a performance win to use non-temporal writes (WINT) for the stores of Y, and we
have done so in Figure 5.11(c). Notice that the store of Y (line 8) of Figure 5.11(b)
uses the instruction movapd, while the store of Y (line 7) of Figure 5.11(c) uses its
non-temporal equivalent, movntpd.

The final optimization shown here is last use removal (lu). In our our previous
examples, we have usually been able to make one array load implicit through the use
of ul, but we cannot do so here, because of the usage pattern. It’s not a good idea to
overwrite the register holding alpha (xmm2) since it is loop invariant, and overwriting
it would require us to reload it in the loop. Therefore, since x86 assembly can have
only source operands coming from memory, we are unable to apply ul to line 5 of
Figure 5.11(b).

Instead, we notice that the last use of the register holding the value of X (i)*alpha
(xmm1) is in the commutative instruction addpd on line 6 of Figure 5.11(b). In this
case, we can make the load of Y implicit, by reordering the instruction so that the
Y value comes from memory, and xmml is overwritten (since this was its last use in

the register), as in line 5 of Figure 5.11(c).
99

5.8 Current Iterative Search

The present iterative search varies only the fundamental optimizations. The
repeatable optimizations are therefore always those given in Section 5.6.10, while
our fundamental defaults are outlined in Section 5.4.7. The master search performs
the following sub-searches in this order: WNT Search: FKO is queried for the arrays
that are set in the loop, and non-temporal writes are tried on each in turn, and are
used for that array if they provide a speedup. PF Type Search: Each supported type
of prefetch instruction is tried for “prefetch for read” and “prefetch for write”. Best
values are kept. PF Distance Search: For each prefetch target (returned by FKO
analysis) a linear search is performed using line size increments. We also try not
prefetching the array, and prefetching shorter distances less than the line size. Best
discovered values for each array are retained. Loop Unroll Search: Try all powers of
two between [1:128]. Powers of two are used because they allow for a quick search
and keep data access in a given loop iteration a multiple of the cache line size; a
more complete search would probably yield some improvement, but this value will be
refined further by later stages of the search anyway. Accumulator Expansion Search:
Try performing AE on all valid targets (returned by FKO) in turn. This optimization
depends on unrolling, so we try a few different unrollings for each expansion. Let
the number of accumulators currently being tried for a given variable be N,, and
the present unrolling factor be N,. Our present search tries all N, in the range
2 < N, <6 (six is a safe maximum for the x86, where the ISA has only 8 registers).
For each such N,, we try using the current loop unrolling, N,. When there is a
mismatch between N, and N,, we try additional loop unrollings in order to avoid
cross-iteration pipeline stalls. More precisely, if N, < N,, additionally try the loop
unrolling of N,. If N, > N, and N, mod N, # 0, we try two additional unrollings
of [2+] x N, and [§=] x N,.

Nq Nq

100

CHAPTER 6

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter presents and analyzes results on two of today’s premier x86 imple-
mentations, and is organized in the following way: Section 6.1 outlines the floating
point kernels that are being optimized, Section 6.2 discusses version and timing
methodology information, and Section 6.3 presents the raw results. Section 6.4
then provides the main analysis of these results, while Section 6.5 points out some
interesting (but non-essential) details. Finally, in those few cases where iFKO fails
to provide the fastest implementation, Section 6.6 describes the transformations that
the most successful tuning technique utilized to get the fastest kernel, so it is clear
whether or not the required optimization(s) can be eventually be generalized into

our compilation framework.

6.1 Problem Domain and Surveyed Routines

The general domain of this research is floating point kernels, but this paper
focuses on the Level 1 BLAS. The Level 1 BLAS are vector-vector operations, most
of which can be expressed in a single for-loop. These operations are so simple that
it would seem unlikely that empirical optimization could offer much benefit over
model-based compilation. One of the key contributions of this initial work is that
we show that even on such well-understood and often-studied operations as these,
empirical optimization can improve performance over standard optimizing compilers.

Most Level 1 BLAS have four different variants depending on type and precision

of operands. There are two main types of interest, real and complex numbers, each

101

of which has double and single precision. In this work, we concentrate on single and
double precision real numbers. The Level 1 BLAS all operate on vectors, which can be
contiguous or strided. Again, we focus on the most commonly used (and optimizable)
case first, the contiguous vectors. For each routine, the BLAS API prefixes the
routine name with a type/precision character, ‘s’ meaning single precision real, and
‘d” for double precision real. Since iamax involves returning the index of the absolute
value maximum in the vector, the API puts the precision prefix in this routine as the
second character rather than the first (i.e., isamax or idamax rather than ddot or
sdot). There are quite a few Level 1 BLAS, and so we study only the most commonly
used of these routines, which are summarized in Table 6.1 (Appendix A provides a
complete listing of the actual kernels input to the compilers, both in ANSI C and in
our HIL). The performance of the BLAS are usually reported in MFLOPS (millions
of floating point operations per second), but some of these routines actually do no
floating point computation (eg., copy). Therefore, the FLOPs column gives the value

we use in computing each routine’s MFLOP rate.

Table 6.1: Level 1 BLAS summary

“NAME‘(thumnSummmy ‘FLOPSH
swap for (i=0; i < N; i++) {tmp=y[il; y[i]l = x[il; x[i] = tmp} | NV
scal for (i=0; i < N; i++) y[i] *= alpha; N
copy for (i=0; i < N; i++) y[i] = x[i]; N
axpy for (i=0; i < N; i++) y[i] += alpha * x[i]; 2N
dot for (dot=0.0,i=0; i < N; i++) dot += y[i] * x[i]; 2N
asum for (sum=0.0,i=0; i < N; i++) sum += fabs(x[i]) 2N

for (imax=0, maxval=fabs(x[0]), i=1; i < N; i++) {
if (fabs(x[i]) > maxval)
{ imax = i; maxval = fabs(x[il); }

2N

iamax

102

6.2 Methodology and Version Information

All timings were done with ATLAS version 3.7.8, which we modified to enable
vectorization by Intel’s C compiler, icc. Most of the loops in ATLAS are written as
‘for(i=N; i; i--)’ or ‘for(i=0; i != N; i++)’ and icc will not vectorize either
form, regardless of what is in the loop. Once we experimentally determined that
this loop formulation was preventing icc from vectorizing any of the target loops,
we simply modified the source of the relevant routines to ‘for(i=0; i < N; i++)’,
which icc successfully vectorizes.

Table 6.2: Compiler flag and version information by platform

gce icc
PLATFORM | VER | FLAGS VER | FLAGS
2.8 Ghz P4E || 3.3.2 | -fomit-frame-pointer -03 || 8.0 -xP -03 -mpl -static
(Pentium 4E) -funroll-all-loops
1.6 Ghz Opt 3.3.2 | -fomit-frame-pointer 8.0 -xW -03 -mpl -static
(Opteron) -0 -mfpmath=387 -m64

We report numbers for two very different high-end x86 architectures, the Intel
Pentium 4E and AMD Opteron. Further platform, compiler and flag information is
summarized in Table 6.2 (for the profile build and use phases, the appropriate flags
were suffixed to those shown Table 6.2.) The ATLAS Level 1 BLAS kernel timers
were utilized to generate all performance results. However, we enabled ATLAS’s
assembly-coded walltimer that accesses hardware performance counters in order to
get cycle-accurate results. Since walltime is prone to outside interference, each
timing was repeated six times, and the minimum was taken. All timings were done
sequentially, and run on an unloaded machine. Because these are actual timings
(as opposed to simulations), there is still some fluctuation in performance numbers
despite these precautions, so small gaps of around a percentage point may not

represent true differences.

103

Therefore, because the search is empirical, it is not strictly repeatable. In
general, truly bad choices are rarely made, as they tend to be above clock resolution.
Nonetheless, techniques can be employed to improve the results of any empirical
search. The simplest is to run the search several times, and take the best available
transformation list found for each routine (i.e., utilize the ddot flags from run A,
and the samax flags from run B). A more sophisticated approach takes the result of
previous searches as the starting point of a new search, or reruns certain sub-searches
with updated information from subsequent sub-searches, or tweaks various bound
information in hopes of finding undiscovered outlying transformations. However, we
wanted to compare fully-automatic use of the present systems, and so each list of
results was obtained by simply running two scripts sequentially. The first script times
all fixed methods (gcc,icc,ATLAS,FKO), and the second is the the default empirical
search of iFKO.

6.2.1 Input Routines

Appendix A shows the input routines to all compilers. With the exception of
iamax, the input routines given to FKO were the direct translations of these routines
from ANSI C to our HIL (i.e., high level optimizations were not applied to the source).
Our HIL does not yet support scoped ifs, however, and so iamax was originally coded
for all compilers (in the appropriate language) as shown in Figure A.7(b), which,
absent code positioning transformations, is the most efficient way to implement the
operation. However, this formulation of iamax depressed performance significantly
for icc, while not noticeably improving gcc’s performance, and so we utilized the

implementation shown in Figure A.7(a) for these compilers.

104

6.3 Overview of Results

This section presents our experimental results, and explains the formats in which
we present them. These results show adaptation to the kernel, architecture, and the
context (in this case, out-of-cache, or L2-cache resident). Analysis of these results
are provided in the following sections.

