
AUTOMATED EMPIRICAL OPTIMIZATION OF HIGHPERFORMANCE FLOATING POINT KERNELS
Name: R. Clint WhaleyDepartment: Department of Computer SieneMajor Professor: David WhalleyDegree: Dotor of PhilosophyTerm Degree Awarded: Fall, 2004Using traditional methodologies and tools, the problem of keeping performane-ritial kernels at high eÆieny on hardware evolving at the inredible rates ditatedby Moore's Law is almost intratable. On produt lines where ISA ompatibility ismaintained through several generations of arhiteture, the growing gap between themahine that the software sees and the atual hardware exaerbates this problemonsiderably, as do the evolving software layers between the appliation in questionand the ISA. To address this problem, we have utilized a relatively new tehnique,whih we all AEOS (Automated Empirial Optimization of Software). In this paper,we desribe the AEOS systems we have researhed, implemented and tested. The �rstof these is ATLAS (Automatially Tuned Linear Algebra Software), whih empiriallyoptimizes key linear algebra kernels to arbitrary ahe-based mahines. Our latestresearh e�ort is instantiated in the iFKO (iterative Floating Point Kernel Optimizer)projet, whose aim is to perform empirial optimization of relatively arbitrary kernelsusing a low-level iterative and empirial ompilation framework.



THE FLORIDA STATE UNIVERSITYCOLLEGE OF ARTS & SCIENCES
AUTOMATED EMPIRICAL OPTIMIZATION OF HIGHPERFORMANCE FLOATING POINT KERNELS

ByR. CLINT WHALEY
A Dissertation submitted to theDepartment of Computer Sienein partial ful�llment of therequirements for the degree ofDotor of Philosophy

Degree Awarded:Fall Semester, 2004



The members of the Committee approve the dissertation of R. Clint Whaleydefended on November 2, 2004.
David WhalleyProfessor Direting Dissertation
Gordon ErlebaherOutside Committee Member
Theodore BakerCommittee Member
Mihael MasagniCommittee Member
Xin YuanCommittee Member

The OÆe of Graduate Studies has veri�ed and approved the above named ommittee members.



TABLE OF CONTENTSList of Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : viList of Figures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : viiAbstrat : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ix1. INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.1 Importane of Kernel Optimization for HPC . . . . . . . . . . . . . . . . . . . . 21.2 Problems with Traditional HPC Kernel Prodution Methods . . . . . . . 21.2.1 Shortomings of Hand-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2.2 Shortomings of Traditional Compilation . . . . . . . . . . . . . . . . . . 31.2.3 Addressing Optimization Challenges through Empirial Teh-niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.3 History of Researh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.4 Organization of Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72. BASIC DEFINITIONS { AEOS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.1 Basi AEOS Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Methods of Software Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2.1 Summary of Software Adaptation Methods . . . . . . . . . . . . . . . . . 143. FOUNDATIONAL WORK { ATLAS : : : : : : : : : : : : : : : : : : : : : : : : : 163.1 Limits of ATLAS's Approah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 AEOS Tuning for the Level 3 BLAS in ATLAS . . . . . . . . . . . . . . . . . . 193.2.1 Building the General Matrix Multiply from the L1 Cahe-ontained Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.2.1.1 Choosing the Corret Looping Struture . . . . . . . . . . . . . . . 263.2.1.2 Bloking for Higher Levels of Cahe . . . . . . . . . . . . . . . . . . 263.2.2 L1 Cahe-ontained Matmul . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2.2.1 Instrution Cahe Overow . . . . . . . . . . . . . . . . . . . . . . . . . 323.2.2.2 Floating Point Instrution Ordering . . . . . . . . . . . . . . . . . . 323.2.2.3 Reduing Loop Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2.2.4 Exposing Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2.2.5 Finding the Corret Number of Cahe Misses . . . . . . . . . . . 333.2.2.6 Soure Generator Parameters . . . . . . . . . . . . . . . . . . . . . . . 343.2.2.7 Putting It All Together { Outline of the Searh Heuristi . . 363.2.2.8 Soure Generator Searh . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.2.2.9 Multiple Implementation Searh . . . . . . . . . . . . . . . . . . . . . 39iii



3.2.3 ATLAS performane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.3 AEOS Framework for the Level 1 and 2 BLAS in ATLAS . . . . . . . . . 413.4 Optimizing the Level 2 BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.4.1 Register and Cahe Bloking for the Level 2 BLAS . . . . . . . . . . . 423.4.1.1 Register Bloking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.4.1.2 Cahe Bloking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.4.2 ATLAS's Level 2 Compute Kernels . . . . . . . . . . . . . . . . . . . . . . . 473.4.3 Building ATLAS's Level 2 BLAS . . . . . . . . . . . . . . . . . . . . . . . . . 483.5 Optimizing the Level 1 BLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.6 Historial Context / Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 494. MOTIVATIONANDDESIGNOF OUR EMPIRICAL COMPILATIONFRAMEWORK { IFKO : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 514.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.2 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.3 Overview of Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.3.1 Anatomy of an Iterative and Empirial Compiler . . . . . . . . . . . . 554.3.2 Optimizing ompiler { FKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.3.2.1 Input Language (HIL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.3.3 Iterative Searh { iFKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.4 Interfaing ATLAS and iFKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605. CURRENT IFKO IMPLEMENTATION : : : : : : : : : : : : : : : : : : : : : 645.1 Supported Arhitetures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.2 Interfae Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665.3 Current Analysis and Communiation with the Searh . . . . . . . . . . . . 685.4 Current Fundamental Transformations . . . . . . . . . . . . . . . . . . . . . . . . 695.4.1 SIMD Vetorization (SV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.4.1.1 Handling Salars in SV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725.4.2 Loop Unrolling (UR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735.4.3 Optimize Loop Control (LC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 735.4.4 Aumulator Expansion (AE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.4.5 Prefeth (PF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755.4.6 Non-temporal Writes (WNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.4.7 Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.5 SIMD Alignment Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.5.1 Present Handling of Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 775.5.2 Handling Alignment Safely, but IneÆiently . . . . . . . . . . . . . . . . 785.5.3 Fixing Some Alignment Problems through Loop Peeling . . . . . . . 785.5.4 Handling Mutual Misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . 795.5.5 Speial Alignment Considerations for Constantly Strided Multi-dimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.5.6 Adding Misalignment Support to the Framework . . . . . . . . . . . . 805.6 Current Repeatable Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 81iv



5.6.1 Register Alloation (ra) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.6.2 Copy Propagation (p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.6.3 Reverse Copy Propagation (r) . . . . . . . . . . . . . . . . . . . . . . . . . . 835.6.4 Useless Jump Elimination (uj) . . . . . . . . . . . . . . . . . . . . . . . . . . 845.6.5 Useless Label Elimination (ul) . . . . . . . . . . . . . . . . . . . . . . . . . . 845.6.6 Branh Chaining (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.6.7 Enfore Load Store (ls) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.6.8 Remove One Use Loads (u1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.6.9 Last Use Load Removal (lu) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.6.10 Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.7 FKO in Ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.7.1 DDOT Example Illustrating ra, p, r, u1, and SV . . . . . . . . . . . 875.7.1.1 SIMD Vetorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915.7.2 DASUM Example Illustrating UR, AE, PF, ul, and ls . . . . . . . . 955.7.3 DAXPY Example Illustrating WNT and lu . . . . . . . . . . . . . . . . . 985.8 Current Iterative Searh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006. EXPERIMENTAL RESULTS AND ANALYSIS : : : : : : : : : : : : : : : 1016.1 Problem Domain and Surveyed Routines . . . . . . . . . . . . . . . . . . . . . . . 1016.2 Methodology and Version Information . . . . . . . . . . . . . . . . . . . . . . . . . 1036.2.1 Input Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046.3 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056.4 General Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.5 Interesting Asides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156.6 Learning from Defeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176.6.1 iamax for All Arhitetures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206.6.2 Pentium 4E dopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216.6.3 Pentium 4E dsal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246.6.4 Opteron daxpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257. FUTURE WORK, SUMMARY AND CONCLUSIONS : : : : : : : : 1277.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277.1.1 Future Work on FKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277.1.2 Future work on iFKO's Searh . . . . . . . . . . . . . . . . . . . . . . . . . . 1307.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317.3 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132APPENDIX: ANSI C AND HIL KERNEL IMPLEMENTATIONS : : 133REFERENCES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137BIOGRAPHICAL SKETCH : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142
v



LIST OF TABLES2.1 Summary of software adaptation tehniques . . . . . . . . . . . . . . . . . . . . . 146.1 Level 1 BLAS summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.2 Compiler ag and version information by platform . . . . . . . . . . . . . . . . 1036.3 Transformation parameters for 2.8Ghz Pentium 4E, N=80000, allahes ushed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.4 Transformation parameters for 1.6Ghz Opteron, N=80000, all ahesushed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.5 Transformation parameters for 2.8Ghz P4E, N=1024, only L1 aheushed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.6 Transformation parameters for 1.6Ghz Opteron, N=1024, only L1 aheushed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.7 Loss Case Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176.8 Better Transformation Parameters Found by Repeated Searhes . . . . . 118

vi



LIST OF FIGURES3.1 One step of matrix-matrix multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2 General matrix multipliation with A as innermost matrix . . . . . . . . . . 253.3 General matrix multipliation with B as innermost matrix . . . . . . . . . . 253.4 ATLAS's empirial searh for the Level 3 BLAS . . . . . . . . . . . . . . . . . . 363.5 Performane of double preision matrix multiply aross various arhi-tetures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.6 Present ATLAS empirial searh for the Level 1 & 2 BLAS . . . . . . . . . 424.1 Overview of our Empirial and Iterative Compilation System . . . . . . . . 554.2 ATLAS+iFKO empirial searh for the Level 1 & 2 BLAS . . . . . . . . . . 614.3 ATLAS+iFKO empirial searh for the Level 3 BLAS . . . . . . . . . . . . . . 615.1 Example FKO analysis output for P4E . . . . . . . . . . . . . . . . . . . . . . . . . 685.2 Dot produt before and after UR and LC . . . . . . . . . . . . . . . . . . . . . . . 745.3 DDOT before and after Aumulator Expansion . . . . . . . . . . . . . . . . . . 755.4 Repeatable optimization defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.5 DDOT Loop in HIL and Assembly with no optimization, and ra . . . . . 885.6 DDOT Loop Assembly with ra, p, and r . . . . . . . . . . . . . . . . . . . . . . . 905.7 DDOT Loop Assembly with ra, p, r and u1 . . . . . . . . . . . . . . . . . . . . 915.8 SIMD Vetorized DDOT Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925.9 ASUM Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.10 DASUM loop unrolled to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.11 DAXPY Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996.1 Relative speedups of various tuning methods on 2.8Ghz P4E, N=80000,out-of-ahe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.2 Relative speedups of various tuning methods on 1.6Ghz Opteron,N=80000, out-of-ahe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.3 Relative speedups of various tuning methods on 2.8Ghz P4E, N=1024,in-L2-ahe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108vii



6.4 Relative speedups of various tuning methods on 1.6Ghz Opteron,N=1024, in-L2-ahe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086.5 BLAS performane in MFLOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096.6 Speedup of In-ahe over Out-of-ahe . . . . . . . . . . . . . . . . . . . . . . . . . . 1096.7 Perent speedup by transform due to empirial searh . . . . . . . . . . . . . . 1126.8 Perent speedup by transform due to empirial searh (zoomed) . . . . . . 1126.9 Hand-tuned dopy Assembly Routine for P4E . . . . . . . . . . . . . . . . . . . . 1226.10 Inner loop of iFKO-tuned P4E dopy . . . . . . . . . . . . . . . . . . . . . . . . . . 123A.1 dswap implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133A.2 dopy implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134A.3 dasum implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134A.4 daxpy implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135A.5 ddot implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135A.6 dsal implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136A.7 idamax implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

viii



ABSTRACTUsing traditional methodologies and tools, the problem of keeping performane-ritial kernels at high eÆieny on hardware evolving at the inredible rates ditatedby Moore's Law is almost intratable. On produt lines where ISA ompatibility ismaintained through several generations of arhiteture, the growing gap between themahine that the software sees and the atual hardware exaerbates this problemonsiderably, as do the evolving software layers between the appliation in questionand the ISA. To address this problem, we have utilized a relatively new tehnique,whih we all AEOS (Automated Empirial Optimization of Software). In this paper,we desribe the AEOS systems we have researhed, implemented and tested. The �rstof these is ATLAS (Automatially Tuned Linear Algebra Software), whih empiriallyoptimizes key linear algebra kernels to arbitrary ahe-based mahines. Our latestresearh e�ort is instantiated in the iFKO (iterative Floating Point Kernel Optimizer)projet, whose aim is to perform empirial optimization of relatively arbitrary kernelsusing a low-level iterative and empirial ompilation framework.

ix



CHAPTER 1INTRODUCTIONThe ultimate goal of this researh is to provide ompute kernels for the highperformane omputing (HPC) ommunity that run at near-peak eÆieny, evenas arhitetures evolve at the franti pae ditated by Moore's Law. If a kernel'sperformane is to be made at all robust, it must be both portable, and of even greaterimportane these days, persistent. We use these terms to separate two linked, butslightly di�erent forms of robustness. The platform on whih a kernel must run anhange in two di�erent ways: the mahine ISA (Instrution Set Arhiteture) anremain onstant even as the hardware implementing that ISA varies, or the ISA anhange. When a kernel maintains its eÆieny on a given ISA as the underlyinghardware hanges, we say it is persistent, while a portably optimal ode ahieves higheÆieny even as the ISA and mahine are hanged.Before the results of this researh an be evaluated, it is important to demonstratethat there truly is a problem that needs to be solved, and thus the bulk of thisintrodution is dediated to demonstrating why we have undertaken this line ofresearh. Therefore, Setion 1.1 overviews the need for highly tuned kernels in HPC,Setion 1.2 disusses the traditional approahes to this problem, and gives the reasonswhy they are inadequate in pratie, whih in turn motivates the appliation ofempirial tehniques (the subjet of this researh), as disussed in Setion 1.2.3. Afterthis motivation, Setion 1.3 provides a brief history of this researh, and Setion 1.4desribes the organization of the remainder of the paper.1



1.1 Importane of Kernel Optimization for HPCHigh performane omputing is di�erentiated from general omputing by itsvoraious appetite for omputing resoures. Despite hardware performane that hasbeen steadily improving aording to Moore's Law, this is as true today as it wasa deade ago. Sienti� modeling provides an illustration of this phenomenon. Inmany of these appliations, omputational power is the main onstraint preventingthe sientist from modeling more omplex problems, whih would then more loselymath reality. As more omputational power beomes available, the sientist typiallyinreases the omplexity/auray of the model until the limits of the omputationalpower are reahed. Therefore, sine many appliations have no pratial limit of\enough" auray, it is important that eah generation of inreasingly powerfulomputers have well optimized omputational kernels, whih in turn allow for eÆientexeution of the higher-level appliations that use them.1.2 Problems with Traditional HPC Kernel ProdutionMethodsThe traditional path to ahieving high performane in HPC involves ompilationresearh ombined with library prodution. General purpose ompilers do not,in pratie, ahieve the very high perentages of peak on the omplex kernelsdemanded by HPC appliations (the reasons for this are outlined in Setion 1.2.2).Therefore, sine a user annot write an arbitrary ode and expet it to run at theextreme eÆienies demanded by HPC appliations, the ommunity has respondedby emphasizing library prodution. In partiular, APIs for reusable performanekernels are standardized, allowing these kernels to be hand-tuned by teams of expertsfor a given platform. One these standard kernels are available for the platform ofinterest, higher-level appliations that leverage them an run at high eÆienieswithout extensive additional tuning. 2



Both hand-tuning of kernels and traditional ompilation have severe drawbakswhen employed for performane-ritial kernel prodution, as disussed in thefollowing setions. Sine traditional ompilation shares many of the same drawbaksas hand-tuning, as well as having its own unique problems, we disuss hand-tuning�rst.1.2.1 Shortomings of Hand-tuningHand-tuning performane-ritial kernels for eah arhiteture of interest su�ersfrom two main drawbaks: First, reating software that realizes near peak ratesof exeution requires detailed knowledge of a omplex set of interrelated fators,inluding the operation being optimized, the target arhiteture(s), and all theintervening software layers. Even when the implementer possesses suh broadunderstanding, the interations between various hardware/software layers guaranteethat signi�ant empirial tuning of the initial kernel will be required. Therefore,optimizing even the simplest of real-world operations for high performane usuallyrequires a sustained e�ort from the most tehnially advaned programmers, whihare in ritially short supply. Seond, even when the requisite programming talentis available, hand-tuning suh odes is a time onsuming task, so that far too often,when the optimized libraries are �nally ready to ome on line, the generation ofhardware for whih they are optimized is well on its way towards obsolesene. ThisdiÆulty of keeping software highly optimized in the fae of hardware hange is apersistent problem for both hand-tuning and ompilers.1.2.2 Shortomings of Traditional CompilationThe most fundamental reason traditional ompilers do not ahieve the highperentages of peak required by HPC kernels is that it is not what they aredesigned to do. Optimizing general-purpose ode to this extreme degree would3



be ounter-produtive: It would require substantially greater time to develop theompiler itself, would have almost no e�et on overall performane for most odes,and would almost ertainly inrease ompilation times to a degree intolerable forgeneral use.Even if the ompiler were written with this kind of extreme optimization in mind,traditional ompilation tehniques would learly need to be supplemented in someway. Traditionally, ompilers perform transformations based on models that attemptto apture the relevant details of the underlying arhiteture. This approah workswell for general purpose omputing, but the model needs to be muh more detailedto extrat near-peak levels of performane: indeed, it needs to be so detailed that inpratie produing suh a model would be almost intratable. Even if a model ouldbe reated that was sophistiated enough to aount for the interations between alllevels of ahe, the pipelines of all relevant funtional units, and all shared hardwareresoures required by a given operation (and it ould do suh detailed front-endanalysis that all required kernel-spei� information was extrated from the ode), itis often the ase that muh of the data required to build suh a model is unknown,either beause the hardware vendor onsiders it proprietary, or beause even thedesigners are unable to predit performane due to unforeseen resoure interations.Therefore, models require signi�ant hand-tuning to eah supported arhiteture;this is true even in general omputing, and the ost would learly go up dramatiallyfor a kernel-oriented ompiler.Therefore, to obtain near-peak eÆieny for kernels using traditional ompilation,the models must be onstantly modi�ed to keep up with hardware being released atthe rate ditated by Moore's Law. Sine ompilers are generally very omplex applia-tions, this is just as untenable in the long run as the hand-tuned kernel optimizationdisussed in the previous setion. Moore's Law also provides a seondary e�etthat makes model-based approahes even more problemati for this type of tuning.Sine software evolves at a muh slower rate than Moore's Law, hardware arhitets4



must retain ISA ompatibility whenever possible, whih an lead to mismathesbetween an ISA and the underlying hardware. At the same time, the additionaliruits that an be eonomially added to a wafer have resulted in arhiteturesthat perform an inreasing number of ompiler-like transformations in hardware(eg., dynami sheduling, out-of-order exeution, register renaming, et.). Due tothis trend, the ISA available to the ompiler writer beomes more and more like ahigh level language, and thus the lose onnetion between the instrutions issued bythe ompiler, and the ations performed by the mahine, is lost. This phenomenonmakes it inreasingly diÆult to know a priori if a given transformation will behelpful, and almost impossible to be sure when it is worth applying a transformationthat yields bene�ts only in ertain situations. The most extreme example of thistrend is embodied in the x86 arhiteture, whose non-orthogonal CISC instrutionset has, to the frustration of many ompiler writers, beome the most widely-usedISA in general-purpose omputing.Another problem with model-based approahes is how to alloate resoures inompeting optimization phases. Here heuristis must be employed, whih may leavesigni�ant gaps in optimization (eg., reserve several registers when doing registerassignment so that software pipelining an be performed later, et.). Finally, even ifall these hallenges ould be surmounted, kernel- and ontext-spei� issues providea further barrier to ahieving high performane. For instane, tuning a bus-boundoperation requires a di�erent set of priorities than tuning a kernel that is primarilypu-bound, the types and number of operands strongly a�et the orret optimizationsheme, et. Pro�ling an disover some of this information, but quite a few relevantdetails annot be realistially disovered even when the most aggressive traditionaltehniques are employed. If suh perfet analysis were available, however, theseompliated arhitetural models would still need to be split into many subasesto reet varying usage patterns, worsening an already insupportable maintenaneproblem. 5



1.2.3 Addressing Optimization Challenges through Empirial TehniquesThese problems, taken together, led to the implementation of empirially tunedlibrary generators suh as PHiPAC [1℄, FFTW [2, 3, 4℄ (these and other pakagesare disussed in the related work setions of Chapters 3 and 4) and our ownATLAS [5, 6, 7, 8, 9, 10℄ (disussed in Chapter 3). The entral idea behind thesepakages is that sine it is diÆult to predit a priori whether or by how muh a giventehnique will improve performane, one should try a battery of known tehniqueson eah performane-ritial kernel, obtain aurate timings to assess the e�et ofeah transformation of interest, and retain only those that result in measurableimprovements for this exat system and kernel. Thus, the need to understand thearhiteture in detail is removed: we are probing the system as it stands, just as theempirial tehnique of the sienti� method probes the natural world, and just asthe sienti� method disards disprovable theories, we do not retain transformationsthat do not result in suÆient speedup.This approah allows for a muh greater degree of speialization than an berealistially ahieved in any other fashion. For instane, it is not unommon forempirial tuning of a given kernel on two basially idential systems, varying onlyin the type or size of ahe supported, to produe tuned implementations withsigni�antly di�erent optimizational parameters, and it is almost always the asethat varying the kernel results in widespread optimization di�erenes.These empirially tuned pakages have sueeded in ahieving high levels ofperformane on widely varying hardware, but in a sense they are still very limitedompared to ompilation tehnology. In partiular, they are tied to partiular oper-ations within given libraries, and are therefore not of great assistane in optimizingother operations that nonetheless require similar levels of performane. It is thereforeno surprise that the ompiler ommunity has begun to evaluate the sope for using6



empirial tehniques in ompilation. Chapters 4 and 5 outline our own empirialompiler researh. 1.3 History of ResearhThe author began this line of researh while a he was a full-time researher at theUniversity of Tennessee, Knoxville (UTK). In this initial work, the emphasis was onahieving portably optimal ode for a restrited set of linear algebra routines. Thisresearh ulminated in the ATLAS [6, 7, 8, 9, 10℄ projet. After ATLAS provedso suessful in optimizing a given set of operations, the obvious question was howit ould be generalized, and this has led to the researh we have onduted here atFlorida State University (FSU) on iFKO (iterative Floating Point Kernel Optimizer).This work is aimed at generalizing empirial optimization to arbitrary oating pointkernels, and onentrates on ahieving persistently optimal ode.The ATLAS work is inluded in this dissertation for two main reasons. Mostimportantly, it ombined with iFKO omprise the author's ontribution to theemerging �eld of empirial optimization, and this �rst e�ort both supports andlends diretion to our urrent researh. Seondly, while the majority of the ATLASframework was indeed developed at UTK, signi�ant ATLAS work was done hereat FSU as well, inluding FSU grant #1327-592-45, and the publiations of [10, 11℄.Work on the grant led partiularly to some intensive assembly hand-tuning to exploitSIMD vetorization, and this and related e�orts strongly inuened the design andimplementation of iFKO.1.4 Organization of PaperThe remainder of this paper is organized in the following way: Chapter 2introdues the terminology used to desribe these empirial tehniques, Chapter 3overviews our ATLAS work, Chapter 4 uses this foundation to motivate and explain7



our empirial ompilation researh, Chapter 5 desribes the urrent implementationof our empirial ompilation framework, and Chapter 6 provides experimental results.Note that the ATLAS and iFKO hapters ontain their own related work setion, asthese e�orts are distint in both approah and time. Finally, Chapter 7 summarizesour �ndings and ontributions as well as disussing areas for future work.

8



CHAPTER 2BASIC DEFINITIONS { AEOSMany groups have begun to utilize automated and empirial approahes tooptimization, resulting in a plethora of di�ering terminologies, inluding \self-tuninglibraries", \adaptive software", \empirial ompilation", \iterative ompilation", et.While these approahes di�er strongly in details, in order to fall into the lassi�ationrelated to our researh they must have some ommonalities:1. The searh must be automated in some way, so that an expert hand-tuner isnot required.2. The deision of whether a transformation is useful or not must be empirial, inthat an atual timing measurement on the spei� arhiteture in question isperformed, as opposed to the traditional appliation of transformations usingstati heuristis or pro�le ounts3. These methods must have some way to vary/adapt the software being tuned.With these broad outlines in mind, we lump all suh empirial tunings under thearonym AEOS, or Automated Empirial Optimization of Software, and Setion 2.1outlines the requirements of suh systems, while Setion 2.2 disusses the studiedmethods of software adaptation.2.1 Basi AEOS RequirementsThe basi requirements for supporting high performane kernel optimization usingAEOS methodologies are: 9



� Isolation of performane-ritial routines: Just as with traditional libraries, theperformane-ritial setions of ode must be isolated (usually into subroutines,whih ditates the need for an standardized API).� A method of adapting software to di�ering environments: Sine AEOS dependson iteratively trying di�ering ways of performing the performane-ritialoperation, the author must be able to provide implementations that instantiatea wide range of optimizations. This may be done very simply, for instane byhaving parameters in a �xed ode whih, when varied, orrespond to di�eringahe sizes, et., or it may be done muh more generally, for instane bysupplying a highly parameterized soure generator whih an produe an almostin�nite number of implementations. No matter how general the adaptationstrategy, there will be limitations or built-in assumptions about the requiredarhiteture whih should be identi�ed in order to estimate the probableboundaries on the ode's exibility. Setion 2.2 disusses software adaptationmethods in further detail.� Robust, ontext-sensitive timers: Sine timings are used to selet the best ode,it beomes very important that these timings be aurate. Sine few users anguarantee single-user aess, the timers must be robust enough to produereliable timings even on heavily loaded mahines. Furthermore, the timersneed to repliate as losely as possible the way in whih the given operationwill be used. For instane, if the routine will normally be alled with oldahes, ahe ushing will be required. If the routine will typially be alledwith a given level of ahe preloaded, while others are not, that too should betaken into aount. If there is no known mahine state, timers allowing formany di�erent states, whih the user an vary, should be reated.
10



� Appropriate searh heuristi The �nal requirement is a searh heuristi whihautomates the searh for the most optimal available implementation. Fora simple method of ode adaptation, suh as supplying a �xed number ofhand-tuned implementations, a simple linear searh will suÆe. However, whenusing sophistiated soure generators with literally hundreds of thousands ofways of doing an operation, a similarly sophistiated searh heuristi mustbe employed in order to prune the searh tree as rapidly as possible, so thatthe optimal ases are both found and found quikly (obviously, few users willtolerate heavily parameterized searh times with exponential growth). If thesearh takes longer than a handful of minutes, it needs to be robust enoughto not require a omplete restart if hardware or software failure interrupts theoriginal searh.2.2 Methods of Software AdaptationWe employ three di�erent methods of software adaptation. The �rst is widely usedin programming in general, and it involves parameterizing harateristis whih varyfrom mahine to mahine. In linear algebra, the most important of suh parametersis probably the bloking fator used in bloked algorithms, whih, when varied, variesthe data ahe utilization. In general, parameterizing as many levels of data aheas the algorithm an support an provide remarkable speedups. With an AEOSapproah, suh parameters an be ompile-time variables, and thus not ause aruntime slowdown. We all this method parameterized adaptation.Not all important arhitetural variables an be handled by parameterizedadaptation (simple examples inlude instrution ahe size, hoie of ombined orseparate multiply and add instrutions, length of oating point and feth pipelines,et), sine varying them atually requires hanging the underlying soure ode. Thisthen brings in the need for the seond method of software adaptation, soure ode11



adaptation, whih involves atually generating di�ering implementations of the sameoperation.There are at least two di�erent ways to do soure ode adaptation. Perhaps thesimplest approah is for the designer to supply various hand-tuned implementations,and then the searh heuristi may be as simple as trying eah implementation in turnuntil the best is found. At �rst glane, one might suspet that supplying these multi-ple implementations would make even this approah to soure ode adaptation muhmore diÆult than the traditional hand-tuning of libraries. However, traditionalhand-tuning is not just the mere appliation of known tehniques it may appearwhen examined asually. Knowing the size and properties of your level 1 ahe isnot suÆient to hoose the best bloking fator, for instane, as this depends ona host of interloking fators whih defy often a priori understanding in the realworld. Therefore, it is ommon in hand-tuned optimizations to utilize the knownharateristis of the mahine to narrow the searh, but then the programmer writesvarious implementations and hooses the best.For the simplest AEOS implementation, this proess remains the same, but theprogrammer adds a searh and timing layer to aomplish what would otherwise bedone by hand. In the simplest ases, the time to write this layer may not be muh ifany more than the time the implementer would have spent doing the same proessin a less formal way by hand, while at the same time apturing at least some ofthe exibility inherent in AEOS-entri design. We will refer to this soure odeadaptation tehnique as multiple implementation. Due to its obvious simpliity, thismethod is highly parallelizable, in the sense that multiple authors an meaningfullyontribute without having to understand the entire pakage. In partiular, variousspeialists on given arhitetures an provide hand-tuned routines without needing tounderstand other arhitetures, the higher level odes (e.g. timers, searh heuristis,higher-level routine whih utilize these basi kernels, et). This makes multiple12



implementation a very good approah if the user base is large and skilled enoughto support an open soure initiative along the lines of, for example, Linux.The seond method of soure ode adaptation is soure generation. In souregeneration, a soure generator (i.e., a program that writes other programs) isprodued. This soure generator takes as parameters the various soure odeadaptations to be made. As before, simple examples inlude instrution ahe size,hoie of ombined or separate multiply and add instrutions, length of oating pointand feth pipelines, and so on. Depending on the parameters, the soure generatorprodues a routine with the requisite harateristis. The great strength of souregenerators is their ultimate exibility, whih an allow for far greater tunings thanould be produed by all but the best hand-oders. However, generator omplexitytends to go up along with exibility, so that these programs rapidly beome almostinsurmountable barriers to outside ontribution.In our own past e�orts, we have therefore ombined these two methods ofsoure adaptation, where a kernel-spei� soure generator is provided for maximalarhitetural portability. Multiple implementation is utilized to enourage outsideontribution, and allows for extreme arhitetural speialization via assembly imple-mentations.Soure generators that generate high-level (and thus portable) languages suh asFORTRAN or ANSI C (as opposed to low-level and non-portable languages suh asassembly) have the advantage of being able to optimize a given operation for anyarhiteture whih possesses the requisite ompiler. However, suh soure generatorsare spei� to the kernel being tuned, and thus we an say they are arhite-ture/platform independent, but routine/operation spei�. Multiple implementationis obviously routine spei� as well, and is arhiteture dependent (assembly) orindependent (high level languages) depending on the implementation language.Therefore, our past e�orts have resulted in a AEOS-enabled library that is largelyplatform independent, but operation spei�. In our iFKO work, we generalize these13



tehniques using a third method of software adaptation, whih will be more platformspei�, but routine independent. In addition, to augment our present strengths,we believe it is important have a mehanism to exploit partiular arhiteturalfeatures not neessarily available in high level languages suh as ANSI C. Thiswas aomplished using an iterative and empirial ompiler, hereafter shortened toempirial ompiler.2.2.1 Summary of Software Adaptation MethodsIn summary, we use three tools in order to perform the required softwareadaptation (we hereafter treat multiple implementation and soure generation asseparate tehniques, even though they are sub-lasses of soure ode adaptation),and their strengths and weaknesses are summarized in Table 2.1. All three of thesemethodologies an be further augmented by parameterized adaptation.Table 2.1: Summary of software adaptation tehniquesADAPTATION PLATFORM ROUTINE OUTSIDE AUTOMATICMETHOD INDEP. INDEP. CONTRIB. ADAPTABILITYMultiple YES NO EASY LOWImplementationSoure YES NO DIFFICULT HIGHGeneratorEmpirial NO YES DIFFICULT INTERMEDIATECompilerWe have previously disussed all of the olumns of this table exept the last,automati adaptability. This olumn gives an indiation on how likely the methodis to provide good performane as the pakage is moved to di�ering arhitetures.Multiple implementation has the lowest adaptability, sine users rarely write imple-mentations for arhitetures they are not using. There is still some adaptability,and the loser the new arhiteture is to one of the ones previously seen, the better14



multiple implementation will perform. However, multiple implementation is verylikely to provide poor performane in the fae of fundamental arhitetural hange.In ontrast, a general soure generator, whih an be built to be very exible indeed,is very likely to be able to adapt to all but the most extreme hanges in arhiteture.The empirial ompiler is given an intermediate adaptability rating. In order touse the full apabilities of the ompiler, the bakend must be ported, whih is anobvious onstraint on adaptability. More spei�ally, an empirial ompiler shouldadapt well to varying arhitetures that implement a given ISA (i.e., it deliverspersistent optimization), but the bakend must be ported to all ISAs of interest inorder to adapt to varying ISAs.This table also provides the basis for understanding why all three mehanisms aredesirable. The soure generator is the most exible in overall adaptability, multipleimplementation allows for outside ontribution and hand tuning, and an empirialompiler provides the opportunity to tune a wider array of kernels.Beause an automated searh an try many more tehniques than even themost motivated hand-tuner, we believe iFKO will ultimately make hand-tuning onsupported platforms unneessary. While iFKO's transformation palette is inom-plete, however, multiple implementation (where iFKO is onsidered just anotherompiler) an be used to provide so-far unsupported optimizations. Further, multipleimplementation provides an easy way to quikly try various optimization strategies,in order to �nd transformations worth adding to iFKO.

