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ABSTRACTUsing traditional methodologies and tools, the problem of keeping performan
e-
riti
al kernels at high eÆ
ien
y on hardware evolving at the in
redible rates di
tatedby Moore's Law is almost intra
table. On produ
t lines where ISA 
ompatibility ismaintained through several generations of ar
hite
ture, the growing gap between thema
hine that the software sees and the a
tual hardware exa
erbates this problem
onsiderably, as do the evolving software layers between the appli
ation in questionand the ISA. To address this problem, we have utilized a relatively new te
hnique,whi
h we 
all AEOS (Automated Empiri
al Optimization of Software). In this paper,we des
ribe the AEOS systems we have resear
hed, implemented and tested. The �rstof these is ATLAS (Automati
ally Tuned Linear Algebra Software), whi
h empiri
allyoptimizes key linear algebra kernels to arbitrary 
a
he-based ma
hines. Our latestresear
h e�ort is instantiated in the iFKO (iterative Floating Point Kernel Optimizer)proje
t, whose aim is to perform empiri
al optimization of relatively arbitrary kernelsusing a low-level iterative and empiri
al 
ompilation framework.

ix



CHAPTER 1INTRODUCTIONThe ultimate goal of this resear
h is to provide 
ompute kernels for the highperforman
e 
omputing (HPC) 
ommunity that run at near-peak eÆ
ien
y, evenas ar
hite
tures evolve at the franti
 pa
e di
tated by Moore's Law. If a kernel'sperforman
e is to be made at all robust, it must be both portable, and of even greaterimportan
e these days, persistent. We use these terms to separate two linked, butslightly di�erent forms of robustness. The platform on whi
h a kernel must run 
an
hange in two di�erent ways: the ma
hine ISA (Instru
tion Set Ar
hite
ture) 
anremain 
onstant even as the hardware implementing that ISA varies, or the ISA 
an
hange. When a kernel maintains its eÆ
ien
y on a given ISA as the underlyinghardware 
hanges, we say it is persistent, while a portably optimal 
ode a
hieves higheÆ
ien
y even as the ISA and ma
hine are 
hanged.Before the results of this resear
h 
an be evaluated, it is important to demonstratethat there truly is a problem that needs to be solved, and thus the bulk of thisintrodu
tion is dedi
ated to demonstrating why we have undertaken this line ofresear
h. Therefore, Se
tion 1.1 overviews the need for highly tuned kernels in HPC,Se
tion 1.2 dis
usses the traditional approa
hes to this problem, and gives the reasonswhy they are inadequate in pra
ti
e, whi
h in turn motivates the appli
ation ofempiri
al te
hniques (the subje
t of this resear
h), as dis
ussed in Se
tion 1.2.3. Afterthis motivation, Se
tion 1.3 provides a brief history of this resear
h, and Se
tion 1.4des
ribes the organization of the remainder of the paper.1



1.1 Importan
e of Kernel Optimization for HPCHigh performan
e 
omputing is di�erentiated from general 
omputing by itsvora
ious appetite for 
omputing resour
es. Despite hardware performan
e that hasbeen steadily improving a

ording to Moore's Law, this is as true today as it wasa de
ade ago. S
ienti�
 modeling provides an illustration of this phenomenon. Inmany of these appli
ations, 
omputational power is the main 
onstraint preventingthe s
ientist from modeling more 
omplex problems, whi
h would then more 
loselymat
h reality. As more 
omputational power be
omes available, the s
ientist typi
allyin
reases the 
omplexity/a

ura
y of the model until the limits of the 
omputationalpower are rea
hed. Therefore, sin
e many appli
ations have no pra
ti
al limit of\enough" a

ura
y, it is important that ea
h generation of in
reasingly powerful
omputers have well optimized 
omputational kernels, whi
h in turn allow for eÆ
ientexe
ution of the higher-level appli
ations that use them.1.2 Problems with Traditional HPC Kernel Produ
tionMethodsThe traditional path to a
hieving high performan
e in HPC involves 
ompilationresear
h 
ombined with library produ
tion. General purpose 
ompilers do not,in pra
ti
e, a
hieve the very high per
entages of peak on the 
omplex kernelsdemanded by HPC appli
ations (the reasons for this are outlined in Se
tion 1.2.2).Therefore, sin
e a user 
annot write an arbitrary 
ode and expe
t it to run at theextreme eÆ
ien
ies demanded by HPC appli
ations, the 
ommunity has respondedby emphasizing library produ
tion. In parti
ular, APIs for reusable performan
ekernels are standardized, allowing these kernels to be hand-tuned by teams of expertsfor a given platform. On
e these standard kernels are available for the platform ofinterest, higher-level appli
ations that leverage them 
an run at high eÆ
ien
ieswithout extensive additional tuning. 2



Both hand-tuning of kernels and traditional 
ompilation have severe drawba
kswhen employed for performan
e-
riti
al kernel produ
tion, as dis
ussed in thefollowing se
tions. Sin
e traditional 
ompilation shares many of the same drawba
ksas hand-tuning, as well as having its own unique problems, we dis
uss hand-tuning�rst.1.2.1 Short
omings of Hand-tuningHand-tuning performan
e-
riti
al kernels for ea
h ar
hite
ture of interest su�ersfrom two main drawba
ks: First, 
reating software that realizes near peak ratesof exe
ution requires detailed knowledge of a 
omplex set of interrelated fa
tors,in
luding the operation being optimized, the target ar
hite
ture(s), and all theintervening software layers. Even when the implementer possesses su
h broadunderstanding, the intera
tions between various hardware/software layers guaranteethat signi�
ant empiri
al tuning of the initial kernel will be required. Therefore,optimizing even the simplest of real-world operations for high performan
e usuallyrequires a sustained e�ort from the most te
hni
ally advan
ed programmers, whi
hare in 
riti
ally short supply. Se
ond, even when the requisite programming talentis available, hand-tuning su
h 
odes is a time 
onsuming task, so that far too often,when the optimized libraries are �nally ready to 
ome on line, the generation ofhardware for whi
h they are optimized is well on its way towards obsoles
en
e. ThisdiÆ
ulty of keeping software highly optimized in the fa
e of hardware 
hange is apersistent problem for both hand-tuning and 
ompilers.1.2.2 Short
omings of Traditional CompilationThe most fundamental reason traditional 
ompilers do not a
hieve the highper
entages of peak required by HPC kernels is that it is not what they aredesigned to do. Optimizing general-purpose 
ode to this extreme degree would3



be 
ounter-produ
tive: It would require substantially greater time to develop the
ompiler itself, would have almost no e�e
t on overall performan
e for most 
odes,and would almost 
ertainly in
rease 
ompilation times to a degree intolerable forgeneral use.Even if the 
ompiler were written with this kind of extreme optimization in mind,traditional 
ompilation te
hniques would 
learly need to be supplemented in someway. Traditionally, 
ompilers perform transformations based on models that attemptto 
apture the relevant details of the underlying ar
hite
ture. This approa
h workswell for general purpose 
omputing, but the model needs to be mu
h more detailedto extra
t near-peak levels of performan
e: indeed, it needs to be so detailed that inpra
ti
e produ
ing su
h a model would be almost intra
table. Even if a model 
ouldbe 
reated that was sophisti
ated enough to a

ount for the intera
tions between alllevels of 
a
he, the pipelines of all relevant fun
tional units, and all shared hardwareresour
es required by a given operation (and it 
ould do su
h detailed front-endanalysis that all required kernel-spe
i�
 information was extra
ted from the 
ode), itis often the 
ase that mu
h of the data required to build su
h a model is unknown,either be
ause the hardware vendor 
onsiders it proprietary, or be
ause even thedesigners are unable to predi
t performan
e due to unforeseen resour
e intera
tions.Therefore, models require signi�
ant hand-tuning to ea
h supported ar
hite
ture;this is true even in general 
omputing, and the 
ost would 
learly go up dramati
allyfor a kernel-oriented 
ompiler.Therefore, to obtain near-peak eÆ
ien
y for kernels using traditional 
ompilation,the models must be 
onstantly modi�ed to keep up with hardware being released atthe rate di
tated by Moore's Law. Sin
e 
ompilers are generally very 
omplex appli
a-tions, this is just as untenable in the long run as the hand-tuned kernel optimizationdis
ussed in the previous se
tion. Moore's Law also provides a se
ondary e�e
tthat makes model-based approa
hes even more problemati
 for this type of tuning.Sin
e software evolves at a mu
h slower rate than Moore's Law, hardware ar
hite
ts4



must retain ISA 
ompatibility whenever possible, whi
h 
an lead to mismat
hesbetween an ISA and the underlying hardware. At the same time, the additional
ir
uits that 
an be e
onomi
ally added to a wafer have resulted in ar
hite
turesthat perform an in
reasing number of 
ompiler-like transformations in hardware(eg., dynami
 s
heduling, out-of-order exe
ution, register renaming, et
.). Due tothis trend, the ISA available to the 
ompiler writer be
omes more and more like ahigh level language, and thus the 
lose 
onne
tion between the instru
tions issued bythe 
ompiler, and the a
tions performed by the ma
hine, is lost. This phenomenonmakes it in
reasingly diÆ
ult to know a priori if a given transformation will behelpful, and almost impossible to be sure when it is worth applying a transformationthat yields bene�ts only in 
ertain situations. The most extreme example of thistrend is embodied in the x86 ar
hite
ture, whose non-orthogonal CISC instru
tionset has, to the frustration of many 
ompiler writers, be
ome the most widely-usedISA in general-purpose 
omputing.Another problem with model-based approa
hes is how to allo
ate resour
es in
ompeting optimization phases. Here heuristi
s must be employed, whi
h may leavesigni�
ant gaps in optimization (eg., reserve several registers when doing registerassignment so that software pipelining 
an be performed later, et
.). Finally, even ifall these 
hallenges 
ould be surmounted, kernel- and 
ontext-spe
i�
 issues providea further barrier to a
hieving high performan
e. For instan
e, tuning a bus-boundoperation requires a di�erent set of priorities than tuning a kernel that is primarily
pu-bound, the types and number of operands strongly a�e
t the 
orre
t optimizations
heme, et
. Pro�ling 
an dis
over some of this information, but quite a few relevantdetails 
annot be realisti
ally dis
overed even when the most aggressive traditionalte
hniques are employed. If su
h perfe
t analysis were available, however, these
ompli
ated ar
hite
tural models would still need to be split into many sub
asesto re
e
t varying usage patterns, worsening an already insupportable maintenan
eproblem. 5



1.2.3 Addressing Optimization Challenges through Empiri
al Te
hniquesThese problems, taken together, led to the implementation of empiri
ally tunedlibrary generators su
h as PHiPAC [1℄, FFTW [2, 3, 4℄ (these and other pa
kagesare dis
ussed in the related work se
tions of Chapters 3 and 4) and our ownATLAS [5, 6, 7, 8, 9, 10℄ (dis
ussed in Chapter 3). The 
entral idea behind thesepa
kages is that sin
e it is diÆ
ult to predi
t a priori whether or by how mu
h a givente
hnique will improve performan
e, one should try a battery of known te
hniqueson ea
h performan
e-
riti
al kernel, obtain a

urate timings to assess the e�e
t ofea
h transformation of interest, and retain only those that result in measurableimprovements for this exa
t system and kernel. Thus, the need to understand thear
hite
ture in detail is removed: we are probing the system as it stands, just as theempiri
al te
hnique of the s
ienti�
 method probes the natural world, and just asthe s
ienti�
 method dis
ards disprovable theories, we do not retain transformationsthat do not result in suÆ
ient speedup.This approa
h allows for a mu
h greater degree of spe
ialization than 
an berealisti
ally a
hieved in any other fashion. For instan
e, it is not un
ommon forempiri
al tuning of a given kernel on two basi
ally identi
al systems, varying onlyin the type or size of 
a
he supported, to produ
e tuned implementations withsigni�
antly di�erent optimizational parameters, and it is almost always the 
asethat varying the kernel results in widespread optimization di�eren
es.These empiri
ally tuned pa
kages have su

eeded in a
hieving high levels ofperforman
e on widely varying hardware, but in a sense they are still very limited
ompared to 
ompilation te
hnology. In parti
ular, they are tied to parti
ular oper-ations within given libraries, and are therefore not of great assistan
e in optimizingother operations that nonetheless require similar levels of performan
e. It is thereforeno surprise that the 
ompiler 
ommunity has begun to evaluate the s
ope for using6



empiri
al te
hniques in 
ompilation. Chapters 4 and 5 outline our own empiri
al
ompiler resear
h. 1.3 History of Resear
hThe author began this line of resear
h while a he was a full-time resear
her at theUniversity of Tennessee, Knoxville (UTK). In this initial work, the emphasis was ona
hieving portably optimal 
ode for a restri
ted set of linear algebra routines. Thisresear
h 
ulminated in the ATLAS [6, 7, 8, 9, 10℄ proje
t. After ATLAS provedso su

essful in optimizing a given set of operations, the obvious question was howit 
ould be generalized, and this has led to the resear
h we have 
ondu
ted here atFlorida State University (FSU) on iFKO (iterative Floating Point Kernel Optimizer).This work is aimed at generalizing empiri
al optimization to arbitrary 
oating pointkernels, and 
on
entrates on a
hieving persistently optimal 
ode.The ATLAS work is in
luded in this dissertation for two main reasons. Mostimportantly, it 
ombined with iFKO 
omprise the author's 
ontribution to theemerging �eld of empiri
al optimization, and this �rst e�ort both supports andlends dire
tion to our 
urrent resear
h. Se
ondly, while the majority of the ATLASframework was indeed developed at UTK, signi�
ant ATLAS work was done hereat FSU as well, in
luding FSU grant #1327-592-45, and the publi
ations of [10, 11℄.Work on the grant led parti
ularly to some intensive assembly hand-tuning to exploitSIMD ve
torization, and this and related e�orts strongly in
uen
ed the design andimplementation of iFKO.1.4 Organization of PaperThe remainder of this paper is organized in the following way: Chapter 2introdu
es the terminology used to des
ribe these empiri
al te
hniques, Chapter 3overviews our ATLAS work, Chapter 4 uses this foundation to motivate and explain7



our empiri
al 
ompilation resear
h, Chapter 5 des
ribes the 
urrent implementationof our empiri
al 
ompilation framework, and Chapter 6 provides experimental results.Note that the ATLAS and iFKO 
hapters 
ontain their own related work se
tion, asthese e�orts are distin
t in both approa
h and time. Finally, Chapter 7 summarizesour �ndings and 
ontributions as well as dis
ussing areas for future work.