Figures (6.1, 6.2, 6.3, 6.4) report the percentage of the best observed performance
provided by the following methodologies:

e gcc+ref: Performance of ANSI C reference implementation compiled by gcc.
e iccHref: Performance of ANSI C reference implementation compiled by icc.

e icctprof: Performance of ANSI C reference implementation, using icc and
profiling. Profiling was performed with tuning data identical to the data used

in timing.

e ATLAS: The best kernel found by ATLAS’s empirical search, installed with
both icc and gcec. ATLAS empirically searches a series of implementations,
which were laboriously written and hand-tuned using mixtures of assembly
and ANSI C, and contain a multitude of both high and low-level optimizations
(eg., software pipelining, prefetch, unrolling, scheduling, etc.). When ATLAS
has selected a hand-tuned all-assembly kernel (as opposed to the more common
ANSI C routine with some inline assembly for performing prefetch), the routine
name is suffixed by a * (eg., dcopy becomes dcopy*). This is mainly of interest
in that hand-tuning in assembly allows for more complete and lower-level

optimization (eg. SIMD vectorization, exploitation of CISC ISA features, etc.).

e FKO: The performance of the kernel when compiled with FKO using default

transformation parameters (i.e., no empirical search).

105

e iFKO: The performance of the kernel when iterative compilation is used to

tune FKO’s transformation parameters.

For each kernel, we find the mechanism that gave the best kernel performance,
and all other results are divided by that number (eg. the method that resulted in
the fastest kernel will be at 100%). This allows for the relative benefit of the various
tuning mechanisms to be evaluated. This comparison is done for each studied kernel,
and we add two summary columns. The second-to-last column (AVG) gives the
average over all studied routines, and the last column (VAVG) gives the average
for the operations where SIMD vectorization was successfully supplied; in practice,
this means the average of all routines excluding iamax, which neither icc nor iFKO
automatically vectorize.

Since all results discussed so far are relative to the best tuning method, it is
easy to lose track of the actual performance of the individual operations. Therefore,
Figure 6.5 shows the speed of these operations in MFLOPS, computed as discussed
in Section 6.1. Note MFLOPS is a measure of speed, so larger numbers indicate
better performance. All timings in this figure deal only with iFKO (on average, the
best optimizing technique).

Figure 6.6 shows the speedup of the in-L.2 cache timings over the out-of-cache
performance. One of the most interesting things about this graph is that it provides
a very good measure of how bus-bound an operation is, even after prefetch is applied:
If the kernel tuned for in-cache usage is only moderately faster than the kernel when
tuned in out-of-cache timing, the main performance bottleneck is clearly not memory.
The iamax operation, whose performance is limited mainly by branches, is a good
example of this, in that the in-cache numbers show no improvement at all. On the
other extreme, bus-bound operations such as swap or axpy show more than five-fold

speedups for in-L2 timings. One oddity in these numbers is that iamax’s Pentium 4

106

= icc+ref R icc+prof [l ATLAS [l] FKO B iFKO

100% N N

- n N q
B 90% \ 7 7 7 '
< 4 0
‘aE‘J 80% | . 7
v1

(@)] 70°/o T
C 7]
= 1
S 60% 7
B 50% 1
(0]
9 40%
O P
2 30%
<D Pl
O 20%
[0
O 0%

00/0 | = ! dl i LA Vi Y {4 1A {') rl 1A [A 1A 4. I

sswap dswap scopy dcopy* sasum*dasum* saxpy daxpy sdot ddot sscal dscal isamaxidamax* AVG VAVG

Figure 6.1: Relative speedups of various tuning methods on 2.8Ghz P4E,
N=80000, out-of-cache

B gec+ref 7 icc+ref N icc+prof [l ATLAS Bl FKO [liFKO
100% .

90% —
80%
70%

60%

50%

40%

30%
20%

Percent of best tuning method

10%

1A [Yl 4.

0% = L e
sswap dswap scopy dcopy* sasum*dasum* saxpy daxpy sdot ddot sscal dscal isamaxfidamax* AVG VAVG

Figure 6.2: Relative speedups of various tuning methods on 1.6Ghz
Opteron, N=80000, out-of-cache

107

B gectref 1 icctret N icc+prof [MATLAS B FKO B irko
0% e
'§ A% o 7 7 } N
g 80% 7 y 7
(o)) 703/0* = 7
£
5 0%
% 50%-
3
§— 403/0*
o] i
£ 0%
8
oy 20%-
o
10%-|
Oﬁ/o,, 1] A [fi 4 4 B 4 4 A %

sswep dswap scopy doopy” sasun'dasunt” saxpy daxpy sdot ddot sscal dscal isamexidamext AVG VAVG

Figure 6.3: Relative speedups of various tuning methods on 2.8Ghz P4E,
N=1024, in-L2-cache

& goc+ref [icc+ref icc+prof [ATLAS [FKO B iFKO

100%
90% —
80% — 7
70% 7
60% — 7 [y 7
50% — 7 7
40% — 7 9
30% —

20% —

Percent of best tuning method

10%

00/0 | EHA A rl A 4 % A 4 Vi 1A 4 i I%: 4 LA %

sswap dswap scopy dcopy*sasum'dasum*saxpy daxpy sdot ddot sscal dscalisamaxidamax* AVG VAVG

Figure 6.4: Relative speedups of various tuning methods on 1.6Ghz
Opteron, N=1024, in-L2-cache

108

in-L2 performance is actually slightly slower than out-of-cache. This is not a timing

error, and is discussed in Section 6.5.

MFLOPS

Speedup over out-of-cache timings

3000

2500

2000

1500

aQupRrUNMDLULLULRALGIO WUV

@ sswap [dswap scopy dcopy [sasum [§§ dasum saxpy
daxpy [sdot [§ddot sscal dscal [isamax [idamax

N

DN

LR B

<N ’
S N\ /N NNVN
1.6Ghz Opteron

2.8Ghz Pentium 4E
(a) Out of cache

DN
DN

MFLOPS

@ sswap [N dswap scopy dcopy [sasum [§ dasum
saxpy daxpy [sdot [N ddot sscal dscal
[isamax [idamax

|
AR

A ZN\
P4E, in-cache

(b) P4E, in Level 2 cache

2\

Figure 6.5: BLAS performance in MFLOPS

, |

il 0N n n

il BN | |

il 0N n n

il BN | |

il BN | |

il 0N n n

il BN | |

il BN | |

]]]

Q&%EEE%%UJ—’HH?&%

8 8 & 0 u wu o & 0 0 ®8 ®© £ £

2 2 0 U @@ © X X T T U U © ©

w w U TV v TV © © n T w un n TV

w T w w T w ° A A
(a) PAE

Speedup over out-of-cache timings

isamax
idamax

sswap
dswap
scopy
saxpy
daxpy

sdot

ddot
sscal
dscal

(b) Opteron

Figure 6.6: Speedup of In-cache over Out-of-cache

Tables (6.3, 6.4, 6.5, 6.6) show the transformational parameter values found by

the empirical search for each program/context. Section 5.4 defines the abbreviations

used in the headings, and Section 5.8 provides the default values used by FKO.

The prefetch parameters varied include instruction type (INS) and distance in bytes

(DST). For each type of prefetch instruction, the search chooses between those

available on the machine, and they are reported using the following abbreviations:

e none : better performance was obtained without prefetching that operand,

e tX: SSE temporal prefetch to cache of level X+1 (eg., prefetcht0, prefetchti,

etc.),

109

e nta: SSE non-temporal prefetch to lowest level of supported cache (prefetchnta),
e w: 3DNow! prefetch for write (prefetchw).

Figure 6.7 shows the speedup obtained by empirically tuning the various opti-
mization parameters, and Figure 6.8 shows the same values but zoomed so that only
the first 150% of speedup is displayed (this is necessary because the large Opteron
speedups make it difficult to see full details for other architectures). Therefore, these
figures show the speedup of code tuned by iFKO over that produced by FKO, not
over code in which a given transformation has not been applied. For instance, FKO
defaults to unrolling so that one iteration of the loop accesses one cache line of data.
In Figure 6.7 we see that the empirical tuning of UR often provides modest or no
benefit. However, this does not imply that unrolling is unimportant in these cases;
instead it says that FKO’s default value is good.

For each BLAS kernel, we show a bar for each architecture (pde/opt) and context
(ic: in-L2 cache, oc: out of cache). Each bar shows the total speedup over FKO,
and how much tuning each transformation parameter contributed to that speedup.
For instance, for the out-of-cache P4E tuning of sasum shown in 6.8, empirically
tuning the [non-temporal writes, prefetch instruction, prefetch distance, unrolling,
accumulator expansion], provided speedups of [0, 1, 46, 0, 3]%, respectively, which
together resulted in an iFKO-tuned kernel that ran 1.5 times faster than the same
kernel when compiled by FKO. As shown by these graphs, all empirically tuned

parameters contributed to speeding up at least some operations/contexts.

6.4 General Analysis

In comparing the tuning mechanisms (Figures 6.1, 6.2, 6.3 and 6.4), iFKO
provides the best performance on average for all studied architectures and contexts,

better even than the hand-tuned kernels found by ATLAS’s own empirical search.