15



CHAPTER 3FOUNDATIONAL WORK { ATLASATLAS is the projet from whih our urrent understanding of AEOS method-ologies grew, and now provides a test bed for their further development and testing.The initial goal of ATLAS was to provide a portably eÆient implementation ofthe BLAS[12, 13, 14, 15, 16℄. ATLAS now provides at least some level of supportfor all of the BLAS, and the �rst tentative extensions beyond this one API havebeen taken (for example, the most reent ATLAS release ontained some higher levelroutines from the LAPACK [17℄ API). Sine the BLAS represent the kernels whihare empirially tuned, this paper will onentrate on ATLAS's BLAS support.The BLAS (Basi Linear Algebra Subroutines) are building blok routines forperforming basi vetor and matrix operations. The BLAS are divided into threelevels: Level 1 BLAS do vetor-vetor operations, Level 2 BLAS do matrix-vetoroperations, and the Level 3 BLAS do matrix-matrix operations. The performanegains from optimized implementations is strongly a�eted by the level of the BLAS.In the Level 1 BLAS, no memory reuse is possible, and therefore many Level 1BLAS are ompletely memory-bound if they do not operate on in-ahe data. Forsome Level 1 BLAS, prefeth and related tehniques an still produe impressivespeedups; however, some operations are so memory-bound that the bus is alwayssaturated regardless of prefeth arrangements, so that out-of-ahe speedups are es-sentially unrealizable. Even in these routines, however, it is important to perform allappliable omputational optimizations, as inadequate omputational optimizationmay ause additional delay in issuing the ritial feth operations.16



In the Level 2 BLAS, memory bloking an allow for reuse of the vetor operands,but not, in general, of the matrix operand (the exeption is that some matrix types,for instane symmetri or Hermitian, an e�etively use eah matrix operand twie).Reduing the vetor operands from O(N2) to O(N) represents onsiderable savingsover naive ode, but due to the irreduible matrix osts, the memory load remainsof the same order (O(N2)) as the operation ount. Therefore, the Level 2 BLAS anenjoy modest speedup (say, roughly in the range of 10-300% for out-of-ahe timings),both beause memory bloking is e�etive, and beause the loops are omplex enoughthat more ompilers begin having problems doing the oating point optimizationsautomatially.Finally, the Level 3 BLAS an display orders of magnitude speedups. To simplifygreatly, these operations an be bloked suh that the natural O(N3) feth ostsbeome essentially O(N2). Further, the triply-nested loops used here are almostalways too omplex for the ompiler to �gure out without hints from the programmer(eg, some expliit loop unrolling), and thus the O(N3) omputation ost an begreatly optimized as well.The following setions disuss our handling of all BLAS levels in ATLAS. Beauseof the amount of e�ort required to provide high-quality AEOS software, it beomesritial to �nd the smallest possible kernels whih an be leveraged to supply allrequired funtionality. Thus, eah setion desribes the low level performane kernels,the tehniques used to reate them, and how these kernels are utilized to produe allrequired funtionality.3.1 Limits of ATLAS's ApproahAs previously mentioned, any AEOS approah is bound to have some restritionson its adaptability. ATLAS is no exeption, and the following assumptions need tohold true for ATLAS to perform well: 17



1. Adequate ANSI C ompiler: ATLAS is written entirely in ANSI/ISO C, withthe exeption of the FORTRAN 77 interfae odes (whih are simple wrapperswritten in ANSI FORTRAN 77, alling the C internals for omputation).ATLAS does not require an exellent ompiler, sine it uses soure generationto perform many optimizations typially done by ompilers. However, too-aggressive ompilers an transform already optimal ode into suboptimal ode,if ags do not exist to turn o� ertain ompiler optimizations. On the otherhand, ompilers without the ability to e�etively use the underlying ISA (eg.,inability to utilize registers, even when the C ode alls for them), will yieldpoor results as well.2. Hierarhial memory: ATLAS assumes a hierarhial memory is present. Bestresults will be obtained when both registers and at least an L1 data ahe arepresent.Of these two, an adequate C ompiler is the most important restrition. Evenlak of hierarhial memory would at worst turn some of ATLAS's bloking andregister usage into overheads. Even with this handiap, ATLAS's soure adaptationmay still yield enough performane to provide an adequate BLAS. If the ANSI Compiler is poor enough, however, this an result in the omputational portion ofthe algorithms being e�etively unoptimized. Sine the omputational optimizationsare the dominant ost of a bloked Level 3 BLAS, this an produe extremely poorresults. Note that multiple implementation, with its support for assembly as well asANSI C, an be used to get around even this restrition. If the mahine in questiondoes not share an ISA with a previously seen mahine, however, we will be bak tothe familiar problem of having optimization wait on hand-tuning.
18



3.2 AEOS Tuning for the Level 3 BLAS in ATLASAll thirty routines of the Level 3 BLAS (for eah real data type there are sixLevel 3 BLAS, and nine routines for eah omplex data type) an be eÆientlyimplemented given an eÆient matrix-matrix multiply (for details on how this isdone, [10℄ disusses ATLAS's partiular implementation, and other approahes aregiven in [18, 19, 20, 21℄). Thus the main performane kernel is general matrixmatrix multiply (hereafter shortened to matmul, or the BLAS matmul routine name,GEMM). As subsequent setions show, however, GEMM itself is further narroweddown to an even smaller kernel before soure generation takes plae.The BLAS supply a routine GEMM, whih performs a general matrix-matrixmultipliation of the form C  �op(A)op(B) + �C, where op(X) = X or XT . C isan M � N matrix, and op(A) and op(B) are matries of size M � K and K � N ,respetively.In general, the arrays A, B, and C will be too large to �t into ahe. Using ablok-partitioned algorithm for matrix multiply, it is still possible to arrange for theoperations to be performed with data for the most part in ahe by dividing thematrix into bloks. For additional details see [22℄.Using this BLAS routine, the rest of the Level 3 BLAS an be eÆientlysupported, so GEMM is the Level 3 BLAS omputational kernel. In ATLAS, thisBLAS-level GEMM is written as a series of high level odes whih use ompile- orrun-time variables to adapt to ahe levels. These high-level odes get most of theiradaptation from a lower-level kernel (disussed in Setion 3.2.2), whih is adaptedto the arhiteture using parameterized adaptation, multiple implementation, andsoure generation.
19



3.2.1 Building the General Matrix Multiply from the L1 Cahe-ontainedMultiplyThis setion desribes the non-generated ode, whose only variane aross plat-forms ome from parameterization. These odes are used to form the BLAS's generalmatrix-matrix multiply using a L1 ahe-ontained matmul (hereafter referred to asthe L1 matmul).Setion 3.2.2 desribes the L1 matmul and its generator in detail. For our presentdisussion, it is enough to know that ATLAS has at its disposal highly optimizedroutines for doing matrix multiplies whose dimensions are hosen suh that ahebloking is not required (i.e., the hand-written ode disussed in this setion dealswith ahe bloking; the generated ode assumes things �t into ahe).When the user alls GEMM, ATLAS must deide whether the problem is largeenough to tolerate opying the input matries A and B. If the matries are largeenough to support this O(N2) overhead, ATLAS will opy A and B into blok-majorformat. ATLAS's blok-major format breaks up the input matries into ontiguousbloks of a �xed size NB, where NB is hosen as disussed in Setion 3.2.2 in orderto maximize L1 ahe reuse. One in blok-major format, the bloks are ontiguous,whih eliminates TLB problems, minimizes ahe thrashing and maximizes aheline use. It also allows ATLAS to apply alpha (if alpha is not already one) to thesmaller of A or B, thus minimizing this ost as well. Finally, the pakage an use theopy to transform the problem to a partiular transpose setting, whih for load andindexing optimization, is set so A is opied to transposed form, and B is in normal(non-transposed) form. This means our L1-ahe ontained ode is of the formC  ATB, C  ATB + C, and C  ATB + �C, where all dimensions, inludingthe non-ontiguous stride, are known to be NB. Knowing all of the dimensions of theloops allows for arbitrary unrollings (i.e., if the instrution ahe ould support it,ATLAS ould unroll all loops ompletely, so that the L1 ahe-ontained multiplyhad no loops at all). Further, when the soure generator knows the leading dimension20



of the matries (i.e., the row stride), all indexing an be done expliitly, without theneed for expensive integer or pointer omputations.If the matries are too small, the O(N2) data opy ost an atually dominatethe algorithm ost, even though the omputation ost is O(N3). For these matries,ATLAS will all an L1 matmul whih operates on non-opied matries (i.e. diretlyon the user's operands). The non-opy L1 matmul will generally not be as eÆientas the opy L1 matmul; at this problem size the main performane bottlenek ismemory, and so the lak of omputational eÆieny (mainly due to the additionalpointer arithmeti required in order to support the user-supplied leading dimension)will likely only show up on in-ahe operations.The hoie of when a opy is ditated and when it is prohibitively expensive is anAEOS parameter; it turns out that this rossover point depends strongly both on thepartiular arhiteture, the matmul kernel seleted, and the shape of the operands(matrix shape e�etively sets limits on whih matrix dimensions an enjoy ahereuse). To handle this problem, ATLAS simply ompares the speed of the opy andnon-opy L1 matmul for variously shaped matries, varying the problem size untilthe opying provides a speedup (on some platforms, and with some shapes, this pointis never reahed). These rossover points are determined at install time, and thenused to make this deision at runtime. Beause it is the dominant ase, this paperdesribes only the opied matmul algorithm in detail.There are presently two algorithms for performing the general matrix-matrixmultiply. The two algorithms orrespond to di�erent orderings of the loops; i.e.,is the outer loop over M (over the rows of A), and thus the seond loop is over N(over the olumns of B), or is this order reversed. The dimension ommon to A andB (i.e., the K loop) is urrently always the innermost loop.Let us de�ne the input matrix looped over by the outer loop as the outer oroutermost matrix; the other input matrix will therefore be the inner or innermostmatrix. Both algorithms have the option of writing the result of the L1 matmul21



diretly to the matrix, or to an output temporary Ĉ. The advantages to writing toĈ rather than C are:1. Address alignment may be ontrolled (i.e., the ode an ensure during themallo that Ĉ begins on a ahe-line boundary).2. Data is ontiguous, eliminating possibility of unneessary ahe-thrashing dueto ill-hosen leading dimension (assuming a non-write-through ahe).The disadvantage of using Ĉ is that an additional write to C is required afterthe L1 matmul operations have ompleted. This ost is minimal if GEMM makesmany alls to the L1 matmul (eah of whih writes to either C or Ĉ), but an addsigni�antly to the overhead when this is not the ase. In partiular, an importantappliation of matrix multiply is the rank-K update, where the write to the outputmatrix C an be a signi�ant portion of the ost of the algorithm. For the rank-Kupdate, writing to Ĉ essentially doubles the write ost, whih is learly unaeptable.The routines therefore employ a heuristi to determine if the number of times theL1 matmul will be alled in the K loop is large enough to justify using Ĉ, otherwisethe answer is written diretly to C.Regardless of whih matrix is outermost, both algorithms try to alloate enoughspae to store the NB�NB output temporary, Ĉ (if needed), 1 panel of the outermostmatrix, and the entire inner matrix. If this fails, the algorithms attempt to alloatesmaller work arrays, the smallest aeptable workspae being enough spae to holdĈ, and 1 panel from both A and B. The minimum workspae required by theseroutines is therefore 2KNB, if writing diretly to C, and NB2+2KNB if not. If thisamount of workspae annot be alloated, the previously mentioned non-opy odeis alled instead.If there is enough spae to opy the entire innermost matrix, there are severalbene�ts to doing so:� Eah matrix is opied only one time.22



� If all of the workspaes �t into L2 ahe, the algorithm enjoys omplete L2reuse on the innermost matrix.� Data opying is limited to the outermost loop, proteting the inner loops fromunneeded ahe thrashing.Of ourse, even if the alloation sueeds, using too muh memory might result inunneeded swapping. Therefore, the user an set a maximal amount of workspae thatATLAS is allowed to have, and ATLAS will not try to opy the innermost matrix ifthis maximum workspae requirement is exeeded.If enough spae for a opy of the entire innermost matrix is not alloated, theinnermost matrix will be entirely opied for eah panel of the outermost matrix (i.e.,if A is our outermost matrix, ATLAS will opy B dM=NBe times). Further, ourusable L2 ahe is redued (the opy of a panel of the innermost matrix will take uptwie the panel's size in L2 ahe; the same is true of the outermost panel opy, butthat will only be seen the �rst time through the seondary loop).Regardless of whih looping struture or alloation proedure used, the inner loopis always along K. Therefore, the operation done in the inner loop by both routinesis the same, and it is shown in Figure 3.1.
C3;2 A3;1A3;2M NC  M KA N K� BB1;2B2;2B3;2Figure 3.1: One step of matrix-matrix multiplyIf GEMM is writing to Ĉ, the following ations are performed in order to alulatethe NB � NB blok Ci;j, where i and j are in the range 0 � i < dM=NBe,0 � j < dN=NBe: 23



1. Call L1 matmul of the form C  AB to multiply blok 0 of the row panel i ofA with blok 0 of the olumn panel j of B.2. Call L1 matmul of form C  AB + C to multiply blok k of the row panel iof A with blok k of the olumn panel j of B, 8k; 1 � k < dK=NBe. The L1matmul is performing the operation C  AB + C, so as expeted this resultsin multiplying the row panel of A with the olumn panel of B.3. Ĉ now holds the produt of the row panel of A with the olumn panel of B, soATLAS now performs the blok write-bak operation Ci;j  Ĉi;j + �Ci;j.If ATLAS is writing diretly to C, this ation beomes:1. Call L1 matmul of the orret form based on user-de�ned � (eg. if � == �1,use C  AB � C) to multiply blok 0 of the row panel i of A with blok 0 ofthe olumn panel j of B.2. Call L1 matmul of form C  AB + C to multiply blok k of the row panel iof A with blok k of the olumn panel j of B, 8k; 1 � k < dK=NBe.Building from this inner loop, ATLAS has di�ering loop orderings whih providetwo algorithms for the full matmul. Figures 3.2 and 3.3 give the pseudo-ode forthese two algorithms, assuming the write is diretly to C (writing to Ĉ is onlytrivially di�erent). For simpliity, this pseudo-ode skips the leanup neessary forases where dimensions do not evenly divide NB. The matrix opies are shown as ifoming from the notranspose, notranspose ase. If they do not, only the array aesson the opy hanges.
24



work = alloate((M+NB)*K)if (alloated(work)) thenPARTIAL_MATRIX = .FALSE.opy A into blok major formatelsePARTIAL_MATRIX = .TRUE.work = alloate(NB*2*K)if (.NOT.alloated(work)) all small_ase_odereturnend ifNBNB = NB * NBdo j = 1, N, NBBwork = ALPHA*B(:,J:J+NB-1); Bwork in blok major formatdo i = 1, M, NBif (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in blok major formatON_CHIP_MATMUL(Awork(1:NB*NB), Bwork(1:NB*NB), BETA, C(i:i+NB-1, j:j+NB-1), ld)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, C(i:i+NB-1, j:j+NB-1), ld)end doend doend doFigure 3.2: General matrix multipliation with A as innermost matrixwork = alloate(N*K + NB*K)if (alloated(work)) thenPARTIAL_MATRIX = .FALSE.opy B into blok major formatelsePARTIAL_MATRIX = .TRUE.work = alloate(NB*2*K)if (.NOT.alloated(work)) all small_ase_odereturnend ifNBNB = NB * NBdo i = 1, M, NBAwork = ALPHA*A(i:i+NB-1,:); Awork in blok major formatdo j = 1, N, NBif (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in blok major formatON_CHIP_MATMUL(Awork(1:NBNB), Bwork(1:NBNB), BETA,Cwork(i:i+NB-1, j:j+NB-1), ld)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, Cwork(i:i+NB-1, j:j+NB-1), ld)end doend doend doFigure 3.3: General matrix multipliation with B as innermost matrix25



3.2.1.1 Choosing the Corret Looping StrutureWhen the all to the matrix multiply is made, the routine must deide whihloop struture to all (i.e., whih matrix to put as outermost). If the matries areof di�erent size, L2 ahe reuse an be enouraged by deiding the looping struturebased on the following riteria:1. If either matrix will �t ompletely into the usable L2 ahe, put it as theinnermost matrix (algorithm gets L2 ahe reuse on the entire inner matrix).2. If neither matrix �ts ompletely into L2 ahe, put largest matrix as theoutermost matrix (algorithm gets L2 ahe reuse on the panel of the outermatrix, if it �ts in ahe, and memory usage is minimized).The size of the usable L2 ahe is not diretly known by ATLAS (although theAEOS variable CaheEdge desribed in Setion 3.2.1.2 will often serve the samepurpose) and so these riteria are not presently used for this seletion. Rather, inorder to minimize workspae, and maximize the hane that ondition one aboveours, the smallest matrix will always be used as the innermost matrix. If bothmatries are the same size, A is seleted as the innermost matrix (this implies abetter aess pattern for C).3.2.1.2 Bloking for Higher Levels of CaheNote that this paper de�nes the Level 1 (L1) ahe as the \lowest" level of ahe:the one losest to the proessor. Subsequent levels are \higher": further from theproessor and thus usually larger and slower. Typially, L1 ahes are relatively small(eg., 8-32KB), employ least reently used replaement poliies, have separate dataand instrution ahes, and are often non-assoiative and write-through. Higherlevels of ahe are more often write-bak, with varying degrees of assoiativity,di�ering replaement polies, and often ontain both instrution and data.ATLAS detets the atual size of the L1 data ahe. However, due to the widevariane in high level ahe behaviors, in partiular the diÆulty of determining how26



muh of suh ahes are usable after line onits and data/instrution partitioningis done, ATLAS does not presently detet and use a expliit Level 2 ahe size assuh. Rather, ATLAS employs a empirially determined value alled CaheEdge,whih represents the amount of the ahe that is usable by ATLAS for its partiularkind of bloking.Expliit ahe bloking for the seleted level of ahe is only required when theahe size is insuÆient to hold the two input panels and the NB � NB piee ofC. This means that users will have optimal results for many problem sizes withoutemploying CaheEdge. This is expressed formally below. Notie that onditions 1and 2 below do not require expliit ahe bloking, so the user gets this result evenif CaheEdge is not set.Therefore, the expliit ahe bloking strategy disussed in ase 4 below assumesthat the panels of A and B overow a partiular level of ahe. In this ase, theproblem an be easily partitioned along the K dimension of the input matriessuh that the panels of the partitioned matries Ap and Bp will �t into the ahe.This means that we get ahe reuse on the input matries, at the ost of writing Cadditional times.It is easily shown that the footprint of the algorithm omputing a NB�NB setionof C in ahe is roughly 2KNB+NB2, where 2KNB stores the panels from A and B,and the setion of C is of size NB2. If the above expression is set equal to CaheEdge,and solved for K, it will yield the maximal K (all this quantity Km) whih will,assuming the inner matrix was opied up front, allow for reusing the outer matrixpanel N=NB times. This partitioning transforms the original matrix multiply intodK=Kme rank-Km updates.Sine the orret value of CaheEdge is not known a priori, ATLAS empiriallydetermines it at install time by using large matries (whose panel sizes an beexpeted to overow the ahe, and thus bring up the need for expliit, rather thanimpliit, L2 or higher bloking), and simply trying various settings. Extremely large27



ahes will probably not be deteted in this manner (i.e., if the user annot alloateenough memory to ause a panel to overow the ahe, the large ahe will not bedeteted), and some higher-level ahes provide relatively small bene�ts and so maynot be deteted, in whih ase CaheEdge is set to a 4 MB (this is large enough notto depress performane even for very large problems on systems without L2 ahes,and it results in less memory usage).Assuming that matrix A is the innermost matrix, and we are disussing ahe levelL, of size SL, and that main memory is lassi�ed as a level of \ahe" greater thanL, there are four possible states (depending on ahe and problem size, and whetherCaheEdge is set) whih ATLAS may be in. These states and their assoiated memoryaess osts are:1. If the entire inner matrix, a panel of the outer matrix, and the NB�NB setionof C �ts into the ahe (eg. MK +KNB +NB2 � SL):� K(M +N)+MN reads (of A, B and C, respetively ) from higher level(s)ahe� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahereeive only the �nal MN writes2. If the ahe annot satisfy the memory requirements of 1, it may still be largeenough to aommodate the two ative input panels, along with the relevantsetion of C(eg., (2KNB +NB2 � SL AND ATLAS opies the entire inner matrix)OR (3KNB + NB2 � SL AND ATLAS opies a panel of the inner matrix inthe inner loop, thus doubling the inner panel's footprint in the ahe)):� NK + MNKNB +MN reads (B, A and C, respetively) from higher level(s)of ahe 28



� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahereeive only the �nal MN writes3. If the ahe is too small for either of the previous ases to hold true, (eg.,2KNB + NB2 > SL) and CaheEdge is not set, and thus no expliit level Lbloking is done, the memory aess beomes:� 2MNKNB +MN reads (A, B, and C) from higher level(s) of ahe� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahereeive only the �nal MN writes4. Finally, if the �rst two ases do not apply (eg., 2KNB + NB2 > SL), butCaheEdge is set to SL, ATLAS an perform ahe bloking to hange thememory aess from that given in 3 to:� NK + MNKNB + MNKKm (B, A, C) reads from higher level(s) of ahe� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahereeive at most MNKKm writesAs mentioned above, ase 4 is only used if CaheEdge has been set, and ases 1 and 2do not apply (i.e, it is used as an alternative to ase 3). At �rst glane hanging ase3 to 4 may appear to be a poor bargain indeed, partiularly sine writes are generallymore expensive than reads. There are, however, several mitigating fators that makethis bloking nonetheless worthwhile. If the ahe is write-through, ase 4 does notinrease writes over ase 3, so it is a lear win. Seond, ATLAS also does not allowKm < NB, and in many ases Km � NB, so the savings are well worth having. Withrespet to the expense of writes, the writes are not ushed immediately; This fathas two important onsequenes:1. The ahe an shedule the write-bak during times when the algorithm is notusing the bus. 29



2. Writes may be written in large bursts, whih signi�antly redues bus traÆ;this an tremendously optimize writing on some systems.In pratie, ase 4 has been shown to be at least roughly as good as ase 3 onall platforms. The amount of atual speedup varies widely depending on problemsize and arhiteture. On some systems the speedup is negligible; on others it anbe signi�ant: for instane, it an make up to 20% di�erene on DEC 21164 basedsystems (whih have three layers of ahe). Note that this 20% improvement ismerely the di�erene between ases 3 and 4, not between ATLAS and some naiveimplementation, for instane.The analysis given above may be applied to any ahe level greater than 1; it isnot for level 2 ahes only. However, this analysis is aurate only for the algorithmused by ATLAS in a partiular setion of ode, so it is not possible to reur in orderto perform expliit ahe bloking for arbitrary levels of ahe. To put this anotherway, ATLAS expliitly bloks for L1, and only one other higher level ahe. If anarhiteture has 3 levels of ahe, ATLAS an expliitly blok for L1 and L2, or L1and L3, but not all three.If ATLAS performs expliit ahe bloking for level L, that does not mean thatlevel L + 1 would be useless; depending on ahe size and replaement poliy, levelL + 1 may still save extra read and writes to main memory through impliit ahebloking.3.2.2 L1 Cahe-ontained MatmulThe only soure generator required to support the Level 3 BLAS produesa L1 ahe-ontained matmul. The operation supported by the kernel is still:C  �op(A)op(B)+�C, where op(X) = X or XT . C is anM�N matrix, and op(A)and op(B) are matries of size M � K and K � N , respetively. However, by L1ahe-ontained we mean that the dimensions of its operands have been hosen suh30



that Level 1 ahe reuse is maximized (see below for more details). Therefore, thegenerated ode bloks for the L1 ahe using the dimensions of its operand matries(M, N, and K), whih, when not in the leanup setion of the algorithm, are allknown to be NB.In a multiply designed for L1 ahe reuse, one of the input matries is broughtompletely into the L1 ahe, and is then reused in looping over the rows or olumnsof the other input matrix. The present ode brings in the matrix A, and loops overthe olumns of B; this was an arbitrary hoie, and there is no theoretial reason itwould be superior to bringing in B and looping over the rows of A.There is a ommon misoneption that ahe reuse is optimized when both inputmatries, or all three matries, �t into L1 ahe. In fat, the only win in �tting allthree matries into L1 ahe is that it is possible, assuming the ahe is write-bak,to save the ost of pushing previously used setions of C bak to higher levels ofmemory. Often, however, the L1 ahe is write-through, while higher levels are not.If this is the ase, there is no way to minimize the write ost, so keeping all threematries in L1 does not result in greater ahe reuse.Therefore, ignoring the write ost, maximal ahe reuse for our ase is ahievedwhen all of A �ts into ahe, with room for at least two olumns of B and 1 aheline of C. Only one olumn of B is atually aessed at a time in this senario; havingenough storage for two olumns assures that the old olumn will be the least reentlyused data when the ahe overows, thus making ertain that all of A is kept in plae(this obviously assumes the ahe replaement poliy is least reently used).While ahe reuse an aount for a great amount of the overall performane win,it is obviously not the only fator. For the L1 matmul, other relevant fators are:� instrution ahe overow� oating point instrution ordering� loop overhead 31