8



CHAPTER 2BASIC DEFINITIONS { AEOSMany groups have begun to utilize automated and empiri
al approa
hes tooptimization, resulting in a plethora of di�ering terminologies, in
luding \self-tuninglibraries", \adaptive software", \empiri
al 
ompilation", \iterative 
ompilation", et
.While these approa
hes di�er strongly in details, in order to fall into the 
lassi�
ationrelated to our resear
h they must have some 
ommonalities:1. The sear
h must be automated in some way, so that an expert hand-tuner isnot required.2. The de
ision of whether a transformation is useful or not must be empiri
al, inthat an a
tual timing measurement on the spe
i�
 ar
hite
ture in question isperformed, as opposed to the traditional appli
ation of transformations usingstati
 heuristi
s or pro�le 
ounts3. These methods must have some way to vary/adapt the software being tuned.With these broad outlines in mind, we lump all su
h empiri
al tunings under thea
ronym AEOS, or Automated Empiri
al Optimization of Software, and Se
tion 2.1outlines the requirements of su
h systems, while Se
tion 2.2 dis
usses the studiedmethods of software adaptation.2.1 Basi
 AEOS RequirementsThe basi
 requirements for supporting high performan
e kernel optimization usingAEOS methodologies are: 9



� Isolation of performan
e-
riti
al routines: Just as with traditional libraries, theperforman
e-
riti
al se
tions of 
ode must be isolated (usually into subroutines,whi
h di
tates the need for an standardized API).� A method of adapting software to di�ering environments: Sin
e AEOS dependson iteratively trying di�ering ways of performing the performan
e-
riti
aloperation, the author must be able to provide implementations that instantiatea wide range of optimizations. This may be done very simply, for instan
e byhaving parameters in a �xed 
ode whi
h, when varied, 
orrespond to di�ering
a
he sizes, et
., or it may be done mu
h more generally, for instan
e bysupplying a highly parameterized sour
e generator whi
h 
an produ
e an almostin�nite number of implementations. No matter how general the adaptationstrategy, there will be limitations or built-in assumptions about the requiredar
hite
ture whi
h should be identi�ed in order to estimate the probableboundaries on the 
ode's 
exibility. Se
tion 2.2 dis
usses software adaptationmethods in further detail.� Robust, 
ontext-sensitive timers: Sin
e timings are used to sele
t the best 
ode,it be
omes very important that these timings be a

urate. Sin
e few users 
anguarantee single-user a

ess, the timers must be robust enough to produ
ereliable timings even on heavily loaded ma
hines. Furthermore, the timersneed to repli
ate as 
losely as possible the way in whi
h the given operationwill be used. For instan
e, if the routine will normally be 
alled with 
old
a
hes, 
a
he 
ushing will be required. If the routine will typi
ally be 
alledwith a given level of 
a
he preloaded, while others are not, that too should betaken into a

ount. If there is no known ma
hine state, timers allowing formany di�erent states, whi
h the user 
an vary, should be 
reated.
10



� Appropriate sear
h heuristi
 The �nal requirement is a sear
h heuristi
 whi
hautomates the sear
h for the most optimal available implementation. Fora simple method of 
ode adaptation, su
h as supplying a �xed number ofhand-tuned implementations, a simple linear sear
h will suÆ
e. However, whenusing sophisti
ated sour
e generators with literally hundreds of thousands ofways of doing an operation, a similarly sophisti
ated sear
h heuristi
 mustbe employed in order to prune the sear
h tree as rapidly as possible, so thatthe optimal 
ases are both found and found qui
kly (obviously, few users willtolerate heavily parameterized sear
h times with exponential growth). If thesear
h takes longer than a handful of minutes, it needs to be robust enoughto not require a 
omplete restart if hardware or software failure interrupts theoriginal sear
h.2.2 Methods of Software AdaptationWe employ three di�erent methods of software adaptation. The �rst is widely usedin programming in general, and it involves parameterizing 
hara
teristi
s whi
h varyfrom ma
hine to ma
hine. In linear algebra, the most important of su
h parametersis probably the blo
king fa
tor used in blo
ked algorithms, whi
h, when varied, variesthe data 
a
he utilization. In general, parameterizing as many levels of data 
a
heas the algorithm 
an support 
an provide remarkable speedups. With an AEOSapproa
h, su
h parameters 
an be 
ompile-time variables, and thus not 
ause aruntime slowdown. We 
all this method parameterized adaptation.Not all important ar
hite
tural variables 
an be handled by parameterizedadaptation (simple examples in
lude instru
tion 
a
he size, 
hoi
e of 
ombined orseparate multiply and add instru
tions, length of 
oating point and fet
h pipelines,et
), sin
e varying them a
tually requires 
hanging the underlying sour
e 
ode. Thisthen brings in the need for the se
ond method of software adaptation, sour
e 
ode11



adaptation, whi
h involves a
tually generating di�ering implementations of the sameoperation.There are at least two di�erent ways to do sour
e 
ode adaptation. Perhaps thesimplest approa
h is for the designer to supply various hand-tuned implementations,and then the sear
h heuristi
 may be as simple as trying ea
h implementation in turnuntil the best is found. At �rst glan
e, one might suspe
t that supplying these multi-ple implementations would make even this approa
h to sour
e 
ode adaptation mu
hmore diÆ
ult than the traditional hand-tuning of libraries. However, traditionalhand-tuning is not just the mere appli
ation of known te
hniques it may appearwhen examined 
asually. Knowing the size and properties of your level 1 
a
he isnot suÆ
ient to 
hoose the best blo
king fa
tor, for instan
e, as this depends ona host of interlo
king fa
tors whi
h defy often a priori understanding in the realworld. Therefore, it is 
ommon in hand-tuned optimizations to utilize the known
hara
teristi
s of the ma
hine to narrow the sear
h, but then the programmer writesvarious implementations and 
hooses the best.For the simplest AEOS implementation, this pro
ess remains the same, but theprogrammer adds a sear
h and timing layer to a

omplish what would otherwise bedone by hand. In the simplest 
ases, the time to write this layer may not be mu
h ifany more than the time the implementer would have spent doing the same pro
essin a less formal way by hand, while at the same time 
apturing at least some ofthe 
exibility inherent in AEOS-
entri
 design. We will refer to this sour
e 
odeadaptation te
hnique as multiple implementation. Due to its obvious simpli
ity, thismethod is highly parallelizable, in the sense that multiple authors 
an meaningfully
ontribute without having to understand the entire pa
kage. In parti
ular, variousspe
ialists on given ar
hite
tures 
an provide hand-tuned routines without needing tounderstand other ar
hite
tures, the higher level 
odes (e.g. timers, sear
h heuristi
s,higher-level routine whi
h utilize these basi
 kernels, et
). This makes multiple12



implementation a very good approa
h if the user base is large and skilled enoughto support an open sour
e initiative along the lines of, for example, Linux.The se
ond method of sour
e 
ode adaptation is sour
e generation. In sour
egeneration, a sour
e generator (i.e., a program that writes other programs) isprodu
ed. This sour
e generator takes as parameters the various sour
e 
odeadaptations to be made. As before, simple examples in
lude instru
tion 
a
he size,
hoi
e of 
ombined or separate multiply and add instru
tions, length of 
oating pointand fet
h pipelines, and so on. Depending on the parameters, the sour
e generatorprodu
es a routine with the requisite 
hara
teristi
s. The great strength of sour
egenerators is their ultimate 
exibility, whi
h 
an allow for far greater tunings than
ould be produ
ed by all but the best hand-
oders. However, generator 
omplexitytends to go up along with 
exibility, so that these programs rapidly be
ome almostinsurmountable barriers to outside 
ontribution.In our own past e�orts, we have therefore 
ombined these two methods ofsour
e adaptation, where a kernel-spe
i�
 sour
e generator is provided for maximalar
hite
tural portability. Multiple implementation is utilized to en
ourage outside
ontribution, and allows for extreme ar
hite
tural spe
ialization via assembly imple-mentations.Sour
e generators that generate high-level (and thus portable) languages su
h asFORTRAN or ANSI C (as opposed to low-level and non-portable languages su
h asassembly) have the advantage of being able to optimize a given operation for anyar
hite
ture whi
h possesses the requisite 
ompiler. However, su
h sour
e generatorsare spe
i�
 to the kernel being tuned, and thus we 
an say they are ar
hite
-ture/platform independent, but routine/operation spe
i�
. Multiple implementationis obviously routine spe
i�
 as well, and is ar
hite
ture dependent (assembly) orindependent (high level languages) depending on the implementation language.Therefore, our past e�orts have resulted in a AEOS-enabled library that is largelyplatform independent, but operation spe
i�
. In our iFKO work, we generalize these13



te
hniques using a third method of software adaptation, whi
h will be more platformspe
i�
, but routine independent. In addition, to augment our present strengths,we believe it is important have a me
hanism to exploit parti
ular ar
hite
turalfeatures not ne
essarily available in high level languages su
h as ANSI C. Thiswas a

omplished using an iterative and empiri
al 
ompiler, hereafter shortened toempiri
al 
ompiler.2.2.1 Summary of Software Adaptation MethodsIn summary, we use three tools in order to perform the required softwareadaptation (we hereafter treat multiple implementation and sour
e generation asseparate te
hniques, even though they are sub-
lasses of sour
e 
ode adaptation),and their strengths and weaknesses are summarized in Table 2.1. All three of thesemethodologies 
an be further augmented by parameterized adaptation.Table 2.1: Summary of software adaptation te
hniquesADAPTATION PLATFORM ROUTINE OUTSIDE AUTOMATICMETHOD INDEP. INDEP. CONTRIB. ADAPTABILITYMultiple YES NO EASY LOWImplementationSour
e YES NO DIFFICULT HIGHGeneratorEmpiri
al NO YES DIFFICULT INTERMEDIATECompilerWe have previously dis
ussed all of the 
olumns of this table ex
ept the last,automati
 adaptability. This 
olumn gives an indi
ation on how likely the methodis to provide good performan
e as the pa
kage is moved to di�ering ar
hite
tures.Multiple implementation has the lowest adaptability, sin
e users rarely write imple-mentations for ar
hite
tures they are not using. There is still some adaptability,and the 
loser the new ar
hite
ture is to one of the ones previously seen, the better14



multiple implementation will perform. However, multiple implementation is verylikely to provide poor performan
e in the fa
e of fundamental ar
hite
tural 
hange.In 
ontrast, a general sour
e generator, whi
h 
an be built to be very 
exible indeed,is very likely to be able to adapt to all but the most extreme 
hanges in ar
hite
ture.The empiri
al 
ompiler is given an intermediate adaptability rating. In order touse the full 
apabilities of the 
ompiler, the ba
kend must be ported, whi
h is anobvious 
onstraint on adaptability. More spe
i�
ally, an empiri
al 
ompiler shouldadapt well to varying ar
hite
tures that implement a given ISA (i.e., it deliverspersistent optimization), but the ba
kend must be ported to all ISAs of interest inorder to adapt to varying ISAs.This table also provides the basis for understanding why all three me
hanisms aredesirable. The sour
e generator is the most 
exible in overall adaptability, multipleimplementation allows for outside 
ontribution and hand tuning, and an empiri
al
ompiler provides the opportunity to tune a wider array of kernels.Be
ause an automated sear
h 
an try many more te
hniques than even themost motivated hand-tuner, we believe iFKO will ultimately make hand-tuning onsupported platforms unne
essary. While iFKO's transformation palette is in
om-plete, however, multiple implementation (where iFKO is 
onsidered just another
ompiler) 
an be used to provide so-far unsupported optimizations. Further, multipleimplementation provides an easy way to qui
kly try various optimization strategies,in order to �nd transformations worth adding to iFKO.

15



CHAPTER 3FOUNDATIONAL WORK { ATLASATLAS is the proje
t from whi
h our 
urrent understanding of AEOS method-ologies grew, and now provides a test bed for their further development and testing.The initial goal of ATLAS was to provide a portably eÆ
ient implementation ofthe BLAS[12, 13, 14, 15, 16℄. ATLAS now provides at least some level of supportfor all of the BLAS, and the �rst tentative extensions beyond this one API havebeen taken (for example, the most re
ent ATLAS release 
ontained some higher levelroutines from the LAPACK [17℄ API). Sin
e the BLAS represent the kernels whi
hare empiri
ally tuned, this paper will 
on
entrate on ATLAS's BLAS support.The BLAS (Basi
 Linear Algebra Subroutines) are building blo
k routines forperforming basi
 ve
tor and matrix operations. The BLAS are divided into threelevels: Level 1 BLAS do ve
tor-ve
tor operations, Level 2 BLAS do matrix-ve
toroperations, and the Level 3 BLAS do matrix-matrix operations. The performan
egains from optimized implementations is strongly a�e
ted by the level of the BLAS.In the Level 1 BLAS, no memory reuse is possible, and therefore many Level 1BLAS are 
ompletely memory-bound if they do not operate on in-
a
he data. Forsome Level 1 BLAS, prefet
h and related te
hniques 
an still produ
e impressivespeedups; however, some operations are so memory-bound that the bus is alwayssaturated regardless of prefet
h arrangements, so that out-of-
a
he speedups are es-sentially unrealizable. Even in these routines, however, it is important to perform allappli
able 
omputational optimizations, as inadequate 
omputational optimizationmay 
ause additional delay in issuing the 
riti
al fet
h operations.16



In the Level 2 BLAS, memory blo
king 
an allow for reuse of the ve
tor operands,but not, in general, of the matrix operand (the ex
eption is that some matrix types,for instan
e symmetri
 or Hermitian, 
an e�e
tively use ea
h matrix operand twi
e).Redu
ing the ve
tor operands from O(N2) to O(N) represents 
onsiderable savingsover naive 
ode, but due to the irredu
ible matrix 
osts, the memory load remainsof the same order (O(N2)) as the operation 
ount. Therefore, the Level 2 BLAS 
anenjoy modest speedup (say, roughly in the range of 10-300% for out-of-
a
he timings),both be
ause memory blo
king is e�e
tive, and be
ause the loops are 
omplex enoughthat more 
ompilers begin having problems doing the 
oating point optimizationsautomati
ally.Finally, the Level 3 BLAS 
an display orders of magnitude speedups. To simplifygreatly, these operations 
an be blo
ked su
h that the natural O(N3) fet
h 
ostsbe
ome essentially O(N2). Further, the triply-nested loops used here are almostalways too 
omplex for the 
ompiler to �gure out without hints from the programmer(eg, some expli
it loop unrolling), and thus the O(N3) 
omputation 
ost 
an begreatly optimized as well.The following se
tions dis
uss our handling of all BLAS levels in ATLAS. Be
auseof the amount of e�ort required to provide high-quality AEOS software, it be
omes
riti
al to �nd the smallest possible kernels whi
h 
an be leveraged to supply allrequired fun
tionality. Thus, ea
h se
tion des
ribes the low level performan
e kernels,the te
hniques used to 
reate them, and how these kernels are utilized to produ
e allrequired fun
tionality.3.1 Limits of ATLAS's Approa
hAs previously mentioned, any AEOS approa
h is bound to have some restri
tionson its adaptability. ATLAS is no ex
eption, and the following assumptions need tohold true for ATLAS to perform well: 17