110

Table 6.3: Transformation pa- Table 6.4: Transformation pa-

rameters for 2.8Ghz Pentium 4E, rameters for 1.6Ghz Opteron,
N=80000, all caches flushed N=80000, all caches flushed
SV: PF X PF Y |UR: SV: PF X PF Y |UR:
BLAS |WNT|INS:DST|INS:DST| AC BLAS |WNT|INS:DST|INS:DST| AC
sswap | Y:Y t0:56 £0:40| 4:0 sswap | Y:N| w:1792 w:448| 2:0
dswap | Y:Y| t0:128 t0:64| 2:0 dswap | Y:N| nta:960| nta:704| 1:0
scopy | Y:Y| mnone:0| mnone:0| 2:0 scopy | Y:Y| none:0| mnone:0| 1:0
dcopy | Y:Y| none:0| none:0| 1:0 dcopy | Y:Y| none:0| none:0| 1:0
sasum | Y:N|nta:1024 n/a:0| 5:5 sasum | Y:N| t0:1664 n/a:0| 4:4
dasum | Y:N| t0:1024 n/a:0| 5:5 dasum | Y:N|nta:1920 n/a:0| 4:4
saxpy | Y:Y|nta:1408| nta:32| 2:0 saxpy | Y:N| t0:1536| t0:448| 4:0
daxpy | Y:Y| t0:768 t0:40| 2:0 daxpy | Y:N|nta:1472| t0:832| 4:0
sdot Y:N|nta:1024| nta:384| 3:3 sdot Y:N|nta:1600|nta:1664| 3:3
ddot Y:N| nta:768| nta:384| 5:5 ddot Y:N| t0:1728| t0:704| 4:4
sscal | Y:Y|nta:1792 n/a:0| 1:0 sscal | Y:N| nta:640 n/a:0| 1:0
dscal | Y:Y| none:0 n/a:0| 2:0 dscal | Y:N|nta:1344 n/a:0| 1:0
isamax| N:N| nta:640 n/a:0| 8:0 isamax| N:N| nta:768 n/a:0|16:0
idamax| N:N| t0:1664 n/a:0| 8:0 idamax| N:N|nta:1920 n/a:0|32:0
Table 6.5: Transformation param- Table 6.6: Transformation pa-
eters for 2.8Ghz P4E, N=1024, rameters for 1.6Ghz Opteron,
only L1 cache flushed N=1024, only L1 cache flushed
SV: PF X PF Y|UR: SV: PF X PF Y|UR:
BLAS |WNT|INS:DST|INS:DST| AC BLAS |WNT|INS:DST|INS:DST| AC
sswap | Y:N| nta:512| nta:32/16:0 sswap | Y:N w:256 w:128|32:0
dswap | Y:N| t0:384 £0:40|32:0 dswap | Y:N w:128 w:128|32:0
scopy | Y:N| nta:512|nta:1408| 2:0 scopy | Y:N t0:64| none:0| 4:0
dcopy | Y:N|nta:1152| t0:1152| 2:0 dcopy | Y:N| nta:192| none:0{64:0
sasum | Y:N| t0:1408 n/a:0|16:2 sasum | Y:N| nta:64 n/a:0|64:3
dasum | Y:N|nta:1792 n/a:0|16:2 dasum | Y:N| t0:256 n/a:0| 4:4
saxpy | Y:N| t0:768| t0:1152] 8:0 saxpy | Y:N| nta:128 w:128| 4:0
daxpy | Y:N| t0:768| t0:384| 8:0 daxpy | Y:N| nta:32 w:128| 4:0
sdot Y:N| nta:896|nta:1664(64:4 sdot Y:N| nta:192| nta:320({16:4
ddot Y:N|nta:1280|nta:1792(32:4 ddot Y:N| nta:256| nta:448| 6:3
sscal | Y:N| nta:256 n/a:0| 2:0 sscal | Y:N w:256 n/a:0|32:0
dscal | Y:N|nta:1536 n/a:0| 2:0 dscal | Y:N w:128 n/a:0| 4:0
isamax| N:N| t0:1152 n/a:0|32:0 isamax| N:N t0:32 n/a:0|16:0
idamax| N:N| nta:256 n/a:0]32:0 idamax| N:N| t0:768 n/a:0]32:0

111

] WNT NerIns [erDST [JUR [B

300%
20% 7

~m

260%

240%

220%

200%

180% —

160% 7 —

]

]

S
S

~
~a
~m

140% 3 1 3
120%

100%

T T T
0
]
i
L b 0
0 0 o}
asum saxpy daxpy sdot ddot sscal

orT—opd =Y

2 7
0@] 0 To
'R » L]
&0 0 ¢ 0

s
\\\I\‘
TS
==
TTTT
CTTT
T
T
;;i
=
=]
~
—

- =]
or—opd [
or—ado =3
so—opd [IITH

—
spd [T
=
]
<
T
-
T ‘\4I
=
TTe jssﬁﬁm\

co—ado ~ k=3

so-a3do ==~
orT—opd (IEm

or—opd NS
ost—ado
sco—spd
so—a3do =3
ort—opd (1
oT—ado K
so-spd
Do—3do
or—spd
osr—ado
so-—spd
Do—3do
ort—opd
or—ado
so—spd
so-ado
ost—ado
co—apd
so—ado
or—opd
sco—opd
Do—3do
or—opd
or—ado K3
so-spd
or—opd
osr—ado
Do—-3do
or—ado
so—spd
Do—-3do

) -0
aQ 0

sswap dswap scopy dcopy sasum

o, oT—=opd

p P
0 nn
dscal isamax idamax AVG

Figure 6.7: Percent speedup by transform due to empirical search

Elu MeF IS [JPFDST [JWR g

150%

1s% H i i —
140% H — — i —
135% H H H —

130% I H H i i

125%
120% H H —

=n |

115%

110% -H)
105% 1 - 7
[

O

sswap dswap scopy dcopy sasum dasum saxpy daxpy sdot ddot sscal dscal isamax idamax AVG

b

i L

=i

8 -
=i

18 I
18 I
-

NN

Figure 6.8: Percent speedup by transform due to empirical search
(zoomed)

112

However, there are several individual cases where iFKO fails to provide the best
performance. We analyze each such case in Section 6.6.

In examining the empirically tuned transformation parameter values (Tables 6.3,
6.4, 6.5 and 6.6) the most important observation is how variable these parameters
are: they vary strongly depending on operation, architecture, and context. They vary
weakly (mainly in prefetch distance) on precision as well. Without vectorization,
other parameters would vary more strongly with precision (in vectorized code double
and single precision operands are of the same size in bytes, and performing a vector
computation on that data takes the same number of cycles, all of which is not true for
scalar code of differing precisions). This suggests that any model capable of capturing
this complexity is going to have to be very sensitive indeed. Note that while empirical
results such as these can be used to refine our understanding of relatively opaque
interactions (eg., competing compiler and hardware transformations), which in turn
allows for building better theoretical models, one of the great strengths of empirical
tuning is that full understanding of why a given series of transformations yielded
good speedup is not required in order to achieve that speedup.

Empirical methods can be invaluable in adapting to unexpected architectural
changes, particularly when the compiler has not yet been (or will never be) fully
tuned to the new platform (eg. Intel compiler on AMD platform). Examining the
results for the Opteron demonstrates the strength of empirical tuning over even
aggressive profiling: notice that for both swap and axpy, icc+prof is many times
slower than than icc+refin Figure 6.2. To understand this behavior, we first observe
that non-temporal writes (WNT) can improve performance anytime the operand
doesn’t need to be retained in the cache on the P4E. On the AMD Opteron, however,
non-temporal writes result in significant overhead unless the operand is write only.
Icc’s profiling detects that the loop is long enough for cache retention not to be
an issue, and blindly applies WIN'T, whereas the empirical tuning tries it, sees the

slowdown, and therefore does not use it.

113

In addition to adapting to the architecture, empirical methods can be utilized
to tune a kernel to the particular context in which it is being used. Figures 6.3
and 6.4 and Tables 6.5 and 6.6 show such an example, where the adaptation
is to having the operands in-L2-cache. This changes the optimization set fairly
widely, including making prefetch much less important, and WNT a bad idea.
Prefetch is still useful in keeping data in-cache in the face of conflicts, and so we
see it provides greater benefit for the “noisier” (bus-wise) routines such as swap.
In-cache, computational optimizations become much more important. One such is
transformation is accumulator expansion (AE), which on the Pentium 4E accounts
for an impressive 43% of sasum speedup in-cache, while only improving performance
by 3% for out-of-cache.

The effect of context on which optimizations are most critical can be most easily
seen by examining the AVG results of Figures 6.7 and 6.8. For out-of-cache, the most
important adaptation is clearly prefetch distance, which is only modestly important
for in-cache timings, where accumulator expansion (and for the Opteron, prefetch
instruction type as well) becomes the more critical optimization.

An interesting trend to notice in surveying these results in their entirety is that
the more bus-bound an operation is, the less prefetch improves performance. The
reason for this seeming paradox is in how prefetch works: prefetch is a latency-
hiding technique that allows data to be fetched for later use while doing unrelated
computation. If the bus is always busy serving computation requests, there is no time
when the prefetch can be scheduled that doesn’t interfere with an active read or write,
and most architectures simply ignore them in this case. This is why operations such
as swap or axpy get relatively modest benefit in out-of-cache timings. Since prefetch
optimization is one of our key strengths for this context, it is easy to see why iFKO
does much better on the Opteron than on the P4E (when compared against all tuning
mechanisms, including icc) for this context: the Opteron, having a slower chip and

faster memory access, is less bus bound, and so there is more room for empirical

114

improvement using this key optimization. For the Opteron’s in-cache performance,
iIFKO gets a similar boost in performance by varying the key parameters for this
context, prefetch instruction type and accumulator expansion.