� exposure of possible parallelism� the number of outstanding ahe misses the hardware an handle beforeexeution is bloked3.2.2.1 Instrution Cahe OverowInstrutions are ahed, and it is therefore important to �t the L1 matmul'sinstrutions into the L1 instrution ahe. This means optimizations that generatemassive amounts of instrution bloat (ompletely unrolling all three loops, forinstane) annot be employed.3.2.2.2 Floating Point Instrution OrderingWhen this paper disusses oating point instrution ordering, it will usually bein referene to software pipelining. Most modern arhitetures possess pipelinedoating point units. This means that the results of an operation will not beavailable for use until X yles later, where X is the number of stages in theoating point pipe (typially somewhere around 3-8). Remember that our L1 matmulis of the form C  ATB + C; individual statements would then naturally besome variant of C[X℄ += A[Y℄ * B[Z℄. If the arhiteture does not possess a fusedmultiply/add unit, this an ause an unneessary exeution stall. The operationregister = A[Y℄ * B[Z℄ is issued to the oating point unit, and the add annotbe started until the result of this omputation is available, X yles later. Sine theadd operation is not started until the multiply �nishes, the oating point pipe is notutilized.The solution is to remove this dependene by separating the multiply and add,and issuing unrelated instrutions between them (requiring the loop to be skewed,sine the multiply must now be issued X yles before the add, whih omes Xyles before the store). This reordering of operations an be done in hardware(out-of-order exeution) or by the ompiler, but this will oftentimes generate ode32



that is not as eÆient as doing it expliitly. More importantly, not all platforms havethis apability (for example, g on a Pentium), and in this ase the performanewin an be large.3.2.2.3 Reduing Loop OverheadThe primary method of reduing loop overhead is through loop unrolling. If it isdesirable to redue loop overhead without hanging the order of omputations, onemust unroll the loop over the dimension ommon to A and B (i.e., unroll the K loop).Outer loop unrolling, with its assoiated dupliation of the inner loop results in verylittle overhead redution unless it is ombined with fusing the repliated innermostloops. This tehnique is known as unroll-and-jam [23℄, and it hanges the memoryreferene pattern (and provides muh greater opportunity for register bloking).3.2.2.4 Exposing ParallelismMany modern arhitetures have multiple oating point units. There are twobarriers to ahieving perfet parallel speedup with oating point omputations insuh a ase. The �rst is a hardware limitation, and therefore out of our hands: Allof the oating point units will need to aess memory, and thus, for perfet parallelspeedup, the memory feth will usually also need to operate in parallel.The seond prerequisite is that the ompiler reognize opportunities for paral-lelization, and this is amenable to software ontrol. The �x for this is the lassialone employed in suh ases, namely through unrolling the M and/or N loops,and hoosing the orret register alloation (using salar replaement and salarexpansion [24℄) so that parallel operations are not onstrained by false dependenies.3.2.2.5 Finding the Corret Number of Cahe MissesAny operand that is not already in a register must be fethed from memory.If that operand is not in the L1 ahe, it must be fethed from further up in thememory hierarhy, possibly resulting in large delays in exeution. The number of33



ahe misses whih an be issued simultaneously without bloking exeution variesbetween arhitetures. To minimize memory osts, the maximal number of ahemisses should be issued eah yle, until all memory is in ahe or used. In theory,one an permute the matrix multiply to ensure that this is true. In pratie, this�ne a level of ontrol would be diÆult to ensure (there would be problems withoverowing the instrution ahe, and the generation of suh a preise instrutionsequene, for instane). So the method ATLAS uses to ontrol the ahe-hit ratio isthe more lassial one of M and N loop unrolling.3.2.2.6 Soure Generator ParametersThe soure generator is heavily parameterized in order to allow for exibility inall of the areas. In partiular, the options are:� Support for A and/or B being either standard form, or stored in transposedform� Register bloking of \outer produt" form (the most optimal form of matmulregister bloking). Varying the register bloking parameters provides manydi�erent implementations of matmul. The register bloking parameters are:{ ar : registers used for elements of A,{ br : registers used for elements of BOuter produt register bloking then implies that ar�br registers are then usedto blok the elements of C. Thus, if Nr is the maximal number of registersdisovered during the oating point unit probe, the searh needs to try all arand br that satisfy arbr + ar + br � Nr.� Loop unrollings: There are three loops involved in matmul, one over eah ofthe provided dimensions (M, N and K), eah of whih an have its assoiatedunrolling fator (mu; nu; ku). The M and N unrolling fators are restrited to34



varying with the assoiated register bloking (ar and br, respetively), but theK-loop may be unrolled to any depth (i.e., one ar is seleted, mu is set as well,but ku is an independent variable).� Choie of oating point instrution:{ ombined multiply/add with assoiated salar expansion{ separate multiply and add instrutions, with assoiated software pipelin-ing and salar expansion� User hoie of utilizing generation-time onstant or run-time variables for allloop dimensions (M, N, and K; for non-leanup opy L1 matmul, M = N =K = NB). For eah dimension that is known at generation, the followingoptimizations are made:{ If unrolling meets or exeeds the dimension, no atual loop is generated(no need for loop if fully unrolled).{ If unrolling is greater than one, orret leanup an be generated withoutusing an if (thus avoiding branhing within the loop).Even if a given dimension is a run-time variable, generator an be told toassume partiular, no, or general-ase leanup for arbitrary unrolling.� For eah operand array, the leading dimension an be a run-time variable ora generation-time onstant (for example, it is known to be NB for opied L1matmul), with assoiated savings in indexing omputations� For eah operand array, the leading dimension an have a stride (stride of 1 ismost ommon, but stride of 2 an be used to support omplex arithmeti).� The generator an eliminate unneessary arithmeti by generating ode withspeial alpha (1, -1, and variable) and beta (0, 1, -1, and variable) ases. In35



addition, there is a speial ase for when alpha and beta are both variables, butit is safe to divide beta by alpha (this an save multiple appliations of alpha).� Various feth patterns for loading A and B registers3.2.2.7 Putting It All Together { Outline of the Searh HeuristiIt is obvious that with this many interating e�ets, it would be diÆult, if notimpossible to predit a priori the best bloking fator, loop unrolling et. ATLAS'smatmul kernel searh is outlined in Figure 3.4.ROUTINEDEP
Master Searh - Optimized matmul kernel? ?Mult. Imp.Searh (linear)? ? Soure Gen.Searh (heur.)? ?MultipleImplementation - ? ??

Tester/Timer
?

SoureGenerator
?

ROUTIND
PLATINDPLATDEP

ANSI CCompiler?Assembler & Linker?TimerExeutable -
6

� --

Figure 3.4: ATLAS's empirial searh for the Level 3 BLASOur master searh �rst alls the generator searh, whih uses a heuristi toprobe the essentially in�nite optimization spae allowed by the soure generator,and returns the parameters (eg., bloking fator, unrollings, et) of the best asefound. The master searh then alls the multiple implementation searh, whih36



simply times eah hand-written matmul kernel in turn, returning the best. The bestperforming (generated, hand-tuned) kernel is then taken as our system-spei� L1ahe-ontained kernel.Both multiple implementation and generator searhes pass the requisite kernelthrough a timing step, where the kernel is linked with a AEOS-quality timer, andexeuted on the atual hardware. One the searh ompletes, the hosen kernel isthen tested to ensure it is giving orret results, as a simple sanity test to ath errorsin ompilation or kernels.For both searhes, our approah takes in some initial information suh as L1 ahesize, types of instrutions available, types of assembly supported, et., to allow for anup-front winnowing of the searh spae. The timers are strutured so that operationshave a large granularity, leading to fairly repeatable results even on non-dediatedmahines. All results are stored in �les, so that subsequent searhes will not repeatthe same experiments, allowing searhes to build on previously obtained data. Thisalso means that if a searh is interrupted (for instane due to a mahine failure),previously run ases will not need to be re-timed. A typial install takes from 1 to 2hours for eah preision.During installation, ATLAS runs some tests to determine what assembly di-alet(s) an arhiteture supports. This information is then used during the multipleimplementation searh to avoid long error reports as ontributed assembly kernelsfail to ompile on unsupported platforms.The �rst step of the master searh probes for the size of the L1 ahe. This isdone by performing a �xed number of memory referenes, while suessively reduingthe amount of memory addressed. The most signi�ant gap between timings forsuessive memory sizes is delared to mark the L1 ahe boundary. For speed, onlypowers of 2 are examined. This means that a 48K ahe would probably be detetedas a 32K ahe, for instane. We have not found this problem severe enough to justify37



the additional installation time it would take to remedy it. With this information,both searhes have a good bound on the bloking fators to try.Next, ATLAS probes to determine information regarding the oating point unitsof the platform. First ATLAS needs to understand whether the arhiteture possessesa ombined muladd unit, or if independent multiply and add pipes are required.To do this, ATLAS generates simple register-to-register ode whih performs therequired multiply-add using a ombined muladd and separate multiply and addpipes. Both variants are tried using ode whih implies various pipeline lengths.ATLAS then repliates the best of these odes in suh a way that inreasing numbersof independent registers are required, until performane drops o� suÆiently todemonstrate that the available oating point registers have been exeeded. Withthis data in hand, ATLAS is ready to begin atual L1 matmul timings.Further details on the multiple implementation and generator searhes are pro-vided in the following setions. When both searhes are ompleted, the mastersearh designates the fastest of these two kernels (generated and hand-written) asthe arhiteture-spei� kernel for the target mahine.3.2.2.8 Soure Generator SearhThe general timings done by the master searh provide the generator searh withthe L1 ahe size, the kind of instrutions to issue (MAC or separate multiply andadd), the pipeline depth (for software pipelining and assoiated salar expansion) anda rough estimate of the number of available oating point registers. This informationmay then be used as onstraints on the searh spae.The size of the L1 ahe provides the searh with an upper bound on the blokingfators to examine. Knowing the type of oating point instrution the underlyinghardware needs uts the ases to be searhed in half, while the maximum number ofregisters implies what register blokings are feasible, whih in turn ditates the Mand/orN loop unrollings to perform. The pipeline length provides an upper bound on38



the amount of software pipelining and assoiated salar expansion to perform. Thus,the matmul searh (and indeed many other searhes) is shortened onsiderably bydoing these general arhiteture probes.In pratie, K loop unrollings of 1 or K have tended to produe the best results.Thus ATLAS times only these two K loop unrolling during our initial searh. Thisis done to redue the length of install time. At the end of the install proess, ATLASattempts to ensure optimalK unrollings have not been missed by trying a wide rangeofK loop unrolling fators with the best ase ode generated for the unrollings fatorsof 1 or K.The theoretially optimal register bloking in terms of maximizing ops/load arethe near-square ases that satisfy the aforementioned equation arbr + ar + br � Nr(see Setion 3.2.2.6 for details). Sine the ATLAS generator requires that ar = muand br = nu, these M and N loop unrollings are then used to �nd an initial blokingfator. The initial bloking fator is found by simply using the above disussed loopunrollings, and seeing whih of the bloking fators appropriate to the deteted L1ahe size produe the best result.With this initial bloking fator, whih instrutions set to use (muladd or separatemultiply and add), and a guess as to pipeline length, the searh routine loops overall M and N loop unrollings possible with the given number of registers. One anoptimal unrolling has been found, ATLAS again tries all bloking fators, and variouslateny and K-loop unrolling fators, and hooses the best.3.2.2.9 Multiple Implementation SearhAfter the generated searh is found, we perform a linear searh on the availablehand-tuned matmul routines. Many of these routines allow the bloking fator to beompile- or run-time onstants, and so to redue the searh time, bloking fators asnear as possible to the one hosen by the generator searh will be used (hand-writtenmatmul routines whih take variable bloking fators are allowed to restrit the range39



and multiples of the bloking fator, so in these ases we hoose the bloking fatorlosest to that found in the generator searh). When the best ase is disovered, if itallows for multiple bloking fators, the entire NB searh spae is heked with thespei� kernel, to ensure that the hand-written ode is using its best bloking fator.3.2.3 ATLAS performaneFigure 3.5 shows the performane of double preision matrix multiply of order500 aross multiple arhitetures. These timings are now a ouple of years old, butspot timings on various arhitetures has shown that the overall trend is unhanged.The matrix size of 500 is simply a midrange problem size with no partiular speialproperties; it is not the best problem size in terms of ATLAS performane. AsATLAS is not the main fous of this dissertation, we omit more omplete timingresults (see [7, 8, 10℄ for more in-depth timings).This graph ompares performane of ATLAS, vendor, and the Fortran 77 refereneBLAS. The referene BLAS are naive implementations of the standard, written in themost straightforward way possible and therefore are not optimized for any partiularplatform. The vendor BLAS are libraries supplied by individual hardware vendors,and an be taken to represent the apex of hand-optimization for a given platform.Not all platforms possess vendor-supplied BLAS (eg., AMD Athlon), and on theseplatforms ATLAS an only be ompared to the referene BLAS.The �rst thing to notie here is the large performane gap between the refereneimplementations and the tuned odes. For instane, on the Athlon platform, we seethat there is urrently no vendor-supplied BLAS, and that the referene BLAS runmore than �fteen times slower than the ATLAS ode. This gap may help supply anintuitive idea of the importane of optimized libraries to sienti� omputing.The next point of interest is the onsisteny of ATLAS's performane aross all ofthese arhitetures. On some platforms ATLAS is somewhat faster than the vendor,and on others ATLAS loses somewhat, but it is ompetitive everywhere, and in all40



ases, we see order-of-magnitude speedups over ode that relies ompletely on theompiler for optimization. This is all the more impressive when one onsiders thata vendor library may have a history almost as long as that of the ompany, whileATLAS tunes itself in only a ouple of hours.
0.0

200.0

400.0

600.0

800.0

1000.0

AMD Athlon-10
00

DEC ev56-53
3

DEC ev6-
500

HP9000/735/135

IB
M P

PC604-112

IB
M P

ower2-160

IB
M P

ower3-200

Pentiu
m Pro-200

Pentiu
m II-2

66

Pentiu
m III-

550

SGI R
10000ip28-200

SGI R
12000ip30-270

Sun U
ltra

Sparc2-200

Architectures

M
FL

O
PS

Vendor BLAS
ATLAS BLAS
F77 BLAS

Figure 3.5: Performane of double preision matrix multiply arossvarious arhitetures3.3 AEOS Framework for the Level 1 and 2 BLAS inATLASATLAS presently uses multiple implementation (augmented by parameterization)to tune both the Level 1 and Level 2 BLAS. Therefore Figure 3.6 shows the searhframework for both the Level 1 and Level 2 BLAS levels.We give a brief overview of the details of tuning eah level in turn below.3.4 Optimizing the Level 2 BLASThe Level 2 BLAS perform matrix-vetor operations of various sorts. All routineshave at most one matrix operand, and one or two vetor operands. In order toonentrate on the iFKO work, spae onsiderations rule out overing ATLAS'sLevel 2 BLAS implementation in any real detail. Therefore, this setion will explainthe theoretial underpinnings of all Level 2 optimizations: the basi memory aess41



ROUTINEDEP
Mult. Imp.Searh (linear) - Optimizedkernel? ?MultipleImplementation -

??

Tester/Timer
?

ROUTIND
PLATINDPLATDEP

ANSI CCompiler?Assembler & Linker?TimerExeutable -
6

�-

Figure 3.6: Present ATLAS empirial searh for the Level 1 & 2 BLAStehniques that allowing the vetor operand(s) main memory aess to be reduedfrom O(N2) to O(N). We then desribe, in the broadest possible strokes, how theseand other optimizations are used by ATLAS.3.4.1 Register and Cahe Bloking for the Level 2 BLASIf no register or ahe bloking were done, the Level 2 operations would requireO(N2) data aess on eah operand. With the appropriate register and ahebloking, the vetor operands' aess an be redued to O(N). Obviously enough, theO(N2) matrix aess annot be redued, sine the matrix is atually of size O(N2).To understand this in detail, we look at the matrix vetor multiply operation. Inthe BLAS, the matrix-vetor multiply routine performs y  �op(A)x + �y, whereop(A) = A, AH or AT and A has M rows and N olumns. For our disussion, it isenough to examine the ase y  Ax + y, where A is a square matrix of size N .42



This operation may be summarized as PNi=1(yi = PNj=1Aijxj + yi). From thisequation it is lear that alulating an element of y requires reading the entireN -length vetor x, reading and writing the ith element of y N times, and readingthe entire N length row i of the matrix A. Sine there are N elements of y, it followsthat this algorithm requires N2 reads of A, N2 reads of x, N2 reads and N2 writes ofy. Just as with the Level 3 operations, the number of referenes annot be hangedwithout hanging the de�nition of the operation, but by using appropriate ahe andregister blokings, the number of the referenes that must be satis�ed out of mainmemory or higher levels of ahe an be drastially redued.The minimum number of main memory referenes required to do this operationresults in aessing eah element from main memory only one, whih redues theaesses from (3N2 reads + N2 writes) to (N2 +N reads + N writes).As an interesting aside, even this trivial analysis is suÆient to understand thelarge performane advantage enjoyed by the Level 3 over the Level 2 BLAS routines.All Level 2 BLAS require O(N2) FLOPs (Floating Point Operations); a ompletelyoptimal implementation an at best redue the number of main memory aessesto the same order, O(N2). The Level 3 BLAS, in ontrast, require O(N3) FLOPs,but an redue the number of main memory aesses to a lower order term, O(N2).Sine most modern mahines have relatively slow memory when ompared to theirpeak FLOP rate, this analysis ditates that Level 3 BLAS will ahieve a muh higherperentage of the peak FLOP rate than the Level 2 BLAS.Getting bak to Level 2 BLAS, we now examine the register and ahe bloking,whih are used in order to redue the vetor aesses.3.4.1.1 Register BlokingRegisters are salars whih are diretly aessed by the oating point unit. Ina way, registers thus orrespond to a \Level 0" ahe. Given an in�nite numberof registers, only one main memory aess per element would be required for all43



operations. Unfortunately, the number of user-addressable oating point registersavailable in most ISAs typially varies between 8 and 32, and thus all but the mosttrivial operations will overow the registers.For this reason, register bloking alone an redue either the y or x aess termfrom O(N2), to O(N), but not both. This is easily seen using the simpli�ed GEMVoperation introdued in the previous setion. The basi algorithm required to reduethe aesses of y to O(N) is most easily shown in the following pseudo-ode:do I = 1, Nr = y(I)do J = 1, Nr += A(I,J) * x(J)end doend doThis is an \inner produt" or dot produt-based matrix vetor multiply. If weunroll the I loop and use Ry registers to hold the elements of y, we an redue theN2 aesses of x to N2Ry , by using a register to reuse the element x(J) Ry times foreah load.Unrolling the loop like this essentially reates a hybrid algorithm, in the sensethat the Ry y aess onstitute a small outer produt. However, sine registers annothold both y and x throughout the algorithm, one or the other must be ushed as theloop progresses (thus neessitating multiple loads to registers), and sine we drop thevalue of x and maintain y in the registers, this \hybrid" algorithm is still essentiallyinner produt.

44



Reduing the x omponent to O(N) aesses requires the \outer produt" orAXPY-based (AXPY being a Level 1 BLAS routine performing the operationy  �x+ y) version of GEMV:do J = 1, Nr = x(J)do I = 1, Ny(I) += A(I,J) * rend doend doThis gives us N read aesses on x, and, just as with the inner produt, unrollingthe J loop and using Rx registers to hold the elements of x, we an redue the aessesof y to N2Rx reads and writes, by using an additional register to reuse y(I) Rx times.Therefore, stritly for register bloking purposes, the inner produt formulationis superior to the outer produt: the total number of reads of both formulations isO(N2) +O(N), but the number of writes is O(N) for inner produt, but O(N2) forouter produt. In pratie, when array olumns are stored ontiguously, a heavilyunrolled AXPY-based algorithm may in fat be used, sine it better utilizes hardwareprefeth, ahe line feth, TLB aess, et. As mentioned before, however, suhdetails are beyond the sope of this paper, so we will assume the register blokingused will be inner produt formulation.As another pratial note, the number of registers available for doing multipleAXPYs or dot produts is severely limited, even beyond the 8 or 32 ISA (instrutionset arhiteture) limit. In the inner produt formulation, where Ry registers are usedto form the Ry simultaneous dot produts, at least two registers must be availablefor loading elements of x and A. Further registers will be used in order to supportsoftware pipelining and feth sheduling. Large unrollings also mean aessingmany more memory loations simultaneously, whih an swamp the memory fethapabilities of the arhiteture. This means that Ry is usually kept to a relativelysmall number (typially in the range of 2� 8).45



In summation, register bloking redues one vetor aess to O(N) ost; thevetor usually hosen for this redution is the output vetor (i.e., an inner produttype register blok), due to its higher ost. In order to redue the remaining vetorto O(N), we must apply ahe bloking.While it is tempting to regard register bloking as a speial ase of ahe bloking,their implementations are fundamentally di�erent. As we will see, ahe bloking anbe easily aomplished simply by parameterizing the relevant ode, so that properlybloked setions of the operands are aessed. Register bloking, as this setion hasdemonstrated, relies on soure adaptation, sine varying it requires hanging the looporder, number of registers, loop unrollings, et., all of whih hange the ode in waysthat annot be supported via simple parameterization.3.4.1.2 Cahe BlokingAs previously disussed, register bloking has redued the aess of y to O(N),leaving the x aess at O(N2). Therefore, loading x to registers O(N2) times annotbe avoided. However, the optimal algorithm will guarantee that main memorysatis�es only O(N) of these requests, leaving lower levels of ahe to satisfy therest.Again, GEMV an be used to better understand this idea. The register blok isdoing Ry simultaneous dot produts, so that the y aess is N reads and N writes,while the x feth to registers is N2Ry . Sine x is reused in forming eah suessivedot produt, x is a andidate for ahe reuse. It is easily seen that forming Ry dotproduts aesses Ry elements of y, all N elements of x, and Ry �N elements of A.Thus the footprint in ahe of one step of this algorithm is roughly Ry +N +RyN .Therefore, we an e�etively guarantee L1 ahe reuse by partitioning the originalproblem so that the footprint in ahe is small enough that the relevant portion of xis not ushed between suessive sets of dot produts. Therefore, the orret blokingfor x may be determined by solving an equation, whose simpli�ed expression would46



be: Ry + Np + RyNp = S1 ) Np = S1�RyRy+1 , where S1 is the size, in elements, of theLevel 1 ahe, and Np is the partitioning of x for whih we are solving.In pratie, this equation is more ompliated: some memory unrelated to thealgorithm will always be in ahe, there will be problems assoiated with aheline onits, et. In addition, the equation needs to be adapted to the underlyingregister bloking so that the initial load of the next step does not unneessarily ushx. However, these details, while important in extrating the maximal performane,are not required for oneptual understanding, and so are omitted here.With the orret partitioning (Np) known, the original N � N GEMV is thenbloked into dN=Npe separate problems of size N � Np (the last suh problem willobviously be smaller if Np does not divide N evenly). The data aess to mainmemory is then dN=NpeN reads and writes of y, N reads of X, and N2 reads of A.Np is typially very lose to N in size, and so this algorithm is very near optimalin its memory aess. Np will typially be in the range 350 - 1500, so even very largeproblems still have extremely small oeÆients on the y aess term. Note that anyproblem with N � Np will ahieve the optimal result (N2 aess of A, N aess of xand y) without any need for any ahe bloking (register bloking is still required).There is little point in expliitly bloking for higher levels of ahe in theLevel 2 BLAS. However, if the mahine possesses a level of ahe large enough tohold the footprint of the entire L1-bloked algorithm (with the previously statedsimpli�ations, this is roughly NpN + Np + Ry), y will be reused without need forexpliit bloking, and the main memory aess will be redued to its theoretialminimum.3.4.2 ATLAS's Level 2 Compute KernelsAs we have seen, ATLAS employs one low-level ompute kernel (the L1 matmul),from whih the BLAS's more general GEMM routine is built. The L1 matmul andGEMM are then used in turn to generate the rest of the Level 3 BLAS. With this47



method, only this one relatively simple kernel needs to be supported using soureadaptation, and its performane ditates that of the entire Level 3 BLAS.The same strategy is employed for the Level 2 BLAS, but two types of omputekernels are needed rather than one. Just as with the L1 matmul, these kernelsperform register bloking and various oating point optimizations, but do no ahebloking, as it is assumed that the dimensions of the arguments have been blokedby higher level odes in order to ensure L1 ahe reuse. The ompute kernels for theLevel 2 BLAS are:� L1 matve: An L1-ontained matrix vetor multiply, with four variants:1. No Transpose { matrix A's rows are stored in rows of input array2. Conjugate (omplex only) { matrix A's rows are stored in onjugated formin rows of input array3. Transpose { matrix A's rows are stored in olumns of input array4. Conjugate Transpose (omplex only) { matrix A's rows are stored inonjugated form in olumns of input array� L1 update1: An L1-ontained rank-1 updateBoth of these kernels further supply three speialized � ases (0, 1, and variable).3.4.3 Building ATLAS's Level 2 BLASThis setion presents a very rough outline of how ATLAS supports the Level2 BLAS. The install of the Level 3 BLAS preedes that of the Level 2, and fromthis proess ATLAS knows the size of the L1 ahe. Thus, using a slightly moreompliated version of the equations given in Setion 3.4.1.2, ATLAS an obtain agood estimate of the orret Level 1 ahe partitioning to use. With this in hand,ATLAS is ready to �nd the best ompute kernels for the Level 2 BLAS.48



Presently, ATLAS relies solely on multiple implementation to support thesekernels (e.g. soure generation is not employed). Therefore, the searh simplytries eah implementation in turn, and hooses the best. The onjugate forms ofthe L1 matve have the same performane harateristis as their non-onjugateequivalents, so ATLAS need searh only 3 di�ering kernels: notranspose matve,transpose matve, and L1 update1.Using these best algorithms, ATLAS empirially disovers the optimum per-entage of the L1 ahe to use. These empirially-disovered blokings and kernelimplementations are then used to build the Level 2 BLAS routines GEMV and GER(muh as GEMM was built using the L1 matmul), and all of this information andthese building bloks are then used to produe the rest of the Level 2 BLAS.3.5 Optimizing the Level 1 BLASUnlike the Level 2 and 3 BLAS, the Level 1 BLAS, due to their simple nature,are not generally reduible to one or two simpler kernels. Therefore, eah Level 1routine must be essentially optimized individually. For some kernels, the omplexase an utilize the real ase, and oasionally one Level 1 routine will simplify toanother due to a setting of a partiular parameter, but this is the exeption ratherthan the rule. For further details on Level 1 optimization, see [25℄.3.6 Historial Context / Related WorkATLAS was not the �rst projet to harness empirial tehniques in the interestof high performane kernels. The �rst suh projet that we are aware of wasPHiPAC [1℄, released in Deember of 1995. Like early ATLAS, this projet fousedon using a soure generator to produe varying ANSI C programs for performanetuning of matrix multiply. Due to an overly-ompliated kernel, an inadequatewinnowing of the searh spae, and insuÆiently aurate timing tehniques, PHiPAC49



never ahieved the performane and portability inherent in the AEOS onept, butnonetheless served as an inspiration for following work.The seond projet, released in Marh 1997, to utilize this basi idea wasFFTW [3, 4℄, whih applied similar tehniques to FFTs. The �rst version ofATLAS [6, 7, 8, 9℄, tuning matrix multiply only, was released in Deember of 1997.Subsequent versions added support for tuning all the BLAS, and later, a subset ofthe LAPACK [17℄ API as well. In 2000, the SPIRAL [26℄ projet began utilizingempirial tehniques to tune signal proessing libraries.