1. Adequate ANSI C 
ompiler: ATLAS is written entirely in ANSI/ISO C, withthe ex
eption of the FORTRAN 77 interfa
e 
odes (whi
h are simple wrapperswritten in ANSI FORTRAN 77, 
alling the C internals for 
omputation).ATLAS does not require an ex
ellent 
ompiler, sin
e it uses sour
e generationto perform many optimizations typi
ally done by 
ompilers. However, too-aggressive 
ompilers 
an transform already optimal 
ode into suboptimal 
ode,if 
ags do not exist to turn o� 
ertain 
ompiler optimizations. On the otherhand, 
ompilers without the ability to e�e
tively use the underlying ISA (eg.,inability to utilize registers, even when the C 
ode 
alls for them), will yieldpoor results as well.2. Hierar
hi
al memory: ATLAS assumes a hierar
hi
al memory is present. Bestresults will be obtained when both registers and at least an L1 data 
a
he arepresent.Of these two, an adequate C 
ompiler is the most important restri
tion. Evenla
k of hierar
hi
al memory would at worst turn some of ATLAS's blo
king andregister usage into overheads. Even with this handi
ap, ATLAS's sour
e adaptationmay still yield enough performan
e to provide an adequate BLAS. If the ANSI C
ompiler is poor enough, however, this 
an result in the 
omputational portion ofthe algorithms being e�e
tively unoptimized. Sin
e the 
omputational optimizationsare the dominant 
ost of a blo
ked Level 3 BLAS, this 
an produ
e extremely poorresults. Note that multiple implementation, with its support for assembly as well asANSI C, 
an be used to get around even this restri
tion. If the ma
hine in questiondoes not share an ISA with a previously seen ma
hine, however, we will be ba
k tothe familiar problem of having optimization wait on hand-tuning.
18



3.2 AEOS Tuning for the Level 3 BLAS in ATLASAll thirty routines of the Level 3 BLAS (for ea
h real data type there are sixLevel 3 BLAS, and nine routines for ea
h 
omplex data type) 
an be eÆ
ientlyimplemented given an eÆ
ient matrix-matrix multiply (for details on how this isdone, [10℄ dis
usses ATLAS's parti
ular implementation, and other approa
hes aregiven in [18, 19, 20, 21℄). Thus the main performan
e kernel is general matrixmatrix multiply (hereafter shortened to matmul, or the BLAS matmul routine name,GEMM). As subsequent se
tions show, however, GEMM itself is further narroweddown to an even smaller kernel before sour
e generation takes pla
e.The BLAS supply a routine GEMM, whi
h performs a general matrix-matrixmultipli
ation of the form C  �op(A)op(B) + �C, where op(X) = X or XT . C isan M � N matrix, and op(A) and op(B) are matri
es of size M � K and K � N ,respe
tively.In general, the arrays A, B, and C will be too large to �t into 
a
he. Using ablo
k-partitioned algorithm for matrix multiply, it is still possible to arrange for theoperations to be performed with data for the most part in 
a
he by dividing thematrix into blo
ks. For additional details see [22℄.Using this BLAS routine, the rest of the Level 3 BLAS 
an be eÆ
ientlysupported, so GEMM is the Level 3 BLAS 
omputational kernel. In ATLAS, thisBLAS-level GEMM is written as a series of high level 
odes whi
h use 
ompile- orrun-time variables to adapt to 
a
he levels. These high-level 
odes get most of theiradaptation from a lower-level kernel (dis
ussed in Se
tion 3.2.2), whi
h is adaptedto the ar
hite
ture using parameterized adaptation, multiple implementation, andsour
e generation.
19



3.2.1 Building the General Matrix Multiply from the L1 Ca
he-
ontainedMultiplyThis se
tion des
ribes the non-generated 
ode, whose only varian
e a
ross plat-forms 
ome from parameterization. These 
odes are used to form the BLAS's generalmatrix-matrix multiply using a L1 
a
he-
ontained matmul (hereafter referred to asthe L1 matmul).Se
tion 3.2.2 des
ribes the L1 matmul and its generator in detail. For our presentdis
ussion, it is enough to know that ATLAS has at its disposal highly optimizedroutines for doing matrix multiplies whose dimensions are 
hosen su
h that 
a
heblo
king is not required (i.e., the hand-written 
ode dis
ussed in this se
tion dealswith 
a
he blo
king; the generated 
ode assumes things �t into 
a
he).When the user 
alls GEMM, ATLAS must de
ide whether the problem is largeenough to tolerate 
opying the input matri
es A and B. If the matri
es are largeenough to support this O(N2) overhead, ATLAS will 
opy A and B into blo
k-majorformat. ATLAS's blo
k-major format breaks up the input matri
es into 
ontiguousblo
ks of a �xed size NB, where NB is 
hosen as dis
ussed in Se
tion 3.2.2 in orderto maximize L1 
a
he reuse. On
e in blo
k-major format, the blo
ks are 
ontiguous,whi
h eliminates TLB problems, minimizes 
a
he thrashing and maximizes 
a
heline use. It also allows ATLAS to apply alpha (if alpha is not already one) to thesmaller of A or B, thus minimizing this 
ost as well. Finally, the pa
kage 
an use the
opy to transform the problem to a parti
ular transpose setting, whi
h for load andindexing optimization, is set so A is 
opied to transposed form, and B is in normal(non-transposed) form. This means our L1-
a
he 
ontained 
ode is of the formC  ATB, C  ATB + C, and C  ATB + �C, where all dimensions, in
ludingthe non-
ontiguous stride, are known to be NB. Knowing all of the dimensions of theloops allows for arbitrary unrollings (i.e., if the instru
tion 
a
he 
ould support it,ATLAS 
ould unroll all loops 
ompletely, so that the L1 
a
he-
ontained multiplyhad no loops at all). Further, when the sour
e generator knows the leading dimension20



of the matri
es (i.e., the row stride), all indexing 
an be done expli
itly, without theneed for expensive integer or pointer 
omputations.If the matri
es are too small, the O(N2) data 
opy 
ost 
an a
tually dominatethe algorithm 
ost, even though the 
omputation 
ost is O(N3). For these matri
es,ATLAS will 
all an L1 matmul whi
h operates on non-
opied matri
es (i.e. dire
tlyon the user's operands). The non-
opy L1 matmul will generally not be as eÆ
ientas the 
opy L1 matmul; at this problem size the main performan
e bottlene
k ismemory, and so the la
k of 
omputational eÆ
ien
y (mainly due to the additionalpointer arithmeti
 required in order to support the user-supplied leading dimension)will likely only show up on in-
a
he operations.The 
hoi
e of when a 
opy is di
tated and when it is prohibitively expensive is anAEOS parameter; it turns out that this 
rossover point depends strongly both on theparti
ular ar
hite
ture, the matmul kernel sele
ted, and the shape of the operands(matrix shape e�e
tively sets limits on whi
h matrix dimensions 
an enjoy 
a
hereuse). To handle this problem, ATLAS simply 
ompares the speed of the 
opy andnon-
opy L1 matmul for variously shaped matri
es, varying the problem size untilthe 
opying provides a speedup (on some platforms, and with some shapes, this pointis never rea
hed). These 
rossover points are determined at install time, and thenused to make this de
ision at runtime. Be
ause it is the dominant 
ase, this paperdes
ribes only the 
opied matmul algorithm in detail.There are presently two algorithms for performing the general matrix-matrixmultiply. The two algorithms 
orrespond to di�erent orderings of the loops; i.e.,is the outer loop over M (over the rows of A), and thus the se
ond loop is over N(over the 
olumns of B), or is this order reversed. The dimension 
ommon to A andB (i.e., the K loop) is 
urrently always the innermost loop.Let us de�ne the input matrix looped over by the outer loop as the outer oroutermost matrix; the other input matrix will therefore be the inner or innermostmatrix. Both algorithms have the option of writing the result of the L1 matmul21



dire
tly to the matrix, or to an output temporary Ĉ. The advantages to writing toĈ rather than C are:1. Address alignment may be 
ontrolled (i.e., the 
ode 
an ensure during themallo
 that Ĉ begins on a 
a
he-line boundary).2. Data is 
ontiguous, eliminating possibility of unne
essary 
a
he-thrashing dueto ill-
hosen leading dimension (assuming a non-write-through 
a
he).The disadvantage of using Ĉ is that an additional write to C is required afterthe L1 matmul operations have 
ompleted. This 
ost is minimal if GEMM makesmany 
alls to the L1 matmul (ea
h of whi
h writes to either C or Ĉ), but 
an addsigni�
antly to the overhead when this is not the 
ase. In parti
ular, an importantappli
ation of matrix multiply is the rank-K update, where the write to the outputmatrix C 
an be a signi�
ant portion of the 
ost of the algorithm. For the rank-Kupdate, writing to Ĉ essentially doubles the write 
ost, whi
h is 
learly una

eptable.The routines therefore employ a heuristi
 to determine if the number of times theL1 matmul will be 
alled in the K loop is large enough to justify using Ĉ, otherwisethe answer is written dire
tly to C.Regardless of whi
h matrix is outermost, both algorithms try to allo
ate enoughspa
e to store the NB�NB output temporary, Ĉ (if needed), 1 panel of the outermostmatrix, and the entire inner matrix. If this fails, the algorithms attempt to allo
atesmaller work arrays, the smallest a

eptable workspa
e being enough spa
e to holdĈ, and 1 panel from both A and B. The minimum workspa
e required by theseroutines is therefore 2KNB, if writing dire
tly to C, and NB2+2KNB if not. If thisamount of workspa
e 
annot be allo
ated, the previously mentioned non-
opy 
odeis 
alled instead.If there is enough spa
e to 
opy the entire innermost matrix, there are severalbene�ts to doing so:� Ea
h matrix is 
opied only one time.22



� If all of the workspa
es �t into L2 
a
he, the algorithm enjoys 
omplete L2reuse on the innermost matrix.� Data 
opying is limited to the outermost loop, prote
ting the inner loops fromunneeded 
a
he thrashing.Of 
ourse, even if the allo
ation su

eeds, using too mu
h memory might result inunneeded swapping. Therefore, the user 
an set a maximal amount of workspa
e thatATLAS is allowed to have, and ATLAS will not try to 
opy the innermost matrix ifthis maximum workspa
e requirement is ex
eeded.If enough spa
e for a 
opy of the entire innermost matrix is not allo
ated, theinnermost matrix will be entirely 
opied for ea
h panel of the outermost matrix (i.e.,if A is our outermost matrix, ATLAS will 
opy B dM=NBe times). Further, ourusable L2 
a
he is redu
ed (the 
opy of a panel of the innermost matrix will take uptwi
e the panel's size in L2 
a
he; the same is true of the outermost panel 
opy, butthat will only be seen the �rst time through the se
ondary loop).Regardless of whi
h looping stru
ture or allo
ation pro
edure used, the inner loopis always along K. Therefore, the operation done in the inner loop by both routinesis the same, and it is shown in Figure 3.1.
C3;2 A3;1A3;2M NC  M KA N K� BB1;2B2;2B3;2Figure 3.1: One step of matrix-matrix multiplyIf GEMM is writing to Ĉ, the following a
tions are performed in order to 
al
ulatethe NB � NB blo
k Ci;j, where i and j are in the range 0 � i < dM=NBe,0 � j < dN=NBe: 23



1. Call L1 matmul of the form C  AB to multiply blo
k 0 of the row panel i ofA with blo
k 0 of the 
olumn panel j of B.2. Call L1 matmul of form C  AB + C to multiply blo
k k of the row panel iof A with blo
k k of the 
olumn panel j of B, 8k; 1 � k < dK=NBe. The L1matmul is performing the operation C  AB + C, so as expe
ted this resultsin multiplying the row panel of A with the 
olumn panel of B.3. Ĉ now holds the produ
t of the row panel of A with the 
olumn panel of B, soATLAS now performs the blo
k write-ba
k operation Ci;j  Ĉi;j + �Ci;j.If ATLAS is writing dire
tly to C, this a
tion be
omes:1. Call L1 matmul of the 
orre
t form based on user-de�ned � (eg. if � == �1,use C  AB � C) to multiply blo
k 0 of the row panel i of A with blo
k 0 ofthe 
olumn panel j of B.2. Call L1 matmul of form C  AB + C to multiply blo
k k of the row panel iof A with blo
k k of the 
olumn panel j of B, 8k; 1 � k < dK=NBe.Building from this inner loop, ATLAS has di�ering loop orderings whi
h providetwo algorithms for the full matmul. Figures 3.2 and 3.3 give the pseudo-
ode forthese two algorithms, assuming the write is dire
tly to C (writing to Ĉ is onlytrivially di�erent). For simpli
ity, this pseudo-
ode skips the 
leanup ne
essary for
ases where dimensions do not evenly divide NB. The matrix 
opies are shown as if
oming from the notranspose, notranspose 
ase. If they do not, only the array a

esson the 
opy 
hanges.
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work = allo
ate((M+NB)*K)if (allo
ated(work)) thenPARTIAL_MATRIX = .FALSE.
opy A into blo
k major formatelsePARTIAL_MATRIX = .TRUE.work = allo
ate(NB*2*K)if (.NOT.allo
ated(work)) 
all small_
ase_
odereturnend ifNBNB = NB * NBdo j = 1, N, NBBwork = ALPHA*B(:,J:J+NB-1); Bwork in blo
k major formatdo i = 1, M, NBif (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in blo
k major formatON_CHIP_MATMUL(Awork(1:NB*NB), Bwork(1:NB*NB), BETA, C(i:i+NB-1, j:j+NB-1), ld
)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, C(i:i+NB-1, j:j+NB-1), ld
)end doend doend doFigure 3.2: General matrix multipli
ation with A as innermost matrixwork = allo
ate(N*K + NB*K)if (allo
ated(work)) thenPARTIAL_MATRIX = .FALSE.
opy B into blo
k major formatelsePARTIAL_MATRIX = .TRUE.work = allo
ate(NB*2*K)if (.NOT.allo
ated(work)) 
all small_
ase_
odereturnend ifNBNB = NB * NBdo i = 1, M, NBAwork = ALPHA*A(i:i+NB-1,:); Awork in blo
k major formatdo j = 1, N, NBif (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in blo
k major formatON_CHIP_MATMUL(Awork(1:NBNB), Bwork(1:NBNB), BETA,Cwork(i:i+NB-1, j:j+NB-1), ld
)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, Cwork(i:i+NB-1, j:j+NB-1), ld
)end doend doend doFigure 3.3: General matrix multipli
ation with B as innermost matrix25