Figures 6.7 and 6.8 illustrate the importance of empirical tuning. While FKO has
not undergone the intensive hand-tuning of the driving models for each particular
architecture that occurs in traditional compiler porting, we tried to pick default
values that make sense. Nonetheless, empirical tuning provided an almost factor
of three speedup in the best case. Note that, again, operation, architecture, and
context all strongly influence which transformation is most important. As we add
more transformations that compete for the same resources, the value of empirical
tuning should continue to climb. For instance, software pipelining, accumulator
expansion, and register assignment all compete for registers, and thus striking the
optimal balance will require information about their relative importance to the given
operation, architecture and context. Empirical techniques appear to us to be the

only tractable way to address these concerns.

6.5 Interesting Asides

From examining the generated assembly, it appears that neither gcc nor icc
chose to issue software-directed prefetch. This makes some sense, in that prefetch
(particularly distance) is difficult to model, while these vector access patterns are
easily detected by the hardware, which allows for the hardware prefetch unit to
examine the fetch pattern during runtime in order to optimize. However, iFKO
would have chosen ‘no prefetch’ if the hardware could do a better job, and as the
timings demonstrate, the hardware prefetch is clearly no match for empirically-tuned
software prefetch.

Gec’s relative performance drop for in-cache tuning may at first seem surprising,
but is easily understood given that gcc’s main weakness compared to the other

compilers is that it cannot auto-vectorize the loops. In-cache, computational

115

optimizations are all-important, and vectorization is the computational optimization
which generally provides the greatest speedup. Obviously, gec’s relatively good
performance on out-of-cache P4E is due to the flip-side of this: the P4E is more
bus-bound than the Opteron, and therefore vectorization is less important for
out-of-cache operation.

Figure 6.6 presents a puzzle for iamax on the P4E: the iFKO-tuned kernels
are actually slightly slower (measured in MFLOPS) when ran and tuned for in-L2
operands than for when the kernels are run with cold caches! This appears to be a
function of the vector length (remember that in-cache numbers use N = 1024, and
out-of-cache numbers use N = 80000): as the length is increased, performance goes
up, until the asymptotic performance is reached. Note that after tuned prefetch is
added, this routine is not bus bound. Therefore, there is little to no benefit from
having the operands in cache.

Having a long vector length, however, conveys several advantages. One obvious
one is amortizing loop startup and shutdown. This should be as true for the Opteron
as for the P4E, however, and the Opteron did not run slower for the in-cache timings
(it may appear so for single precision, but these numbers are within clock resolution
of each other). The P4E also has a trace instruction cache, which means that the
x86-decoding cost is also amortized over the loop length; since the in-cache loop is
heavily unrolled, this may be a small factor, but it seems unlikely to make such a
noticeable difference. Note that if unrolling was a large burden, it would not have
resulted in speedup, and the empirical search would not have retained it. Therefore,
the bulk of the difference is probably due to the way iamax operates on normalized
vectors. As the vector length grows, the number of branches that are actually taken
(in order to change the maximum) shrinks in proportion to the total number of
branches that are considered. Since each of these taken max branches results in a

mispredict, and the P4 has 20 stage pipeline, getting the percentage of mispredicts

116

Table 6.7: Loss Case Summary

(a) For Out-of-cache Timings (b) For In-L2 Timings
AR BEST MFLOP AR BEST MFLOP
CH|BLAS |[METH iFKO|BEST WHY CH|BLAS |[METH iFKO|BEST WHY
pde|dcopy |atl4+asm| 209| 260|tko-ns pde|sswap |icc+ref | 841 883|srch-clk
pde|saxpy |icc+prof| 580| 585|srch-clk pde|dswap |icc+ref | 426 442|srch-clk
pde|daxpy |icc+prof| 290 293|srch-clk pde|dscal |icc+pref| 1007| 1025|srch-clk
pde|dscal |atl4+gee 209 219|srch-asu pde|isamax |atl+asm| 995| 2601 |fko-an
pde|isamax |atl+asm| 1105| 1679|fko-an pde|idamax|atl4+asm| 989| 1164|fko-an
opt |scopy |icc+prof| 293 310(clk
opt |daxpy |atl4+gcc 234| 251|srch-asu
opt |isamax |atl+asm| 990| 1494 |fko-an
opt |idamax|atl+asm| 952| 965|fko-an

down is critical on this architecture, and thus the longer the loop, the more efficient

the algorithm.

6.6 Learning from Defeat

In this section we examine the cases where iIFKO failed to provide the most
optimal kernel implementation. Tables 6.7(a) and 6.7(b) summarize the cases (for
out-of-cache and in-L2 cache, respectively) where the previously reported timings
indicate that FKO did not provide the most well-tuned kernel. In these tables
we first supply the architecture where the loss occurred (p4e/opt) and the tuning
methodology that provided the best observed performance. We then report the
performance of the two kernels in question (best tuning method and iFKO) in
MFLOPS, followed by the appropriate abbreviation describing the reason for the
loss (defined below). Many of the cases turn out to be the result of search resolution
errors, and in those cases Table 6.8 shows the new parameter values and performance
results (this table is described in greater detail below).

There are several possible causes for iFKO to lose, and we need to distinguish
between them in order to draw proper conclusions. The categories of importance

(and their abbreviations used in Table 6.7) are:

117

Table 6.8: Better Transformation Parameters Found by Repeated
Searches

SV: PF X PF Y | UR: BEST:
ARCH | CACHE | BLAS | wNT | INS:DST | INS:DST | Ac | MFLOP
P4E ocC dcopy Y:Y none:0 none:0 | 2:0 N:205
P4E ocC saxpy Y'Y nta:384 nta:512 | 2:0 Y:586
P4E ocC daxpy Y:Y | nta:384 | nta:b12 | 2:0 Y:293
P4E 0] dscal Y:Y nta:896 N/A:0 | 1.0 N:210
P4E IC sswap Y:N t0:128 £0:1408 | 4:0 T:899
P4E I1C dswap Y:N nta:96 | nta:1280 | 1:0 T:443
P4E IC dscal | Y:N | t0:1536 N/A:0 | 1:0 | Y:1060

e clk: Two timings are actually within clock resolution. Determined by timing
each kernel five times, if one kernel wins at least four of the head-to-head
timings, it is declared the winner, otherwise they are declared to be within

clock resolution.

e srch-clk: Clock resolution has caused the search reported in this paper to
choose a less-optimal value for one or more of the empirical tuned parameters
(for example, assume that UR=16 is optimal, but during the timing of this
case unrelated load caused the timing to be inflated, and so UR=8 was selected
instead). In order to find this kind of error, we run the search for each disputed
kernel three additional times, and see if we get better results. If we do, we
employ the clock resolution test to determine if it is better than the other two
kernels in question (first, the previous iFKO kernel, and second, the so-far best
kernel). When a rerunning of the search provides an iIFKO-tuned kernel that is
genuinely better than that previously reported, we summarize the new results
in Table 6.8. This table of search results also includes several new columns
from the previously reported tables (Tables 6.3, 6.4, 6.5 and 6.6). First, we
specify the architecture (p4e/opt) and cache state (OC: all caches flushed, IC:
only L1 cache flushed). The last column of the table is also new, and reports
whether the new kernel was actually better than any other tuned kernel (Y),

or if it ran within clock resolution of the best of the other tuned kernels (T),

118

or if, even after the search improvement, it is still more than clock resolution
slower than the best tuned mechanism (N). To make this determination, we
perform the clock resolution test comparing the new iFKO kernel against the

previous best case.

e srch-as: Our empirical search has an error in it’s assumptions. For instance,
perhaps additional parameters need to be empirically tuned, or a greater range
of values need to be searched for a parameter that is already empirically tuned.
It is difficult to automate the detection of this loss category, but monitoring
full tuning output for general trends and examining the generated assemblies

by eye can help.
e Lastly, FKO can be inadequate in some way:

1. fko-ns: FKO does not support a needed transformations. Can be
diagnosed by examining the generated assembly, and seeing what trans-
formation(s) the best-tuned kernel performed that FKO does not. In this
case, we need to identify if the transformation can be added to FKO, and

whether it will be worthwhile to do so.

2. fko-an: The most well-tuned kernel used a transformation that FKO
can apply, but that it failed to apply to the kernel in question because
FKO'’s analysis was unable to determine either how to do so, or if such a
transformation was legal. In this case, we would like to understand if the
analysis can be expanded, and/or if the problem may be addressed using

markup.

3. fko-ma: FKO has misapplied known optimization(s). I.e., another
method has used the same transformations as FKO, but has applied them

more optimally or synergistically. In this case, we will want to examine if

119

this differing application is better in general, and if so, if FKO can use it

as well.