50



CHAPTER 4MOTIVATION AND DESIGN OF OUREMPIRICAL COMPILATION FRAMEWORK {IFKOThis hapter outlines our design and approah for empirial ompilation. Se-tion 4.1 motivates and desribes our approah, and Setion 4.2 expounds on thedesign philosophy that is used to drive the researh. With these guiding priniplesestablished, Setion 4.3 provides an overview of the ompilation framework, andSetion 4.4 desribes how the framework an be interfaed with ATLAS. Thefollowing hapter desribes our urrent implementation of this design.4.1 MotivationThis setion outlines and motivates the approah we have employed in ourempirial ompilation researh. Key features of our ompilation framework, andtheir broad motivation, inlude:1. Our ompiler is both iterative and empirial, for all the reasons explained inthe introdution.2. Our transformations are done in the bakend, at a very low level, allowingfor the exploitation of extremely low-level arhitetural features suh as SIMDvetorization, CISC instrution formats, speial register features, as well asenabling the ompiler to avoid arhiteture-spei� resoure limitations, et.,all of whih an be ritial in ahieving extremely high performane.51



3. The searh is part of the ompilation framework, rather than being managedby an external program suh as a library generator. In this way, eah newsupported kernel neessarily inreases the generality of the searh, leading inthe long run to a ompilation framework apable of dealing with a muh widerrange of operations than the union of studied kernels, as happens when eahset of optimization targets employs its own searh.4. We provide for extensive user markup, that allows a kernel writer to providethe ompilation framework with information that is diÆult or impossible todisover using front-end analysis (eg. aliasing information between pointerspassed in as formal parameters to a library routine). This approah allowsus to onentrate on the bakend rather than on front-end analysis, as wellas providing an opportunity to perform transformations that would be illegalwithout suh user markup.This approah is a diret onsequene of our experiene with ATLAS, and wehave been areful to ensure that iFKO's design is synergisti with that of ATLAS.iFKO was designed to remove the two major limitations inherent in our ATLASwork: (1) ATLAS is operation/kernel spei�, and (2) low-level arhitetural features(eg. SIMD vetorization, CISC instrution sets, et.) are often not automati-ally exploited due to reliane on the native ompiler. Generalizing the empirialoptimization into a oating-point speialized ompiler is a diret onsequene ofATLAS's kernel spei�ity, and our onentration on low-level optimization arisesnaturally from our frustration in having to employ hand-tuning in order to fullyexploit arhitetural features suh as SSE (Intel's SIMD vetorization).iFKO presently does most of its optimization on the innermost loop. Given theextensive list of loop transforms available in the literature, many readers may besurprised that inner-loop optimization is not fully realized by modern optimizingompilers, but our diret ATLAS experiene (supplemented by hand tuning to get52



around suh problems) demonstrated that the majority of the lost performaneopportunities when using soure generation instead of hand tuning ame from theinner loop, and thus iFKO's initial goal is to handle innermost loop optimizationas eÆiently as possible. As another example of suh synergy, we an a�ord toput o� some higher level (and outer-loop) transforms suh as bloking, beause theATLAS framework does them at higher levels (eg., the bloking is not done by thekernel routine, as explained in Setion 3.2). This does not mean that iFKO shouldnever support transformations suh as bloking, sine iFKO is designed to be moregeneral than ATLAS. Rather, this synergy allows FKO to (initially) target thosetransformations that annot be easily handled by a framework suh as ATLAS. Thisplan for fousing our implementation e�orts is desribed more fully in the followingdesign philosophy setion.One drawbak of doing the transformations at a low level is that while it provideseven greater persistent optimization, it is a barrier to portable optimization, as theompiler is not helpful until it has been ported to the target ISA. Again, however,ATLAS's soure generator provides for portable optimization on truly unknownarhitetures, and so this drawbak (due to operating at a low level, whih ismandated by the required levels of performane) is ameliorated. This is disussedfurther in Setion 4.4. 4.2 Design PhilosophyA ompiler speialized for HPC kernel optimization must make the e�et of eahtransformation, and the interation between transformations, as optimal as possible.If the ompiler annot apture roughly the same amount of optimization from agiven series of transformations as hand-tuned kernel prodution typially does, theHPC ommunity is unlikely to use the ompiler for its intended purpose at all.Therefore, unlike in general-purpose ompilation, it is better to do a limited number53



of transformations extremely well than to support many transformations that do notfully realize their potential. This is partiularly true in our ase, sine we an rely onthe ATLAS framework for many transformations that iFKO does not yet support.Therefore, our overriding fous must be \narrow and deep", rather than \broad andshallow".This may seem ounterintuitive in at least one way: one of the great strengths ofempirial optimization is that it an employ an extensive array of transformations,even ones that ause signi�ant slowdown in some instanes (sine only suessfuloptimizations will be retained by the empirial searh), and as the palette ofsupported optimizations is expanded, the generality and eÆieny of the frameworknaturally inrease. Therefore, while it is lear that a \deep" fous is mandated inorder to ahieve the required level of performane, in the end we must be broad aswell. However, it is impossible to begin with \broad and deep", and so we mustaept a narrow fous in order to demonstrate the e�etiveness of this approah,and as the number of supported transformations inrease, the audiene for whih theframework supplies a real solution grows as well.Therefore, in eah area of iFKO's design, we add features as the studied kernelsdemand them, allowing us to narrowly fous on eah optimization study in turn. Aseah set of optimization targets brings in new requirements, iFKO is expanded tohandle them, and thus the framework will indeed eventually be both broad and deep.There are four general areas in iFKO that must be expanded in this way (thisdisussion employs terminology that is further explained in Setion 4.3). These areasare: (1) the transformations supported by the optimizing ompiler, FKO, (2) theanalysis performed by FKO, whih direts and limits the iterative searh, (3) thenumber, type and interations between sub-searhes supported in the master searh ofthe iterative ompiler, iFKO, and (4) the type and number of user markups supportedby our HIL (FKO's input language), whih also serve to guide and limit the searhof the optimization spae. 54



As an example, our present implementation onentrates on inner loop trans-forms, and relies on ATLAS for outer-loop transformations suh as bloking, but aswe enlarge the target kernels to those that have not been expliitly bloked, iFKOmust be expanded to support it. Further, beause the x86 arhiteture is relativelyinsensitive to sheduling issues, we do not presently support software pipelining,whih will learly beome ritial as the framework is fully supported on arhiteturessuh as the SPARC.Beause our initial work onentrates on inner-loop transformations, we havehosen the Level 1 BLAS as our initial optimization targets (See 6.1 for furtherdetails). For these simple operations, the main markup required is identi�ationof the loop whih should be empirially optimized. On kernels with more omplexdependenies, dependene markup will be added. Similarly, as operations expand toinlude more deeply nested loops, more ompliated prefeth algorithms will need tobe tried by the searh, et.4.3 Overview of Framework4.3.1 Anatomy of an Iterative and Empirial Compiler
InputRoutine HIL + ags-- SearhDrivers- -problemparams -HIL -SpeializedCompiler(FKO)analysis results� optimizedassembly-Timers/Testersperformane/test results�

iFKO
Figure 4.1: Overview of our Empirial and Iterative Compilation SystemFigure 4.1 shows the basi outline of our empirial and iterative ompilationsystem. Just as in a traditional ompiler, iFKO is provided with a routine to beompiled, and perhaps some user-seleted ompiler ags (though these will usuallybe searh-ontrolling options, rather than the more ommon optimization phaseoptions). iFKO is omposed of two omponents: (1) a olletion of searh drivers, and55



(2) the ompiler speialized for iterative empirial oating point kernel optimization(FKO).The searh �rst passes the input kernel to be optimized to FKO for analysis. FKOthen provides feedbak to the master searh based on this analysis. The analysisphase together with any user input essentially establishes the optimization spaeto be searhed, and the iterative tuning is then initiated. For eah optimizationof interest that takes an empirially tuned parameter (eg., the unrolling fator inloop unrolling), the searh invokes FKO to perform the transformation, the timerto determine its e�et on performane, and the tester to ensure that the answer isorret (unneessary in theory, but useful in pratie).Input an be provided both by mark-up in the routine itself, and by ag seletionfrom the user. These inputs an be used to plae limits on the searh, as well as toprovide information speialized for an individual usage pattern (suh as whether theoperands are pre-loaded in ahe, the size of the problem to time, et.). Note thatiFKO has intelligent defaults for these values, so suh user diretion is optional. The`HIL' in Figure 4.1 stands for high-level intermediate language, and is the language(speialized for oating point kernel optimization) whih FKO aepts as input.This graph also points out a signi�ant overhead still assoiated with our iterativeompiler. While the ompiler makes the searh and optimization kernel-independent,it depends on externally supplied timers, whih are at least somewhat kernel-spei�,and an be quite omplex when they are written to allow for the apturing ofontext-sensitive usage patterns (eg., allowing a seletion of old and warm ahestates, di�ering operand sizes and types, et). In our ase, we utilize ATLAS'spreexisting AEOS-quality timers for this purpose, but an interesting area of futurework would investigate the extent to whih suh timers ould be desribed in ahigh-level way (or ultimately, even disovered through analysis of the submittedkernel), and automatially generated. 56



4.3.2 Optimizing ompiler { FKOThe heart of this projet is an optimizing ompiler alled FKO (Floating pointKernel Optimizer). This ompiler is very similar to a traditional optimizing ompilerin design, but it has been speialized in several ways. First, of ourse, it is designedspei�ally for maximizing performane of oating point kernels, whih stronglya�ets our hoie of optimizations, and their interations, as previously disussed.This fous on kernel optimization has also led us to adopt a speialized inputlanguage, as desribed in Setion 4.3.2.1. FKO has been further speialized foriterative and empirial use. The main way this is reeted in the design is thatthe ompiler must be able to analyze the submitted kernel, and ommuniate thisanalysis to the master searh, so the appropriate optimization tehniques an beseleted. The analysis presently provided by FKO is desribed in Setion 5.3.4.3.2.1 Input Language (HIL)Our input language is kept lose to ANSI C in form, so that the task of kernelimplementation is omparable to writing a referene implementation in languagessuh as ANSI C or Fortran 77 (ommon kernel languages). However, we want to keepour HIL simple enough so that we an onentrate on bak-end optimization, as wellas to speialize it to some degree for our problem domain. Therefore, we providean opportunity for user mark-up that an provide information that is normallydisovered (if it an be determined at all) by extensive front-end analysis. For thesimple operations surveyed in this paper, the only mark-up used was the identi�ationof the loop upon whih to base the iterative searh (iFKO ould optimize all innerloops this way, but this ould potentially ause insupportable slowdown in tuningmore omplex kernels, and so we require that a loop be agged as important beforeit is empirially tuned).Although our input language resembles ANSI C, its usage rules are loser toFortran 77, whih has a more performane-entri design. For instane, aliasing of57



output arrays is disallowed unless annotated by mark-up. Beyond this, the maininteresting feature of our HIL is the ability to provide markup, whih is presentlyquite limited. Therefore, for the sake of brevity, a full desription of the inputlanguage is omitted here, but examining Appendix A, whih shows the orrespondingANSI C and HIL implementations of the kernels optimized in Setion 5, provides areasonable understanding of our HIL.We refer to our input language as a HIL (high-level intermediate language), bothto stress that our fous is on the low-level bakend, and beause, given the suessof this bakend researh, it seems likely that an interesting assoiated projet wouldinvolve performing front-end analysis in order to automatially generate HIL inputsbased on higher level language implementations, at least for those kernels that anbe suÆiently analyzed in this way. This line of researh ould be extended toattempting to automatially �nd kernels and extrat them from appliations, as inthe early work reported in [27℄.4.3.3 Iterative Searh { iFKOIn order to make our ompiler iterative (adding the 'i' to FKO), we must adda searh layer whih attempts to �nd the best available optimization parametersfor a given kernel. Finding the best values for NT empirially tuned transformationsonsists of �nding the points in an NT dimensional spae that maximize performane(thus the phrase \searhing the optimization spae"). There are several ways ofperforming this searh, inluding simulated annealing and geneti algorithms. Weurrently use a muh simpler tehnique, a modi�ed line searh. In a pure linesearh, the NT -D problem is split into NT separate 1-D searhes, where the startingpoints in the spae orrespond to the initial searh parameter seletion (in our ase,FKO defaults). Obviously, this approah results in a very poor searh of the spaeby volume. However, beause ompiler writers understand the properties of thesetransformations, we are able to selet reasonable start values for the searh, and58



beause we understand many of the interations between optimizations, we areable to relax the strit 1-D searhes to aount for interdependenies (eg., whentwo transformations are known to strongly interat, do a restrited 2-D searh).With these straightforward modi�ations, line searhes are quite e�etive in pratie(ATLAS, one of the most suessful empirial projets, still uses a modi�ed linesearh), even though they are ompletely inadequate in theory. At the same time,the line searh has a very simple design, whih in turn makes updating it to supportadditional transformations and explore new ideas muh easier. Thus, we will utilizemore advaned searh tehniques only one enough transformations are available tomake their use ompelling. Our urrent iterative searh is outlined in Setion 5.8.4.4 Interfaing ATLAS and iFKOAs previously desribed, iFKO has been designed to work synergistially with(though not be limited to) ATLAS, and this an be more fully appreiated byunderstanding how iFKO and ATLAS an be interfaed. iFKO may be naturallyadded to ATLAS using ATLAS's preexisting multiple implementation support. Asfar as ATLAS is onerned, iFKO is simply another kernel ompiler taking as inputa partiular language (our HIL, instead of the assembly and C kernels urrently usedby ATLAS). The fat that iFKO is itself iterative and empirial, a�ets ATLAS'sown empirial searh not at all (exept in install time, obviously).Figures 4.2 and 4.3 show how ATLAS's present iterative searhes (as shownin Figures 3.6 and 3.4) an be augmented to interfae with iFKO. Beause iFKOannot adapt to unknown ISAs, it should make sense to retain the high level(ANSI C) multiple implementation kernels for operations that ATLAS does notsupport through soure generation. In the long run, however, iFKO should makeretaining system-spei� assembly kernels for ISAs where iFKO is supported unne-essary. 59



Beause ATLAS's urrent Level 1 and 2 BLAS tuning uses only parameterizationand multiple implementation, their support should be partiularly improved byadding iFKO expliitly to the pakage. On the ISAs for whih iFKO is ported,this automated tuning should provide muh more adaptability than an be suppliedthrough even the most extensive battery of hand-tuned implementations. On theother hand, ATLAS's Level 3 searh employs both soure generation and multipleimplementation, and so iFKO should primarily help in reduing the need for hand-tuning in order to exploit arhiteture-spei� features.4.5 Related WorkChapter 3 disusses the work losely related (both in time and topi) to ouroriginal ATLAS work. Given the demonstrated suess of these pakages, there hasbeen inreasing interest in the ompiler ommunity in applying similar tehniques ina ompiler-oriented setting. However, our approah is the �rst of whih we are awareto perform all transformations at low level in the bakend (many researhers insteadgenerate ode in high level languages, just as ATLAS does), and at the same timeatually have the searh as part of the ompiler (many projets put the searh in alibrary generator). As disussed in Setion 4.1, we believe these two fators are keyin realizing the full bene�ts of these tehniques.The OCEANS (Optimizing Compilers for Embedded Appliations) group hasdone some work in the area of iterative ompilation. A brief delaration of e�ortwas published in [28℄. The idea is that like high-performane libraries, embeddedappliations are an area where very long ompilation times an be suessfullyamortized, and so is a rih area for iterative and empirial optimization. Unlike withhigh performane libraries, ode size is an extremely important onsideration, andso di�ering optimization strategies should be expeted. Subgroups of this extensive60



ROUTINEDEP
Mult. Imp.Searh (linear) - Optimizedkernel? ?MultipleImplementation? -

??
Tester/Timer
?

ROUTINDEP
PLATINDEP

iFKOSearh 6 ?�6-
?PLATDEP

FKOCompiler? ANSI CCompiler?Assembler & Linker?TimerExeutable -
6

�-? -

Figure 4.2: ATLAS+iFKO empirial searh for the Level 1 & 2 BLASROUTINEDEP Master Searh - Optimized matmul kernel? ?Mult. Imp.Searh (linear)? ? Soure Gen.Searh (heur.)? ?MultipleImplementation - ? ??
Tester/Timer

?
SoureGenerator

?ROUTIND PLATIND ?iFKOSearh - ?- 6 ?
6�-

PLATDEP
FKOCompiler? ANSI CCompiler?Assembler & Linker?TimerExeutable -

6
� --

-
Figure 4.3: ATLAS+iFKO empirial searh for the Level 3 BLAS61



author list later published various iterative ompilation-related papers, as outlinedbelow.In [29℄ the authors do an initial study of iterative ompilation on three veryrestrited operations. The main ompilation tehniques appear to be bloking/tiling,and loop unrolling. Almost no detail is provided about the ompilation system;indeed, it is never stated that the transformations were not performed by hand insome manner. The main thrust of the paper is on how to searh the essentially in�niteoptimization spae. This work is thus very far from our newer researh, although itis very lose to the work already done (ATLAS uses a relaxed line searh to probea more ompliated spae, and provides unrestrited versions of two of the threementioned kernels). While the ultimate goal of the projet is still ited as embeddedsystems, all results are given on general purpose hardware (again, a subset of thearhitetures we previously surveyed in [6, 7℄).A more eshed out study was presented in [30℄. In this work, they report ageneral purpose ompiler, whih produes FORTRAN 77 as the output language(thus allowing for arhitetural independene). This fat alone di�erentiates thiswork from ours, sine we are onentrating on the bakend and low-level arhiteturaloptimization. In ontrast, the studied transformations in this paper are all high-level:bloking, unrolling, and array padding.In [31℄, the authors again onsider mainly loop unrolling and bloking fators;sine these optimizations require little bakend information, this is again done at ahigh level.The work in [32, 33℄ is loser to our own researh in that it involves both highand low level optimizations, and that they onentrate on simple omputationalloops. However, this work examines in detail only two optimizations (loop unrollingand software pipelining), and is onerned with embedded systems. As suh, theyoptimize for a ombination of ode size and performane.62



Probably the group that omes losest to our approah in gestalt is the SPIRALprojet [34, 35℄. They have a ompiler that takes in a mathematial desription of ina digital signal proessing algorithm, and generates varying ANSI C or FORTRAN77 implementations. Thus, they work mainly at the high level, and in a di�erent�eld. However, authors aÆliated with this group have done some low-level work (asin [36℄), but this is done in a traditional ompiler used to ompile the generatedsoure.There has also been researh on applying empirial tehniques to general-purposeomputing. In order to do so, the ost of the tuning must be greatly redued, andthus a less empirial and muh more targeted approah is alled for, as in [37℄,where the main goal is to ameliorate the ompeting resoure problem betweenoptimization phases in a more traditional ompilation framework. This work istargeted at general-purpose ompilation, and is not intended to produe kernel-levelperformane.

63



CHAPTER 5CURRENT IFKO IMPLEMENTATIONThis hapter desribes our urrent FKO implementation. Setion 5.1 disussesour target arhitetures, Setion 5.2 overviews the interfae to FKO, and Setion 5.3outlines the analysis ommuniated to the iFKO's searh. We next survey thetransformations presently supported by FKO, whih are split into two types. Se-tion 5.4 desribes FKO's fundamental transformations, whih are applied only onetime and in a known order (thus easing the extra analysis required for some ofthese optimizations), while Setion 5.5 goes into some detail on the omplexities ofhandling alignment issues for one of our ritial fundamental optimization, SIMDvetorization. Setion 5.6 outlines the repeatable transformations, whih may beapplied multiple times and in almost any order. Eah transformation is outlined inits own setion, but sine it is the empirial appliation of these tehniques, not thetehniques themselves that are the main researh element of this work, we do not gointo exessive detail. In order to larify the atual operation of these transformations,Setion 5.7 shows examples of their e�et on the kernels surveyed in this paper.5.1 Supported ArhiteturesAs desribed in Setion 4.2, we must have a relatively narrow area of fousin order to ahieve suess. However, it is important that persistent frameworkshortomings are not introdued due to suh tunnel vision. Therefore, FKO wasdesigned and written to support four di�erent ISAs. One the basi frameworkwas implemented and working, we onentrated on the x86 in order to ahieve64



results, and we will probably not return to the other arhitetures until this workis onsiderably more advaned. However, sine we are working at suh a lowlevel, doing the initial design with several very di�erent ISAs helped avoid reatingan inexible or overly-speialized bakend. Therefore, iFKO's basi framework ispresently supported on four ISAs:1. IA-32 [38, 39℄: Also known as x86 or x86-32, this is probably the most widelyused ISA in general-purpose omputing, inluding a diverse array of mahinessuh as the Pentium line (PPRO, II, III, 4, 4E), the AMD Athlon, Athlon-64,Opteron, et. Normally in this paper we use the generi term x86 to apply toboth the IA-32 and x86-64 ISAs, and we will all this arhiteture x86-32 orIA-32 when we mean to exlude the x86-64.2. x86-64 [40, 41℄ or IA-32e [42℄: 64 bit extension of the x86 ISA originallydesigned and implemented by AMD. Intel has reently begun supporting it ontheir line of hips, but they all it IA-32e (Intel Arhiteture 32 bit extended)in order to distinguish it from their x86-inompatible IA64 (Itanium line) ISA,while still avoiding using the AMD terminology. Mahines implementing thisISA inlude AMD's Athlon-64 and Opteron, as well as the Intel's newest Pen-tium 4 variant. All mahines implementing x86-64 run IA-32 ode unhanged aswell. When used in 64-bit mode, x86-64 also o�ers 16 integer and SSE registers,whih is a vast improvement over IA-32's eight. Note that FKO expliitlysupports x86-64 (i.e. it does not run on an x86-64 arhiteture merely throughIA-32 ompatibility mode), thus allowing us to exploit the additional registers,new (more eÆient) alling sequene, and the fat that integer registers are 64bits wide.3. PowerPC [43, 44℄: This ISA is used in embedded systems, Apple's G4 and G5line, and IBM's workstations and superomputers.65



4. UltraSPARC [45, 46℄: We also support FKO on the Sun UltraSPARC.Presently, our framework an generate ode for all of these arhitetures. How-ever, SIMD vetorization, a key omputational optimization, is presently supportedonly on the x86 arhitetures, and we have targeted our transformation seletion tothis ISA family. We will examine the PowerPC next, but will do so only one ourgoals are more fully met on the x86 ISAs.Presently, FKO's oating point instrutions always use SSE (i.e., we do notexploit the x87 FPU). When SIMD vetorization annot be applied, we use SSE'ssalar instrutions. This deision was made beause newer mahines stress SSE atthe expense of the x87 unit, and supporting the x87 register stak is a signi�antoverhead. This does, however, mean that FKO annot generate valid oating pointode for mahines prior to the Pentium III, as they do not possess vetor units. Weurrently do not plan on adding x87 support, mostly beause the unit tends to getworse performane on modern mahines. For instane, on the Pentium line, evenSSE salar ode has twie the theoretial peak of x87 ode, and on x86-64 mahines,the x87 did not reeive additional registers. Therefore, x87 support will be addedonly if this trend of marginalizing the x87 unit is reversed in future arhitetures.5.2 Interfae OverviewAs previously mentioned, our HIL provides a speial markup that allows the userto identify the key (innermost) loop that should serve as a basis for the empirialtuning searh. Let us all this speial loop the optloop. Some FKO optimizationsan only be applied to this loop (inluding all fundamental optimizations), whileothers an be applied to any setion of ode. FKO's present interfae allows thespei�ation of two sopes for transformation appliation: (1) apply to optloop only,and (2) apply to entire funtion (we refer to this as global appliation).66



Like any ompiler, FKO takes a host of ags whih a�et the appliation ofoptimizations. Fundamental transformations are either on or o�, and if seleted theyare applied to the optloop, and in a known order, and so they are ontrolled withsimple ags as in a traditional ompiler. Repeatable transformations, on the otherhand, may be applied repeatedly, in any order, and to any sope, and we may wishto ontrol this from the empirial searh. Therefore, while our interfae presentlyallows speifying only global or optloop sope, the order and number of appliationsfor repeatable phases an be more fully ontrolled. Repeatable transformations arespei�ed in a grouping referred to as an optimization blok, where individual phasesare applied until they no longer hange the ode, or a maximum appliation ount isreahed (to prevent in�nite loops in the ase of transforms that interfere or reverseeah other, or indeed to avoid any repetitive appliation when set to 1). Globaloptimization bloks are spei�ed with the ompiler ag -G, and optloop bloks arespei�ed by -L. The arguments omposing both types of optimization bloks areblknum, an integer label identifying the blok, maxN, the maximum number of timesto apply the indiated optimizations, nopt, the number of optimizations in theblok, followed by the list of optimizations to apply (whih may be either singleoptimizations or other optimization bloks). The starting blknum must be 1, butother blok numbers may be hosen arbitrarily, as indiated by the optimizationlists. A full desription would probably not be useful here, but for example the ags:-G 1 1 2 2 3 -L 2 10 2 ra p -G 3 10 2 ra presult in �rst applying register assignment and opy propagation at most 10 times tothe optloop, stopping sooner if an iteration is ompleted without any ode hanges,followed by doing the same thing to the funtion as a whole. Setion 5.6.10 providesfurther examples of optimization blok usage.
67



NCACHES=1LINESIZES : 128OPTLOOP=1MaxUnroll=0LoopNormalForm=1Vetorizable=1Moving FP Pointers: 2'X': type=d prefeth=1 sets=0 uses=1'Y': type=d prefeth=1 sets=0 uses=1Salars used in loop: 3'dot': type=d sets=1 uses=1 aum=1'y': type=d sets=1 uses=1 aum=0'x': type=d sets=1 uses=1 aum=0(a) FKO Analysis for ddot (Figure A.5)

NCACHES=1LINESIZES : 128OPTLOOP=1MaxUnroll=0LoopNormalForm=1Vetorizable=1Moving FP Pointers: 2'X': type=d prefeth=1 sets=0 uses=1'Y': type=d prefeth=1 sets=1 uses=1Salars used in loop: 3'alpha': type=d sets=0 uses=1 aum=0'y': type=d sets=2 uses=2 aum=0'x': type=d sets=2 uses=2 aum=0(b) FKO Analysis for daxpy (Figure A.4)Figure 5.1: Example FKO analysis output for P4E5.3 Current Analysis and Communiation with the SearhUnlike a traditional ompiler, a ompiler used in an iterative searh needs tobe able to ommuniate key aspets of its analysis of the ode being optimized, asthis strongly a�ets the optimization spae to be searhed. Currently, FKO reportsinformation suh as the numbers of available ahe levels and their line sizes. It alsoreports the loop (if any) identi�ed for tuning in the iterative searh. For this loop, itthen reports the maximum safe unrolling, and whether it an be SIMD vetorized.For eah oating point salar and array aessed in the loop, the analysis furtherreports its type, sets and uses. Finally, the analysis returns a list of all suh salarsthat are valid targets for aumulator expansion (see Setion 5.4), and all suh arraysthat are valid targets for prefeth (by default any array whose referenes inrementwith the loop, but the user an override this behavior, for instane to prohibit prefethon arrays known to be ahe-resident, using mark-up). Figure 5.1(a) and (b) showsthe results of this analysis when run on ddot (Figure A.5) and daxpy (Figure A.4),respetively.
68



5.4 Current Fundamental TransformationsAs previously mentioned, fundamental optimizations are applied only on the opt-loop, and in a known order, and the following subsetions present these fundamentaloptimizations in the order in whih they are applied. For eah suh transformation,we list an abbreviation whih is used in the paper to refer to this optimization.Fundamental optimizations are applied before other optimizations both beause theyrequire more high-level analysis than the repeatable optimizations, and beausetheir transformations are higher level as well (SIMD vetorization, whih is fairlyarhiteture-spei�, is the exeption to this rule). Therefore, when examples areneeded to larify a fundamental optimization, we will normally do so in ANSI C,even though the ompiler, of ourse, performs these transforms on our LIL (low levelintermediate language).After the optimizations are surveyed, Setion 5.4.7 disusses the default valuesused for these parameters in the empirial searh, as well as how they are ontrolledin FKO.5.4.1 SIMD Vetorization (SV)SIMD Vetorization (SV) transforms the loop nest (when legal) from salarinstrutions to vetor instrutions. Vetor instrutions operate on multiple elementsof a given type at the same time (thus the `Single Instrution Multiple Data' of SIMDvetorization). Applying SV typially results in keeping the number of instrutionsin the loop onstant, but its e�et on loop ontrol and omputation done per iterationis similar to unrolling by the vetor length (4 for single preision, 2 for double). Thisextremely modest vetor length is the primary distinguishing fator between SIMDvetorization and vetorization for traditional vetor mahines, but this di�erene isof suh magnitude that signi�antly di�erent optimization strategies are required.69



Both the x86 and PowerPC arhitetures have SIMD vetor units whih aresupported through ISA extensions. On both mahines, the vetor length is 128bits. The PowerPC vetor unit (AltiVe unit), however, annot operate on doublepreision oats, and so an operate on four single preision oats or a varying numberof integral values at a time. FKO presently supports SIMD vetorization only on thex86, and so the following disussion fouses on it exlusively.The x86 vetor units are utilized through a series of ISA extensions inludingMMX (MultiMedia eXtensions), 3DNow!, SSE (Streaming SIMD Extensions), SSE2,and SSE3. MMX deals primarily with operating on integer vetors (unimportant toour present disussion), while 3DNow! is an AMD spei�ation that has been largelysuperseded by SSE, and so we will not desribe it here. SSE, or SSE1, mainly addedsupport for operating on single preision vetors, SSE2 added double preision vetorsupport, and SSE3 inludes some extra vetor permutation ode, and instrutionsspeialized for omplex arithmeti.As mentioned, the vetor length for all urrent mahines is 128 bits, whih allowsfor parallel operation on four single preision values, or two double preision values.Thus we say the vetor length (velen) is two for double preision, and four forsingle. All urrent mahines an employ these instrutions to do velen oating pointoperations (FLOPs)/yle. Therefore, the theoretial peak will be four FLOPs/ylefor single preision, and two FLOPs/yle for double.Vetor instrutions are available not only for omputation, but for loads and storesas well. Loads and stores must be 128-bit aligned to get maximal performane, andspeial workarounds must be employed when the data is not so aligned. Optimallyhandling alignment issues is a ompliated issue in its own right, and is thereforedisussed separately in Setion 5.5.Some substantial analysis is required to ensure that SV is legal, and so it is theoptimization we apply �rst. Performing SV before any other optimization allowsus to assume the input ode is in the restrited format generated by our front-end,70



whih onsiderably eases the burden of analysis. The transformation is either appliedto the loop as a whole, or it is not applied at all (i.e. we do not mix oating pointvetor and salar ode in the loop). Our urrent implementation therefore requires:1. All arrays aessed in the loop are 128 bit aligned,2. All arrays being vetorized are aessed ontiguously in suessive iterations ofthe loop,3. The dependene distane between suessive elements of suh arrays is> velen,4. All oating point omputation in the loop is of the same preision, and onsistsof solely of a mixture of absolute value, add and multiply,5. Salars applied to vetorized arrays must meet the riteria given in Se-tion 5.4.1.1.All of these requirements exept alignment are determined by analysis (seeSetion 5.5 for details on alignment), and SIMD vetorization is not performed whenthe loop does not meet these riteria. Note that this \all-or-nothing" approah hasbeen hosen as it is well-mathed to the kinds of operations we are interested in(exept for a few Level 1 BLAS, all of the BLAS may be fully vetorized in thisway). As we expand the supported kernels to less regular and/or non-ontiguousoperations, we may want to employ a more general strategy, where more arbitraryvetorization opportunities are searhed for after a series of optimizations (inludingloop unrolling), as in [36℄. However, this style of vetorization, while more exible inappliation, is also more fragile, in that other optimizations an make it more andmore diÆult to fully vetorize the loop. Therefore, if we are unable to apture thesame funtionality as a fundamental optimization, this style of vetorization wouldbe added as an additional repeatable transformation when and if it is needed.71