3.2.1.1 Choosing the Corre
t Looping Stru
tureWhen the 
all to the matrix multiply is made, the routine must de
ide whi
hloop stru
ture to 
all (i.e., whi
h matrix to put as outermost). If the matri
es areof di�erent size, L2 
a
he reuse 
an be en
ouraged by de
iding the looping stru
turebased on the following 
riteria:1. If either matrix will �t 
ompletely into the usable L2 
a
he, put it as theinnermost matrix (algorithm gets L2 
a
he reuse on the entire inner matrix).2. If neither matrix �ts 
ompletely into L2 
a
he, put largest matrix as theoutermost matrix (algorithm gets L2 
a
he reuse on the panel of the outermatrix, if it �ts in 
a
he, and memory usage is minimized).The size of the usable L2 
a
he is not dire
tly known by ATLAS (although theAEOS variable Ca
heEdge des
ribed in Se
tion 3.2.1.2 will often serve the samepurpose) and so these 
riteria are not presently used for this sele
tion. Rather, inorder to minimize workspa
e, and maximize the 
han
e that 
ondition one aboveo

urs, the smallest matrix will always be used as the innermost matrix. If bothmatri
es are the same size, A is sele
ted as the innermost matrix (this implies abetter a

ess pattern for C).3.2.1.2 Blo
king for Higher Levels of Ca
heNote that this paper de�nes the Level 1 (L1) 
a
he as the \lowest" level of 
a
he:the one 
losest to the pro
essor. Subsequent levels are \higher": further from thepro
essor and thus usually larger and slower. Typi
ally, L1 
a
hes are relatively small(eg., 8-32KB), employ least re
ently used repla
ement poli
ies, have separate dataand instru
tion 
a
hes, and are often non-asso
iative and write-through. Higherlevels of 
a
he are more often write-ba
k, with varying degrees of asso
iativity,di�ering repla
ement poli
es, and often 
ontain both instru
tion and data.ATLAS dete
ts the a
tual size of the L1 data 
a
he. However, due to the widevarian
e in high level 
a
he behaviors, in parti
ular the diÆ
ulty of determining how26



mu
h of su
h 
a
hes are usable after line 
on
i
ts and data/instru
tion partitioningis done, ATLAS does not presently dete
t and use a expli
it Level 2 
a
he size assu
h. Rather, ATLAS employs a empiri
ally determined value 
alled Ca
heEdge,whi
h represents the amount of the 
a
he that is usable by ATLAS for its parti
ularkind of blo
king.Expli
it 
a
he blo
king for the sele
ted level of 
a
he is only required when the
a
he size is insuÆ
ient to hold the two input panels and the NB � NB pie
e ofC. This means that users will have optimal results for many problem sizes withoutemploying Ca
heEdge. This is expressed formally below. Noti
e that 
onditions 1and 2 below do not require expli
it 
a
he blo
king, so the user gets this result evenif Ca
heEdge is not set.Therefore, the expli
it 
a
he blo
king strategy dis
ussed in 
ase 4 below assumesthat the panels of A and B over
ow a parti
ular level of 
a
he. In this 
ase, theproblem 
an be easily partitioned along the K dimension of the input matri
essu
h that the panels of the partitioned matri
es Ap and Bp will �t into the 
a
he.This means that we get 
a
he reuse on the input matri
es, at the 
ost of writing Cadditional times.It is easily shown that the footprint of the algorithm 
omputing a NB�NB se
tionof C in 
a
he is roughly 2KNB+NB2, where 2KNB stores the panels from A and B,and the se
tion of C is of size NB2. If the above expression is set equal to Ca
heEdge,and solved for K, it will yield the maximal K (
all this quantity Km) whi
h will,assuming the inner matrix was 
opied up front, allow for reusing the outer matrixpanel N=NB times. This partitioning transforms the original matrix multiply intodK=Kme rank-Km updates.Sin
e the 
orre
t value of Ca
heEdge is not known a priori, ATLAS empiri
allydetermines it at install time by using large matri
es (whose panel sizes 
an beexpe
ted to over
ow the 
a
he, and thus bring up the need for expli
it, rather thanimpli
it, L2 or higher blo
king), and simply trying various settings. Extremely large27




a
hes will probably not be dete
ted in this manner (i.e., if the user 
annot allo
ateenough memory to 
ause a panel to over
ow the 
a
he, the large 
a
he will not bedete
ted), and some higher-level 
a
hes provide relatively small bene�ts and so maynot be dete
ted, in whi
h 
ase Ca
heEdge is set to a 4 MB (this is large enough notto depress performan
e even for very large problems on systems without L2 
a
hes,and it results in less memory usage).Assuming that matrix A is the innermost matrix, and we are dis
ussing 
a
he levelL, of size SL, and that main memory is 
lassi�ed as a level of \
a
he" greater thanL, there are four possible states (depending on 
a
he and problem size, and whetherCa
heEdge is set) whi
h ATLAS may be in. These states and their asso
iated memorya

ess 
osts are:1. If the entire inner matrix, a panel of the outer matrix, and the NB�NB se
tionof C �ts into the 
a
he (eg. MK +KNB +NB2 � SL):� K(M +N)+MN reads (of A, B and C, respe
tively ) from higher level(s)
a
he� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
here
eive only the �nal MN writes2. If the 
a
he 
annot satisfy the memory requirements of 1, it may still be largeenough to a

ommodate the two a
tive input panels, along with the relevantse
tion of C(eg., (2KNB +NB2 � SL AND ATLAS 
opies the entire inner matrix)OR (3KNB + NB2 � SL AND ATLAS 
opies a panel of the inner matrix inthe inner loop, thus doubling the inner panel's footprint in the 
a
he)):� NK + MNKNB +MN reads (B, A and C, respe
tively) from higher level(s)of 
a
he 28



� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
here
eive only the �nal MN writes3. If the 
a
he is too small for either of the previous 
ases to hold true, (eg.,2KNB + NB2 > SL) and Ca
heEdge is not set, and thus no expli
it level Lblo
king is done, the memory a

ess be
omes:� 2MNKNB +MN reads (A, B, and C) from higher level(s) of 
a
he� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
here
eive only the �nal MN writes4. Finally, if the �rst two 
ases do not apply (eg., 2KNB + NB2 > SL), butCa
heEdge is set to SL, ATLAS 
an perform 
a
he blo
king to 
hange thememory a

ess from that given in 3 to:� NK + MNKNB + MNKKm (B, A, C) reads from higher level(s) of 
a
he� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
here
eive at most MNKKm writesAs mentioned above, 
ase 4 is only used if Ca
heEdge has been set, and 
ases 1 and 2do not apply (i.e, it is used as an alternative to 
ase 3). At �rst glan
e 
hanging 
ase3 to 4 may appear to be a poor bargain indeed, parti
ularly sin
e writes are generallymore expensive than reads. There are, however, several mitigating fa
tors that makethis blo
king nonetheless worthwhile. If the 
a
he is write-through, 
ase 4 does notin
rease writes over 
ase 3, so it is a 
lear win. Se
ond, ATLAS also does not allowKm < NB, and in many 
ases Km � NB, so the savings are well worth having. Withrespe
t to the expense of writes, the writes are not 
ushed immediately; This fa
thas two important 
onsequen
es:1. The 
a
he 
an s
hedule the write-ba
k during times when the algorithm is notusing the bus. 29



2. Writes may be written in large bursts, whi
h signi�
antly redu
es bus traÆ
;this 
an tremendously optimize writing on some systems.In pra
ti
e, 
ase 4 has been shown to be at least roughly as good as 
ase 3 onall platforms. The amount of a
tual speedup varies widely depending on problemsize and ar
hite
ture. On some systems the speedup is negligible; on others it 
anbe signi�
ant: for instan
e, it 
an make up to 20% di�eren
e on DEC 21164 basedsystems (whi
h have three layers of 
a
he). Note that this 20% improvement ismerely the di�eren
e between 
ases 3 and 4, not between ATLAS and some naiveimplementation, for instan
e.The analysis given above may be applied to any 
a
he level greater than 1; it isnot for level 2 
a
hes only. However, this analysis is a

urate only for the algorithmused by ATLAS in a parti
ular se
tion of 
ode, so it is not possible to re
ur in orderto perform expli
it 
a
he blo
king for arbitrary levels of 
a
he. To put this anotherway, ATLAS expli
itly blo
ks for L1, and only one other higher level 
a
he. If anar
hite
ture has 3 levels of 
a
he, ATLAS 
an expli
itly blo
k for L1 and L2, or L1and L3, but not all three.If ATLAS performs expli
it 
a
he blo
king for level L, that does not mean thatlevel L + 1 would be useless; depending on 
a
he size and repla
ement poli
y, levelL + 1 may still save extra read and writes to main memory through impli
it 
a
heblo
king.3.2.2 L1 Ca
he-
ontained MatmulThe only sour
e generator required to support the Level 3 BLAS produ
esa L1 
a
he-
ontained matmul. The operation supported by the kernel is still:C  �op(A)op(B)+�C, where op(X) = X or XT . C is anM�N matrix, and op(A)and op(B) are matri
es of size M � K and K � N , respe
tively. However, by L1
a
he-
ontained we mean that the dimensions of its operands have been 
hosen su
h30



that Level 1 
a
he reuse is maximized (see below for more details). Therefore, thegenerated 
ode blo
ks for the L1 
a
he using the dimensions of its operand matri
es(M, N, and K), whi
h, when not in the 
leanup se
tion of the algorithm, are allknown to be NB.In a multiply designed for L1 
a
he reuse, one of the input matri
es is brought
ompletely into the L1 
a
he, and is then reused in looping over the rows or 
olumnsof the other input matrix. The present 
ode brings in the matrix A, and loops overthe 
olumns of B; this was an arbitrary 
hoi
e, and there is no theoreti
al reason itwould be superior to bringing in B and looping over the rows of A.There is a 
ommon mis
on
eption that 
a
he reuse is optimized when both inputmatri
es, or all three matri
es, �t into L1 
a
he. In fa
t, the only win in �tting allthree matri
es into L1 
a
he is that it is possible, assuming the 
a
he is write-ba
k,to save the 
ost of pushing previously used se
tions of C ba
k to higher levels ofmemory. Often, however, the L1 
a
he is write-through, while higher levels are not.If this is the 
ase, there is no way to minimize the write 
ost, so keeping all threematri
es in L1 does not result in greater 
a
he reuse.Therefore, ignoring the write 
ost, maximal 
a
he reuse for our 
ase is a
hievedwhen all of A �ts into 
a
he, with room for at least two 
olumns of B and 1 
a
heline of C. Only one 
olumn of B is a
tually a

essed at a time in this s
enario; havingenough storage for two 
olumns assures that the old 
olumn will be the least re
entlyused data when the 
a
he over
ows, thus making 
ertain that all of A is kept in pla
e(this obviously assumes the 
a
he repla
ement poli
y is least re
ently used).While 
a
he reuse 
an a

ount for a great amount of the overall performan
e win,it is obviously not the only fa
tor. For the L1 matmul, other relevant fa
tors are:� instru
tion 
a
he over
ow� 
oating point instru
tion ordering� loop overhead 31



� exposure of possible parallelism� the number of outstanding 
a
he misses the hardware 
an handle beforeexe
ution is blo
ked3.2.2.1 Instru
tion Ca
he Over
owInstru
tions are 
a
hed, and it is therefore important to �t the L1 matmul'sinstru
tions into the L1 instru
tion 
a
he. This means optimizations that generatemassive amounts of instru
tion bloat (
ompletely unrolling all three loops, forinstan
e) 
annot be employed.3.2.2.2 Floating Point Instru
tion OrderingWhen this paper dis
usses 
oating point instru
tion ordering, it will usually bein referen
e to software pipelining. Most modern ar
hite
tures possess pipelined
oating point units. This means that the results of an operation will not beavailable for use until X 
y
les later, where X is the number of stages in the
oating point pipe (typi
ally somewhere around 3-8). Remember that our L1 matmulis of the form C  ATB + C; individual statements would then naturally besome variant of C[X℄ += A[Y℄ * B[Z℄. If the ar
hite
ture does not possess a fusedmultiply/add unit, this 
an 
ause an unne
essary exe
ution stall. The operationregister = A[Y℄ * B[Z℄ is issued to the 
oating point unit, and the add 
annotbe started until the result of this 
omputation is available, X 
y
les later. Sin
e theadd operation is not started until the multiply �nishes, the 
oating point pipe is notutilized.The solution is to remove this dependen
e by separating the multiply and add,and issuing unrelated instru
tions between them (requiring the loop to be skewed,sin
e the multiply must now be issued X 
y
les before the add, whi
h 
omes X
y
les before the store). This reordering of operations 
an be done in hardware(out-of-order exe
ution) or by the 
ompiler, but this will oftentimes generate 
ode32



that is not as eÆ
ient as doing it expli
itly. More importantly, not all platforms havethis 
apability (for example, g

 on a Pentium), and in this 
ase the performan
ewin 
an be large.3.2.2.3 Redu
ing Loop OverheadThe primary method of redu
ing loop overhead is through loop unrolling. If it isdesirable to redu
e loop overhead without 
hanging the order of 
omputations, onemust unroll the loop over the dimension 
ommon to A and B (i.e., unroll the K loop).Outer loop unrolling, with its asso
iated dupli
ation of the inner loop results in verylittle overhead redu
tion unless it is 
ombined with fusing the repli
ated innermostloops. This te
hnique is known as unroll-and-jam [23℄, and it 
hanges the memoryreferen
e pattern (and provides mu
h greater opportunity for register blo
king).3.2.2.4 Exposing ParallelismMany modern ar
hite
tures have multiple 
oating point units. There are twobarriers to a
hieving perfe
t parallel speedup with 
oating point 
omputations insu
h a 
ase. The �rst is a hardware limitation, and therefore out of our hands: Allof the 
oating point units will need to a