One of the main purposes in categorizing these cases is determining which
losses represent opportunities for learning, and thus deserve greater examination.
Therefore, we do not further analyze the cases where Table 6.8 shows iFKO actually
producing winning or tying results. All other loss cases are examined in detail in their
own subsection. There are no in-L2 cache cases where iFKO cannot produce the most
well-tuned implementation, other than iamax, so each of the following sections deals
mainly with out-of-cache results. Section 6.6.1 describes the problems leading to
the iamax results for all contexts and architectures, Section 6.6.2 investigates dcopy
on the P4E and Section 6.6.3 details the issues for dscal on the same architecture.

Finally, Section 6.6.4 investigate the daxpy loss on the Opteron.
6.6.1 iamax for All Architectures

The routine where iFKO is least effective in general is iamax, and the main
reason for this is easily understood. This operation has a dependence distance of
one, and we are currently unable to automatically vectorize it. It can, however,
be legally vectorized, and the hand-tuned assembly code does so, which allows it
to handily outperform iFKO’s kernel in many instances. Whether or not we can
discover how to auto-vectorize this loop through additional analysis, and how much
if any user markup we would need to do so, is an area of research that we have not
yet undertaken. Since it is not immediately obvious how to do the required analysis,
we are unlikely to spend time on this problem in the immediate future, as this is the
only kernel in all of the BLAS that would benefit from this fix.

The reason for the magnitude of the gap between iFKO and the hand-tuned
performance is inherent in the way vectorization affects this operation. Normally,

vectorization is primarily a computational optimization, which is usually a fairly

120

low-order term in these Level 1 operations as they are more typically constrained
by the bus speed. However, iamax has only a single input vector, and no output
vectors, and so it is less bus-bound than most. Further, unlike the other surveyed
operations, iamax involves a branch. When this branch must be taken due to finding
a new maximum, it will usually be mispredicted (as the most common case is when
the new value is not larger than the current maximum), which will cause a pipeline
flush. As the P4E has a 20 stage pipeline, this is a significant cost.

When iamax is vectorized, not only does it reduce the computation by something
close to the vector length (as in most operations), but it also decreases the number of
branches executed by a similar amount. As would be expected (due to its increased
vector length), single precision shows a much larger gap between vectorized and

unvectorized than double precision.
6.6.2 Pentium 4E dcopy

On the P4E, the iFKO-tuned kernel is significantly slower than the hand-tuned
assembly. The iFKO-tuned kernel gets 205 MFLOPS, whereas the hand-tuned
achieves 260. In order to understand why, we examine the implementations in
question. Figure 6.9 shows the listing of the hand-tuned kernel from ATLAS, while
Figure 6.10(a) shows the inner loop of iFKO’s tuned kernel.

The inner loop of the hand-tuned kernel is comprised of lines 44-64 of Figure 6.9.
Contrasting this with Figure 6.10(a) might lead to the idea that it is either the
greater unrolling, or the differing scheduling that is providing the speedup. However,
Figure 6.10(b) actually runs runs slightly slower (198 MFLOPS) than Figure 6.10(a).
Note that the loops are still different, in that Figure 6.10(b) uses SSE rather than
Figure 6.9’s MMX, but their effective unrolling and scheduling are now the same.

The real reason for the hand-tuned kernel’s substantial win is that it employs an
optimization that FKO does not presently support, called block fetch [47]. The basic

idea is to perform a given computation (in this case, a copy) in two phases. In the

121

1#define nblk Y%ebx

2#define N Yoeax
s#define X Y%esi
aftdefine Y Yecx
s#define stX Yoedx

e#define stXF Yedi
r#define NB 512
s#define SH 9

9 .global ATL.UCOPY

10ATL_UCOPY:

11 subl $16, %esp

12 movl %ebx, (%esp)
13 movl %esi, 4(%esp)
14 movl %edi, 8(%esp)
15 movl %ebp, 12(%esp)
16 movl 20(%esp) , N
17 movl 24(%esp) , X
18 movl 32(%esp) , Y
19 movl N, stXF

20 shl $3, stXF

21 addl X, stXF

24

234 Find how many NB-size chunks
we have got, bail if 0

2aH

25 movl N, nblk
26 shr $SH, nblk
27 jz LOOP1

28

20 LOOPB:

30FF

317 Burst load X

327

33 movl X, stX

34 addl $NBx8, stX

35 .align 16

36 BURST:

37 movl —64(stX), %ebp
38 movl —128(stX), %ebp
39 subl $128, stX

40 cmp X, stX

41 jne BURST

42 addl $NBx8, stX

43 .align 16

14 LOOPS:

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

movl (X), %mm0
movl 8(X), Ymml

movl 16(X), %mm2
movl 24(X), %mm3
movl 32(X), %mmd
movl 40(X) , %mmb
movl 48(X) , Y%mm6
movl 56(X), %mm?7

movntq %mm0, (Y)
movntq Ymml, 8(Y)
movntq Ymm2, 16 (
movntq %mm3, 24(
movntq Y%mm4, 32(
movntq Yammb, 40 (
movntq Ymm6, 48 (
movntq Ymm7, 56 (
addl $64, Y

addl $64, X

63 cmp X, stX

64 jne LOOPS

65 FF

e6# Keep going until out of
blocks

67 FF

68 subl $1, nblk

69 jnz LOOPB

70

71 cmp X, stXF

72 je DONE

73 LOOP1:

74 movl (X), %mm0

75 movntq %mm0, (Y)

76 addl $8, Y

77 addl $8, X

78 cmp X, stXF

79 jne LOOP1

s0 DONE:

81 sfence

82 emms

83
84
85
86
87
88

movl (%oesp), %oebx
movl 4(%esp), Nesi

movl 8(%esp), Nedi
movl 12(%esp), %ebp
addl $16, %esp

ret

Figure 6.9: Hand-tuned dcopy Assembly Routine for P4E

122

9 _LOOPO:

10 movapd (%ecx), %xmmO
1 movapd 16(%ecx), %xmmi
12 movapd 32(%ecx), %xmm2
1 _.LOOP.0: 13 movapd 48(%ecx), %xmm3
2 movapd (%ecx), %xmmO 14 movntpd %xmm0, (% eax)
3 movntpd %xmmO, (% eax) 15 movntpd %xmml, 16(%eax)
1 movapd 16(%ecx), %xmmO 16 movntpd %xmm2, 32(%eax)
5 movntpd %xmmO, 16(%eax) 17 movntpd %xmm3, 48(%eax)
6 addl $32, %ecx 18 addl $64, %ecx
7 addl $32, %eax 19 addl $64, %eax
8 subl $4, %ebp 20 subl $8, %ebp
9 jg -LOOP.O 21 jg -LOOPO
(a) As generated (b) Hand-scheduled

Figure 6.10: Inner loop of iFKO-tuned P4E dcopy

first phase, the operands are burst loaded into cache via a series of cache line length
separated loads (lines 33-41 of Figure 6.9). In the second phase (lines 44-64) the
computation is performed on the data that was loaded in phase 1.

In order to bring the data into cache, the problem must be blocked or partitioned,
and in this case the block factor was 512 double precision elements. The dual phases
result in the two inner loops, and the blocking around these phases results in the
outer loop around them (this outer loop starts on line 29 and ends on line 69).

Block fetch can be particularly effective for bus-bound operations, where prefetch
cannot help (or indeed, for architectures not possessing prefetch). In normal code,
loads are intermixed with computation, and there are multiple loads per cache line.
This can result in poor bus utilization even when the operation is bus bound. Block
fetch drives the bus at its maximal rate by issuing only one fetch per cacheline,
with no delays between requests. As an additional optimization, this burst loop
(lines 36-41) runs backwards (i.e., starts at the end of array and iterates to the
beginning), but the fetches unrolled inside it run forward. This non-linear fetch
pattern is designed to confuse the hardware prefetch unit, so that it will not issue
any hardware prefetch instructions (which would represent useless overheads on most

architectures).

123

This optimization can be added safely to a general compilation framework, and
since it is one of the few techniques that can help truly bus-bound operations, and
because it can be applied to any architecture (no special hardware/ISA support

required), we plan to add it to to FKO.
6.6.3 Pentium 4E dscal

The best kernel for this routine is actually a hand-written ANSI C implementation
(using inline assembly for prefetch) compiled by gcec. The performance of this
kernel was reported at 219 MFLOPS, but subsequent timings showed performance
more in the range of 212. However, it does always beat the iFKO-tuned kernel,
which gets performance of around 209. Our search always applies vectorization
when legal. In this case, slightly better results are obtained when vectorization
is not applied. In fact, the iFKO-tuned kernel moves slightly ahead if we use an
unvectorized kernel, with unrolling of 8, and prefetch distance of 384 bytes. This
boosted FKO performance to an average of 213 MFLOPS, enough to win four out
of five head-to-head comparisons with the hand-tuned code.

Therefore, we are left with the question of why the scalar code would be faster
than the vectorized loop. It is difficult to provide a definitive answer, but we can
certainly hazard an educated guess. Cache line elements are filled in-order, and the
scalar code needs to fill less of the cache line in order to start the computation, which
could result in slightly fewer stalls on the first load from a given cache line. Since this
computation is completely bus-bound, vectorization’s greater computational peak
is of no benefit, and thus the scalar version is very slightly faster. This would
explain why the effect is so small, as well as why we don’t see it with less bus-bound
operations.