Sine vetorizing the loop is omputationally similar to unrolling by velen, thistransformation also produes a leanup loop (dumped to the end of the funtion)whih handles those ases where the number of iterations of the loop are not evenmultiples of velen. Let N be the number of times the loop will iterate (N is almostalways a run-time variable). SIMD vetorization adds a onditional branh on Nboth before (to handle N < velen) and after the vetorized loop (to handle Nmod velen 6= 0). Setion 5.4.2 shows an example of reating suh leanup ode foran unrolling of four, and Setion 5.7.1.1 shows vetorization at a lower level.5.4.1.1 Handling Salars in SVSV is applied primarily to arrays whose aess hanges with the loop iteration,but the loop body will almost always inlude referenes to salar (single value)temporaries that are involved in the omputations on these arrays. These salarvalues must be hanged to vetor values by the ompiler. Essentially, any temporaryor variable whose address does not move with the loop is treated as a salar for thispurpose. Salars that are live on loop entry or exit must be transformed from salarto vetor on loop entry, and from vetor to salar on exit, and how this is legallydone depends on usage, as outlined below.Input salars whose �rst use is assignment or multipliation should have all vetorvalues initialized to the salar value, whereas salars used as a target of vetor adds(aumulators) should have only one value set to the salar value, and the rest of thevetor should be set to zero.Output salars reverse this proess. Beause it is always the ase in our kernels,our present implementation only vetorizes ode where any output salars areaumulators. If their last use was an aumulator, the individual vetor valuesmust be summed after the loop to produe the required result.On loops with multiple basi bloks, it is possible to have mixed �rst (last) usagein di�ering bloks that represent di�erent paths of ow through the loop. If this72



mixed usage ours (eg., a variable's �rst use in one path is assignment, but �rstuse elsewhere is as an aumulator), then vetorization will not be applied. Thereare no ases in the present kernels, and we know of none in all of the BLAS, wherethis problem prevents vetorization. However, if mixed usage beomes a problem,transformations suh as salar expansion and loop unswithing [24℄ an be employedto enable SV.5.4.2 Loop Unrolling (UR)Loop Unrolling [24℄ (UR) dupliates the loop body of the loop Nu times. Sineit is performed after SIMD vetorization the omputational unrolling is atuallyNu � velen when vetorization is also applied.If it is possible to do so, our unrolling avoids repetitive index and pointerupdates, as well as having only one test/branh for the unrolled loop. Just as withvetorization, a leanup loop is automatially generated to handle when the iterationount is not a multiple of the unroll fator, and onditional branhes are inserted sothat the orret answer is always produed regardless of the iteration ount. As aminor optimization, if a loop is both vetorized and then unrolled, only one leanuploop is generated and used.Figure 5.2 shows a simple dot produt loop before and after unrolling to 4. Notethat the loop ontrol optimization disussed in the following setion is always appliedduring unrolling as well, resulting in loop index reversal when the loop index is notreferened in the loop.5.4.3 Optimize Loop Control (LC)Optimize Loop Control (LC) is the only fundamental optimization that is alwaysapplied when legal, and it attempts to optimize the loop branhing and indexomputation when possible. On the x86, this primarily onsist of transformingthe loop from the form for(i=0; i<N; i++) to the equivalent for(i=N; i; i--)73



for (i=0; i < N; i++) {dot += X[0℄ * Y[0℄;X++;Y++;}return(dot);(a) before loop unrolling

if (N < 4) {i = N;goto CU;}for (i=N-3; i > 0; i -= 4) {dot += X[0℄ * Y[0℄;dot += X[1℄ * Y[1℄;dot += X[2℄ * Y[2℄;dot += X[3℄ * Y[3℄;X += 4; Y += 4;}i += 3;if (i != 0) goto CU;return(dot);CU:for (; i; i--) {dot += X[0℄ * Y[0℄;X++; Y++;}return(dot)(b) after loop unrollingFigure 5.2: Dot produt before and after UR and LCwhen i's only use in the loop is for loop ontrol. This seond formulation avoidsa omparison required by the �rst on the x86 (and indeed, most arhitetures), aswell as enabling the ompiler to avoid assigning N to a register throughout the bodyof the loop. This transformation also handles the index omputations neessary toorretly handle loop unrolling and vetorization eÆiently.5.4.4 Aumulator Expansion (AE)Aumulator Expansion (AE): In order to avoid unneessary pipeline stalls, AEuses a speialized version of salar expansion [24℄ to break dependenies in salars thatare exlusively the targets of oating point adds within the loop. Figure 5.3(a) showsa dot produt loop that has been unrolled by a fator of 2. If the FPU is pipelined,and the pipe length is greater than one, this ode will result in an unneeded pipeline74



1 dot = s t a r t ;2 for ( i =0; i < N; i += 2) f3 dot += X[ 0 ℄ � Y[ 0 ℄ ;4 dot += X[ 1 ℄ � Y[ 1 ℄ ;5 X += 2; Y += 2;6 g (a) Without AE
1 dot = s t a r t ; dot1 = 0 . 0 ;2 for ( i =0; i < N; i += 2) f3 dot +=X[ 0 ℄ � Y[ 0 ℄ ;4 dot1 += X[ 1 ℄ � Y[ 1 ℄ ;5 X += 2; Y += 2;6 g7 dot += dot1 ;(b) With AE=2Figure 5.3: DDOT before and after Aumulator Expansionstall. After line 3 is exeuted, the register holding dot will not be available to addinto as required by line 4 for pipeline length yles, and so line 4 will ause a delayeah time through the loop. Aumulator expansion removes this dependeny byusing multiple salars to store the aumulator, as shown in Figure 5.3(b). Note thatfor a mahine with a FPU pipeline length of four, for example, we would probablywant to unroll to at least that length, and use four registers, rather than the twoshown in this simple example.In this example, we have shown dot being initialized to a start value. Notiethat the additional aumulators generated by AE must be set to zero (line 1of Figure 5.3(b)), and summed into dot after the loop is omplete (line 7 ofFigure 5.3(b)).5.4.5 Prefeth (PF)The next fundamental transformation is prefeth (PF). This transformation anprefeth any/all/none of the arrays that are aessed within the loop, selet the typeof prefeth instrution to employ, vary the distane from the urrent iteration tofeth ahead, as well as provide various simple sheduling methodologies. Prefethesare sheduled within the unrolled loop beause many arhitetures disard prefetheswhen they are issued while the memory bus is busy, and so they an be an exeption tothe general rule that modern x86 arhitetures are relatively insensitive to sheduling(due to their aggressive use of dynami sheduling, out-of-order exeution, register75



renaming, et.). Note that prefething one array an require multiple prefethrequests in the unrolled loop body, as eah x86 prefeth instrution fethes onlyone ahe line of data.5.4.6 Non-temporal Writes (WNT)Our �nal fundamental transformation is non-temporal writes (WNT), whihemploys non-temporal write instrutions on the spei�ed output array. Non-temporalwrites are designed to be useful when the value written will not be aessed againsoon, but its implementation varies strongly by arhiteture (for instane, on theOpteron WNT is only useful for write-only arrays, but it is useful for any outputarray that does not need to be retained in the ahe on the P4E).5.4.7 Default ValuesThere are two types of \default" values for these optimizations. One is whihfundamental transformations are automatially applied by FKO without speial ags,and only LC is handled in this way. All other fundamental transformations areapplied only when the requisite ag is passed to FKO. The other \default" of interestis what values iFKO employs during the empirial searh, and these defaults are asfollows: Let L be the line size of the �rst prefethable ahe, and Le the number ofelements of a given type in suh a line (for example, if L = 32 bytes, Le would be 4for a double preision salar, 8 for a single preision salar, or 2 for a SIMD vetor ofeither type), then the initial values for the iFKO's searh are: SV='Yes' (if legal),WNT='No', PF(type,dist) = ('prefethnta', 2� L), UR=Le, AE='None'.5.5 SIMD Alignment IssuesAs previously mentioned, vetor loads and stores are by default assumed to be128-bit aligned. The urrent FKO implementation assumes suh alignment whenever76



SV is applied. FKO already possesses all the transformations neessary to handlenon-aligned aess safely, but we urrently assume alignment beause we do not havethe required infrastruture to handle these ases eÆiently. Sine we an leveragehigher level routines to ensure that these alignment requirements are met, we willadd non-aligned onsiderations expliitly to FKO only one we have expanded theframework so that they may be handled eÆiently as well as safely.As disussed later, produing a highly-tuned non-aligned ode takes expliittuning for the non-aligned ase (i.e., the tuning deisions made for the alignedode will not, in general, be valid for the non-aligned), and so we �rst onentrateon tuning the aligned ases, letting ATLAS handle getting them so aligned. Thefollowing setions disuss these alignment issues in further detail. First, Setion 5.5.1disusses how we use ATLAS to guarantee alignment so that we an assumeorret alignment in kernels generated by FKO. After this overview, we disuss theatual transformations that an be employed (both by ATLAS presently, and FKOultimately) to orretly handle these ases. Setion 5.5.2 disusses a safe method thatworks for all ases, but results in ineÆient ode. Setion 5.5.3 provides an overviewof how loop peeling an be used to fore alignments in those ases where all relevantmemory addresses have the same alignment. Setion 5.5.4 then desribes how this anbe extended to handle mutual misalignment, and Setion 5.5.5 disusses some possiblere�nements that an be applied when the pointers in question arise from a onstantlystrided multidimensional array (a very ommon ase). Finally, Setion 5.5.6 desribeshow we envision adding this ompliated support to the framework.5.5.1 Present Handling of AlignmentIn our present use of FKO, we exploit ATLAS's framework to guarantee align-ment. All of ATLAS's timers and testers optionally aept ags that tell them tofore partiular alignments, and so we enounter no problems during tuning. Whenit is time to use the FKO-generated kernels to build an ATLAS-tuned library, we77



use multiple implementation to add the routine to ATLAS. At this stage, we writewrapper ode by hand that guarantees partiular alignment(s), using the tehniquesdisussed in the following setions. Also, the ATLAS framework already guaranteesalignment for the Level 3 BLAS kernels, and so we know we don't need to handlethese ases for some of our more important targets.5.5.2 Handling Alignment Safely, but IneÆientlySine vetorization has an impliit omputational unrolling, a salar leanup loop(whih has no vetor alignment requirements) is always generated. Trivially, we ouldadd a branh to this leanup anytime our operands are not appropriately aligned.While this would mean that the ode would handle all ases orretly, the non-alignedase would not only be salar ode, but largely untuned salar ode at that. It is forthis reason that we do not use this mehanism.5.5.3 Fixing Some Alignment Problems through Loop PeelingA subset of alignment problems may be addressed through simple loop peel-ing [24℄. Again, we have most of the infrastruture needed for this, in that peelingan reuse with very little modi�ation the unrolling and leanup infrastrutures.In peeling for alignment, iterations of the loop are peeled and onditionallyexeuted based on alignment, but the iterations that are peeled are salar iterations,so that we do the appropriate number of salar iterations until the relevant pointersare 128-bit aligned, and then we enter the vetorized loop.This method fully solves the problem if and only if all vetorized pointershave the same alignment. If two or more vetors are mutually misaligned (eg, P0mod 128 = 32 and P1 mod 128 = 64), then at least one pointer is still misaligned,and more ompliated tehniques are required, as desribed in the following setions.78



5.5.4 Handling Mutual MisalignmentIf two or more pointers are mutually misaligned, the general solution is to forethe alignment of one of the pointers via peeling as before, and then generate odethat assumes the given array/pointer is aligned, and any others are not. Obviously,if one array is aessed more than the others (for instane, if one array both usedand set while other arrays are use only), then that array is the obvious target forpeeling for alignment.To make this more onrete, assume we are aessing two single preision arrays,X (read only) and Y (both read and written), and that X mod 128 = 32 and Ymod 128 = 64. In this ase we use loop peeling to fore Y to be aligned to 128(whih in this example would result in doing two salar iterations of the loop beforeentering the vetorized loop). With Y fored to the orret alignment, we would nowempirially tune a sub-kernel speialized for aligned Y and non-aligned X.There are at least two general tehniques to try in these ases. On the x86, thereare non-aligned vetor loads, whih are slower than the aligned loads. Therefore, the�rst tehnique would involve using non-aligned loads on X, but then it makes senseto do some sheduling to reet the fat that X aess is slower than Y aess. Forinstane, we might want to software pipeline all X aesses so that this iterationfethes the next iteration's X data.Another, even more aggressive, tehnique is to instantiate the various possibilitiesof X misalignment, and then use aligned aess on X, but permute the data beforeapplying it to Y . This in fat is required for the PowerPC, where the AltiVe unitdoes not support non-aligned load. Again, if we are required to permute one array'sdata before use, we will probably want to software pipeline it so that waiting on thepermute does not reate a bottlenek.
79



As an be seen, handling the non-aligned ase represents a more signi�ant tuningproblem than SV itself, and this is the main reason we have not yet handled iteÆiently in FKO.5.5.5 Speial Alignment Considerations for Constantly Strided Multidi-mensional ArraysConstantly strided multidimensional arrays are ommon in oating point kernels.For instane, the Level 2 and 3 BLAS operate on onstantly strided two-dimensionalarrays. The non-unit stride of these arrays, in elements of the native type, is alledthe lda (Leading Dimension of Array). When outer loop unrolling is performed onsuh arrays, the inner loop then gets multiple pointers, whih may be mutuallymisaligned, depending on lda. To make this more onrete, onsider a doublepreision olumn-major array with lda = 7. Sine there are two double preisionelements in a SIMD vetor, all ontiguous olumns will be mutually misaligned by64 bits. However, every seond olumn will have the same alignment.More generally, if there are Ne native elements in a SIMD vetor, a partiularolumn j is guaranteed to have the same alignment as olumn j+Ne, regardless of lda.Further, if (lda�sizeof()) mod 128 = 0, then all olumns have the same alignment.NOTE: swap the word `row' for `olumn' in the above analysis for row-major arrays.We an use these insights to redue alignment omplexities when unrolling outerloops, or more generally, anytime we an disover that inner-loop pointers ome fromonstantly strided arrays.5.5.6 Adding Misalignment Support to the FrameworkAs this disussion has made lear, well-tuned misalignment support is a ompli-ated issue. Support will undoubtedly be phased in as we develop iFKO. For instane,the peeling and safety ases disussed in Setions 5.5.3 and 5.5.2 will probably80



be added soon, sine we already have the needed infrastruture, and peeling, inpartiular, does ompletely solve the problem for kernels that aess only one array.The next step will require signi�ant overhead, and will probably only beundertaken when we have some atual usage that require it. In this step, we wouldadd expliit tuning for non-aligned ases, whih requires extensions throughout theframework, inluding the searh, the transformations supported, and instrutionsavailable in ode generation.One we are able to expliitly tune for misalignment, we will still initially usemultiple implementation to hoose when to all partiular versions (eah tuned inseparate iFKO invoations). One suÆient performane and generality is availablein this tuning, we an automate the searh of all misalignment subases and thegeneration of the wrapper ode as well.5.6 Current Repeatable TransformationsRepeatable transformations an not only be applied multiple times, but aretypially applied in a series (or optimization blok) whih is repeated while they arestill suessfully transforming the ode. This is useful for synergisti optimizations(eg., register alloation and opy propagation). All of these operations may be appliedto a sope (a set of basi bloks, typially a given loop nest or the entire funtion).FKO's present interfae allows the user to speify that these optimizations be appliedto the optloop, or globally to the entire funtion. As we will see in Setion 5.6.10,most of these transformations are by default �rst exhaustively applied to the optloop,and then applied globally as well.We presently support repeatable transformations for improving register usageand ontrol ow. In register usage optimization, we support register alloation(Setion 5.6.1) and various types of opy propagation (Setions 5.6.2 and 5.6.3).Several of our register usage improving transformations (Setions 5.6.7, 5.6.8 and5.6.9) are in fat peephole optimizations that exploit the fat that the x86 is not81



a true load/store arhiteture (relatively important when the ISA has only eightregisters, but the underlying hardware may have more than a hundred). Finally, weperform branh haining (Setion 5.6.6), useless jump elimination (Setion 5.6.4),and useless label elimination (Setion 5.6.5), whih, when applied together, mergebasi bloks (ritial after extensive loop unrolling).5.6.1 Register Alloation (ra)This is our most omplex repeatable transformation. It performs interferenegraph based register alloation on an relatively arbitrary sope (a sope being a listof basi bloks). This optimization is applied both within and aross basi bloks.We assume that the sope has a single preheader (a single predeessor blok thatmust be passed through in order to reah all bloks in the sope), but allow formultiple suessors to the sope, whih we all post-tails. We use loop terms suh asheader and tail beause our most important sopes are indeed loop bodies.If a variable is live on sope entry, then the register load of that variable is hoistedto the preheader of the sope, and if a variable is live on sope exit, and a store isrequired, then the register-to-memory store is pushed into the relevant post-tail(s).The most ommon sope is a loop body, and when applied in this way to a variablelive throughout the loop, all assoiated memory aesses will be hoisted/pushed outof the loop.Presently, FKO by default applies ra to the loop identi�ed for empirial tuning,and then to the entire funtion. As we onsider more deeply nested loops, we willapply ra to eah loop level in turn, starting from the innermost. Performing ra onthe innermost loop �rst ensures that the inner loop's register needs are ompletelymet before outer loops are onsidered, whih is ritial in oating point kernels,where long-running loops are the ommon ase. Until registers are exhausted, raand opy propagation applied to outer loops will ontinue to expand the live rangeto the maximum extent, and eventually moving the load (store) to beginning (end)82



of the funtion, if possible. Thus, this rather ompliated version of ra provides aneÆient algorithm for register spilling in the ase of register exhaustion, as well asallowing us to postpone implementation of a more generalized loop-invariant odemotion.5.6.2 Copy Propagation (p)Copy propagation [24℄ is a tehnique for removing unneessary register-to-registermoves, often generated by preeding optimization phases, suh as register alloation.Our implementation operates both inter- and intra-blok, and performs severalrelated transformations. Trivially, it deletes any suh move where the soure anddestination are the same register.In it's main use, our opy propagation phase proeeds through the sope inforward order, looking for register-to-register moves. If the soure register is deadat this point, we delete the register-to-register move, and replae all sueedingreferenes of the destination register with the soure register, until either the sourebeomes live again, or the destination is dead. If the soure is still live, we do thesame, but stop the propagation if the destination register is set. When we are foredto stop the propagation before the destination register's live range is omplete, weput the register-to-register move bak into the ode, but as far down in the sope aspossible (hopefully out of a ritial path, for instane). If opy propagation must behalted on the next instrution after the move, no hange is made.5.6.3 Reverse Copy Propagation (r)Our urrent reverse opy propagation (r) operates only within a basi blok.We look for register-to-register moves where the soure register is dead, but startingat the bottom of the blok and proeeding towards the beginning. When we �ndsuh a move, we �nd the initialization of the soure's live range, and if it is in this83



blok, we delete the move and hange all referenes to the soure register betweenthat initialization and the move to the destination register.Thus, this transformation is designed to omplement p, in that p attempts tomaximize live ranges (and thus minimize moves) by �nding moves and extending thesoure's live range forward in the ode, while this optimization instead extends thedestination's live range bakwards. When applied together, this an remove obstalesto opy propagation aused by register reuse, whih would otherwise require registerrenaming.5.6.4 Useless Jump Elimination (uj)This transformations removes any unonditional jumps to bloks that are posi-tioned diretly after the jump.5.6.5 Useless Label Elimination (ul)Removes loal labels that are either not referened in the routine, or have noexeutable statements between them and another label. In this latter ase, allreferenes to the removed label are replaed by the retained label. This has thee�et of removing empty basi bloks when possible.5.6.6 Branh Chaining (b)Replaes branhes to unonditional jumps (or a hain of suh jumps) with abranh to the �nal target.5.6.7 Enfore Load Store (ls)The x86 is not a true load/store ISA, and thus many of its non-load instrutionsallowmemory addresses as soures. This transformation removes any suh in-memoryusage, replaing them with the more standard load to register, followed by register84



use. This is useful in exposing the possibility of register reuse (with orrelatedhoisting/pushing) to the other optimization phases. An example of how this anbe useful is given in Setion 5.7.2.5.6.8 Remove One Use Loads (u1)This is an x86-spei� peephole optimization whih searhes for loads to a registerwhose live range is omplete on the �rst use (it annot be applied to sets, as thex86 ISA does not provide non-store instrutions that aept destination operandsthat address memory). When an in-memory version of the instrution exists, u1then deletes the expliit load, and hanges the use to an in-memory version of theinstrution. This redues register pressure, and is therefore almost always worthapplying on these systems.5.6.9 Last Use Load Removal (lu)Like u1, this is an x86-spei� peephole optimization employed to redue registerpressure. As disussed, lu replaes single-use instrutions with their in-memoryequivalents. For registers that are aessed multiple times, we an sometimes avoid anunneessary load by hanging the last use of the register to an in-memory instrution.This is done by hanging the order of the instrution, so that a multiple-use registeris overwritten on its last use (i.e., we hange the use of that register to a set, and theregister now ontains a live range that was originally in another register). Beause weswap the soure and destination, the instrution that we are hanging to in-memorymust be ommutative, or we annot apply lu. This is probably the hardest of allthe repeatable optimizations to explain, and so a review of the atual example of itsappliation given in Setion 5.7.3 may be needed for more omplete understanding.
85



-L 1 0 4 ls 2 3 4-G 2 10 3 b uj ul-L 3 10 5 ra p r u1 lu-G 4 10 5 ra p r u1 lu(a) as ommand-line args

Loal ls while (CHANGES)while (CHANGES) ff Global raGlobal b Global pGlobal uj Global rGlobal ul Global u1g Global luwhile (CHANGES) gf Loop raLoop pLoop rLoop u1Loop lug (b) as pseudoodeFigure 5.4: Repeatable optimization defaults5.6.10 Default ValuesPresently, the iterative searh does not vary the repeatable optimizations, andalways uses the defaults (applied after any fundamental optimizations), whih aresummarized in Figure 5.4. 5.7 FKO in AtionIn this setion we use atual ode generated by FKO to illustrate how someof these transformations work in pratie. Setion 5.7.1 uses ddot (Figure A.5) todemonstrate register alloation, opy propagation, one use load elimination, and,most importantly, SIMD vetorization. Setion 5.7.2 then uses dasum (Figure A.3)to illustrate prefeth, enfore load/store, and the linked transformations of loopunrolling and useless label elimination. Finally, Setion 5.7.3 employs daxpy (Fig-ure A.4) to explore the use of non-temporal writes and last use load removal.Beause this is atual ode generated by FKO, it is in IA-32 assembly, whihis not as aessible as the ANSI C examples shown previously. However, manyof the lower-level optimizations (eg., SIMD vetorization, register alloation, opy86



propagation, et.) are diÆult to illustrate in high level languages. Comments areprovided that explain the general e�ets of lines of interest, and we provide a fewnotes here as an aid for those interested in examining these examples in greater detail.Assembly for the x86 is two operand (in most ases; it is, after all, CISC), andin the gnu dialet generated by FKO, the last operand is always the destination.As previously mentioned, FKO uses SSE for both salar and vetor instrutions.All examples use double preision data, and double preision SSE instrutions endin the suÆx d. Salar SSE instrutions' seond to last harater is s, and vetorinstrutions (whih operate in parallel on multiple salars) have this harater set top. Thus, [movsd, mulsd, addsd℄ are SSE opodes to perform salar double preisionmove, multiply and add, respetively, and their vetor equivalents are [movpd, mulpd,addpd℄. Integer instrutions are typially suÆxed by l (for long, as this ISA has itsroots in 8-bit operation). Constants are pre�xed by $, registers by %, and the SSEregisters are xmm0 through xmm7, while the stak pointer is esp.5.7.1 DDOT Example Illustrating ra, p, r, u1, and SVIn this setion, we use the Level 1 BLAS kernel ddot to illustrate registeralloation/assignment (ra), opy propagation (p), reverse opy propagation (r),remove one use loads (u1), and SIMD vetorization (SV). The ddot kernel performsa vetor produt operation, and its HIL loop is shown in Figure 5.5(a).Figure 5.5(b) shows the same region of ode in assembly, when generated byFKO without any optimization other than optimize loop ontrol, whih is alwaysapplied when legal. For this arhiteture, reversing the loop allows us to avoid aomparison instrution, and so we see in lines 26-30 that the loop given in our HIL,whih was of the form for(i=0; i < N; i++), has been transformed to one of theform for(i=N; i; i--).Note that our front-end generates simplisti load/store versions of eah operation:for any omputation, all operands are loaded from memory, then the omputation is87



1 LOOP i = 0 , N2 LOOPBODY3 x = X[ 0 ℄ ;4 y = Y[ 0 ℄ ;5 dot += x � y ;6 X += 1;7 Y += 1;8 LOOP END9 RETURN dot ;(a) Relevant HIL Loop1 . l o  a l LOOP 02 LOOP 0 :3# x = X[ 0 ℄ ;4 movl 36(%esp ) ,%edx5 movsd (%edx ) ,%xmm06 movlpd %xmm0 ,16(%esp )7# y = Y[ 0 ℄8 movl 32(%esp ) ,%edx9 movsd (%edx ) ,%xmm010 movlpd %xmm0 ,8(%esp )11# dot += x � y ;12 movsd 16(%esp ) ,%xmm013 movsd 8(%esp ) ,%xmm114 mulsd %xmm1 ,%xmm015 movsd (%esp ) ,%xmm216 addsd %xmm0 ,%xmm217 movlpd %xmm2 ,(%esp )18# X += 119 movl 36(%esp ) ,%edx20 addl $8 , %edx21 movl %edx ,36(%esp )22# Y += 123 movl 32(%esp ) ,%edx24 addl $8 , %edx25 movl %edx ,32(%esp )26# whi le(�� i ) ;27 movl 44(%esp ) ,%edx28 subl $1 , %edx29 movl %edx ,44(%esp )30 jne LOOP 031 . l o  a l LOOP END 032 LOOP END 0 :(b) Assembly, no optimization otherthan LC

1# Hoisted loads from ra2 movl 48(%esp ) ,%ebp3 movsd 4(%esp ) ,%xmm24 movl 36(%esp ) ,%eax5 movl 40(%esp ) ,%ex6 . l o  a l LOOP 07 LOOP 0 :8# x = X[ 0 ℄ ;9 movl %ex ,%edx10 movsd (%edx ) ,%xmm011 movsd %xmm0 ,%xmm112# y = Y[ 0 ℄13 movl %eax ,%edx14 movsd (%edx ) ,%xmm015 movsd %xmm0 ,%xmm316# dot += x � y ;17 movsd %xmm1 ,%xmm018 movsd %xmm3 ,%xmm119 mulsd %xmm1 ,%xmm020 movsd %xmm2 ,%xmm221 addsd %xmm0 ,%xmm222 movsd %xmm2 ,%xmm223# X += 124 movl %ex ,%edx25 addl $8 , %edx26 movl %edx ,%ex27# Y += 128 movl %eax ,%edx29 addl $8 , %edx30 movl %edx ,%eax31# whi le(�� i ) ;32 movl %ebp ,%edx33 subl $1 , %edx34 movl %edx ,%ebp35 jne LOOP 036 . l o  a l LOOP END 037 LOOP END 0 :38# Pushed s t o r e from ra39 movlpd %xmm2 ,4(%esp )() Assembly, after raFigure 5.5: DDOT Loop in HIL and Assembly with no optimization, andra 88



performed, and then result is stored bak to memory. Lines 3-17 are all involved inperforming a simple dot += X[0℄*Y[0℄, for instane. At this point, registers are liveonly aross a single omputation, and so there is no reuse. FKO relies on repeatableoptimizations to improve register usage, as the shown in the following examples.Figure 5.5() shows the same assembly, but this time we have applied registerassignment/alloation. In lines 2-5 we see that the loads of the variables i (the loopindex), dot, X (pointer to �rst vetor), and Y (pointer to seond vetor) have beenhoisted out of the loop. Further, sine dot is live on output and written in the loop,the store of dot bak to memory has been pushed out of the loop, to line 39. Atthis point, the size of the ode supporting the loop has been expanded, as we haveadded the hoisted/pushed ode, while hanging a�eted loads to register-registermoves. Not only do we have repetitive moves, but notie that line 22 atually movesa register to itself! Cleaning up all these unneessary register moves is the job of thevarious opy propagation forms.Figure 5.6(a) shows this same ode, but we have applied forward opy propagation(p) as well as ra, and we have done them in this order, and ontinued to apply themtogether until they no longer transform the ode. While this has redued the numberof unneessary moves, there are still some obvious ones, as in lines 9 and 10, wherethe fat that we reused the xmm0 register has fored us to retain the move to xmm1.Adding reverse opy propagation (r) to the optimization blok handles these kinds ofrenaming problems, as shown in Figure 5.6(b), where line 8 loads the value diretlyinto xmm1. Reverse opy propagation started with the register-to-register move atline 10 of Figure 5.6(a), and determined that the soure's live range began on line 9.The move on line 10 was then deleted, and and the destination register (xmm1) wassubstituted for the soure register (xmm0) on line 9, leading to line 8 of Figure 5.6(b).The ode is starting to look muh better, but we an redue register pressureby making one of the loads impliit. Exploiting the CISC ISA in this way is the89



1# Hoisted loads from ra2 movl 48(%esp ) ,%ebp3 movsd 4(%esp ) ,%xmm24 movl 36(%esp ) ,%eax5 movl 40(%esp ) ,%ex6 . l o  a l LOOP 07 LOOP 0 :8# x = X[ 0 ℄ ;9 movsd (%ex ) ,%xmm010 movsd %xmm0 ,%xmm111# y = Y[ 0 ℄12 movsd (%eax ) ,%xmm013# dot += x � y ;14 mulsd %xmm0 ,%xmm115 addsd %xmm1 ,%xmm216# X += 117 addl $8 , %ex18# Y += 119 addl $8 , %eax20# whi le(�� i ) ;21 subl $1 , %ebp22 jne LOOP 023 . l o  a l LOOP END 024 LOOP END 0 :25# Pushed s t o r e from ra26 movlpd %xmm2 ,4(%esp )(a) Assembly, after ra and p