ess memory, and thus, for perfe
t parallelspeedup, the memory fet
h will usually also need to operate in parallel.The se
ond prerequisite is that the 
ompiler re
ognize opportunities for paral-lelization, and this is amenable to software 
ontrol. The �x for this is the 
lassi
alone employed in su
h 
ases, namely through unrolling the M and/or N loops,and 
hoosing the 
orre
t register allo
ation (using s
alar repla
ement and s
alarexpansion [24℄) so that parallel operations are not 
onstrained by false dependen
ies.3.2.2.5 Finding the Corre
t Number of Ca
he MissesAny operand that is not already in a register must be fet
hed from memory.If that operand is not in the L1 
a
he, it must be fet
hed from further up in thememory hierar
hy, possibly resulting in large delays in exe
ution. The number of33




a
he misses whi
h 
an be issued simultaneously without blo
king exe
ution variesbetween ar
hite
tures. To minimize memory 
osts, the maximal number of 
a
hemisses should be issued ea
h 
y
le, until all memory is in 
a
he or used. In theory,one 
an permute the matrix multiply to ensure that this is true. In pra
ti
e, this�ne a level of 
ontrol would be diÆ
ult to ensure (there would be problems withover
owing the instru
tion 
a
he, and the generation of su
h a pre
ise instru
tionsequen
e, for instan
e). So the method ATLAS uses to 
ontrol the 
a
he-hit ratio isthe more 
lassi
al one of M and N loop unrolling.3.2.2.6 Sour
e Generator ParametersThe sour
e generator is heavily parameterized in order to allow for 
exibility inall of the areas. In parti
ular, the options are:� Support for A and/or B being either standard form, or stored in transposedform� Register blo
king of \outer produ
t" form (the most optimal form of matmulregister blo
king). Varying the register blo
king parameters provides manydi�erent implementations of matmul. The register blo
king parameters are:{ ar : registers used for elements of A,{ br : registers used for elements of BOuter produ
t register blo
king then implies that ar�br registers are then usedto blo
k the elements of C. Thus, if Nr is the maximal number of registersdis
overed during the 
oating point unit probe, the sear
h needs to try all arand br that satisfy arbr + ar + br � Nr.� Loop unrollings: There are three loops involved in matmul, one over ea
h ofthe provided dimensions (M, N and K), ea
h of whi
h 
an have its asso
iatedunrolling fa
tor (mu; nu; ku). The M and N unrolling fa
tors are restri
ted to34



varying with the asso
iated register blo
king (ar and br, respe
tively), but theK-loop may be unrolled to any depth (i.e., on
e ar is sele
ted, mu is set as well,but ku is an independent variable).� Choi
e of 
oating point instru
tion:{ 
ombined multiply/add with asso
iated s
alar expansion{ separate multiply and add instru
tions, with asso
iated software pipelin-ing and s
alar expansion� User 
hoi
e of utilizing generation-time 
onstant or run-time variables for allloop dimensions (M, N, and K; for non-
leanup 
opy L1 matmul, M = N =K = NB). For ea
h dimension that is known at generation, the followingoptimizations are made:{ If unrolling meets or ex
eeds the dimension, no a
tual loop is generated(no need for loop if fully unrolled).{ If unrolling is greater than one, 
orre
t 
leanup 
an be generated withoutusing an if (thus avoiding bran
hing within the loop).Even if a given dimension is a run-time variable, generator 
an be told toassume parti
ular, no, or general-
ase 
leanup for arbitrary unrolling.� For ea
h operand array, the leading dimension 
an be a run-time variable ora generation-time 
onstant (for example, it is known to be NB for 
opied L1matmul), with asso
iated savings in indexing 
omputations� For ea
h operand array, the leading dimension 
an have a stride (stride of 1 ismost 
ommon, but stride of 2 
an be used to support 
omplex arithmeti
).� The generator 
an eliminate unne
essary arithmeti
 by generating 
ode withspe
ial alpha (1, -1, and variable) and beta (0, 1, -1, and variable) 
ases. In35



addition, there is a spe
ial 
ase for when alpha and beta are both variables, butit is safe to divide beta by alpha (this 
an save multiple appli
ations of alpha).� Various fet
h patterns for loading A and B registers3.2.2.7 Putting It All Together { Outline of the Sear
h Heuristi
It is obvious that with this many intera
ting e�e
ts, it would be diÆ
ult, if notimpossible to predi
t a priori the best blo
king fa
tor, loop unrolling et
. ATLAS'smatmul kernel sear
h is outlined in Figure 3.4.ROUTINEDEP
Master Sear
h - Optimized matmul kernel? ?Mult. Imp.Sear
h (linear)? ? Sour
e Gen.Sear
h (heur.)? ?MultipleImplementation - ? ??

Tester/Timer
?

Sour
eGenerator
?

ROUTIND
PLATINDPLATDEP

ANSI CCompiler?Assembler & Linker?TimerExe
utable -
6

� --

Figure 3.4: ATLAS's empiri
al sear
h for the Level 3 BLASOur master sear
h �rst 
alls the generator sear
h, whi
h uses a heuristi
 toprobe the essentially in�nite optimization spa
e allowed by the sour
e generator,and returns the parameters (eg., blo
king fa
tor, unrollings, et
) of the best 
asefound. The master sear
h then 
alls the multiple implementation sear
h, whi
h36



simply times ea
h hand-written matmul kernel in turn, returning the best. The bestperforming (generated, hand-tuned) kernel is then taken as our system-spe
i�
 L1
a
he-
ontained kernel.Both multiple implementation and generator sear
hes pass the requisite kernelthrough a timing step, where the kernel is linked with a AEOS-quality timer, andexe
uted on the a
tual hardware. On
e the sear
h 
ompletes, the 
hosen kernel isthen tested to ensure it is giving 
orre
t results, as a simple sanity test to 
at
h errorsin 
ompilation or kernels.For both sear
hes, our approa
h takes in some initial information su
h as L1 
a
hesize, types of instru
tions available, types of assembly supported, et
., to allow for anup-front winnowing of the sear
h spa
e. The timers are stru
tured so that operationshave a large granularity, leading to fairly repeatable results even on non-dedi
atedma
hines. All results are stored in �les, so that subsequent sear
hes will not repeatthe same experiments, allowing sear
hes to build on previously obtained data. Thisalso means that if a sear
h is interrupted (for instan
e due to a ma
hine failure),previously run 
ases will not need to be re-timed. A typi
al install takes from 1 to 2hours for ea
h pre
ision.During installation, ATLAS runs some tests to determine what assembly di-ale
t(s) an ar
hite
ture supports. This information is then used during the multipleimplementation sear
h to avoid long error reports as 
ontributed assembly kernelsfail to 
ompile on unsupported platforms.The �rst step of the master sear
h probes for the size of the L1 
a
he. This isdone by performing a �xed number of memory referen
es, while su

essively redu
ingthe amount of memory addressed. The most signi�
ant gap between timings forsu

essive memory sizes is de
lared to mark the L1 
a
he boundary. For speed, onlypowers of 2 are examined. This means that a 48K 
a
he would probably be dete
tedas a 32K 
a
he, for instan
e. We have not found this problem severe enough to justify37



the additional installation time it would take to remedy it. With this information,both sear
hes have a good bound on the blo
king fa
tors to try.Next, ATLAS probes to determine information regarding the 
oating point unitsof the platform. First ATLAS needs to understand whether the ar
hite
ture possessesa 
ombined muladd unit, or if independent multiply and add pipes are required.To do this, ATLAS generates simple register-to-register 
ode whi
h performs therequired multiply-add using a 
ombined muladd and separate multiply and addpipes. Both variants are tried using 
ode whi
h implies various pipeline lengths.ATLAS then repli
ates the best of these 
odes in su
h a way that in
reasing numbersof independent registers are required, until performan
e drops o� suÆ
iently todemonstrate that the available 
oating point registers have been ex
eeded. Withthis data in hand, ATLAS is ready to begin a
tual L1 matmul timings.Further details on the multiple implementation and generator sear
hes are pro-vided in the following se
tions. When both sear
hes are 
ompleted, the mastersear
h designates the fastest of these two kernels (generated and hand-written) asthe ar
hite
ture-spe
i�
 kernel for the target ma
hine.3.2.2.8 Sour
e Generator Sear
hThe general timings done by the master sear
h provide the generator sear
h withthe L1 
a
he size, the kind of instru
tions to issue (MAC or separate multiply andadd), the pipeline depth (for software pipelining and asso
iated s
alar expansion) anda rough estimate of the number of available 
oating point registers. This informationmay then be used as 
onstraints on the sear
h spa
e.The size of the L1 
a
he provides the sear
h with an upper bound on the blo
kingfa
tors to examine. Knowing the type of 
oating point instru
tion the underlyinghardware needs 
uts the 
ases to be sear
hed in half, while the maximum number ofregisters implies what register blo
kings are feasible, whi
h in turn di
tates the Mand/orN loop unrollings to perform. The pipeline length provides an upper bound on38



the amount of software pipelining and asso
iated s
alar expansion to perform. Thus,the matmul sear
h (and indeed many other sear
hes) is shortened 
onsiderably bydoing these general ar
hite
ture probes.In pra
ti
e, K loop unrollings of 1 or K have tended to produ
e the best results.Thus ATLAS times only these two K loop unrolling during our initial sear
h. Thisis done to redu
e the length of install time. At the end of the install pro
ess, ATLASattempts to ensure optimalK unrollings have not been missed by trying a wide rangeofK loop unrolling fa
tors with the best 
ase 
ode generated for the unrollings fa
torsof 1 or K.The theoreti
ally optimal register blo
king in terms of maximizing 
ops/load arethe near-square 
ases that satisfy the aforementioned equation arbr + ar + br � Nr(see Se
tion 3.2.2.6 for details). Sin
e the ATLAS generator requires that ar = muand br = nu, these M and N loop unrollings are then used to �nd an initial blo
kingfa
tor. The initial blo
king fa
tor is found by simply using the above dis
ussed loopunrollings, and seeing whi
h of the blo
king fa
tors appropriate to the dete
ted L1
a
he size produ
e the best result.With this initial blo
king fa
tor, whi
h instru
tions set to use (muladd or separatemultiply and add), and a guess as to pipeline length, the sear
h routine loops overall M and N loop unrollings possible with the given number of registers. On
e anoptimal unrolling has been found, ATLAS again tries all blo
king fa
tors, and variouslaten
y and K-loop unrolling fa
tors, and 
hooses the best.3.2.2.9 Multiple Implementation Sear
hAfter the generated sear
h is found, we perform a linear sear
h on the availablehand-tuned matmul routines. Many of these routines allow the blo
king fa
tor to be
ompile- or run-time 
onstants, and so to redu
e the sear
h time, blo
king fa
tors asnear as possible to the one 
hosen by the generator sear
h will be used (hand-writtenmatmul routines whi
h take variable blo
king fa
tors are allowed to restri
t the range39



and multiples of the blo
king fa
tor, so in these 
ases we 
hoose the blo
king fa
tor
losest to that found in the generator sear
h). When the best 
ase is dis
overed, if itallows for multiple blo
king fa
tors, the entire NB sear
h spa
e is 
he
ked with thespe
i�
 kernel, to ensure that the hand-written 
ode is using its best blo
king fa
tor.3.2.3 ATLAS performan
eFigure 3.5 shows the performan
e of double pre
ision matrix multiply of order500 a
ross multiple ar
hite
tures. These timings are now a 
ouple of years old, butspot timings on various ar
hite
tures has shown that the overall trend is un
hanged.The matrix size of 500 is simply a midrange problem size with no parti
ular spe
ialproperties; it is not the best problem size in terms of ATLAS performan
e. AsATLAS is not the main fo
us of this dissertation, we omit more 
omplete timingresults (see [7, 8, 10℄ for more in-depth timings).This graph 
ompares performan
e of ATLAS, vendor, and the Fortran 77 referen
eBLAS. The referen
e BLAS are naive implementations of the standard, written in themost straightforward way possible and therefore are not optimized for any parti
ularplatform. The vendor BLAS are libraries supplied by individual hardware vendors,and 
an be taken to represent the apex of hand-optimization for a given platform.Not all platforms possess vendor-supplied BLAS (eg., AMD Athlon), and on theseplatforms ATLAS 
an only be 
ompared to the referen
e BLAS.The �rst thing to noti
e here is the large performan
e gap between the referen
eimplementations and the tuned 
odes. For instan
e, on the Athlon platform, we seethat there is 
urrently no vendor-supplied BLAS, and that the referen
e BLAS runmore than �fteen times slower than the ATLAS 
ode. This gap may help supply anintuitive idea of the importan
e of optimized libraries to s
ienti�
 
omputing.The next point of interest is the 
onsisten
y of ATLAS's performan
e a
ross all ofthese ar
hite
tures. On some platforms ATLAS is somewhat faster than the vendor,and on others ATLAS loses somewhat, but it is 
ompetitive everywhere, and in all40




ases, we see order-of-magnitude speedups over 
ode that relies 
ompletely on the
ompiler for optimization. This is all the more impressive when one 
onsiders thata vendor library may have a history almost as long as that of the 
ompany, whileATLAS tunes itself in only a 
ouple of hours.
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Figure 3.5: Performan
e of double pre
ision matrix multiply a
rossvarious ar
hite
tures3.3 AEOS Framework for the Level 1 and 2 BLAS inATLASATLAS presently uses multiple implementation (augmented by parameterization)to tune both the Level 1 and Level 2 BLAS. Therefore Figure 3.6 shows the sear
hframework for both the Level 1 and Level 2 BLAS levels.We give a brief overview of the details of tuning ea
h level in turn below.3.4 Optimizing the Level 2 BLASThe Level 2 BLAS perform matrix-ve
tor operations of various sorts. All routineshave at most one matrix operand, and one or two ve
tor operands. In order to
on
entrate on the iFKO work, spa
e 
onsiderations rule out 
overing ATLAS'sLevel 2 BLAS implementation in any real detail. Therefore, this se
tion will explainthe theoreti
al underpinnings of all Level 2 optimizations: the basi
 memory a

ess41
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Figure 3.6: Present ATLAS empiri
al sear
h for the Level 1 & 2 BLASte
hniques that allowing the ve
tor operand(s) main memory a

ess to be redu
edfrom O(N2) to O(N). We then des
ribe, in the broadest possible strokes, how theseand other optimizations are used by ATLAS.3.4.1 Register and Ca
he Blo
king for the Level 2 BLASIf no register or 
a
he blo
king were done, the Level 2 operations would requireO(N2) data a

ess on ea
h operand. With the appropriate register and 
a
heblo
king, the ve
tor operands' a

ess 
an be redu
ed to O(N). Obviously enough, theO(N2) matrix a

ess 
annot be redu
ed, sin
e the matrix is a
tually of size O(N2).To understand this in detail, we look at the matrix ve
tor multiply operation. Inthe BLAS, the matrix-ve
tor multiply routine performs y  �op(A)x + �y, whereop(A) = A, AH or AT and A has M rows and N 
olumns. For our dis
ussion, it isenough to examine the 
ase y  Ax + y, where A is a square matrix of size N .42