This minor improvement does not seem to mandate additional empirical tuning,
particularly as additional optimizations may render it moot (eg., perhaps with block

fetch or software pipelining of the loads and stores the vector code’s computational

124

advantage will provide a speedup over scalar), unless it is shown to be true for more

architectures and operations.
6.6.4 Opteron daxpy

The search chooses the prefetch instruction type to use before the distance is
tuned. There is obviously a dependence here, and our assumption was that the
type of instruction used was more fundamental, and thus it made sense to make
this decision first. However, in this case, while using prefetchw for the prefetch
of Y at the default distance results in slower execution than using prefetch0, just
the opposite is true once the distance has been tuned. Changing the Y prefetch
instruction to prefetchw in the parameters given in Table 6.4 boosts performance
from 234 MFLOP to 257, which would make iFKO the best tuning methodology.
This points out an error in our assumptions for the search, and we will need to
perform additional studies to determine the correct adjustments to make.

In the worst case, we must do a true 2-D search on these parameters: perform
the distance subsearch for each supported instruction. In order to see how best to
address this dependence, this should probably be implemented and tested across a
range of architectures so that general trends can be determined. Only if no unifying
trends can be spotted will we leave this as iFKO’s default methodology, however,
since the distance search is already our longest-running sub-search.

There are various trends that could lend themselves to quicker searches. For
instance, if the distance is fairly independent of instruction type across architectures,
it makes sense to simply reverse the decision order (i.e., search for distance first, and
then instruction type). We performed this reversal, and it resulted in no change
for in-cache or P4E performance, but boosted Opteron out-of-cache performance
on several operations, without losing performance anywhere. So, with our present

sample set, this appears be a superior ordering. Doing the search in this order sped

125

up the following routines out-of-cache on the Opteron, by the specified percentage:
sswap : 9%, saxpy : 15%, daxpy 13%, and sdot : 4%.

There are several other options that may work better in general. For instance, we
could retain the present ordering, but after the prefetch distance is tuned, the prefetch
instruction tuning search is performed again, and if this results in a change, the new
instruction type is substituted. If and only if a substitution is required, we can then
rerun the distance search, if the trends show this is necessary. Perhaps the best
approach would be to perform a crude distance search first (for instance, searching
only powers of two), then tune the instruction type, followed by a more complete
distance search. It may be that indeed the prefetch instruction type is a more
fundamental choice, but before distance tuning, the difference between instruction
types is below clock resolution, leading to essentially a random selection. In this case,

a crude distance tuning should be sufficient to allow for a more accurate selection.

126

CHAPTER 7

FUTURE WORK, SUMMARY AND
CONCLUSIONS

This final chapter provides some concluding remarks, and is organized in the
following way: Section 7.1 describes some key areas for future investigation, Sec-
tion 7.2 briefly recapitulates the highlights of this work, and Section 7.3 draws some

conclusions from the presented studies.

7.1 Future Work

The amount of future work, in particular the number of optimizations of interest,
are so extensive that discussing them in full is probably not possible. Therefore,
in this section we concentrate on some broad extensions that are clearly needed, as
well as the specific optimizations that have been identified as particularly beneficial
based on our current results. Section 7.1.1 discusses the extensions to our optimizing

compiler (FKO), while Section 7.1.2 discusses some key search issues.
7.1.1 Future Work on FKO

There are two optimizations that we believe would improve even our current
results, both of which would be implemented as fundamental transformations. The
first is block fetch, as discussed in Section 6.6.2, which would probably be applied
before any other optimization (since this transformation results in additional loops,
it would be necessary for later fundamental optimizations to tune the computation

loop).

127

The second (short-term) transformation of interest is software pipelining, which
would be applied after vectorization. While the x86’s out-of-order execution and
register renaming makes software pipelining the linked multiples and adds less im-
portant than on in-order architectures, software pipelining of load/use and use/store
should provide more efficient implementations, even for the studied Level 1 kernels.
At the same time, software pipelining dependent multiplies and adds will be critical
on architectures (such as the SPARC) that are both in-order and possess separate
multiply and add FPU units.

The next targets for optimization would be the Level 3 BLAS. As we have seen,
all of these operations are tuned using the in-LL1 gemm kernel, which is implemented
using three nested loops. For efficient optimization of these operations, we will
therefore want to introduce additional optimization phases, new pointer support,
and extended markup opportunities. In pointer support, we need a way to indicate
(or derive) when inner-loop pointers actually point to separate locations (usually rows
or columns) within a single multidimensional array. Knowing that given inner loop
pointers come from a single array can allow us to alleviate integer register pressure
through use of CISC indexing on the x86, and this is critical on the IA-32 ISA, where
insufficient integer registers would otherwise restrict outer loop unrolling to values
well below the optimal.

We will almost certainly want to add an outer-loop markup that allows the user
to suggest and limit outer-loop unrolling. The type of outer loop unrolling we are
interested in is called “unroll and jam” [48], as unrolling of the outer loop(s) results
in issuing more instructions in the single inner loop, not, for instance, duplicating
the inner loop, resulting in multiple inner loops. Along with unroll and jam, we will
need a repeatable transformation similar to scalar replacement [24] in order to enable
register blocking.

Our present prefetch strategies always assume that the data being prefetched will

eventually be used during the loop iterations. In GEMM, it is often the case that it
128

is more efficient to fetch the next cache block while operating on this one. Therefore,
we will want to introduce prefetching of unrelated memory during computation.

Finally, in GEMM, once we support unroll and jam, the inner loop (which on
the x86 will always be vectorized) acquires multiple accumulators. We presently
reduce any vector accumulators to scalars individually in the inner loop epilogue.
We can optimize this process when multiple accumulators are being used, and since
this epilogue code is now nested inside outer loops (and it is usually not the case
that it can be pushed out of them), it becomes critical to do so. We will similarly
need to make copy propagation more efficient in handling scalar-to-vector conversions
at the beginning and end of the loops, as highlighted in the SV example given in
Section 5.7.1.1.

While it will not be critical for our most important Level 3 kernel, as we deal with
more deeply nested loops, it will probably become advantageous to add generalized
loop invariant code motion, in order to hoist/push all operations (rather than just
loads and stores) as far out of the loops as possible.

Once iFKO can fully tune the Level 3 BLAS, it will be time to consolidate some of
our prexisting support. This includes handling misalignment for SIMD vectorization,
complex type support, and additional architectures, all discussed in turn below.

We have previously discussed misalignment in detail, and we will proceed with
this work as outlined in Section 5.5. Once we have support for exploiting alignment
guarantees based on 2-D array usage, iFKO will be ready to tune the Level 2 BLAS.

We will certainly not examine other architectures in detail until we can convinc-
ingly tune both the Level 1 and 3 BLAS, as previously described. Only at this
stage will it make sense to extend our architecture support, and we will examine the
PowerPC architecture next. This may involve additional optimization support, and
will certainly require tuning various presently-supported phases. For instance, SIMD

vectorization needs to be ported to support the PowerPC’s vector unit, AltiVec. We

129

will also want to examine using the PowerPC’s specialized index register for LC
(optimize loop control).

Just as with ANSI C, our HIL does not presently support complex numbers. Of
course, complex kernels may be written in terms of real computations, but this is
inconvenient for the implementer. Therefore, it makes sense to add a complex type.
Note that this is not needed for Level 3 BLAS support, as ATLAS uses the real
kernel to tune the complex case, as discussed in Chapter 3. Complex support will,
however, help with the Level 1 and 2 BLAS support. Complex arithmetic is composed
of a series of dependent real arithmetic operations, and since these real operations
have a dependence distance of one, they can be a barrier to SIMD vectorization if
they are not handled appropriately. The SSE3 ISA extension added instructions
specifically designed to handle complex arithmetic without unneeded permutation or
redundant computation, so FKO will need to exploit SSE3 to avoid these overheads.
In order to enable this SIMD optimization, it seems likely that the front end will
generate synthetic LIL instructions which are placeholders for complex arithmetic.
In SV these synthetic instructions will then be substituted with the appropriate
SSE3 instructions, or if SV is not applied, a new fundamental transformation phase

would replace them with the appropriate real computations.
7.1.2 Future work on iFKO’s Search

Section 6.6.4 pointed out the need for a better approach to prefetch instruction
selection, and this will be the first area of work for the search. We have also seen
that clock resolution problems have caused substandard results to be issued, and
thus it makes sense to examine if the timings can be made more precise. More
fundamentally, the addition of unroll and jam will provide several dimensions of
dependent optimizations (eg., for matrix multiply, unrolling the two outer loops
strongly changes the inner loop). In these cases, we must determine if we will be

forced to employ a full multidimensional search in order to get robust results, or if

130

we can instead make simplifying assumptions which allow us to severely restrict the
interactions. If we cannot find such simplifying assumptions, it becomes very likely
that we will have to abandon the line search for a more advanced technique that can
optimize the search of such a high dimensional space, and both simulated annealing

and genetic algorithm are promising candidates.

7.2 Summary

In the introduction, we discussed the importance of performance tuning for high
performance computing, and highlighted the key weaknesses inherent in traditional
methodologies. We then described how empirical techniques, embodied in the AEOS
concept, have proven to be a successful response to these challenges. Chapter 3 then
described our first AEOS effort, the empirically tuned library generator ATLAS.
This pioneering research has proven to be extremely successful, in both research
aims and practical use. ATLAS-tuned libraries are used by a worldwide audience of
scientists, engineers, and educators every day. The success of this project has inspired
a great deal of related research, and as a result the ATLAS papers are highly cited in
the literature (in both high performance computing, and more recently, compilation
research).