1 movl 48(%esp ) ,%ebp2 movsd 4(%esp ) ,%xmm23 movl 36(%esp ) ,%eax4 movl 40(%esp ) ,%ex5 . l o  a l LOOP 06 LOOP 0 :7# x = X[ 0 ℄ ;8 movsd (%ex ) ,%xmm19# y = Y[ 0 ℄10 movsd (%eax ) ,%xmm311# dot += x � y ;12 mulsd %xmm3 ,%xmm113 addsd %xmm1 ,%xmm214# X += 115 addl $8 , %ex16# Y += 117 addl $8 , %eax18# whi le(�� i ) ;19 subl $1 , %ebp20 jne LOOP 021 . l o  a l LOOP END 022 LOOP END 0 :23# Pushed s t o r e from ra24 movlpd %xmm2 ,4(%esp )(b) Assembly, after ra, p and rFigure 5.6: DDOT Loop Assembly with ra, p, and rjob of remove one use loads (u1), whih merges a omputation and load into oneinstrution. Note that reduing register pressure is not an obvious bene�t in theurrent loop, but after additional transformations suh as unrolling and aumulatorexpansion, it an beome ritial. Even absent suh hanges, additional bene�t maybe provided both by the inreased ode density and having the additional registeravailable for later use in global appliation of ra.Figure 5.7 demonstrates u1. In order to make the examples more ompat, wehereafter omit the hoisted/pushed load/stores and the omputation identifying om-ments. Therefore, Figure 5.7(a) reapitulates Figure 5.6(b) without suh instrutions,and Figure 5.7(b) shows the same ode after u1 is added to the optimization blok.We see that we have one less instrution in the loop, and the register xmm3 is no90



1 . l o  a l LOOP 02 LOOP 0 :3 movsd (%ex ) ,%xmm14 movsd (%eax ) ,%xmm35 mulsd %xmm3 ,%xmm16 addsd %xmm1 ,%xmm27 addl $8 , %ex8 addl $8 , %eax9 subl $1 , %ebp10 jne LOOP 0(a) DDOT Loop Assembly with ra,p, and r
1 . l o  a l LOOP 02 LOOP 0 :3 movsd (%ex ) ,%xmm14 mulsd (%eax ) ,%xmm15 addsd %xmm1 ,%xmm26 addl $8 , %ex7 addl $8 , %eax8 subl $1 , %ebp9 jne LOOP 0(b) DDOT Loop Assembly with ra,p, r, and u1Figure 5.7: DDOT Loop Assembly with ra, p, r and u1longer used. This is beause the load of xmm3 from line 4 of Figure 5.7(a) has beenmerged into the omputational instrution on line 4 of Figure 5.7(b).5.7.1.1 SIMD VetorizationThe next step is to show how SIMD Vetorization is applied. Sine SV makesglobal hanges to the funtion, it is not easily understood by viewing isolated odefragments, and therefore Figure 5.8 shows the omplete assembly generated aftervetorization. For the sake of both larity and brevity, we have applied all repeatableoptimizations using the defaults given in Setion 5.6.10.Vetorization reates many omplexities, one of whih is the need to keep vetorsaligned to 128 bits. This is problemati in that the IA-32 ABI (Appliation BinaryInterfae) only guarantees stak pointer alignment to 32 bits. Thus, in lines 7 and8, we shift o� the last 4 bits of the stak pointer so that it is known to be alignedto 128 (note that the stak grows downward in this ISA, and so this just results inexpanding our loal frame by a bit). On this arhiteture FKO normally employsthe frame pointer as a general purpose register (otherwise, the ompiler would onlyhave six available integer registers, as two would be tied up pointing to the stak).However, sine how muh the shifts hange the stak pointer is not known at ompiletime, we must save the old stak pointer, or we will unable to reover it (in orderto restore the stak pointer on funtion exit, or to aess parameters passed to the91



1 . t e x t2 . g l o b l ATL UDOT3ATLUDOT:4# Ensure 128 b i t al ignment o fs tak ptr5 movl %esp ,%edx6 subl $128 , %esp7 shrl $4 , %esp8 shll $4 , %esp9 movl %edx ,8(%esp )10# Save r e g i s t e r s & ld o ld stakptr new reg11 movl %ebp ,(%esp )12 movl %ebx ,4(%esp )13 movl 8(%esp ) ,%ebp14# para 0 , name=N15 movl 4(%ebp ) ,%edx16 movl %edx ,%eax17# para 1 , name=X18 movl 8(%ebp ) ,%edx19 movl %edx ,%ex20# para 2 , name=inX : UNUSED21# para 3 , name=Y22 movl 16(%ebp ) ,%edx23# para 4 , name=inY : UNUSED24# I n i t i a l i z e l o  a l s toons tant s25 xorpd %xmm0 ,%xmm026# END OF FUNCTION PROLOGUE27 subl $1 , %eax28 jle CUNE LOOP 029# In i t aumulator ve to r f o rdot30 movsd %xmm0 ,%xmm231 xorpd %xmm0 ,%xmm032 movsd %xmm2 , %xmm033 movl %eax ,%ebp34 movapd %xmm0 , %xmm235 movl %ex ,%eax36 movl %edx ,%ex37 . l o  a l LOOP 0

38 LOOP 0 :39 movapd (%eax ) , %xmm040 mulpd (%ex ) , %xmm041 addpd %xmm0 , %xmm242 addl $16 , %ex43 addl $16 , %eax44 subl $2 , %ebp45 jg LOOP 046# Redue aumulator ve to r f o rdot47 movl %ex ,%ebx48 movl %eax ,%ex49 pshufd $0xee ,%xmm2 ,%xmm150 addpd %xmm1 , %xmm251 movlpd %xmm2 , 80(% esp )52 movsd 80(%esp ) ,%xmm053 movsd %xmm0 ,%xmm254 subl $�1, %ebp55 movl %ebp ,%eax56 jne IFKOCD0 LOOP 057 . l o  a l CUDONE LOOP 058 CUDONE LOOP 0 :59# se t return val , r e s t o r e regs, and return60 . l o  a l IFKO EPILOGUE61 IFKO EPILOGUE:62 movsd %xmm2 ,104(%esp )63 fldl 104(%esp )64 movl (%esp ) ,%ebp65 movl 4(%esp ) ,%ebx66 movl 8(%esp ) ,%esp67 ret68 . l o  a l CUNE LOOP 069 CUNE LOOP 0 :70 addl $1 , %eax71 movsd %xmm0 ,%xmm272 movl %edx ,%ebx73 . l o  a l IFKOCD0 LOOP 074 IFKOCD0 LOOP 0 :75 movsd (%ex ) ,%xmm076 mulsd (%ebx ) ,%xmm077 addsd %xmm0 ,%xmm278 addl $8 , %ex79 addl $8 , %ebx80 subl $1 , %eax81 jne IFKOCD0 LOOP 082 jmp CUDONE LOOP 0Figure 5.8: SIMD Vetorized DDOT Assembly92



routine). Therefore, we see that line 5 opies the original stak pointer to a temporaryregister before the stak pointer is modi�ed. This temporary register is then used tostore the old stak pointer to the newly alloated stak frame (line 9), allowing theoriginal stak pointer to be a target for register alloation like any other loal (it isloaded to a new register on line 13).Line 25 initializes dot to zero for use in the loop. However, the dot that has justbeen set is a salar. The loop, however, has been vetorized, and so it needs dotin a vetor register. This is done on lines 31, 32 and 34. A areful examination ofthese lines reveals that they are, in fat, not needed. This is easily disoverable inthe assembly, but not apparent in our LIL. These lines are not needed beause forFKO on the x86, vetor and salar registers are aliased, and so we an use normalmoves to transfer them, and in this ase, both our salar and vetor dot registerswind up assigned to the physial register xmm2. However, our LIL assumes thatsalar and vetor registers are separate (as indeed they often are, for instane onthe PowerPC, or indeed on the x86 if we used the x87 FPU for salar oating pointomputation), and thus by default goes through memory when transferring betweensalar and vetor registers. In this ase, FKO has avoided going through memory, butstill retains some useless register-to-register moves. We will need to introdue somemore arhiteture-spei� information into the opy propagation phases (indiatingexatly how salar and vetor registers are aliased) to avoid these moves. Beausethese salar/vetor onversions are always introdued outside the main loop, wehave not bothered to introdue this system-dependent optimization yet, but we willprobably do so eventually, partiularly as we examine more omplex kernels (whereouter-loop transforms beome more ritial, as the inner loop is deeply nested).Lines 31 and 32 are themselves the result of a series of optimizations. They startedout as a store to memory of the salar value, followed by a read into a vetor register,but opy propagation knows how to move a value from a salar register to the lower64 bits of the vetor register, as shown in line 32. However, this leaves the upper 6493



bits untouhed, and so the target vetor register must be zeroed before the move,whih is what instrution 31 is doing. Line 34 is a vetor-to-vetor register move,moving the onstruted vetor register xmm0 to its eventual target, xmm2. Note thatwe annot onstrut the vetor value in xmm2 diretly, due to live range onits.While our LIL treats vetor and salar registers as separate sets, it of ourse hasaurate dependeny information, and so it knows that when xmm2 is used as tohold a salar value (in this ase the salar value of dot), whihever vetor registerthat orresponds to it annot be assigned until that salar live range is omplete.Sine the salar version of xmm2 is not dead until vetor onstrution is omplete,and onstrution takes multiple instrutions, we have to use the temporary vetorregister xmm0.Lines 49-53 (after the vetorized loop) do the opposite: they take the vetor valuesof dot, and redue them to a salar value. After the loop, however, this requiressumming the two partial results as well as moving the data between salar/vetortypes. Therefore, line 49 moves the upper 64 bits of the vetor register xmm2 into thelower 64 bits of xmm1, and we then add them together on line 50, so that the ompletedot is in the lower 64 bits of xmm2. Unfortunately, FKO was unable to remove thestore and load to memory this time, and so line 51 stores dot to memory from avetor register, line 52 reads it from that loation into a temporary salar register,and line 53 moves it to its �nal salar destination register. Again, there are manyoptimizations we an apply to make this more eÆient, but we have not yet done sosine it outside the loop.Lines 38-45 ontain the vetorized loop. We see that this loop is essentially thesame as the salar loop shown in Figure 5.7(b), with two notable exeptions. First,all salar instrutions have been replaed by their vetor equivalents. Seond, theupdate of the pointers is by 16 bytes (128 bits) rather than 8, and the index is updatedby subtrating two rather than one. This is beause vetorization is equivalent to asalar unrolling of two for double preision.94



Beause it is equivalent to a omputational unrolling of 2, we must have a leanuploop for odd values of N , and we must introdue the appropriate branhes to thisleanup loop, just as we do in unrolling. Lines 74-82 omprise the salar leanuploop. Lines 27 and 28 supply the pre-loop branh to leanup (to handle the ase ofN < 2), and lines 54 and 56 do the same for post-vetor-loop leanup (for the aseN > 2, but N mod 2 6= 0).Lines 60-66 omprise the funtion epilogue, whih restores the allee-savedregisters (inluding the stak pointer), and returns. Lines 62 and 63 reveal anotheromplexity of this arhiteture. The IA-32 ABI requires funtions returning oatingpoint values to store them as the top register of the x87's register stak. Movingbetween SSE registers and x87 registers requires going through memory, so line 62stores the return value (dot) from an SSE register, and line 63 loads it to the x87register stak top.In our pre-loop test, we subtrated UR-1 from the start value of the loop indexin order to get the numbers orret for eÆient unrolled loop indexing. If we neverenter this loop, however, this value must be added bak in, whih is why the pre-looptests jumps to the blok on lines 69-72, rather than diretly to the leanup loop, asthe post-loop test does.Note that sine the leanup loop and orresponding onditionals are generated,FKO has onsiderable freedom to hoose where to add these bloks. Therefore,we have have added them in suh a way that the fall-through ases assume that thevetorized loop is entered, and loop leanup is not required (thus not adding overheadto the most eÆient ase).5.7.2 DASUM Example Illustrating UR, AE, PF, ul, and lsIn this setion we use dasum (Figure A.3) to illustrate various optimizations.First, we use a simple example to show how the enfore load/store ls transformationan be useful, and then a more detailed listing is given in order to demonstrate how95



1 LOOP i = 0 , N2 LOOPBODY3 x = X[ 0 ℄ ;4 x = ABS x ;5 sum += x ;6 X += 1 ;7 LOOP END(a) As HIL
1 . l o  a l LOOP 02 LOOP 0 :3 movsd (%ex ) ,%xmm04 andpd 16(%esp ) ,%xmm05 addsd %xmm0 ,%xmm26 addl $8 , %ex7 subl $1 , %eax8 jne LOOP 0(b) Without ls

1 movapd 16(%esp ) ,%xmm32 . l o  a l LOOP 03 LOOP 0 :4 movsd (%ex ) ,%xmm05 andpd %xmm3 ,%xmm06 addsd %xmm0 ,%xmm27 addl $8 , %ex8 subl $1 , %eax9 jne LOOP 0() With lsFigure 5.9: ASUM Looploop unrolling (UR), aumulator expansion (AE), prefeth (PF), and useless labelelimination (ul) work together.Figure 5.9(a) shows the dasum written in our HIL. Line 3 loads the array value,line 4 takes its absolute value, and line 5 adds this into the running sum (dasum isthe absolute value sum of an array). Figure 5.9(b) shows this same inner loop inassembly. Here, we are using all of the default optimizations, exept we have turnedo� ls. Line 3 of this listing loads the array value, line 4 takes its absolute value (moreon this below), and line 5 adds the absolute value into the running sum.In order to understand this ode, we need to understand how absolute value isperformed using SSE, whih does not have an expliit absolute value instrution.Fortunately, a bitwise and an be used to produe suh an operation. First, weonstrut a 128 bit integral value that has all bits set to 1, exept the sign bit ofeah velen oating point elements, whih are instead set to 0. Absolute value of asalar or vetor may then be produed by performing a bitwise and of this integralvalue and the register holding the number to be absolute valued. Beause we wantto be able to issue absolute value with minimal register use, the front-end generatesthe in-memory version of the instrution, as shown on line 4 of Figure 5.9(b) (wherethe integral value has been written to the stak loation 16(%esp)). Inside a loop,however, this an lead to repetitive memory reads. By running enfore load store asshown in the arhitetural defaults, the ode in Figure 5.9() is reated, where this96



1 xorpd %xmm1 ,%xmm12 movsd %xmm1 ,%xmm33 . l o  a l LOOP 04 LOOP 0 :5 movsd (%ex ) ,%xmm06 andpd %xmm2 ,%xmm07 addsd %xmm0 ,%xmm38 . l o  a l IFKOCD1 LOOP 09 IFKOCD1 LOOP 0 :10 movsd 8(%ex ) ,%xmm011 andpd %xmm2 ,%xmm012 addsd %xmm0 ,%xmm313 . l o  a l IFKOCD2 LOOP 014 IFKOCD2 LOOP 0 :15 movsd 16(%ex ) ,%xmm016 andpd %xmm2 ,%xmm017 addsd %xmm0 ,%xmm318 . l o  a l IFKOCD3 LOOP 019 IFKOCD3 LOOP 0 :20 movsd 24(%ex ) ,%xmm021 andpd %xmm2 ,%xmm022 addsd %xmm0 ,%xmm323 addl $32 , %ex24 subl $4 , %eax25 jg LOOP 0(a) Unrolled to 4

1 xorpd %xmm1 ,%xmm12 movsd %xmm1 ,%xmm33# Shadow aum i n i t4 xorpd %xmm0 ,%xmm05 movsd %xmm0 ,%xmm46 . l o  a l LOOP 07 LOOP 0 :8 prefethnta 256(%eax )9 movsd (%eax ) ,%xmm010 andpd %xmm2 ,%xmm011 addsd %xmm0 ,%xmm412 movsd 8(%eax ) ,%xmm013 andpd %xmm2 ,%xmm014 addsd %xmm0 ,%xmm315 movsd 16(%eax ) ,%xmm016 andpd %xmm2 ,%xmm017 addsd %xmm0 ,%xmm418 movsd 24(%eax ) ,%xmm019 andpd %xmm2 ,%xmm020 addsd %xmm0 ,%xmm321 addl $32 , %eax22 subl $4 , %ebp23 jg LOOP 024# Aumulator redue25 addsd %xmm4 ,%xmm3(b) With UR=4, ul, PF, and AE=2Figure 5.10: DASUM loop unrolled to 4impliit load has �rst been hanged bak to an expliit load by ls, and then registerassignment has hoisted the load of the integral value out of the loop.Figure 5.10(a) shows the dasum loop that has been unrolled to 4, but withoutapplying useless label elimination. We see that the loop simply repeats Figure 5.9()four times, with a few minor hanges. First, UR does not just blindly repeat theloop ontrol and pointer updates, but instead hanges the address referenes usingonstants in the loop, and does these updates only one time. Notie that the loadsfrom the array X have an o�set, as shown on lines 5, 10, 15, and 20 of Figure 5.10(a).We an then add UR � sizeof() = 4 � 8 = 32 to the X pointer at the bottom ofthe loop (line 23). If we updated the pointer between eah aess, there would be apotential slowdown, sine an integer add would need to be performed before eah of97



the last three loads. In the present formulation, the arhiteture is free (assumingregister renaming is done by the hardware) to issue all four loads in parallel. Line24 shows that the update of the loop index is now by 4, rather than 1.When dupliating the loop body, any labels must be made distint, and so wesee that the labels of the dupliated bloks (lines 9, 14 and 19) have a standardpre�x added to them. These extra labels are in fat useless in this operation. Iflabels aren't being used, we want to remove them, sine most optimizations are morerobust within a basi blok than when applied aross bloks.Figure 5.10(b) shows the same loop, but we have applied ul, PF and AE=2.The useless label elimination veri�es that the dupliated labels are not referenedanywhere in the ode, and removes them, resulting in a loop onsisting of a singlebasi blok again. On this arhiteture, the ahe line size is 128 bytes, or 16 doublepreision elements, and so one prefeth instrution (line 8) is suÆient.Our �nal transformation of interest is aumulator expansion. Notie that thesummation updates (lines 7, 12, 17 and 22) of Figure 5.10(a) all update the sameregister, xmm3, but in Figure 5.10(b), we alternate between uses of xmm4 and xmm3(lines 11, 14, 17 and 20). This means that the extra register must be initializedbefore the loop (lines 4 and 5), and added bak into the total after the loop (line 25).5.7.3 DAXPY Example Illustrating WNT and luFigure 5.11(a) shows the main daxpy loop in our HIL, while Figure 5.11(b) showsthe assembly generated by FKO when vetorization is applied, and all repeatabledefaults other than last use removal (lu) are applied.The orrespondene of these two loops is easy to see: in both loops, the �rsttwo lines of the loop body load the input values from their respetively arrays, thethird multiplies by the X value by alpha, and the fourth adds the result to the valueobtained from Y . We then store the value bak to Y , and inrement the array and98



1 LOOP i = 0 , N2LOOPBODY3 x = X[ 0 ℄ ;4 y = Y[ 0 ℄ ;5 x = x �alpha ;6 y += x ;7 Y[ 0 ℄ = y ;8 X += 1 ;9 Y += 1 ;10LOOP END(a) As HIL

1 . l o  a l LOOP 02 LOOP 0 :3 movapd (%eax ) , %xmm14 movapd (%ex ) , %xmm35 mulpd %xmm2 , %xmm16 addpd %xmm1 , %xmm37 movl %ex ,%edx8 movapd %xmm3 , (% edx )9 addl $16 , %ex10 addl $16 , %eax11 subl $2 , %ebp12 jg LOOP 0(b) As vetorized assembly

1 . l o  a l LOOP 02 LOOP 0 :3 movapd (%eax ) , %xmm14 mulpd %xmm2 , %xmm15 addpd (%ex ) , %xmm16 movl %ex ,%edx7 movntpd %xmm1 , (% edx )8 addl $16 , %ex9 addl $16 , %eax10 subl $2 , %ebp11 jg LOOP 0() As assembly, with WNT& luFigure 5.11: DAXPY Loopindex ounters (sine Figure 5.11(b) has been vetorized, it inrements by twie asmuh as Figure 5.11(a)).On the P4E, if this loop traverses enough memory to overow the ahe, it isa performane win to use non-temporal writes (WNT) for the stores of Y , and wehave done so in Figure 5.11(). Notie that the store of Y (line 8) of Figure 5.11(b)uses the instrution movapd, while the store of Y (line 7) of Figure 5.11() uses itsnon-temporal equivalent, movntpd.The �nal optimization shown here is last use removal (lu). In our our previousexamples, we have usually been able to make one array load impliit through the useof u1, but we annot do so here, beause of the usage pattern. It's not a good idea tooverwrite the register holding alpha (xmm2) sine it is loop invariant, and overwritingit would require us to reload it in the loop. Therefore, sine x86 assembly an haveonly soure operands oming from memory, we are unable to apply u1 to line 5 ofFigure 5.11(b).Instead, we notie that the last use of the register holding the value ofX(i)�alpha(xmm1) is in the ommutative instrution addpd on line 6 of Figure 5.11(b). In thisase, we an make the load of Y impliit, by reordering the instrution so that theY value omes from memory, and xmm1 is overwritten (sine this was its last use inthe register), as in line 5 of Figure 5.11().99



5.8 Current Iterative SearhThe present iterative searh varies only the fundamental optimizations. Therepeatable optimizations are therefore always those given in Setion 5.6.10, whileour fundamental defaults are outlined in Setion 5.4.7. The master searh performsthe following sub-searhes in this order: WNT Searh: FKO is queried for the arraysthat are set in the loop, and non-temporal writes are tried on eah in turn, and areused for that array if they provide a speedup. PF Type Searh: Eah supported typeof prefeth instrution is tried for \prefeth for read" and \prefeth for write". Bestvalues are kept. PF Distane Searh: For eah prefeth target (returned by FKOanalysis) a linear searh is performed using line size inrements. We also try notprefething the array, and prefething shorter distanes less than the line size. Bestdisovered values for eah array are retained. Loop Unroll Searh: Try all powers oftwo between [1:128℄. Powers of two are used beause they allow for a quik searhand keep data aess in a given loop iteration a multiple of the ahe line size; amore omplete searh would probably yield some improvement, but this value will bere�ned further by later stages of the searh anyway. Aumulator Expansion Searh:Try performingAE on all valid targets (returned by FKO) in turn. This optimizationdepends on unrolling, so we try a few di�erent unrollings for eah expansion. Letthe number of aumulators urrently being tried for a given variable be Na, andthe present unrolling fator be Nu. Our present searh tries all Na in the range2 � Na � 6 (six is a safe maximum for the x86, where the ISA has only 8 registers).For eah suh Na, we try using the urrent loop unrolling, Nu. When there is amismath between Na and Nu, we try additional loop unrollings in order to avoidross-iteration pipeline stalls. More preisely, if Nu < Na, additionally try the loopunrolling of Na. If Nu > Na and Nu mod Na 6= 0, we try two additional unrollingsof dNuNa e �Na and bNuNa  �Na. 100



CHAPTER 6EXPERIMENTAL RESULTS AND ANALYSISThis hapter presents and analyzes results on two of today's premier x86 imple-mentations, and is organized in the following way: Setion 6.1 outlines the oatingpoint kernels that are being optimized, Setion 6.2 disusses version and timingmethodology information, and Setion 6.3 presents the raw results. Setion 6.4then provides the main analysis of these results, while Setion 6.5 points out someinteresting (but non-essential) details. Finally, in those few ases where iFKO failsto provide the fastest implementation, Setion 6.6 desribes the transformations thatthe most suessful tuning tehnique utilized to get the fastest kernel, so it is learwhether or not the required optimization(s) an be eventually be generalized intoour ompilation framework.6.1 Problem Domain and Surveyed RoutinesThe general domain of this researh is oating point kernels, but this paperfouses on the Level 1 BLAS. The Level 1 BLAS are vetor-vetor operations, mostof whih an be expressed in a single for-loop. These operations are so simple thatit would seem unlikely that empirial optimization ould o�er muh bene�t overmodel-based ompilation. One of the key ontributions of this initial work is thatwe show that even on suh well-understood and often-studied operations as these,empirial optimization an improve performane over standard optimizing ompilers.Most Level 1 BLAS have four di�erent variants depending on type and preisionof operands. There are two main types of interest, real and omplex numbers, eah101



of whih has double and single preision. In this work, we onentrate on single anddouble preision real numbers. The Level 1 BLAS all operate on vetors, whih an beontiguous or strided. Again, we fous on the most ommonly used (and optimizable)ase �rst, the ontiguous vetors. For eah routine, the BLAS API pre�xes theroutine name with a type/preision harater, `s' meaning single preision real, and`d' for double preision real. Sine iamax involves returning the index of the absolutevalue maximum in the vetor, the API puts the preision pre�x in this routine as theseond harater rather than the �rst (i.e., isamax or idamax rather than ddot orsdot). There are quite a few Level 1 BLAS, and so we study only the most ommonlyused of these routines, whih are summarized in Table 6.1 (Appendix A provides aomplete listing of the atual kernels input to the ompilers, both in ANSI C and inour HIL). The performane of the BLAS are usually reported in MFLOPS (millionsof oating point operations per seond), but some of these routines atually do nooating point omputation (eg., opy). Therefore, the FLOPs olumn gives the valuewe use in omputing eah routine's MFLOP rate.Table 6.1: Level 1 BLAS summaryNAME Operation Summary FLOPsswap for (i=0; i < N; i++) {tmp=y[i℄; y[i℄ = x[i℄; x[i℄ = tmp} Nsal for (i=0; i < N; i++) y[i℄ *= alpha; Nopy for (i=0; i < N; i++) y[i℄ = x[i℄; Naxpy for (i=0; i < N; i++) y[i℄ += alpha * x[i℄; 2Ndot for (dot=0.0,i=0; i < N; i++) dot += y[i℄ * x[i℄; 2Nasum for (sum=0.0,i=0; i < N; i++) sum += fabs(x[i℄) 2Nfor (imax=0, maxval=fabs(x[0℄), i=1; i < N; i++) {if (fabs(x[i℄) > maxval){ imax = i; maxval = fabs(x[i℄); }iamax } 2N
102



6.2 Methodology and Version InformationAll timings were done with ATLAS version 3.7.8, whih we modi�ed to enablevetorization by Intel's C ompiler, i. Most of the loops in ATLAS are written as`for(i=N; i; i--)' or `for(i=0; i != N; i++)' and i will not vetorize eitherform, regardless of what is in the loop. One we experimentally determined thatthis loop formulation was preventing i from vetorizing any of the target loops,we simply modi�ed the soure of the relevant routines to `for(i=0; i < N; i++)',whih i suessfully vetorizes.Table 6.2: Compiler ag and version information by platformg iPLATFORM VER FLAGS VER FLAGS2.8 Ghz P4E 3.3.2 -fomit-frame-pointer -O3 8.0 -xP -O3 -mp1 -stati(Pentium 4E) -funroll-all-loops1.6 Ghz Opt 3.3.2 -fomit-frame-pointer 8.0 -xW -O3 -mp1 -stati(Opteron) -O -mfpmath=387 -m64We report numbers for two very di�erent high-end x86 arhitetures, the IntelPentium 4E and AMD Opteron. Further platform, ompiler and ag information issummarized in Table 6.2 (for the pro�le build and use phases, the appropriate agswere suÆxed to those shown Table 6.2.) The ATLAS Level 1 BLAS kernel timerswere utilized to generate all performane results. However, we enabled ATLAS'sassembly-oded walltimer that aesses hardware performane ounters in order toget yle-aurate results. Sine walltime is prone to outside interferene, eahtiming was repeated six times, and the minimum was taken. All timings were donesequentially, and run on an unloaded mahine. Beause these are atual timings(as opposed to simulations), there is still some utuation in performane numbersdespite these preautions, so small gaps of around a perentage point may notrepresent true di�erenes. 103



Therefore, beause the searh is empirial, it is not stritly repeatable. Ingeneral, truly bad hoies are rarely made, as they tend to be above lok resolution.Nonetheless, tehniques an be employed to improve the results of any empirialsearh. The simplest is to run the searh several times, and take the best availabletransformation list found for eah routine (i.e., utilize the ddot ags from run A,and the samax ags from run B). A more sophistiated approah takes the result ofprevious searhes as the starting point of a new searh, or reruns ertain sub-searheswith updated information from subsequent sub-searhes, or tweaks various boundinformation in hopes of �nding undisovered outlying transformations. However, wewanted to ompare fully-automati use of the present systems, and so eah list ofresults was obtained by simply running two sripts sequentially. The �rst sript timesall �xed methods (g,i,ATLAS,FKO), and the seond is the the default empirialsearh of iFKO.6.2.1 Input RoutinesAppendix A shows the input routines to all ompilers. With the exeption ofiamax, the input routines given to FKO were the diret translations of these routinesfrom ANSI C to our HIL (i.e., high level optimizations were not applied to the soure).Our HIL does not yet support soped ifs, however, and so iamax was originally odedfor all ompilers (in the appropriate language) as shown in Figure A.7(b), whih,absent ode positioning transformations, is the most eÆient way to implement theoperation. However, this formulation of iamax depressed performane signi�antlyfor i, while not notieably improving g's performane, and so we utilized theimplementation shown in Figure A.7(a) for these ompilers.
104