This operation may be summarized as PNi=1(yi = PNj=1Aijxj + yi). From thisequation it is 
lear that 
al
ulating an element of y requires reading the entireN -length ve
tor x, reading and writing the ith element of y N times, and readingthe entire N length row i of the matrix A. Sin
e there are N elements of y, it followsthat this algorithm requires N2 reads of A, N2 reads of x, N2 reads and N2 writes ofy. Just as with the Level 3 operations, the number of referen
es 
annot be 
hangedwithout 
hanging the de�nition of the operation, but by using appropriate 
a
he andregister blo
kings, the number of the referen
es that must be satis�ed out of mainmemory or higher levels of 
a
he 
an be drasti
ally redu
ed.The minimum number of main memory referen
es required to do this operationresults in a

essing ea
h element from main memory only on
e, whi
h redu
es thea

esses from (3N2 reads + N2 writes) to (N2 +N reads + N writes).As an interesting aside, even this trivial analysis is suÆ
ient to understand thelarge performan
e advantage enjoyed by the Level 3 over the Level 2 BLAS routines.All Level 2 BLAS require O(N2) FLOPs (Floating Point Operations); a 
ompletelyoptimal implementation 
an at best redu
e the number of main memory a

essesto the same order, O(N2). The Level 3 BLAS, in 
ontrast, require O(N3) FLOPs,but 
an redu
e the number of main memory a

esses to a lower order term, O(N2).Sin
e most modern ma
hines have relatively slow memory when 
ompared to theirpeak FLOP rate, this analysis di
tates that Level 3 BLAS will a
hieve a mu
h higherper
entage of the peak FLOP rate than the Level 2 BLAS.Getting ba
k to Level 2 BLAS, we now examine the register and 
a
he blo
king,whi
h are used in order to redu
e the ve
tor a

esses.3.4.1.1 Register Blo
kingRegisters are s
alars whi
h are dire
tly a

essed by the 
oating point unit. Ina way, registers thus 
orrespond to a \Level 0" 
a
he. Given an in�nite numberof registers, only one main memory a

ess per element would be required for all43



operations. Unfortunately, the number of user-addressable 
oating point registersavailable in most ISAs typi
ally varies between 8 and 32, and thus all but the mosttrivial operations will over
ow the registers.For this reason, register blo
king alone 
an redu
e either the y or x a

ess termfrom O(N2), to O(N), but not both. This is easily seen using the simpli�ed GEMVoperation introdu
ed in the previous se
tion. The basi
 algorithm required to redu
ethe a

esses of y to O(N) is most easily shown in the following pseudo-
ode:do I = 1, Nr = y(I)do J = 1, Nr += A(I,J) * x(J)end doend doThis is an \inner produ
t" or dot produ
t-based matrix ve
tor multiply. If weunroll the I loop and use Ry registers to hold the elements of y, we 
an redu
e theN2 a

esses of x to N2Ry , by using a register to reuse the element x(J) Ry times forea
h load.Unrolling the loop like this essentially 
reates a hybrid algorithm, in the sensethat the Ry y a

ess 
onstitute a small outer produ
t. However, sin
e registers 
annothold both y and x throughout the algorithm, one or the other must be 
ushed as theloop progresses (thus ne
essitating multiple loads to registers), and sin
e we drop thevalue of x and maintain y in the registers, this \hybrid" algorithm is still essentiallyinner produ
t.
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Redu
ing the x 
omponent to O(N) a

esses requires the \outer produ
t" orAXPY-based (AXPY being a Level 1 BLAS routine performing the operationy  �x+ y) version of GEMV:do J = 1, Nr = x(J)do I = 1, Ny(I) += A(I,J) * rend doend doThis gives us N read a

esses on x, and, just as with the inner produ
t, unrollingthe J loop and using Rx registers to hold the elements of x, we 
an redu
e the a

essesof y to N2Rx reads and writes, by using an additional register to reuse y(I) Rx times.Therefore, stri
tly for register blo
king purposes, the inner produ
t formulationis superior to the outer produ
t: the total number of reads of both formulations isO(N2) +O(N), but the number of writes is O(N) for inner produ
t, but O(N2) forouter produ
t. In pra
ti
e, when array 
olumns are stored 
ontiguously, a heavilyunrolled AXPY-based algorithm may in fa
t be used, sin
e it better utilizes hardwareprefet
h, 
a
he line fet
h, TLB a

ess, et
. As mentioned before, however, su
hdetails are beyond the s
ope of this paper, so we will assume the register blo
kingused will be inner produ
t formulation.As another pra
ti
al note, the number of registers available for doing multipleAXPYs or dot produ
ts is severely limited, even beyond the 8 or 32 ISA (instru
tionset ar
hite
ture) limit. In the inner produ
t formulation, where Ry registers are usedto form the Ry simultaneous dot produ
ts, at least two registers must be availablefor loading elements of x and A. Further registers will be used in order to supportsoftware pipelining and fet
h s
heduling. Large unrollings also mean a

essingmany more memory lo
ations simultaneously, whi
h 
an swamp the memory fet
h
apabilities of the ar
hite
ture. This means that Ry is usually kept to a relativelysmall number (typi
ally in the range of 2� 8).45



In summation, register blo
king redu
es one ve
tor a

ess to O(N) 
ost; theve
tor usually 
hosen for this redu
tion is the output ve
tor (i.e., an inner produ
ttype register blo
k), due to its higher 
ost. In order to redu
e the remaining ve
torto O(N), we must apply 
a
he blo
king.While it is tempting to regard register blo
king as a spe
ial 
ase of 
a
he blo
king,their implementations are fundamentally di�erent. As we will see, 
a
he blo
king 
anbe easily a

omplished simply by parameterizing the relevant 
ode, so that properlyblo
ked se
tions of the operands are a

essed. Register blo
king, as this se
tion hasdemonstrated, relies on sour
e adaptation, sin
e varying it requires 
hanging the looporder, number of registers, loop unrollings, et
., all of whi
h 
hange the 
ode in waysthat 
annot be supported via simple parameterization.3.4.1.2 Ca
he Blo
kingAs previously dis
ussed, register blo
king has redu
ed the a

ess of y to O(N),leaving the x a

ess at O(N2). Therefore, loading x to registers O(N2) times 
annotbe avoided. However, the optimal algorithm will guarantee that main memorysatis�es only O(N) of these requests, leaving lower levels of 
a
he to satisfy therest.Again, GEMV 
an be used to better understand this idea. The register blo
k isdoing Ry simultaneous dot produ
ts, so that the y a

ess is N reads and N writes,while the x fet
h to registers is N2Ry . Sin
e x is reused in forming ea
h su

essivedot produ
t, x is a 
andidate for 
a
he reuse. It is easily seen that forming Ry dotprodu
ts a

esses Ry elements of y, all N elements of x, and Ry �N elements of A.Thus the footprint in 
a
he of one step of this algorithm is roughly Ry +N +RyN .Therefore, we 
an e�e
tively guarantee L1 
a
he reuse by partitioning the originalproblem so that the footprint in 
a
he is small enough that the relevant portion of xis not 
ushed between su

essive sets of dot produ
ts. Therefore, the 
orre
t blo
kingfor x may be determined by solving an equation, whose simpli�ed expression would46



be: Ry + Np + RyNp = S1 ) Np = S1�RyRy+1 , where S1 is the size, in elements, of theLevel 1 
a
he, and Np is the partitioning of x for whi
h we are solving.In pra
ti
e, this equation is more 
ompli
ated: some memory unrelated to thealgorithm will always be in 
a
he, there will be problems asso
iated with 
a
heline 
on
i
ts, et
. In addition, the equation needs to be adapted to the underlyingregister blo
king so that the initial load of the next step does not unne
essarily 
ushx. However, these details, while important in extra
ting the maximal performan
e,are not required for 
on
eptual understanding, and so are omitted here.With the 
orre
t partitioning (Np) known, the original N � N GEMV is thenblo
ked into dN=Npe separate problems of size N � Np (the last su
h problem willobviously be smaller if Np does not divide N evenly). The data a

ess to mainmemory is then dN=NpeN reads and writes of y, N reads of X, and N2 reads of A.Np is typi
ally very 
lose to N in size, and so this algorithm is very near optimalin its memory a

ess. Np will typi
ally be in the range 350 - 1500, so even very largeproblems still have extremely small 
oeÆ
ients on the y a

ess term. Note that anyproblem with N � Np will a
hieve the optimal result (N2 a

ess of A, N a

ess of xand y) without any need for any 
a
he blo
king (register blo
king is still required).There is little point in expli
itly blo
king for higher levels of 
a
he in theLevel 2 BLAS. However, if the ma
hine possesses a level of 
a
he large enough tohold the footprint of the entire L1-blo
ked algorithm (with the previously statedsimpli�
ations, this is roughly NpN + Np + Ry), y will be reused without need forexpli
it blo
king, and the main memory a

ess will be redu
ed to its theoreti
alminimum.3.4.2 ATLAS's Level 2 Compute KernelsAs we have seen, ATLAS employs one low-level 
ompute kernel (the L1 matmul),from whi
h the BLAS's more general GEMM routine is built. The L1 matmul andGEMM are then used in turn to generate the rest of the Level 3 BLAS. With this47



method, only this one relatively simple kernel needs to be supported using sour
eadaptation, and its performan
e di
tates that of the entire Level 3 BLAS.The same strategy is employed for the Level 2 BLAS, but two types of 
omputekernels are needed rather than one. Just as with the L1 matmul, these kernelsperform register blo
king and various 
oating point optimizations, but do no 
a
heblo
king, as it is assumed that the dimensions of the arguments have been blo
kedby higher level 
odes in order to ensure L1 
a
he reuse. The 
ompute kernels for theLevel 2 BLAS are:� L1 matve
: An L1-
ontained matrix ve
tor multiply, with four variants:1. No Transpose { matrix A's rows are stored in rows of input array2. Conjugate (
omplex only) { matrix A's rows are stored in 
onjugated formin rows of input array3. Transpose { matrix A's rows are stored in 
olumns of input array4. Conjugate Transpose (
omplex only) { matrix A's rows are stored in
onjugated form in 
olumns of input array� L1 update1: An L1-
ontained rank-1 updateBoth of these kernels further supply three spe
ialized � 
ases (0, 1, and variable).3.4.3 Building ATLAS's Level 2 BLASThis se
tion presents a very rough outline of how ATLAS supports the Level2 BLAS. The install of the Level 3 BLAS pre
edes that of the Level 2, and fromthis pro
ess ATLAS knows the size of the L1 
a
he. Thus, using a slightly more
ompli
ated version of the equations given in Se
tion 3.4.1.2, ATLAS 
an obtain agood estimate of the 
orre
t Level 1 
a
he partitioning to use. With this in hand,ATLAS is ready to �nd the best 
ompute kernels for the Level 2 BLAS.48



Presently, ATLAS relies solely on multiple implementation to support thesekernels (e.g. sour
e generation is not employed). Therefore, the sear
h simplytries ea
h implementation in turn, and 
hooses the best. The 
onjugate forms ofthe L1 matve
 have the same performan
e 
hara
teristi
s as their non-
onjugateequivalents, so ATLAS need sear
h only 3 di�ering kernels: notranspose matve
,transpose matve
, and L1 update1.Using these best algorithms, ATLAS empiri
ally dis
overs the optimum per-
entage of the L1 
a
he to use. These empiri
ally-dis
overed blo
kings and kernelimplementations are then used to build the Level 2 BLAS routines GEMV and GER(mu
h as GEMM was built using the L1 matmul), and all of this information andthese building blo
ks are then used to produ
e the rest of the Level 2 BLAS.3.5 Optimizing the Level 1 BLASUnlike the Level 2 and 3 BLAS, the Level 1 BLAS, due to their simple nature,are not generally redu
ible to one or two simpler kernels. Therefore, ea
h Level 1routine must be essentially optimized individually. For some kernels, the 
omplex
ase 
an utilize the real 
ase, and o

asionally one Level 1 routine will simplify toanother due to a setting of a parti
ular parameter, but this is the ex
eption ratherthan the rule. For further details on Level 1 optimization, see [25℄.3.6 Histori
al Context / Related WorkATLAS was not the �rst proje
t to harness empiri
al te
hniques in the interestof high performan
e kernels. The �rst su
h proje
t that we are aware of wasPHiPAC [1℄, released in De
ember of 1995. Like early ATLAS, this proje
t fo
usedon using a sour
e generator to produ
e varying ANSI C programs for performan
etuning of matrix multiply. Due to an overly-
ompli
ated kernel, an inadequatewinnowing of the sear
h spa
e, and insuÆ
iently a

urate timing te
hniques, PHiPAC49



never a
hieved the performan
e and portability inherent in the AEOS 
on
ept, butnonetheless served as an inspiration for following work.The se
ond proje
t, released in Mar
h 1997, to utilize this basi
 idea wasFFTW [3, 4℄, whi
h applied similar te
hniques to FFTs. The �rst version ofATLAS [6, 7, 8, 9℄, tuning matrix multiply only, was released in De
ember of 1997.Subsequent versions added support for tuning all the BLAS, and later, a subset ofthe LAPACK [17℄ API as well. In 2000, the SPIRAL [26℄ proje
t began utilizingempiri
al te
hniques to tune signal pro
essing libraries.
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CHAPTER 4MOTIVATION AND DESIGN OF OUREMPIRICAL COMPILATION FRAMEWORK {IFKOThis 
hapter outlines our design and approa
h for empiri
al 
ompilation. Se
-tion 4.1 motivates and des
ribes our approa
h, and Se
tion 4.2 expounds on thedesign philosophy that is used to drive the resear
h. With these guiding prin
iplesestablished, Se
tion 4.3 provides an overview of the 
ompilation framework, andSe
tion 4.4 des
ribes how the framework 
an be interfa
ed with ATLAS. Thefollowing 
hapter des
ribes our 
urrent implementation of this design.4.1 MotivationThis se
tion outlines and motivates the approa
h we have employed in ourempiri
al 
ompilation resear
h. Key features of our 
ompilation framework, andtheir broad motivation, in
lude:1. Our 
ompiler is both iterative and empiri
al, for all the reasons explained inthe introdu
tion.2. Our transformations are done in the ba
kend, at a very low level, allowingfor the exploitation of extremely low-level ar
hite
tural features su
h as SIMDve
torization, CISC instru
tion formats, spe
ial register features, as well asenabling the 
ompiler to avoid ar
hite
ture-spe
i�
 resour
e limitations, et
.,all of whi
h 
an be 
riti
al in a
hieving extremely high performan
e.51