The following chapters described the more generalized research we have under-
taken recently, embodied in our empirical compilation framework, iFKO. Chapter 4
described the basic ideas behind this work, and the design philosophy we utilize to
guide and prioritize our efforts, with Chapter 5 filling in the details of our current
implementation of this framework. Finally, Chapter 6 discussed the results we have

achieved in applying the current framework to the Level 1 BLAS.

131

7.3 Conclusions

We have shown how empirical optimization can help adapt to changes in op-
eration, architecture, and context. We have discussed our approach to empirical
compilation, and presented the framework we have developed. We have demonstrated
that even on simple, easily analyzed loops that many would expect to be fully opti-
mized by existing compilers, empirical application of well-understood transformations
provides clear performance improvements. Further, even though our current palette
of optimizations is limited compared to that available to the hand-tuner, we have
presented results showing that this more fully automated approach results in greater
average performance improvement than that provided by ATLAS’s hand-tuned (and
empirically selected) Level 1 BLAS support. Note that our initial timings show iFKO
already capable of improving even Level 3 BLAS performance more than icc or gec,
but due to the lack of outer-loop specialized transformations (a large component of
our future work) we are presently not competitive with the best Level 3 hand-tuned
kernels. Therefore, as this framework matures, we strongly believe that it will serve
to generalize empirical optimization of floating point kernels, and that it will vastly
reduce the amount of hand-tuning that is required for high performance computing.
Finally, it appears certain that an open source version of such a framework will
be a key enabler of further research as well. For example, just as ATLAS was
used to provide feedback into model-based approaches [49], iIFKO will provide an
ideal platform for tuning and further understanding the models used in traditional
compilation, while a fully-featured FKO will provide a rich test bed for research on

fast searches of optimization spaces.

132

APPENDIX

ANSI C AND HIL KERNEL
IMPLEMENTATIONS

This appendix provides the ANSI C and HIL implementations for each studied

routine. We show the double precision version (the single precision is the same with

the appropriate variable declarations changed). Figures [A.1, A.2, A.3, A4, A5,

A.6, A.7] show [dswap, dcopy, dasum, daxpy, ddot, dscal, idamax]|, respectively.

ROUTINE ATL_USWAP;

PARAMS :: N, X, incX, Y, incY;
INT :: N, incX, incY;
DOUBLE_PTR :: X, Y;
ROUT_LOCALS
void ATL_USWAP(const int N, INT i
double *X, const int incX, DOUBLE :: x, y;
double *Y, const int incY) ROUT_BEGIN
{ LOOP i =0, N
int i; LOOP_BODY
double tmp; x = X[0];
for (i=0; i < N; i++) y = Y[0];
{ X[0ol = y;
tmp = Y[il; Y[0] = x;
Y[i] = X[il; X += 1;
X[i] = tmp; Y += 1;
} LOOP_END
} ROUT_END
(a) ANSIC (b) HIL

Figure A.1:

dswap implementations

133

ROUTINE ATL_UCOPY;
PARAMS :: N, X, incX, Y, incY;
INT :: N, incX, incY;
DOUBLE_PTR :: X, Y;
ROUT_LOCALS

INT A
DOUBLE :: x;
void ATL_UCOPY(const int N, ROUT_BEGIN
const double *X, LOOP i =0, N
const int incX, LOOP_BODY
double *Y, const int incY) x = X[0];
{ Y[0] = x;
int i; X += 1;
for (i=0; i < N; i++) Y += 1;
Y[i]l = X[i]; LOOP_END
} ROUT_END
(a) ANSIC (b) HIL

Figure A.2: dcopy implementations

ROUTINE ATL_UASUM;
PARAMS :: N, X, incX;
DOUBLE_PTR :: X;
INT :: N, incX;
ROUT_LOCALS
INT :: 1i;
DOUBLE :: x, sum;
CONST_INIT :: sum = 0.0;

double ATL_UASUM(const int N, ROUT_BEGIN
const double *X, LOOP i =0, N
const int incX) LOOP_BODY
{ x = X[0];
int i; x = ABS x;
register double t0=0.0; sum += Xx;
for (i=0; i < N; i++) X += 1;
t0 += fabs(X[i]); LOOP_END
return(t0); RETURN sum;
} ROUT_END
(a) ANSIC (b) HIL

Figure A.3: dasum implementations

134

void ATL_UAXPY(const int N,

const double alpha,
const double *X,
const int incX,

double *Y, const int incY)

int i;
for (i=0; i < N; i++)
Y[i] += alpha * X[il;

(a) ANSI C

ROUTINE ATL_UAXPY;

PARAMS :: N, alpha, X, incX, Y, incY;

INT :: N, incX, incY;
DOUBLE :: alpha;
DOUBLE_PTR :: X, Y;
ROUT_LOCALS
INT .
DOUBLE :: x, y;
ROUT_BEGIN
LOOP i =0, N
LOOP_BODY
x = X[0];
y = Y[0];
b4 x * alpha;
y = x5
Y[0]
X +=
Y +=
LOOP_END
ROUT_END

Y

Ll |

(b) HIL

Figure A.4: daxpy implementations

double ATL_UDOT(const int N,

const double *X,
const int incX,
const double *Y,
const int incY)

register double dot=ATL_rzero;
int i;
for (i=0; i < N; i++)

dot += X[i] * Y[i];
return(dot);

(a) ANSIC

ROUTINE ATL_UDOT;

PARAMS :: N, X, incX, Y, incY;

INT :: N, incX, incY;
DOUBLE_PTR :: X, Y;
ROUT_LOCALS
INT HE
DOUBLE :: x, y, dot;
CONST_INIT :: dot = 0.0;
ROUT_BEGIN
LOOP i =0, N
LOOP_BODY
x = X[0];
y = Y[0];
dot += x * y;
X += 1;
Y += 1;
LOOP_END
RETURN dot;
ROUT_END

(b) HIL

Figure A.5: ddot implementations

135

void ATL_USCAL(const int N,
const double alpha,
double *X,
const int incX)

{
int i;
for (i=0; i < N; i++)
X[i] *= alpha;
}

(a) ANSIC

ROUTINE ATL_USCAL

PARAMS :: N, alpha, X, incX;

INT :: N, incX;
DOUBLE :: alpha;
DOUBLE_PTR :: X;
ROUT_LOCALS
INT :: 1i;
DOUBLE :: x, y;
ROUT_BEGIN
LOOP 1 =0, N
LOOP_BODY
x = X[0];
X = X * alpha;
X[0] = x;
X += 1;
LOOP_END
ROUT_END

(b) HIL

Figure A.6: dscal implementations

int ATL_UIAMAX(const int N,
const double *X,
const int incX)

register double xmax, x0;
int i, iret=0;
if (N > 0)
{
xmax = *X;
xmax = fabs(xmax);
for (i=1; i < N; i++)
{
x0 = X[il;
x0 = fabs(x0);
if (x0 <= xmax) continue;
else
{
xmax = x0;
iret i

}
}

return(iret);

(a) ANSI C

ROUTINE ATL_UIAMAX;
PARAMS :: N, X, incX;
INT :: N, incX;
DOUBLE_PTR :: X;

ROUT_LOCALS
INT :: i, imax;
DOUBLE :: x, amax;

CONST_INIT :: amax = 0.0, imax=0;

ROUT_BEGIN
LooP i = N, 0, -1
LOOP_BODY
x = X[0];
x = ABS x;

// Branch if we have a new maximum
IF (x > amax) GOTO NEWMAX;

ENDOFLOOP:
X += 1;
LOOP_END
RETURN imax;

NEWMAX:
amax = Xx;
imax = N-i;
GOTO ENDOFLOOP;
ROUT_END

(b) HIL

Figure A.7: idamax implementations

136

1]

[10]

REFERENCES

J. Bilmes, K. Asanovi¢, C.W. Chin, and J. Demmel. Optimizing Matrix Multiply
using PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology. In
Proceedings of the ACM SIGARC International Conference on SuperComputing,
Vienna, Austria, July 1997.

See page for details. FF'T'W homepage. http://www.fftw.org/.

M. Frigo and S. G. Johnson. The Fastest Fourier Transform in the West.
Technical Report MIT-LCS-TR-728, Massachusetts Institute of Technology,
1997.

M. Frigo and S. Johnson. FFTW: An Adaptive Software Architecture for the
FET. In Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), volume 3, page 1381, 1998.

R. Clint Whaley and Antoine Petitet. Atlas homepage.
http://math-atlas.sourceforge.net/.

R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra
Software. Technical Report UT-CS-97-366, University of Tennessee, December
1997. http://www.netlib.org/lapack/lawns/lawnl31.ps.

R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra soft-
ware. In SuperComputing 1998: High Performance Networking and Computing,
1998. CD-ROM Proceedings. Winner, best paper in the systems category.
http://www.cs.utk.edu/ "rwhaley/papers/atlas_sc98.ps.