6.3 Overview of ResultsThis setion presents our experimental results, and explains the formats in whihwe present them. These results show adaptation to the kernel, arhiteture, and theontext (in this ase, out-of-ahe, or L2-ahe resident). Analysis of these resultsare provided in the following setions.Figures (6.1, 6.2, 6.3, 6.4) report the perentage of the best observed performaneprovided by the following methodologies:� g+ref: Performane of ANSI C referene implementation ompiled by g.� i+ref: Performane of ANSI C referene implementation ompiled by i.� i+prof: Performane of ANSI C referene implementation, using i andpro�ling. Pro�ling was performed with tuning data idential to the data usedin timing.� ATLAS: The best kernel found by ATLAS's empirial searh, installed withboth i and g. ATLAS empirially searhes a series of implementations,whih were laboriously written and hand-tuned using mixtures of assemblyand ANSI C, and ontain a multitude of both high and low-level optimizations(eg., software pipelining, prefeth, unrolling, sheduling, et.). When ATLAShas seleted a hand-tuned all-assembly kernel (as opposed to the more ommonANSI C routine with some inline assembly for performing prefeth), the routinename is suÆxed by a * (eg., dopy beomes dopy*). This is mainly of interestin that hand-tuning in assembly allows for more omplete and lower-leveloptimization (eg. SIMD vetorization, exploitation of CISC ISA features, et.).� FKO: The performane of the kernel when ompiled with FKO using defaulttransformation parameters (i.e., no empirial searh).105



� iFKO: The performane of the kernel when iterative ompilation is used totune FKO's transformation parameters.For eah kernel, we �nd the mehanism that gave the best kernel performane,and all other results are divided by that number (eg. the method that resulted inthe fastest kernel will be at 100%). This allows for the relative bene�t of the varioustuning mehanisms to be evaluated. This omparison is done for eah studied kernel,and we add two summary olumns. The seond-to-last olumn (AVG) gives theaverage over all studied routines, and the last olumn (VAVG) gives the averagefor the operations where SIMD vetorization was suessfully supplied; in pratie,this means the average of all routines exluding iamax, whih neither i nor iFKOautomatially vetorize.Sine all results disussed so far are relative to the best tuning method, it iseasy to lose trak of the atual performane of the individual operations. Therefore,Figure 6.5 shows the speed of these operations in MFLOPS, omputed as disussedin Setion 6.1. Note MFLOPS is a measure of speed, so larger numbers indiatebetter performane. All timings in this �gure deal only with iFKO (on average, thebest optimizing tehnique).Figure 6.6 shows the speedup of the in-L2 ahe timings over the out-of-aheperformane. One of the most interesting things about this graph is that it providesa very good measure of how bus-bound an operation is, even after prefeth is applied:If the kernel tuned for in-ahe usage is only moderately faster than the kernel whentuned in out-of-ahe timing, the main performane bottlenek is learly not memory.The iamax operation, whose performane is limited mainly by branhes, is a goodexample of this, in that the in-ahe numbers show no improvement at all. On theother extreme, bus-bound operations suh as swap or axpy show more than �ve-foldspeedups for in-L2 timings. One oddity in these numbers is that iamax's Pentium 4106



Figure 6.1: Relative speedups of various tuning methods on 2.8Ghz P4E,N=80000, out-of-ahe

Figure 6.2: Relative speedups of various tuning methods on 1.6GhzOpteron, N=80000, out-of-ahe 107



Figure 6.3: Relative speedups of various tuning methods on 2.8Ghz P4E,N=1024, in-L2-ahe

Figure 6.4: Relative speedups of various tuning methods on 1.6GhzOpteron, N=1024, in-L2-ahe 108



in-L2 performane is atually slightly slower than out-of-ahe. This is not a timingerror, and is disussed in Setion 6.5.
(a) Out of ahe (b) P4E, in Level 2 aheFigure 6.5: BLAS performane in MFLOPS

(a) P4E (b) OpteronFigure 6.6: Speedup of In-ahe over Out-of-aheTables (6.3, 6.4, 6.5, 6.6) show the transformational parameter values found bythe empirial searh for eah program/ontext. Setion 5.4 de�nes the abbreviationsused in the headings, and Setion 5.8 provides the default values used by FKO.The prefeth parameters varied inlude instrution type (INS) and distane in bytes(DST). For eah type of prefeth instrution, the searh hooses between thoseavailable on the mahine, and they are reported using the following abbreviations:� none : better performane was obtained without prefething that operand,� tX: SSE temporal prefeth to ahe of levelX+1 (eg., prefetht0, prefetht1,et.), 109



� nta: SSE non-temporal prefeth to lowest level of supported ahe (prefethnta),� w: 3DNow! prefeth for write (prefethw).Figure 6.7 shows the speedup obtained by empirially tuning the various opti-mization parameters, and Figure 6.8 shows the same values but zoomed so that onlythe �rst 150% of speedup is displayed (this is neessary beause the large Opteronspeedups make it diÆult to see full details for other arhitetures). Therefore, these�gures show the speedup of ode tuned by iFKO over that produed by FKO, notover ode in whih a given transformation has not been applied. For instane, FKOdefaults to unrolling so that one iteration of the loop aesses one ahe line of data.In Figure 6.7 we see that the empirial tuning of UR often provides modest or nobene�t. However, this does not imply that unrolling is unimportant in these ases;instead it says that FKO's default value is good.For eah BLAS kernel, we show a bar for eah arhiteture (p4e/opt) and ontext(i: in-L2 ahe, o: out of ahe). Eah bar shows the total speedup over FKO,and how muh tuning eah transformation parameter ontributed to that speedup.For instane, for the out-of-ahe P4E tuning of sasum shown in 6.8, empiriallytuning the [non-temporal writes, prefeth instrution, prefeth distane, unrolling,aumulator expansion℄, provided speedups of [0, 1, 46, 0, 3℄%, respetively, whihtogether resulted in an iFKO-tuned kernel that ran 1.5 times faster than the samekernel when ompiled by FKO. As shown by these graphs, all empirially tunedparameters ontributed to speeding up at least some operations/ontexts.6.4 General AnalysisIn omparing the tuning mehanisms (Figures 6.1, 6.2, 6.3 and 6.4), iFKOprovides the best performane on average for all studied arhitetures and ontexts,better even than the hand-tuned kernels found by ATLAS's own empirial searh.110



Table 6.3: Transformation pa-rameters for 2.8Ghz Pentium 4E,N=80000, all ahes ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:Y t0:56 t0:40 4:0dswap Y:Y t0:128 t0:64 2:0sopy Y:Y none:0 none:0 2:0dopy Y:Y none:0 none:0 1:0sasum Y:N nta:1024 n/a:0 5:5dasum Y:N t0:1024 n/a:0 5:5saxpy Y:Y nta:1408 nta:32 2:0daxpy Y:Y t0:768 t0:40 2:0sdot Y:N nta:1024 nta:384 3:3ddot Y:N nta:768 nta:384 5:5ssal Y:Y nta:1792 n/a:0 1:0dsal Y:Y none:0 n/a:0 2:0isamax N:N nta:640 n/a:0 8:0idamax N:N t0:1664 n/a:0 8:0

Table 6.4: Transformation pa-rameters for 1.6Ghz Opteron,N=80000, all ahes ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:N w:1792 w:448 2:0dswap Y:N nta:960 nta:704 1:0sopy Y:Y none:0 none:0 1:0dopy Y:Y none:0 none:0 1:0sasum Y:N t0:1664 n/a:0 4:4dasum Y:N nta:1920 n/a:0 4:4saxpy Y:N t0:1536 t0:448 4:0daxpy Y:N nta:1472 t0:832 4:0sdot Y:N nta:1600 nta:1664 3:3ddot Y:N t0:1728 t0:704 4:4ssal Y:N nta:640 n/a:0 1:0dsal Y:N nta:1344 n/a:0 1:0isamax N:N nta:768 n/a:0 16:0idamax N:N nta:1920 n/a:0 32:0
Table 6.5: Transformation param-eters for 2.8Ghz P4E, N=1024,only L1 ahe ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:N nta:512 nta:32 16:0dswap Y:N t0:384 t0:40 32:0sopy Y:N nta:512 nta:1408 2:0dopy Y:N nta:1152 t0:1152 2:0sasum Y:N t0:1408 n/a:0 16:2dasum Y:N nta:1792 n/a:0 16:2saxpy Y:N t0:768 t0:1152 8:0daxpy Y:N t0:768 t0:384 8:0sdot Y:N nta:896 nta:1664 64:4ddot Y:N nta:1280 nta:1792 32:4ssal Y:N nta:256 n/a:0 2:0dsal Y:N nta:1536 n/a:0 2:0isamax N:N t0:1152 n/a:0 32:0idamax N:N nta:256 n/a:0 32:0

Table 6.6: Transformation pa-rameters for 1.6Ghz Opteron,N=1024, only L1 ahe ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:N w:256 w:128 32:0dswap Y:N w:128 w:128 32:0sopy Y:N t0:64 none:0 4:0dopy Y:N nta:192 none:0 64:0sasum Y:N nta:64 n/a:0 64:3dasum Y:N t0:256 n/a:0 4:4saxpy Y:N nta:128 w:128 4:0daxpy Y:N nta:32 w:128 4:0sdot Y:N nta:192 nta:320 16:4ddot Y:N nta:256 nta:448 6:3ssal Y:N w:256 n/a:0 32:0dsal Y:N w:128 n/a:0 4:0isamax N:N t0:32 n/a:0 16:0idamax N:N t0:768 n/a:0 32:0111



Figure 6.7: Perent speedup by transform due to empirial searh

Figure 6.8: Perent speedup by transform due to empirial searh(zoomed) 112



However, there are several individual ases where iFKO fails to provide the bestperformane. We analyze eah suh ase in Setion 6.6.In examining the empirially tuned transformation parameter values (Tables 6.3,6.4, 6.5 and 6.6) the most important observation is how variable these parametersare: they vary strongly depending on operation, arhiteture, and ontext. They varyweakly (mainly in prefeth distane) on preision as well. Without vetorization,other parameters would vary more strongly with preision (in vetorized ode doubleand single preision operands are of the same size in bytes, and performing a vetoromputation on that data takes the same number of yles, all of whih is not true forsalar ode of di�ering preisions). This suggests that any model apable of apturingthis omplexity is going to have to be very sensitive indeed. Note that while empirialresults suh as these an be used to re�ne our understanding of relatively opaqueinterations (eg., ompeting ompiler and hardware transformations), whih in turnallows for building better theoretial models, one of the great strengths of empirialtuning is that full understanding of why a given series of transformations yieldedgood speedup is not required in order to ahieve that speedup.Empirial methods an be invaluable in adapting to unexpeted arhiteturalhanges, partiularly when the ompiler has not yet been (or will never be) fullytuned to the new platform (eg. Intel ompiler on AMD platform). Examining theresults for the Opteron demonstrates the strength of empirial tuning over evenaggressive pro�ling: notie that for both swap and axpy, i+prof is many timesslower than than i+ref in Figure 6.2. To understand this behavior, we �rst observethat non-temporal writes (WNT) an improve performane anytime the operanddoesn't need to be retained in the ahe on the P4E. On the AMD Opteron, however,non-temporal writes result in signi�ant overhead unless the operand is write only.I's pro�ling detets that the loop is long enough for ahe retention not to bean issue, and blindly applies WNT, whereas the empirial tuning tries it, sees theslowdown, and therefore does not use it.113



In addition to adapting to the arhiteture, empirial methods an be utilizedto tune a kernel to the partiular ontext in whih it is being used. Figures 6.3and 6.4 and Tables 6.5 and 6.6 show suh an example, where the adaptationis to having the operands in-L2-ahe. This hanges the optimization set fairlywidely, inluding making prefeth muh less important, and WNT a bad idea.Prefeth is still useful in keeping data in-ahe in the fae of onits, and so wesee it provides greater bene�t for the \noisier" (bus-wise) routines suh as swap.In-ahe, omputational optimizations beome muh more important. One suh istransformation is aumulator expansion (AE), whih on the Pentium 4E aountsfor an impressive 43% of sasum speedup in-ahe, while only improving performaneby 3% for out-of-ahe.The e�et of ontext on whih optimizations are most ritial an be most easilyseen by examining the AVG results of Figures 6.7 and 6.8. For out-of-ahe, the mostimportant adaptation is learly prefeth distane, whih is only modestly importantfor in-ahe timings, where aumulator expansion (and for the Opteron, prefethinstrution type as well) beomes the more ritial optimization.An interesting trend to notie in surveying these results in their entirety is thatthe more bus-bound an operation is, the less prefeth improves performane. Thereason for this seeming paradox is in how prefeth works: prefeth is a lateny-hiding tehnique that allows data to be fethed for later use while doing unrelatedomputation. If the bus is always busy serving omputation requests, there is no timewhen the prefeth an be sheduled that doesn't interfere with an ative read or write,and most arhitetures simply ignore them in this ase. This is why operations suhas swap or axpy get relatively modest bene�t in out-of-ahe timings. Sine prefethoptimization is one of our key strengths for this ontext, it is easy to see why iFKOdoes muh better on the Opteron than on the P4E (when ompared against all tuningmehanisms, inluding i) for this ontext: the Opteron, having a slower hip andfaster memory aess, is less bus bound, and so there is more room for empirial114



improvement using this key optimization. For the Opteron's in-ahe performane,iFKO gets a similar boost in performane by varying the key parameters for thisontext, prefeth instrution type and aumulator expansion.Figures 6.7 and 6.8 illustrate the importane of empirial tuning. While FKO hasnot undergone the intensive hand-tuning of the driving models for eah partiulararhiteture that ours in traditional ompiler porting, we tried to pik defaultvalues that make sense. Nonetheless, empirial tuning provided an almost fatorof three speedup in the best ase. Note that, again, operation, arhiteture, andontext all strongly inuene whih transformation is most important. As we addmore transformations that ompete for the same resoures, the value of empirialtuning should ontinue to limb. For instane, software pipelining, aumulatorexpansion, and register assignment all ompete for registers, and thus striking theoptimal balane will require information about their relative importane to the givenoperation, arhiteture and ontext. Empirial tehniques appear to us to be theonly tratable way to address these onerns.6.5 Interesting AsidesFrom examining the generated assembly, it appears that neither g nor ihose to issue software-direted prefeth. This makes some sense, in that prefeth(partiularly distane) is diÆult to model, while these vetor aess patterns areeasily deteted by the hardware, whih allows for the hardware prefeth unit toexamine the feth pattern during runtime in order to optimize. However, iFKOwould have hosen `no prefeth' if the hardware ould do a better job, and as thetimings demonstrate, the hardware prefeth is learly no math for empirially-tunedsoftware prefeth.G's relative performane drop for in-ahe tuning may at �rst seem surprising,but is easily understood given that g's main weakness ompared to the otherompilers is that it annot auto-vetorize the loops. In-ahe, omputational115



optimizations are all-important, and vetorization is the omputational optimizationwhih generally provides the greatest speedup. Obviously, g's relatively goodperformane on out-of-ahe P4E is due to the ip-side of this: the P4E is morebus-bound than the Opteron, and therefore vetorization is less important forout-of-ahe operation.Figure 6.6 presents a puzzle for iamax on the P4E: the iFKO-tuned kernelsare atually slightly slower (measured in MFLOPS) when ran and tuned for in-L2operands than for when the kernels are run with old ahes! This appears to be afuntion of the vetor length (remember that in-ahe numbers use N = 1024, andout-of-ahe numbers use N = 80000): as the length is inreased, performane goesup, until the asymptoti performane is reahed. Note that after tuned prefeth isadded, this routine is not bus bound. Therefore, there is little to no bene�t fromhaving the operands in ahe.Having a long vetor length, however, onveys several advantages. One obviousone is amortizing loop startup and shutdown. This should be as true for the Opteronas for the P4E, however, and the Opteron did not run slower for the in-ahe timings(it may appear so for single preision, but these numbers are within lok resolutionof eah other). The P4E also has a trae instrution ahe, whih means that thex86-deoding ost is also amortized over the loop length; sine the in-ahe loop isheavily unrolled, this may be a small fator, but it seems unlikely to make suh anotieable di�erene. Note that if unrolling was a large burden, it would not haveresulted in speedup, and the empirial searh would not have retained it. Therefore,the bulk of the di�erene is probably due to the way iamax operates on normalizedvetors. As the vetor length grows, the number of branhes that are atually taken(in order to hange the maximum) shrinks in proportion to the total number ofbranhes that are onsidered. Sine eah of these taken max branhes results in amispredit, and the P4 has 20 stage pipeline, getting the perentage of mispredits116



Table 6.7: Loss Case Summary(a) For Out-of-ahe TimingsAR BEST MFLOPCH BLAS METH iFKO BEST WHYp4e dopy atl+asm 209 260 fko-nsp4e saxpy i+prof 580 585 srh-lkp4e daxpy i+prof 290 293 srh-lkp4e dsal atl+g 209 219 srh-asup4e isamax atl+asm 1105 1679 fko-anopt sopy i+prof 293 310 lkopt daxpy atl+g 234 251 srh-asuopt isamax atl+asm 990 1494 fko-anopt idamax atl+asm 952 965 fko-an
(b) For In-L2 TimingsAR BEST MFLOPCH BLAS METH iFKO BEST WHYp4e sswap i+ref 841 883 srh-lkp4e dswap i+ref 426 442 srh-lkp4e dsal i+pref 1007 1025 srh-lkp4e isamax atl+asm 995 2601 fko-anp4e idamax atl+asm 989 1164 fko-an

down is ritial on this arhiteture, and thus the longer the loop, the more eÆientthe algorithm. 6.6 Learning from DefeatIn this setion we examine the ases where iFKO failed to provide the mostoptimal kernel implementation. Tables 6.7(a) and 6.7(b) summarize the ases (forout-of-ahe and in-L2 ahe, respetively) where the previously reported timingsindiate that FKO did not provide the most well-tuned kernel. In these tableswe �rst supply the arhiteture where the loss ourred (p4e/opt) and the tuningmethodology that provided the best observed performane. We then report theperformane of the two kernels in question (best tuning method and iFKO) inMFLOPS, followed by the appropriate abbreviation desribing the reason for theloss (de�ned below). Many of the ases turn out to be the result of searh resolutionerrors, and in those ases Table 6.8 shows the new parameter values and performaneresults (this table is desribed in greater detail below).There are several possible auses for iFKO to lose, and we need to distinguishbetween them in order to draw proper onlusions. The ategories of importane(and their abbreviations used in Table 6.7) are:117



Table 6.8: Better Transformation Parameters Found by RepeatedSearhes SV: PF X PF Y UR: BEST:ARCH CACHE BLAS WNT INS:DST INS:DST AC MFLOPP4E OC dopy Y:Y none:0 none:0 2:0 N:205P4E OC saxpy Y:Y nta:384 nta:512 2:0 Y:586P4E OC daxpy Y:Y nta:384 nta:512 2:0 Y:293P4E OC dsal Y:Y nta:896 N/A:0 1:0 N:210P4E IC sswap Y:N t0:128 t0:1408 4:0 T:899P4E IC dswap Y:N nta:96 nta:1280 1:0 T:443P4E IC dsal Y:N t0:1536 N/A:0 1:0 Y:1060� lk: Two timings are atually within lok resolution. Determined by timingeah kernel �ve times, if one kernel wins at least four of the head-to-headtimings, it is delared the winner, otherwise they are delared to be withinlok resolution.� srh-lk: Clok resolution has aused the searh reported in this paper tohoose a less-optimal value for one or more of the empirial tuned parameters(for example, assume that UR=16 is optimal, but during the timing of thisase unrelated load aused the timing to be inated, and soUR=8 was seletedinstead). In order to �nd this kind of error, we run the searh for eah disputedkernel three additional times, and see if we get better results. If we do, weemploy the lok resolution test to determine if it is better than the other twokernels in question (�rst, the previous iFKO kernel, and seond, the so-far bestkernel). When a rerunning of the searh provides an iFKO-tuned kernel that isgenuinely better than that previously reported, we summarize the new resultsin Table 6.8. This table of searh results also inludes several new olumnsfrom the previously reported tables (Tables 6.3, 6.4, 6.5 and 6.6). First, wespeify the arhiteture (p4e/opt) and ahe state (OC: all ahes ushed, IC:only L1 ahe ushed). The last olumn of the table is also new, and reportswhether the new kernel was atually better than any other tuned kernel (Y),or if it ran within lok resolution of the best of the other tuned kernels (T),118



or if, even after the searh improvement, it is still more than lok resolutionslower than the best tuned mehanism (N). To make this determination, weperform the lok resolution test omparing the new iFKO kernel against theprevious best ase.� srh-as: Our empirial searh has an error in it's assumptions. For instane,perhaps additional parameters need to be empirially tuned, or a greater rangeof values need to be searhed for a parameter that is already empirially tuned.It is diÆult to automate the detetion of this loss ategory, but monitoringfull tuning output for general trends and examining the generated assembliesby eye an help.� Lastly, FKO an be inadequate in some way:1. fko-ns: FKO does not support a needed transformations. Can bediagnosed by examining the generated assembly, and seeing what trans-formation(s) the best-tuned kernel performed that FKO does not. In thisase, we need to identify if the transformation an be added to FKO, andwhether it will be worthwhile to do so.2. fko-an: The most well-tuned kernel used a transformation that FKOan apply, but that it failed to apply to the kernel in question beauseFKO's analysis was unable to determine either how to do so, or if suh atransformation was legal. In this ase, we would like to understand if theanalysis an be expanded, and/or if the problem may be addressed usingmarkup.3. fko-ma: FKO has misapplied known optimization(s). I.e., anothermethod has used the same transformations as FKO, but has applied themmore optimally or synergistially. In this ase, we will want to examine if119



this di�ering appliation is better in general, and if so, if FKO an use itas well.One of the main purposes in ategorizing these ases is determining whihlosses represent opportunities for learning, and thus deserve greater examination.Therefore, we do not further analyze the ases where Table 6.8 shows iFKO atuallyproduing winning or tying results. All other loss ases are examined in detail in theirown subsetion. There are no in-L2 ahe ases where iFKO annot produe the mostwell-tuned implementation, other than iamax, so eah of the following setions dealsmainly with out-of-ahe results. Setion 6.6.1 desribes the problems leading tothe iamax results for all ontexts and arhitetures, Setion 6.6.2 investigates dopyon the P4E and Setion 6.6.3 details the issues for dsal on the same arhiteture.Finally, Setion 6.6.4 investigate the daxpy loss on the Opteron.6.6.1 iamax for All ArhiteturesThe routine where iFKO is least e�etive in general is iamax, and the mainreason for this is easily understood. This operation has a dependene distane ofone, and we are urrently unable to automatially vetorize it. It an, however,be legally vetorized, and the hand-tuned assembly ode does so, whih allows itto handily outperform iFKO's kernel in many instanes. Whether or not we andisover how to auto-vetorize this loop through additional analysis, and how muhif any user markup we would need to do so, is an area of researh that we have notyet undertaken. Sine it is not immediately obvious how to do the required analysis,we are unlikely to spend time on this problem in the immediate future, as this is theonly kernel in all of the BLAS that would bene�t from this �x.The reason for the magnitude of the gap between iFKO and the hand-tunedperformane is inherent in the way vetorization a�ets this operation. Normally,vetorization is primarily a omputational optimization, whih is usually a fairly120



low-order term in these Level 1 operations as they are more typially onstrainedby the bus speed. However, iamax has only a single input vetor, and no outputvetors, and so it is less bus-bound than most. Further, unlike the other surveyedoperations, iamax involves a branh. When this branh must be taken due to �ndinga new maximum, it will usually be mispredited (as the most ommon ase is whenthe new value is not larger than the urrent maximum), whih will ause a pipelineush. As the P4E has a 20 stage pipeline, this is a signi�ant ost.When iamax is vetorized, not only does it redue the omputation by somethinglose to the vetor length (as in most operations), but it also dereases the number ofbranhes exeuted by a similar amount. As would be expeted (due to its inreasedvetor length), single preision shows a muh larger gap between vetorized andunvetorized than double preision.6.6.2 Pentium 4E dopyOn the P4E, the iFKO-tuned kernel is signi�antly slower than the hand-tunedassembly. The iFKO-tuned kernel gets 205 MFLOPS, whereas the hand-tunedahieves 260. In order to understand why, we examine the implementations inquestion. Figure 6.9 shows the listing of the hand-tuned kernel from ATLAS, whileFigure 6.10(a) shows the inner loop of iFKO's tuned kernel.The inner loop of the hand-tuned kernel is omprised of lines 44-64 of Figure 6.9.Contrasting this with Figure 6.10(a) might lead to the idea that it is either thegreater unrolling, or the di�ering sheduling that is providing the speedup. However,Figure 6.10(b) atually runs runs slightly slower (198 MFLOPS) than Figure 6.10(a).Note that the loops are still di�erent, in that Figure 6.10(b) uses SSE rather thanFigure 6.9's MMX, but their e�etive unrolling and sheduling are now the same.The real reason for the hand-tuned kernel's substantial win is that it employs anoptimization that FKO does not presently support, alled blok feth [47℄. The basiidea is to perform a given omputation (in this ase, a opy) in two phases. In the121



1#de f i n e nblk %ebx2#de f i n e N %eax3#de f i n e X %esi4#de f i n e Y %ex5#de f i n e stX %edx6#de f i n e stXF %edi7#de f i n e NB 5128#de f i n e SH 99 . g l o b a l ATL UCOPY10ATLUCOPY:11 subl $16 , %esp12 movl %ebx , (% esp )13 movl %esi , 4(% esp )14 movl %edi , 8(% esp )15 movl %ebp , 12(% esp )16 movl 20(%esp ) , N17 movl 24(%esp ) , X18 movl 32(%esp ) , Y19 movl N, stXF20 shl $3 , stXF21 addl X, stXF22#23# Find how many NB�size hunkswe have got , b a i l if 024#25 movl N, nblk26 shr $SH , nblk27 jz LOOP12829LOOPB:30#31# Burst load X32#33 movl X, stX34 addl $NB�8 , stX35 .align 1636BURST:37 movl �64(stX ) , %ebp38 movl �128(stX ) , %ebp39 subl $128 , stX40 mp X, stX41 jne BURST42 addl $NB�8 , stX43 .align 16

44LOOP8:45 movl (X) , %mm046 movl 8(X) , %mm147 movl 16(X) , %mm248 movl 24(X) , %mm349 movl 32(X) , %mm450 movl 40(X) , %mm551 movl 48(X) , %mm652 movl 56(X) , %mm753 movntq %mm0, (Y)54 movntq %mm1, 8 (Y)55 movntq %mm2, 1 6 (Y)56 movntq %mm3, 2 4 (Y)57 movntq %mm4, 3 2 (Y)58 movntq %mm5, 4 0 (Y)59 movntq %mm6, 4 8 (Y)60 movntq %mm7, 5 6 (Y)61 addl $64 , Y62 addl $64 , X63 mp X, stX64 jne LOOP865#66# Keep going un t i l out o fb loks67#68 subl $1 , nblk69 jnz LOOPB7071 mp X, stXF72 je DONE73LOOP1:74 movl (X) , %mm075 movntq %mm0, (Y)76 addl $8 , Y77 addl $8 , X78 mp X, stXF79 jne LOOP180DONE:81 s f e n  e82 emms83 movl (%esp ) , %ebx84 movl 4(%esp ) , %esi85 movl 8(%esp ) , %edi86 movl 12(%esp ) , %ebp87 addl $16 , %esp88 retFigure 6.9: Hand-tuned dopy Assembly Routine for P4E122



1 LOOP 0 :2 movapd (%ex ) , %xmm03 movntpd %xmm0 , (% eax )4 movapd 16(%ex ) , %xmm05 movntpd %xmm0 , 16(%eax )6 addl $32 , %ex7 addl $32 , %eax8 subl $4 , %ebp9 jg LOOP 0(a) As generated

9 LOOP 0 :10 movapd (%ex ) , %xmm011 movapd 16(%ex ) , %xmm112 movapd 32(%ex ) , %xmm213 movapd 48(%ex ) , %xmm314 movntpd %xmm0 , (% eax )15 movntpd %xmm1 , 16(% eax )16 movntpd %xmm2 , 32(% eax )17 movntpd %xmm3 , 48(% eax )18 addl $64 , %ex19 addl $64 , %eax20 subl $8 , %ebp21 jg LOOP 0(b) Hand-sheduledFigure 6.10: Inner loop of iFKO-tuned P4E dopy�rst phase, the operands are burst loaded into ahe via a series of ahe line lengthseparated loads (lines 33-41 of Figure 6.9). In the seond phase (lines 44-64) theomputation is performed on the data that was loaded in phase 1.In order to bring the data into ahe, the problem must be bloked or partitioned,and in this ase the blok fator was 512 double preision elements. The dual phasesresult in the two inner loops, and the bloking around these phases results in theouter loop around them (this outer loop starts on line 29 and ends on line 69).Blok feth an be partiularly e�etive for bus-bound operations, where prefethannot help (or indeed, for arhitetures not possessing prefeth). In normal ode,loads are intermixed with omputation, and there are multiple loads per ahe line.This an result in poor bus utilization even when the operation is bus bound. Blokfeth drives the bus at its maximal rate by issuing only one feth per aheline,with no delays between requests. As an additional optimization, this burst loop(lines 36-41) runs bakwards (i.e., starts at the end of array and iterates to thebeginning), but the fethes unrolled inside it run forward. This non-linear fethpattern is designed to onfuse the hardware prefeth unit, so that it will not issueany hardware prefeth instrutions (whih would represent useless overheads on mostarhitetures). 123



This optimization an be added safely to a general ompilation framework, andsine it is one of the few tehniques that an help truly bus-bound operations, andbeause it an be applied to any arhiteture (no speial hardware/ISA supportrequired), we plan to add it to to FKO.6.6.3 Pentium 4E dsalThe best kernel for this routine is atually a hand-written ANSI C implementation(using inline assembly for prefeth) ompiled by g. The performane of thiskernel was reported at 219 MFLOPS, but subsequent timings showed performanemore in the range of 212. However, it does always beat the iFKO-tuned kernel,whih gets performane of around 209. Our searh always applies vetorizationwhen legal. In this ase, slightly better results are obtained when vetorizationis not applied. In fat, the iFKO-tuned kernel moves slightly ahead if we use anunvetorized kernel, with unrolling of 8, and prefeth distane of 384 bytes. Thisboosted FKO performane to an average of 213 MFLOPS, enough to win four outof �ve head-to-head omparisons with the hand-tuned ode.Therefore, we are left with the question of why the salar ode would be fasterthan the vetorized loop. It is diÆult to provide a de�nitive answer, but we anertainly hazard an eduated guess. Cahe line elements are �lled in-order, and thesalar ode needs to �ll less of the ahe line in order to start the omputation, whihould result in slightly fewer stalls on the �rst load from a given ahe line. Sine thisomputation is ompletely bus-bound, vetorization's greater omputational peakis of no bene�t, and thus the salar version is very slightly faster. This wouldexplain why the e�et is so small, as well as why we don't see it with less bus-boundoperations.This minor improvement does not seem to mandate additional empirial tuning,partiularly as additional optimizations may render it moot (eg., perhaps with blokfeth or software pipelining of the loads and stores the vetor ode's omputational124



advantage will provide a speedup over salar), unless it is shown to be true for morearhitetures and operations.6.6.4 Opteron daxpyThe searh hooses the prefeth instrution type to use before the distane istuned. There is obviously a dependene here, and our assumption was that thetype of instrution used was more fundamental, and thus it made sense to makethis deision �rst. However, in this ase, while using prefethw for the prefethof Y at the default distane results in slower exeution than using prefeth0, justthe opposite is true one the distane has been tuned. Changing the Y prefethinstrution to prefethw in the parameters given in Table 6.4 boosts performanefrom 234 MFLOP to 257, whih would make iFKO the best tuning methodology.This points out an error in our assumptions for the searh, and we will need toperform additional studies to determine the orret adjustments to make.In the worst ase, we must do a true 2-D searh on these parameters: performthe distane subsearh for eah supported instrution. In order to see how best toaddress this dependene, this should probably be implemented and tested aross arange of arhitetures so that general trends an be determined. Only if no unifyingtrends an be spotted will we leave this as iFKO's default methodology, however,sine the distane searh is already our longest-running sub-searh.There are various trends that ould lend themselves to quiker searhes. Forinstane, if the distane is fairly independent of instrution type aross arhitetures,it makes sense to simply reverse the deision order (i.e., searh for distane �rst, andthen instrution type). We performed this reversal, and it resulted in no hangefor in-ahe or P4E performane, but boosted Opteron out-of-ahe performaneon several operations, without losing performane anywhere. So, with our presentsample set, this appears be a superior ordering. Doing the searh in this order sped125



up the following routines out-of-ahe on the Opteron, by the spei�ed perentage:sswap : 9%, saxpy : 15%, daxpy 13%, and sdot : 4%.There are several other options that may work better in general. For instane, weould retain the present ordering, but after the prefeth distane is tuned, the prefethinstrution tuning searh is performed again, and if this results in a hange, the newinstrution type is substituted. If and only if a substitution is required, we an thenrerun the distane searh, if the trends show this is neessary. Perhaps the bestapproah would be to perform a rude distane searh �rst (for instane, searhingonly powers of two), then tune the instrution type, followed by a more ompletedistane searh. It may be that indeed the prefeth instrution type is a morefundamental hoie, but before distane tuning, the di�erene between instrutiontypes is below lok resolution, leading to essentially a random seletion. In this ase,a rude distane tuning should be suÆient to allow for a more aurate seletion.