3. The sear
h is part of the 
ompilation framework, rather than being managedby an external program su
h as a library generator. In this way, ea
h newsupported kernel ne
essarily in
reases the generality of the sear
h, leading inthe long run to a 
ompilation framework 
apable of dealing with a mu
h widerrange of operations than the union of studied kernels, as happens when ea
hset of optimization targets employs its own sear
h.4. We provide for extensive user markup, that allows a kernel writer to providethe 
ompilation framework with information that is diÆ
ult or impossible todis
over using front-end analysis (eg. aliasing information between pointerspassed in as formal parameters to a library routine). This approa
h allowsus to 
on
entrate on the ba
kend rather than on front-end analysis, as wellas providing an opportunity to perform transformations that would be illegalwithout su
h user markup.This approa
h is a dire
t 
onsequen
e of our experien
e with ATLAS, and wehave been 
areful to ensure that iFKO's design is synergisti
 with that of ATLAS.iFKO was designed to remove the two major limitations inherent in our ATLASwork: (1) ATLAS is operation/kernel spe
i�
, and (2) low-level ar
hite
tural features(eg. SIMD ve
torization, CISC instru
tion sets, et
.) are often not automati-
ally exploited due to relian
e on the native 
ompiler. Generalizing the empiri
aloptimization into a 
oating-point spe
ialized 
ompiler is a dire
t 
onsequen
e ofATLAS's kernel spe
i�
ity, and our 
on
entration on low-level optimization arisesnaturally from our frustration in having to employ hand-tuning in order to fullyexploit ar
hite
tural features su
h as SSE (Intel's SIMD ve
torization).iFKO presently does most of its optimization on the innermost loop. Given theextensive list of loop transforms available in the literature, many readers may besurprised that inner-loop optimization is not fully realized by modern optimizing
ompilers, but our dire
t ATLAS experien
e (supplemented by hand tuning to get52



around su
h problems) demonstrated that the majority of the lost performan
eopportunities when using sour
e generation instead of hand tuning 
ame from theinner loop, and thus iFKO's initial goal is to handle innermost loop optimizationas eÆ
iently as possible. As another example of su
h synergy, we 
an a�ord toput o� some higher level (and outer-loop) transforms su
h as blo
king, be
ause theATLAS framework does them at higher levels (eg., the blo
king is not done by thekernel routine, as explained in Se
tion 3.2). This does not mean that iFKO shouldnever support transformations su
h as blo
king, sin
e iFKO is designed to be moregeneral than ATLAS. Rather, this synergy allows FKO to (initially) target thosetransformations that 
annot be easily handled by a framework su
h as ATLAS. Thisplan for fo
using our implementation e�orts is des
ribed more fully in the followingdesign philosophy se
tion.One drawba
k of doing the transformations at a low level is that while it provideseven greater persistent optimization, it is a barrier to portable optimization, as the
ompiler is not helpful until it has been ported to the target ISA. Again, however,ATLAS's sour
e generator provides for portable optimization on truly unknownar
hite
tures, and so this drawba
k (due to operating at a low level, whi
h ismandated by the required levels of performan
e) is ameliorated. This is dis
ussedfurther in Se
tion 4.4. 4.2 Design PhilosophyA 
ompiler spe
ialized for HPC kernel optimization must make the e�e
t of ea
htransformation, and the intera
tion between transformations, as optimal as possible.If the 
ompiler 
annot 
apture roughly the same amount of optimization from agiven series of transformations as hand-tuned kernel produ
tion typi
ally does, theHPC 
ommunity is unlikely to use the 
ompiler for its intended purpose at all.Therefore, unlike in general-purpose 
ompilation, it is better to do a limited number53



of transformations extremely well than to support many transformations that do notfully realize their potential. This is parti
ularly true in our 
ase, sin
e we 
an rely onthe ATLAS framework for many transformations that iFKO does not yet support.Therefore, our overriding fo
us must be \narrow and deep", rather than \broad andshallow".This may seem 
ounterintuitive in at least one way: one of the great strengths ofempiri
al optimization is that it 
an employ an extensive array of transformations,even ones that 
ause signi�
ant slowdown in some instan
es (sin
e only su

essfuloptimizations will be retained by the empiri
al sear
h), and as the palette ofsupported optimizations is expanded, the generality and eÆ
ien
y of the frameworknaturally in
rease. Therefore, while it is 
lear that a \deep" fo
us is mandated inorder to a
hieve the required level of performan
e, in the end we must be broad aswell. However, it is impossible to begin with \broad and deep", and so we musta

ept a narrow fo
us in order to demonstrate the e�e
tiveness of this approa
h,and as the number of supported transformations in
rease, the audien
e for whi
h theframework supplies a real solution grows as well.Therefore, in ea
h area of iFKO's design, we add features as the studied kernelsdemand them, allowing us to narrowly fo
us on ea
h optimization study in turn. Asea
h set of optimization targets brings in new requirements, iFKO is expanded tohandle them, and thus the framework will indeed eventually be both broad and deep.There are four general areas in iFKO that must be expanded in this way (thisdis
ussion employs terminology that is further explained in Se
tion 4.3). These areasare: (1) the transformations supported by the optimizing 
ompiler, FKO, (2) theanalysis performed by FKO, whi
h dire
ts and limits the iterative sear
h, (3) thenumber, type and intera
tions between sub-sear
hes supported in the master sear
h ofthe iterative 
ompiler, iFKO, and (4) the type and number of user markups supportedby our HIL (FKO's input language), whi
h also serve to guide and limit the sear
hof the optimization spa
e. 54



As an example, our present implementation 
on
entrates on inner loop trans-forms, and relies on ATLAS for outer-loop transformations su
h as blo
king, but aswe enlarge the target kernels to those that have not been expli
itly blo
ked, iFKOmust be expanded to support it. Further, be
ause the x86 ar
hite
ture is relativelyinsensitive to s
heduling issues, we do not presently support software pipelining,whi
h will 
learly be
ome 
riti
al as the framework is fully supported on ar
hite
turessu
h as the SPARC.Be
ause our initial work 
on
entrates on inner-loop transformations, we have
hosen the Level 1 BLAS as our initial optimization targets (See 6.1 for furtherdetails). For these simple operations, the main markup required is identi�
ationof the loop whi
h should be empiri
ally optimized. On kernels with more 
omplexdependen
ies, dependen
e markup will be added. Similarly, as operations expand toin
lude more deeply nested loops, more 
ompli
ated prefet
h algorithms will need tobe tried by the sear
h, et
.4.3 Overview of Framework4.3.1 Anatomy of an Iterative and Empiri
al Compiler
InputRoutine HIL + 
ags-- Sear
hDrivers- -problemparams -HIL -Spe
ializedCompiler(FKO)analysis results� optimizedassembly-Timers/Testersperforman
e/test results�

iFKO
Figure 4.1: Overview of our Empiri
al and Iterative Compilation SystemFigure 4.1 shows the basi
 outline of our empiri
al and iterative 
ompilationsystem. Just as in a traditional 
ompiler, iFKO is provided with a routine to be
ompiled, and perhaps some user-sele
ted 
ompiler 
ags (though these will usuallybe sear
h-
ontrolling options, rather than the more 
ommon optimization phaseoptions). iFKO is 
omposed of two 
omponents: (1) a 
olle
tion of sear
h drivers, and55



(2) the 
ompiler spe
ialized for iterative empiri
al 
oating point kernel optimization(FKO).The sear
h �rst passes the input kernel to be optimized to FKO for analysis. FKOthen provides feedba
k to the master sear
h based on this analysis. The analysisphase together with any user input essentially establishes the optimization spa
eto be sear
hed, and the iterative tuning is then initiated. For ea
h optimizationof interest that takes an empiri
ally tuned parameter (eg., the unrolling fa
tor inloop unrolling), the sear
h invokes FKO to perform the transformation, the timerto determine its e�e
t on performan
e, and the tester to ensure that the answer is
orre
t (unne
essary in theory, but useful in pra
ti
e).Input 
an be provided both by mark-up in the routine itself, and by 
ag sele
tionfrom the user. These inputs 
an be used to pla
e limits on the sear
h, as well as toprovide information spe
ialized for an individual usage pattern (su
h as whether theoperands are pre-loaded in 
a
he, the size of the problem to time, et
.). Note thatiFKO has intelligent defaults for these values, so su
h user dire
tion is optional. The`HIL' in Figure 4.1 stands for high-level intermediate language, and is the language(spe
ialized for 
oating point kernel optimization) whi
h FKO a

epts as input.This graph also points out a signi�
ant overhead still asso
iated with our iterative
ompiler. While the 
ompiler makes the sear
h and optimization kernel-independent,it depends on externally supplied timers, whi
h are at least somewhat kernel-spe
i�
,and 
an be quite 
omplex when they are written to allow for the 
apturing of
ontext-sensitive usage patterns (eg., allowing a sele
tion of 
old and warm 
a
hestates, di�ering operand sizes and types, et
). In our 
ase, we utilize ATLAS'spreexisting AEOS-quality timers for this purpose, but an interesting area of futurework would investigate the extent to whi
h su
h timers 
ould be des
ribed in ahigh-level way (or ultimately, even dis
overed through analysis of the submittedkernel), and automati
ally generated. 56



4.3.2 Optimizing 
ompiler { FKOThe heart of this proje
t is an optimizing 
ompiler 
alled FKO (Floating pointKernel Optimizer). This 
ompiler is very similar to a traditional optimizing 
ompilerin design, but it has been spe
ialized in several ways. First, of 
ourse, it is designedspe
i�
ally for maximizing performan
e of 
oating point kernels, whi
h stronglya�e
ts our 
hoi
e of optimizations, and their intera
tions, as previously dis
ussed.This fo
us on kernel optimization has also led us to adopt a spe
ialized inputlanguage, as des
ribed in Se
tion 4.3.2.1. FKO has been further spe
ialized foriterative and empiri
al use. The main way this is re
e
ted in the design is thatthe 
ompiler must be able to analyze the submitted kernel, and 
ommuni
ate thisanalysis to the master sear
h, so the appropriate optimization te
hniques 
an besele
ted. The analysis presently provided by FKO is des
ribed in Se
tion 5.3.4.3.2.1 Input Language (HIL)Our input language is kept 
lose to ANSI C in form, so that the task of kernelimplementation is 
omparable to writing a referen
e implementation in languagessu
h as ANSI C or Fortran 77 (
ommon kernel languages). However, we want to keepour HIL simple enough so that we 
an 
on
entrate on ba
k-end optimization, as wellas to spe
ialize it to some degree for our problem domain. Therefore, we providean opportunity for user mark-up that 
an provide information that is normallydis
overed (if it 
an be determined at all) by extensive front-end analysis. For thesimple operations surveyed in this paper, the only mark-up used was the identi�
ationof the loop upon whi
h to base the iterative sear
h (iFKO 
ould optimize all innerloops this way, but this 
ould potentially 
ause insupportable slowdown in tuningmore 
omplex kernels, and so we require that a loop be 
agged as important beforeit is empiri
ally tuned).Although our input language resembles ANSI C, its usage rules are 
loser toFortran 77, whi
h has a more performan
e-
entri
 design. For instan
e, aliasing of57



output arrays is disallowed unless annotated by mark-up. Beyond this, the maininteresting feature of our HIL is the ability to provide markup, whi
h is presentlyquite limited. Therefore, for the sake of brevity, a full des
ription of the inputlanguage is omitted here, but examining Appendix A, whi
h shows the 
orrespondingANSI C and HIL implementations of the kernels optimized in Se
tion 5, provides areasonable understanding of our HIL.We refer to our input language as a HIL (high-level intermediate language), bothto stress that our fo
us is on the low-level ba
kend, and be
ause, given the su

essof this ba
kend resear
h, it seems likely that an interesting asso
iated proje
t wouldinvolve performing front-end analysis in order to automati
ally generate HIL inputsbased on higher level language implementations, at least for those kernels that 
anbe suÆ
iently analyzed in this way. This line of resear
h 
ould be extended toattempting to automati
ally �nd kernels and extra
t them from appli
ations, as inthe early work reported in [27℄.4.3.3 Iterative Sear
h { iFKOIn order to make our 
ompiler iterative (adding the 'i' to FKO), we must adda sear
h layer whi
h attempts to �nd the best available optimization parametersfor a given kernel. Finding the best values for NT empiri
ally tuned transformations
onsists of �nding the points in an NT dimensional spa
e that maximize performan
e(thus the phrase \sear
hing the optimization spa
e"). There are several ways ofperforming this sear
h, in
luding simulated annealing and geneti
 algorithms. We
urrently use a mu
h simpler te
hnique, a modi�ed line sear
h. In a pure linesear
h, the NT -D problem is split into NT separate 1-D sear
hes, where the startingpoints in the spa
e 
orrespond to the initial sear
h parameter sele
tion (in our 
ase,FKO defaults). Obviously, this approa
h results in a very poor sear
h of the spa
eby volume. However, be
ause 
ompiler writers understand the properties of thesetransformations, we are able to sele
t reasonable start values for the sear
h, and58



be
ause we understand many of the intera
tions between optimizations, we areable to relax the stri
t 1-D sear
hes to a

ount for interdependen
ies (eg., whentwo transformations are known to strongly intera
t, do a restri
ted 2-D sear
h).With these straightforward modi�
ations, line sear
hes are quite e�e
tive in pra
ti
e(ATLAS, one of the most su

essful empiri
al proje
ts, still uses a modi�ed linesear
h), even though they are 
ompletely inadequate in theory. At the same time,the line sear
h has a very simple design, whi
h in turn makes updating it to supportadditional transformations and explore new ideas mu
h easier. Thus, we will utilizemore advan
ed sear
h te
hniques only on
e enough transformations are available tomake their use 
ompelling. Our 
urrent iterative sear
h is outlined in Se
tion 5.8.4.4 Interfa
ing ATLAS and iFKOAs previously des
ribed, iFKO has been designed to work synergisti
ally with(though not be limited to) ATLAS, and this 
an be more fully appre
iated byunderstanding how iFKO and ATLAS 
an be interfa
ed. iFKO may be naturallyadded to ATLAS using ATLAS's preexisting multiple implementation support. Asfar as ATLAS is 
on
erned, iFKO is simply another kernel 
ompiler taking as inputa parti
ular language (our HIL, instead of the assembly and C kernels 
urrently usedby ATLAS). The fa
t that iFKO is itself iterative and empiri
al, a�e
ts ATLAS'sown empiri
al sear
h not at all (ex
ept in install time, obviously).Figures 4.2 and 4.3 show how ATLAS's present iterative sear
hes (as shownin Figures 3.6 and 3.4) 
an be augmented to interfa
e with iFKO. Be
ause iFKO
annot adapt to unknown ISAs, it should make sense to retain the high level(ANSI C) multiple implementation kernels for operations that ATLAS does notsupport through sour
e generation. In the long run, however, iFKO should makeretaining system-spe
i�
 assembly kernels for ISAs where iFKO is supported unne
-essary. 59