R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra
Software. In Ninth SIAM Conference on Parallel Processing for Scientific
Computing, 1999. CD-ROM Proceedings.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing, 27(1-
2):3-35, 2001. Also available as University of Tennessee LAPACK Working Note
#147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance
costs in supporting persistently optimized BLAS. Accepted for publication in
Software: Practice and Ezperience, 2004. http://www.cs.utk.edu/ "rwhaley/
papers/spercw04.ps.

137

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet,
Rich Vudue, R. Clint Whaley, and Katherine Yellick. Self adapting linear algebra
algorithms and software. Accepted for putblication in IEEFE special issue on
Program Generation, Optimization, and Adaptation, 2005.

R. Hanson, F. Krogh, and C. Lawson. A Proposal for Standard Linear Algebra
Subprograms. ACM SIGNUM Newsl., 8(16), 1973.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra
Subprograms for Fortran Usage. ACM Transactions on Mathematical Software,
5(3):308-323, 1979.

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656:
An extended Set of Basic Linear Algebra Subprograms: Model Implementation
and Test Programs. ACM Transactions on Mathematical Software, 14(1):18-32,
1988.

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended
Set of FORTRAN Basic Linear Algebra Subprograms. ACM Transactions on
Mathematical Software, 14(1):1-17, 1988.

J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A Set of Level 3 Basic
Linear Algebra Subprograms. ACM Transactions on Mathematical Software,
16(1):1-17, 1990.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen.
LAPACK Users’ Guide. SIAM, Philadelphia, PA, 3rd edition, 1999.

B. Kagstrom, P. Ling, and C. van Loan. GEMM-Based Level 3 BLAS: High-
Performance Model Implementations and Performance Evaluation Benchmark.
Technical Report UMINFE 95-18, Department of Computing Science, Umea
University, 1995. Submitted to ACM TOMS.

M. Dayde, I. Duff, and A. Petitet. A Parallel Block Implementation of Level
3 BLAS for MIMD Vector Processors. ACM Transactions on Mathematical
Software, 20(2):178-193, 1994.

F. Gustavson, A. Henriksson, I. Jonsson, B. Kagstrom, and P. Ling. Recur-
sive blocked data formats and blas’s for dense linear algebra algorithms. In
B. Kagstrom, J. Dongarra, E. Elmroth, and J. Wasniewski, editors, Applied
Parallel Computing, PARA’98, Lecture Notes in Computer Science, No. 1541,
pages 195-206, 1998.

F. Gustavson, A. Henriksson, I. Jonsson, B. Kagstrom, and P. Ling. Super-
scalar gemm-based level 3 blas — the on-going evolution of a portable and
high-performance library. In B. Kagstrom, J. Dongarra, E. Elmroth, and
J. Wagdniewski, editors, Applied Parallel Computing, PARA’98, Lecture Notes
in Computer Science, No. 1541, pages 207-215, 1998.

138

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

J. Dongarra, P. Mayes, and G. Radicati di Brozolo. The IBM RISC System
6000 and linear algebra operations. Supercomputer, 8(4):15-30, 1991.

David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation
for subscripted variables. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 53—65, 1990.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transfor-
mations for high-performance computing. ACM Comput. Surv., 26(4):345-420,
1994.

R. Clint Whaley. User contribution to atlas. http://math-atlas.
sourceforge.net/devel/atlas_contrib/.

J. Moura, J. Johnson, R. Johnson, D. Padua, M. Puschel, and M. Veloso. Spiral:
Automatic implementation of signal processing algorithms. In Proceedings
of the Conference on High-Performance Embedded Computing, MIT Lincoln
Laboratories, Boston, MA, 2000.

Pedro Diniz, Yoon-Ju Lee, Mary Hall, and Robert Lucas. A case study using
empirical optimization for a large, engineering application. In International
Parallel and Distributed Processing Symposium, 2004. CD-ROM Proceedings.

Bas Aarts, Michel Barreteau, Francois Bodin, Peter Brinkhaus, Zbigniew Cham-
ski, Henri-Pierre Charles, Christine Eisenbeis, John R. Gurd, Jan Hoggerbrugge,
Ping Hu, William Jalby, Peter M. W. Knijnenburg, Michael F. P. O’Boyle, Erven
Rohou, Rizos Sakellariou, Henk Schepers, Andre Seznec, Elena Stohr, Marco
Verhoeven, and Harry A. G. Wijshoff. OCEANS: Optimizing compilers for
embedded applications. In European Conference on Parallel Processing, pages
1351-1356, 1997.

Toru Kisuki, Peter M. W. Knijnenburg, Michael F. P. O’Boyle, Francois Bodin,
and Harry A. G. Wijshoff. A feasibility study in iterative compilation. In
ISHPC, pages 121-132, 1999.

T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijsho. Iterative compilation
in program optimization. In CPC2000, pages 35-44, 2000.

M. O’Boyle, N. Motogelwa, and P. Knijnenburg. Feedback assisted iterative
compilation. In LCR, 2000.

Paul van der Mark. Iterative compilation. Master’s thesis, Leiden Institute of
Advanced Computer Science, 1999.

P. van der Mark, E. Rohou, F. Bodin, Z. Chamski, and C. Eisenbeis. Using
iterative compilation for managing software pipeline — unrolling tradoffs. In
SCOPES99, 1999.

139

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J.M.F. Moura, J. Johnson, R.W. Johnson, D. Padua, V. Prasanna, M. Pschel,
and M.M. Veloso. Spiral: Automatic library generation and platform-adaptation
for dsp algorithms, 1998. http://www.ece.cmu.edu/ spiral.

Markus Pushel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan Singer, Jianxin Xiong, Franz Frenchetti, Aca Cacic, Yevgen Voronenko,
Kang Chen, Robert Johnson, and Nick Rizzolo. Spiral: Code generation for
dsp transforms. Accepted for putblication in IEEE special issue on Program
Generation, Optimization, and Adaptation, 2005.

Franz Franchetti, Stefan Kral, Juergen Lorenz, and Christoph Ueberhuber.
Efficient utilization of simd extensions. Accepted for putblication in IEFEE
special issue on Program Generation, Optimization, and Adaptation, 2005.

Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I.
August. Compiler optimization-space exploration. In International Symposium
on Code Generation and Optimization, pages 204-215, 2003.

System \Y Application Binary Interface, In-
tel386 Architecture Processor Supplement. URL:
http://www.caldera.com/developers/devspecs/abi386-4.pdf.

Richard Detmer. Introduction to The 80286 Assembly Language and Computer
Architecture. Jones and Bartlett Publishers, Sudbury, MA, 2001.

Jan Hubicka, Andreas Jaeger, and Mark Mitchel. System V Ap-
plication Binary Interface, AMDG64 Architecture Processor Supplement.
http://www.x86-64.0org/documentation/abi-0.92.pdf.

Jan Hubicka, Andreas Jaeger, and Mark Mitchel. Soft-
ware optimization guide for amd athlon 64 and opteron pro-
Cessors. http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/25112.PDF, March 2004.

Intel extended memory 64 technology. URL:
http://www.intel.com/technology/64bitextensions/index.htm.

Ed Sznyter and Babel Press. The PowerPC Architecture. Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 2nd edition, 1994.

Gary Kacmarcik. Optimizing PowerPC Code. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1995.

David Weaver and Tom Germond, editors. The SPARC Architecture Manual,
Version 9. PTR Prentice Hall, Englewood Cliffs, New Jersey, 1994. URL:
http://www.sparc.com/standards/SPARCV9.pdf.

System V Application Binary Interface, SPARC Processor Supplement. URL:
http://www.sparc.com/standards/psABI3rd.pdf.

140

[47] Mike Wall. Using Block Prefetch for Optimized Memory Per-
formance. Technical report, Advanced Micro Devices, 2002.
http://cdrom.amd.com/devconn/events/AMD_block_prefetch_paper.pdf.

[48] Steve Carr, Chen Ding, and Philip H. Sweany. Improving software pipelining
with unroll-and-jam. In HICSS (1), pages 183-192, 1996.

[49] Kamen Yotov, Xiaorning Li, Gang Ren, Maria Garzaran, Dvaid Padua, Keshav
Pingali, and Paul Stodghill. A comparison of empirical and model-driven
optimization. Accepted for publication in IEEE special issue on Program
Generation, Optimization, and Adaptation, 2005.

141

BIOGRAPHICAL SKETCH

R. Clint Whaley

The author was born on November 9, 1969, and received his B.S. in Mathematics
(Summa Cum Laude) from Oklahoma Panhandle State University in May of 1991.
He received his Master of Science in Computer Science in May of 1994 from the
University of Tennessee, Knoxville (UTK), where his thesis dealt with communication
on distributed memory systems. His professional career began with work at Oak
Ridge National Laboratories, where he worked as a research student (1990-1991)
on parallelizing (for distributed memory machines) nuclear collision models in the
physics division. From May 1994 through June 1999, he was employed as a full-time
researcher (Research Associate) at UTK. From June 1999 through December 2001,
he was a Senior Research Associate at UTK. During his years at UTK, he worked
on the well-known parallel package ScaLAPACK. Later, as a full time researcher,
he founded the ongoing ATLAS research project, and ATLAS-tuned libraries are
used by scientists and engineers around the world. His research interests include
code optimization, compilation research, high performance computing, and parallel

computing.

142