126



CHAPTER 7FUTURE WORK, SUMMARY ANDCONCLUSIONSThis �nal hapter provides some onluding remarks, and is organized in thefollowing way: Setion 7.1 desribes some key areas for future investigation, Se-tion 7.2 briey reapitulates the highlights of this work, and Setion 7.3 draws someonlusions from the presented studies.7.1 Future WorkThe amount of future work, in partiular the number of optimizations of interest,are so extensive that disussing them in full is probably not possible. Therefore,in this setion we onentrate on some broad extensions that are learly needed, aswell as the spei� optimizations that have been identi�ed as partiularly bene�ialbased on our urrent results. Setion 7.1.1 disusses the extensions to our optimizingompiler (FKO), while Setion 7.1.2 disusses some key searh issues.7.1.1 Future Work on FKOThere are two optimizations that we believe would improve even our urrentresults, both of whih would be implemented as fundamental transformations. The�rst is blok feth, as disussed in Setion 6.6.2, whih would probably be appliedbefore any other optimization (sine this transformation results in additional loops,it would be neessary for later fundamental optimizations to tune the omputationloop). 127



The seond (short-term) transformation of interest is software pipelining, whihwould be applied after vetorization. While the x86's out-of-order exeution andregister renaming makes software pipelining the linked multiples and adds less im-portant than on in-order arhitetures, software pipelining of load/use and use/storeshould provide more eÆient implementations, even for the studied Level 1 kernels.At the same time, software pipelining dependent multiplies and adds will be ritialon arhitetures (suh as the SPARC) that are both in-order and possess separatemultiply and add FPU units.The next targets for optimization would be the Level 3 BLAS. As we have seen,all of these operations are tuned using the in-L1 gemm kernel, whih is implementedusing three nested loops. For eÆient optimization of these operations, we willtherefore want to introdue additional optimization phases, new pointer support,and extended markup opportunities. In pointer support, we need a way to indiate(or derive) when inner-loop pointers atually point to separate loations (usually rowsor olumns) within a single multidimensional array. Knowing that given inner looppointers ome from a single array an allow us to alleviate integer register pressurethrough use of CISC indexing on the x86, and this is ritial on the IA-32 ISA, whereinsuÆient integer registers would otherwise restrit outer loop unrolling to valueswell below the optimal.We will almost ertainly want to add an outer-loop markup that allows the userto suggest and limit outer-loop unrolling. The type of outer loop unrolling we areinterested in is alled \unroll and jam" [48℄, as unrolling of the outer loop(s) resultsin issuing more instrutions in the single inner loop, not, for instane, dupliatingthe inner loop, resulting in multiple inner loops. Along with unroll and jam, we willneed a repeatable transformation similar to salar replaement [24℄ in order to enableregister bloking.Our present prefeth strategies always assume that the data being prefethed willeventually be used during the loop iterations. In GEMM, it is often the ase that it128



is more eÆient to feth the next ahe blok while operating on this one. Therefore,we will want to introdue prefething of unrelated memory during omputation.Finally, in GEMM, one we support unroll and jam, the inner loop (whih onthe x86 will always be vetorized) aquires multiple aumulators. We presentlyredue any vetor aumulators to salars individually in the inner loop epilogue.We an optimize this proess when multiple aumulators are being used, and sinethis epilogue ode is now nested inside outer loops (and it is usually not the asethat it an be pushed out of them), it beomes ritial to do so. We will similarlyneed to make opy propagation more eÆient in handling salar-to-vetor onversionsat the beginning and end of the loops, as highlighted in the SV example given inSetion 5.7.1.1.While it will not be ritial for our most important Level 3 kernel, as we deal withmore deeply nested loops, it will probably beome advantageous to add generalizedloop invariant ode motion, in order to hoist/push all operations (rather than justloads and stores) as far out of the loops as possible.One iFKO an fully tune the Level 3 BLAS, it will be time to onsolidate some ofour prexisting support. This inludes handling misalignment for SIMD vetorization,omplex type support, and additional arhitetures, all disussed in turn below.We have previously disussed misalignment in detail, and we will proeed withthis work as outlined in Setion 5.5. One we have support for exploiting alignmentguarantees based on 2-D array usage, iFKO will be ready to tune the Level 2 BLAS.We will ertainly not examine other arhitetures in detail until we an onvin-ingly tune both the Level 1 and 3 BLAS, as previously desribed. Only at thisstage will it make sense to extend our arhiteture support, and we will examine thePowerPC arhiteture next. This may involve additional optimization support, andwill ertainly require tuning various presently-supported phases. For instane, SIMDvetorization needs to be ported to support the PowerPC's vetor unit, AltiVe. We129



will also want to examine using the PowerPC's speialized index register for LC(optimize loop ontrol).Just as with ANSI C, our HIL does not presently support omplex numbers. Ofourse, omplex kernels may be written in terms of real omputations, but this isinonvenient for the implementer. Therefore, it makes sense to add a omplex type.Note that this is not needed for Level 3 BLAS support, as ATLAS uses the realkernel to tune the omplex ase, as disussed in Chapter 3. Complex support will,however, help with the Level 1 and 2 BLAS support. Complex arithmeti is omposedof a series of dependent real arithmeti operations, and sine these real operationshave a dependene distane of one, they an be a barrier to SIMD vetorization ifthey are not handled appropriately. The SSE3 ISA extension added instrutionsspei�ally designed to handle omplex arithmeti without unneeded permutation orredundant omputation, so FKO will need to exploit SSE3 to avoid these overheads.In order to enable this SIMD optimization, it seems likely that the front end willgenerate syntheti LIL instrutions whih are plaeholders for omplex arithmeti.In SV these syntheti instrutions will then be substituted with the appropriateSSE3 instrutions, or if SV is not applied, a new fundamental transformation phasewould replae them with the appropriate real omputations.7.1.2 Future work on iFKO's SearhSetion 6.6.4 pointed out the need for a better approah to prefeth instrutionseletion, and this will be the �rst area of work for the searh. We have also seenthat lok resolution problems have aused substandard results to be issued, andthus it makes sense to examine if the timings an be made more preise. Morefundamentally, the addition of unroll and jam will provide several dimensions ofdependent optimizations (eg., for matrix multiply, unrolling the two outer loopsstrongly hanges the inner loop). In these ases, we must determine if we will befored to employ a full multidimensional searh in order to get robust results, or if130



we an instead make simplifying assumptions whih allow us to severely restrit theinterations. If we annot �nd suh simplifying assumptions, it beomes very likelythat we will have to abandon the line searh for a more advaned tehnique that anoptimize the searh of suh a high dimensional spae, and both simulated annealingand geneti algorithm are promising andidates.7.2 SummaryIn the introdution, we disussed the importane of performane tuning for highperformane omputing, and highlighted the key weaknesses inherent in traditionalmethodologies. We then desribed how empirial tehniques, embodied in the AEOSonept, have proven to be a suessful response to these hallenges. Chapter 3 thendesribed our �rst AEOS e�ort, the empirially tuned library generator ATLAS.This pioneering researh has proven to be extremely suessful, in both researhaims and pratial use. ATLAS-tuned libraries are used by a worldwide audiene ofsientists, engineers, and eduators every day. The suess of this projet has inspireda great deal of related researh, and as a result the ATLAS papers are highly ited inthe literature (in both high performane omputing, and more reently, ompilationresearh).The following hapters desribed the more generalized researh we have under-taken reently, embodied in our empirial ompilation framework, iFKO. Chapter 4desribed the basi ideas behind this work, and the design philosophy we utilize toguide and prioritize our e�orts, with Chapter 5 �lling in the details of our urrentimplementation of this framework. Finally, Chapter 6 disussed the results we haveahieved in applying the urrent framework to the Level 1 BLAS.
131



7.3 ConlusionsWe have shown how empirial optimization an help adapt to hanges in op-eration, arhiteture, and ontext. We have disussed our approah to empirialompilation, and presented the framework we have developed. We have demonstratedthat even on simple, easily analyzed loops that many would expet to be fully opti-mized by existing ompilers, empirial appliation of well-understood transformationsprovides lear performane improvements. Further, even though our urrent paletteof optimizations is limited ompared to that available to the hand-tuner, we havepresented results showing that this more fully automated approah results in greateraverage performane improvement than that provided by ATLAS's hand-tuned (andempirially seleted) Level 1 BLAS support. Note that our initial timings show iFKOalready apable of improving even Level 3 BLAS performane more than i or g,but due to the lak of outer-loop speialized transformations (a large omponent ofour future work) we are presently not ompetitive with the best Level 3 hand-tunedkernels. Therefore, as this framework matures, we strongly believe that it will serveto generalize empirial optimization of oating point kernels, and that it will vastlyredue the amount of hand-tuning that is required for high performane omputing.Finally, it appears ertain that an open soure version of suh a framework willbe a key enabler of further researh as well. For example, just as ATLAS wasused to provide feedbak into model-based approahes [49℄, iFKO will provide anideal platform for tuning and further understanding the models used in traditionalompilation, while a fully-featured FKO will provide a rih test bed for researh onfast searhes of optimization spaes.
132



APPENDIXANSI C AND HIL KERNELIMPLEMENTATIONSThis appendix provides the ANSI C and HIL implementations for eah studiedroutine. We show the double preision version (the single preision is the same withthe appropriate variable delarations hanged). Figures [A.1, A.2, A.3, A.4, A.5,A.6, A.7℄ show [dswap, dopy, dasum, daxpy, ddot, dsal, idamax℄, respetively.
void ATL_USWAP(onst int N,double *X, onst int inX,double *Y, onst int inY){ int i;double tmp;for (i=0; i < N; i++){ tmp = Y[i℄;Y[i℄ = X[i℄;X[i℄ = tmp;}} (a) ANSI C

ROUTINE ATL_USWAP;PARAMS :: N, X, inX, Y, inY;INT :: N, inX, inY;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x, y;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;y = Y[0℄;X[0℄ = y;Y[0℄ = x;X += 1;Y += 1;LOOP_ENDROUT_END (b) HILFigure A.1: dswap implementations

133



void ATL_UCOPY(onst int N,onst double *X,onst int inX,double *Y, onst int inY){ int i;for (i=0; i < N; i++)Y[i℄ = X[i℄;} (a) ANSI C

ROUTINE ATL_UCOPY;PARAMS :: N, X, inX, Y, inY;INT :: N, inX, inY;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;Y[0℄ = x;X += 1;Y += 1;LOOP_ENDROUT_END (b) HILFigure A.2: dopy implementations

double ATL_UASUM(onst int N,onst double *X,onst int inX){ int i;register double t0=0.0;for (i=0; i < N; i++)t0 += fabs(X[i℄);return(t0);} (a) ANSI C

ROUTINE ATL_UASUM;PARAMS :: N, X, inX;DOUBLE_PTR :: X;INT :: N, inX;ROUT_LOCALSINT :: i;DOUBLE :: x, sum;CONST_INIT :: sum = 0.0;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;x = ABS x;sum += x;X += 1;LOOP_ENDRETURN sum;ROUT_END (b) HILFigure A.3: dasum implementations
134



void ATL_UAXPY(onst int N,onst double alpha,onst double *X,onst int inX,double *Y, onst int inY){ int i;for (i=0; i < N; i++)Y[i℄ += alpha * X[i℄;} (a) ANSI C

ROUTINE ATL_UAXPY;PARAMS :: N, alpha, X, inX, Y, inY;INT :: N, inX, inY;DOUBLE :: alpha;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x, y;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;y = Y[0℄;x = x * alpha;y += x;Y[0℄ = y;X += 1;Y += 1;LOOP_ENDROUT_END (b) HILFigure A.4: daxpy implementations

double ATL_UDOT(onst int N,onst double *X,onst int inX,onst double *Y,onst int inY){ register double dot=ATL_rzero;int i;for (i=0; i < N; i++)dot += X[i℄ * Y[i℄;return(dot);} (a) ANSI C

ROUTINE ATL_UDOT;PARAMS :: N, X, inX, Y, inY;INT :: N, inX, inY;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x, y, dot;CONST_INIT :: dot = 0.0;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;y = Y[0℄;dot += x * y;X += 1;Y += 1;LOOP_ENDRETURN dot;ROUT_END (b) HILFigure A.5: ddot implementations
135



void ATL_USCAL(onst int N,onst double alpha,double *X,onst int inX){ int i;for (i=0; i < N; i++)X[i℄ *= alpha;} (a) ANSI C

ROUTINE ATL_USCALPARAMS :: N, alpha, X, inX;INT :: N, inX;DOUBLE :: alpha;DOUBLE_PTR :: X;ROUT_LOCALSINT :: i;DOUBLE :: x, y;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;x = x * alpha;X[0℄ = x;X += 1;LOOP_ENDROUT_END (b) HILFigure A.6: dsal implementations
int ATL_UIAMAX(onst int N,onst double *X,onst int inX){ register double xmax, x0;int i, iret=0;if (N > 0){ xmax = *X;xmax = fabs(xmax);for (i=1; i < N; i++){ x0 = X[i℄;x0 = fabs(x0);if (x0 <= xmax) ontinue;else{ xmax = x0;iret = i;}}}return(iret);} (a) ANSI C

ROUTINE ATL_UIAMAX;PARAMS :: N, X, inX;INT :: N, inX;DOUBLE_PTR :: X;ROUT_LOCALSINT :: i, imax;DOUBLE :: x, amax;CONST_INIT :: amax = 0.0, imax=0;ROUT_BEGINLOOP i = N, 0, -1LOOP_BODYx = X[0℄;x = ABS x;// Branh if we have a new maximumIF (x > amax) GOTO NEWMAX;ENDOFLOOP:X += 1;LOOP_ENDRETURN imax;NEWMAX:amax = x;imax = N-i;GOTO ENDOFLOOP;ROUT_END (b) HILFigure A.7: idamax implementations136



REFERENCES[1℄ J. Bilmes, K. Asanovi�, C.W. Chin, and J. Demmel. OptimizingMatrix Multiplyusing PHiPAC: a Portable, High-Performane, ANSI C Coding Methodology. InProeedings of the ACM SIGARC International Conferene on SuperComputing,Vienna, Austria, July 1997.[2℄ See page for details. FFTW homepage. http://www.fftw.org/.[3℄ M. Frigo and S. G. Johnson. The Fastest Fourier Transform in the West.Tehnial Report MIT-LCS-TR-728, Massahusetts Institute of Tehnology,1997.[4℄ M. Frigo and S. Johnson. FFTW: An Adaptive Software Arhiteture for theFFT. In Proeedings of the International Conferene on Aoustis, Speeh, andSignal Proessing (ICASSP), volume 3, page 1381, 1998.[5℄ R. Clint Whaley and Antoine Petitet. Atlas homepage.http://math-atlas.soureforge.net/.[6℄ R. Clint Whaley and Jak Dongarra. Automatially Tuned Linear AlgebraSoftware. Tehnial Report UT-CS-97-366, University of Tennessee, Deember1997. http://www.netlib.org/lapak/lawns/lawn131.ps.[7℄ R. Clint Whaley and Jak Dongarra. Automatially tuned linear algebra soft-ware. In SuperComputing 1998: High Performane Networking and Computing,1998. CD-ROM Proeedings.Winner, best paper in the systems ategory.http://www.s.utk.edu/~rwhaley/papers/atlas_s98.ps.[8℄ R. Clint Whaley and Jak Dongarra. Automatially Tuned Linear AlgebraSoftware. In Ninth SIAM Conferene on Parallel Proessing for Sienti�Computing, 1999. CD-ROM Proeedings.[9℄ R. Clint Whaley, Antoine Petitet, and Jak J. Dongarra. Automated empirialoptimization of software and the ATLAS projet. Parallel Computing, 27(1{2):3{35, 2001. Also available as University of Tennessee LAPACK Working Note#147, UT-CS-00-448, 2000 (www.netlib.org/lapak/lawns/lawn147.ps).[10℄ R. Clint Whaley and Antoine Petitet. Minimizing development and maintenaneosts in supporting persistently optimized BLAS. Aepted for publiation inSoftware: Pratie and Experiene, 2004. http://www.s.utk.edu/~rwhaley/papers/sperw04.ps. 137



[11℄ Jim Demmel, Jak Dongarra, Vitor Eijkhout, Erika Fuentes, Antoine Petitet,Rih Vudue, R. ClintWhaley, and Katherine Yellik. Self adapting linear algebraalgorithms and software. Aepted for putbliation in IEEE speial issue onProgram Generation, Optimization, and Adaptation, 2005.[12℄ R. Hanson, F. Krogh, and C. Lawson. A Proposal for Standard Linear AlgebraSubprograms. ACM SIGNUM Newsl., 8(16), 1973.[13℄ C. Lawson, R. Hanson, D. Kinaid, and F. Krogh. Basi Linear AlgebraSubprograms for Fortran Usage. ACM Transations on Mathematial Software,5(3):308{323, 1979.[14℄ J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656:An extended Set of Basi Linear Algebra Subprograms: Model Implementationand Test Programs. ACM Transations on Mathematial Software, 14(1):18{32,1988.[15℄ J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An ExtendedSet of FORTRAN Basi Linear Algebra Subprograms. ACM Transations onMathematial Software, 14(1):1{17, 1988.[16℄ J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 BasiLinear Algebra Subprograms. ACM Transations on Mathematial Software,16(1):1{17, 1990.[17℄ E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz,A. Greenbaum, S. Hammarling, A. MKenney, S. Ostrouhov, and D. Sorensen.LAPACK Users' Guide. SIAM, Philadelphia, PA, 3rd edition, 1999.[18℄ B. K�agstr�om, P. Ling, and C. van Loan. GEMM-Based Level 3 BLAS: High-Performane Model Implementations and Performane Evaluation Benhmark.Tehnial Report UMINF 95-18, Department of Computing Siene, Ume�aUniversity, 1995. Submitted to ACM TOMS.[19℄ M. Dayde, I. Du�, and A. Petitet. A Parallel Blok Implementation of Level3 BLAS for MIMD Vetor Proessors. ACM Transations on MathematialSoftware, 20(2):178{193, 1994.[20℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Reur-sive bloked data formats and blas's for dense linear algebra algorithms. InB. K�agstr�om, J. Dongarra, E. Elmroth, and J. Wa�sniewski, editors, AppliedParallel Computing, PARA'98, Leture Notes in Computer Siene, No. 1541,pages 195{206, 1998.[21℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Super-salar gemm-based level 3 blas { the on-going evolution of a portable andhigh-performane library. In B. K�agstr�om, J. Dongarra, E. Elmroth, andJ. Wa�sniewski, editors, Applied Parallel Computing, PARA'98, Leture Notesin Computer Siene, No. 1541, pages 207{215, 1998.138



[22℄ J. Dongarra, P. Mayes, and G. Radiati di Brozolo. The IBM RISC System6000 and linear algebra operations. Superomputer, 8(4):15{30, 1991.[23℄ David Callahan, Steve Carr, and Ken Kennedy. Improving register alloationfor subsripted variables. In SIGPLAN Conferene on Programming LanguageDesign and Implementation, pages 53{65, 1990.[24℄ David F. Baon, Susan L. Graham, and Oliver J. Sharp. Compiler transfor-mations for high-performane omputing. ACM Comput. Surv., 26(4):345{420,1994.[25℄ R. Clint Whaley. User ontribution to atlas. http://math-atlas.soureforge.net/devel/atlas_ontrib/.[26℄ J. Moura, J. Johnson, R. Johnson, D. Padua, M. Pushel, and M. Veloso. Spiral:Automati implementation of signal proessing algorithms. In Proeedingsof the Conferene on High-Performane Embedded Computing, MIT LinolnLaboratories, Boston, MA, 2000.[27℄ Pedro Diniz, Yoon-Ju Lee, Mary Hall, and Robert Luas. A ase study usingempirial optimization for a large, engineering appliation. In InternationalParallel and Distributed Proessing Symposium, 2004. CD-ROM Proeedings.[28℄ Bas Aarts, Mihel Barreteau, Franois Bodin, Peter Brinkhaus, Zbigniew Cham-ski, Henri-Pierre Charles, Christine Eisenbeis, John R. Gurd, Jan Hoggerbrugge,Ping Hu, William Jalby, Peter M. W. Knijnenburg, Mihael F. P. O'Boyle, ErvenRohou, Rizos Sakellariou, Henk Shepers, Andre Sezne, Elena Stohr, MaroVerhoeven, and Harry A. G. Wijsho�. OCEANS: Optimizing ompilers forembedded appliations. In European Conferene on Parallel Proessing, pages1351{1356, 1997.[29℄ Toru Kisuki, Peter M. W. Knijnenburg, Mihael F. P. O'Boyle, Franois Bodin,and Harry A. G. Wijsho�. A feasibility study in iterative ompilation. InISHPC, pages 121{132, 1999.[30℄ T. Kisuki, P. Knijnenburg, M. O'Boyle, and H. Wijsho. Iterative ompilationin program optimization. In CPC2000, pages 35{44, 2000.[31℄ M. O'Boyle, N. Motogelwa, and P. Knijnenburg. Feedbak assisted iterativeompilation. In LCR, 2000.[32℄ Paul van der Mark. Iterative ompilation. Master's thesis, Leiden Institute ofAdvaned Computer Siene, 1999.[33℄ P. van der Mark, E. Rohou, F. Bodin, Z. Chamski, and C. Eisenbeis. Usingiterative ompilation for managing software pipeline { unrolling trado�s. InSCOPES99, 1999. 139



[34℄ J.M.F. Moura, J. Johnson, R.W. Johnson, D. Padua, V. Prasanna, M. Pshel,and M.M. Veloso. Spiral: Automati library generation and platform-adaptationfor dsp algorithms, 1998. http://www.ee.mu.edu/~spiral.[35℄ Markus Pushel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso,Bryan Singer, Jianxin Xiong, Franz Frenhetti, Aa Cai, Yevgen Voronenko,Kang Chen, Robert Johnson, and Nik Rizzolo. Spiral: Code generation fordsp transforms. Aepted for putbliation in IEEE speial issue on ProgramGeneration, Optimization, and Adaptation, 2005.[36℄ Franz Franhetti, Stefan Kral, Juergen Lorenz, and Christoph Ueberhuber.EÆient utilization of simd extensions. Aepted for putbliation in IEEEspeial issue on Program Generation, Optimization, and Adaptation, 2005.[37℄ Spyridon Triantafyllis, Manish Vahharajani, Neil Vahharajani, and David I.August. Compiler optimization-spae exploration. In International Symposiumon Code Generation and Optimization, pages 204{215, 2003.[38℄ System V Appliation Binary Interfae, In-tel386 Arhiteture Proessor Supplement. URL:http://www.aldera.om/developers/devspes/abi386-4.pdf.[39℄ Rihard Detmer. Introdution to The 80x86 Assembly Language and ComputerArhiteture. Jones and Bartlett Publishers, Sudbury, MA, 2001.[40℄ Jan Hubika, Andreas Jaeger, and Mark Mithel. System V Ap-pliation Binary Interfae, AMD64 Arhiteture Proessor Supplement.http://www.x86-64.org/doumentation/abi-0.92.pdf.[41℄ Jan Hubika, Andreas Jaeger, and Mark Mithel. Soft-ware optimization guide for amd athlon 64 and opteron pro-essors. http://www.amd.om/us-en/assets/ontent type/white papers and teh dos/25112.PDF, Marh 2004.[42℄ Intel extended memory 64 tehnology. URL:http://www.intel.om/tehnology/64bitextensions/index.htm.[43℄ Ed Sznyter and Babel Press. The PowerPC Arhiteture. Morgan KaufmannPublishers, In., San Franiso, CA, 2nd edition, 1994.[44℄ Gary Kamarik. Optimizing PowerPC Code. Addison-Wesley PublishingCompany, Reading, Massahusetts, 1995.[45℄ David Weaver and Tom Germond, editors. The SPARC Arhiteture Manual,Version 9. PTR Prentie Hall, Englewood Cli�s, New Jersey, 1994. URL:http://www.spar.om/standards/SPARCV9.pdf.[46℄ System V Appliation Binary Interfae, SPARC Proessor Supplement. URL:http://www.spar.om/standards/psABI3rd.pdf.140



[47℄ Mike Wall. Using Blok Prefeth for Optimized Memory Per-formane. Tehnial report, Advaned Miro Devies, 2002.http://drom.amd.om/devonn/events/AMD_blok_prefeth_paper.pdf.[48℄ Steve Carr, Chen Ding, and Philip H. Sweany. Improving software pipeliningwith unroll-and-jam. In HICSS (1), pages 183{192, 1996.[49℄ Kamen Yotov, Xiaorning Li, Gang Ren, Maria Garzaran, Dvaid Padua, KeshavPingali, and Paul Stodghill. A omparison of empirial and model-drivenoptimization. Aepted for publiation in IEEE speial issue on ProgramGeneration, Optimization, and Adaptation, 2005.

141



BIOGRAPHICAL SKETCHR. Clint WhaleyThe author was born on November 9, 1969, and reeived his B.S. in Mathematis(Summa Cum Laude) from Oklahoma Panhandle State University in May of 1991.He reeived his Master of Siene in Computer Siene in May of 1994 from theUniversity of Tennessee, Knoxville (UTK), where his thesis dealt with ommuniationon distributed memory systems. His professional areer began with work at OakRidge National Laboratories, where he worked as a researh student (1990-1991)on parallelizing (for distributed memory mahines) nulear ollision models in thephysis division. From May 1994 through June 1999, he was employed as a full-timeresearher (Researh Assoiate) at UTK. From June 1999 through Deember 2001,he was a Senior Researh Assoiate at UTK. During his years at UTK, he workedon the well-known parallel pakage SaLAPACK. Later, as a full time researher,he founded the ongoing ATLAS researh projet, and ATLAS-tuned libraries areused by sientists and engineers around the world. His researh interests inludeode optimization, ompilation researh, high performane omputing, and parallelomputing.

142