Be
ause ATLAS's 
urrent Level 1 and 2 BLAS tuning uses only parameterizationand multiple implementation, their support should be parti
ularly improved byadding iFKO expli
itly to the pa
kage. On the ISAs for whi
h iFKO is ported,this automated tuning should provide mu
h more adaptability than 
an be suppliedthrough even the most extensive battery of hand-tuned implementations. On theother hand, ATLAS's Level 3 sear
h employs both sour
e generation and multipleimplementation, and so iFKO should primarily help in redu
ing the need for hand-tuning in order to exploit ar
hite
ture-spe
i�
 features.4.5 Related WorkChapter 3 dis
usses the work 
losely related (both in time and topi
) to ouroriginal ATLAS work. Given the demonstrated su

ess of these pa
kages, there hasbeen in
reasing interest in the 
ompiler 
ommunity in applying similar te
hniques ina 
ompiler-oriented setting. However, our approa
h is the �rst of whi
h we are awareto perform all transformations at low level in the ba
kend (many resear
hers insteadgenerate 
ode in high level languages, just as ATLAS does), and at the same timea
tually have the sear
h as part of the 
ompiler (many proje
ts put the sear
h in alibrary generator). As dis
ussed in Se
tion 4.1, we believe these two fa
tors are keyin realizing the full bene�ts of these te
hniques.The OCEANS (Optimizing Compilers for Embedded Appli
ations) group hasdone some work in the area of iterative 
ompilation. A brief de
laration of e�ortwas published in [28℄. The idea is that like high-performan
e libraries, embeddedappli
ations are an area where very long 
ompilation times 
an be su

essfullyamortized, and so is a ri
h area for iterative and empiri
al optimization. Unlike withhigh performan
e libraries, 
ode size is an extremely important 
onsideration, andso di�ering optimization strategies should be expe
ted. Subgroups of this extensive60
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author list later published various iterative 
ompilation-related papers, as outlinedbelow.In [29℄ the authors do an initial study of iterative 
ompilation on three veryrestri
ted operations. The main 
ompilation te
hniques appear to be blo
king/tiling,and loop unrolling. Almost no detail is provided about the 
ompilation system;indeed, it is never stated that the transformations were not performed by hand insome manner. The main thrust of the paper is on how to sear
h the essentially in�niteoptimization spa
e. This work is thus very far from our newer resear
h, although itis very 
lose to the work already done (ATLAS uses a relaxed line sear
h to probea more 
ompli
ated spa
e, and provides unrestri
ted versions of two of the threementioned kernels). While the ultimate goal of the proje
t is still 
ited as embeddedsystems, all results are given on general purpose hardware (again, a subset of thear
hite
tures we previously surveyed in [6, 7℄).A more 
eshed out study was presented in [30℄. In this work, they report ageneral purpose 
ompiler, whi
h produ
es FORTRAN 77 as the output language(thus allowing for ar
hite
tural independen
e). This fa
t alone di�erentiates thiswork from ours, sin
e we are 
on
entrating on the ba
kend and low-level ar
hite
turaloptimization. In 
ontrast, the studied transformations in this paper are all high-level:blo
king, unrolling, and array padding.In [31℄, the authors again 
onsider mainly loop unrolling and blo
king fa
tors;sin
e these optimizations require little ba
kend information, this is again done at ahigh level.The work in [32, 33℄ is 
loser to our own resear
h in that it involves both highand low level optimizations, and that they 
on
entrate on simple 
omputationalloops. However, this work examines in detail only two optimizations (loop unrollingand software pipelining), and is 
on
erned with embedded systems. As su
h, theyoptimize for a 
ombination of 
ode size and performan
e.62



Probably the group that 
omes 
losest to our approa
h in gestalt is the SPIRALproje
t [34, 35℄. They have a 
ompiler that takes in a mathemati
al des
ription of ina digital signal pro
essing algorithm, and generates varying ANSI C or FORTRAN77 implementations. Thus, they work mainly at the high level, and in a di�erent�eld. However, authors aÆliated with this group have done some low-level work (asin [36℄), but this is done in a traditional 
ompiler used to 
ompile the generatedsour
e.There has also been resear
h on applying empiri
al te
hniques to general-purpose
omputing. In order to do so, the 
ost of the tuning must be greatly redu
ed, andthus a less empiri
al and mu
h more targeted approa
h is 
alled for, as in [37℄,where the main goal is to ameliorate the 
ompeting resour
e problem betweenoptimization phases in a more traditional 
ompilation framework. This work istargeted at general-purpose 
ompilation, and is not intended to produ
e kernel-levelperforman
e.
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CHAPTER 5CURRENT IFKO IMPLEMENTATIONThis 
hapter des
ribes our 
urrent FKO implementation. Se
tion 5.1 dis
ussesour target ar
hite
tures, Se
tion 5.2 overviews the interfa
e to FKO, and Se
tion 5.3outlines the analysis 
ommuni
ated to the iFKO's sear
h. We next survey thetransformations presently supported by FKO, whi
h are split into two types. Se
-tion 5.4 des
ribes FKO's fundamental transformations, whi
h are applied only onetime and in a known order (thus easing the extra analysis required for some ofthese optimizations), while Se
tion 5.5 goes into some detail on the 
omplexities ofhandling alignment issues for one of our 
riti
al fundamental optimization, SIMDve
torization. Se
tion 5.6 outlines the repeatable transformations, whi
h may beapplied multiple times and in almost any order. Ea
h transformation is outlined inits own se
tion, but sin
e it is the empiri
al appli
ation of these te
hniques, not thete
hniques themselves that are the main resear
h element of this work, we do not gointo ex
essive detail. In order to 
larify the a
tual operation of these transformations,Se
tion 5.7 shows examples of their e�e
t on the kernels surveyed in this paper.5.1 Supported Ar
hite
turesAs des
ribed in Se
tion 4.2, we must have a relatively narrow area of fo
usin order to a
hieve su

ess. However, it is important that persistent frameworkshort
omings are not introdu
ed due to su
h tunnel vision. Therefore, FKO wasdesigned and written to support four di�erent ISAs. On
e the basi
 frameworkwas implemented and working, we 
on
entrated on the x86 in order to a
hieve64



results, and we will probably not return to the other ar
hite
tures until this workis 
onsiderably more advan
ed. However, sin
e we are working at su
h a lowlevel, doing the initial design with several very di�erent ISAs helped avoid 
reatingan in
exible or overly-spe
ialized ba
kend. Therefore, iFKO's basi
 framework ispresently supported on four ISAs:1. IA-32 [38, 39℄: Also known as x86 or x86-32, this is probably the most widelyused ISA in general-purpose 
omputing, in
luding a diverse array of ma
hinessu
h as the Pentium line (PPRO, II, III, 4, 4E), the AMD Athlon, Athlon-64,Opteron, et
. Normally in this paper we use the generi
 term x86 to apply toboth the IA-32 and x86-64 ISAs, and we will 
all this ar
hite
ture x86-32 orIA-32 when we mean to ex
lude the x86-64.2. x86-64 [40, 41℄ or IA-32e [42℄: 64 bit extension of the x86 ISA originallydesigned and implemented by AMD. Intel has re
ently begun supporting it ontheir line of 
hips, but they 
all it IA-32e (Intel Ar
hite
ture 32 bit extended)in order to distinguish it from their x86-in
ompatible IA64 (Itanium line) ISA,while still avoiding using the AMD terminology. Ma
hines implementing thisISA in
lude AMD's Athlon-64 and Opteron, as well as the Intel's newest Pen-tium 4 variant. All ma
hines implementing x86-64 run IA-32 
ode un
hanged aswell. When used in 64-bit mode, x86-64 also o�ers 16 integer and SSE registers,whi
h is a vast improvement over IA-32's eight. Note that FKO expli
itlysupports x86-64 (i.e. it does not run on an x86-64 ar
hite
ture merely throughIA-32 
ompatibility mode), thus allowing us to exploit the additional registers,new (more eÆ
ient) 
alling sequen
e, and the fa
t that integer registers are 64bits wide.3. PowerPC [43, 44℄: This ISA is used in embedded systems, Apple's G4 and G5line, and IBM's workstations and super
omputers.65



4. UltraSPARC [45, 46℄: We also support FKO on the Sun UltraSPARC.Presently, our framework 
an generate 
ode for all of these ar
hite
tures. How-ever, SIMD ve
torization, a key 
omputational optimization, is presently supportedonly on the x86 ar
hite
tures, and we have targeted our transformation sele
tion tothis ISA family. We will examine the PowerPC next, but will do so only on
e ourgoals are more fully met on the x86 ISAs.Presently, FKO's 
oating point instru
tions always use SSE (i.e., we do notexploit the x87 FPU). When SIMD ve
torization 
annot be applied, we use SSE'ss
alar instru
tions. This de
ision was made be
ause newer ma
hines stress SSE atthe expense of the x87 unit, and supporting the x87 register sta
k is a signi�
antoverhead. This does, however, mean that FKO 
annot generate valid 
oating point
ode for ma
hines prior to the Pentium III, as they do not possess ve
tor units. We
urrently do not plan on adding x87 support, mostly be
ause the unit tends to getworse performan
e on modern ma
hines. For instan
e, on the Pentium line, evenSSE s
alar 
ode has twi
e the theoreti
al peak of x87 
ode, and on x86-64 ma
hines,the x87 did not re
eive additional registers. Therefore, x87 support will be addedonly if this trend of marginalizing the x87 unit is reversed in future ar
hite
tures.5.2 Interfa
e OverviewAs previously mentioned, our HIL provides a spe
ial markup that allows the userto identify the key (innermost) loop that should serve as a basis for the empiri
altuning sear
h. Let us 
all this spe
ial loop the optloop. Some FKO optimizations
an only be applied to this loop (in
luding all fundamental optimizations), whileothers 
an be applied to any se
tion of 
ode. FKO's present interfa
e allows thespe
i�
ation of two s
opes for transformation appli
ation: (1) apply to optloop only,and (2) apply to entire fun
tion (we refer to this as global appli
ation).66



Like any 
ompiler, FKO takes a host of 
ags whi
h a�e
t the appli
ation ofoptimizations. Fundamental transformations are either on or o�, and if sele
ted theyare applied to the optloop, and in a known order, and so they are 
ontrolled withsimple 
ags as in a traditional 
ompiler. Repeatable transformations, on the otherhand, may be applied repeatedly, in any order, and to any s
ope, and we may wishto 
ontrol this from the empiri
al sear
h. Therefore, while our interfa
e presentlyallows spe
ifying only global or optloop s
ope, the order and number of appli
ationsfor repeatable phases 
an be more fully 
ontrolled. Repeatable transformations arespe
i�ed in a grouping referred to as an optimization blo
k, where individual phasesare applied until they no longer 
hange the 
ode, or a maximum appli
ation 
ount isrea
hed (to prevent in�nite loops in the 
ase of transforms that interfere or reverseea
h other, or indeed to avoid any repetitive appli
ation when set to 1). Globaloptimization blo
ks are spe
i�ed with the 
ompiler 
ag -G, and optloop blo
ks arespe
i�ed by -L. The arguments 
omposing both types of optimization blo
ks areblknum, an integer label identifying the blo
k, maxN, the maximum number of timesto apply the indi
ated optimizations, nopt, the number of optimizations in theblo
k, followed by the list of optimizations to apply (whi
h may be either singleoptimizations or other optimization blo
ks). The starting blknum must be 1, butother blo
k numbers may be 
hosen arbitrarily, as indi
ated by the optimizationlists. A full des
ription would probably not be useful here, but for example the 
ags:-G 1 1 2 2 3 -L 2 10 2 ra 
p -G 3 10 2 ra 
presult in �rst applying register assignment and 
opy propagation at most 10 times tothe optloop, stopping sooner if an iteration is 
ompleted without any 
ode 
hanges,followed by doing the same thing to the fun
tion as a whole. Se
tion 5.6.10 providesfurther examples of optimization blo
k usage.
67



NCACHES=1LINESIZES : 128OPTLOOP=1MaxUnroll=0LoopNormalForm=1Ve
torizable=1Moving FP Pointers: 2'X': type=d prefet
h=1 sets=0 uses=1'Y': type=d prefet
h=1 sets=0 uses=1S
alars used in loop: 3'dot': type=d sets=1 uses=1 a

um=1'y': type=d sets=1 uses=1 a

um=0'x': type=d sets=1 uses=1 a

um=0(a) FKO Analysis for ddot (Figure A.5)

NCACHES=1LINESIZES : 128OPTLOOP=1MaxUnroll=0LoopNormalForm=1Ve
torizable=1Moving FP Pointers: 2'X': type=d prefet
h=1 sets=0 uses=1'Y': type=d prefet
h=1 sets=1 uses=1S
alars used in loop: 3'alpha': type=d sets=0 uses=1 a

um=0'y': type=d sets=2 uses=2 a

um=0'x': type=d sets=2 uses=2 a

um=0(b) FKO Analysis for daxpy (Figure A.4)Figure 5.1: Example FKO analysis output for P4E5.3 Current Analysis and Communi
ation with the Sear
hUnlike a traditional 
ompiler, a 
ompiler used in an iterative sear
h needs tobe able to 
ommuni
ate key aspe
ts of its analysis of the 
ode being optimized, asthis strongly a�e
ts the optimization spa
e to be sear
hed. Currently, FKO reportsinformation su
h as the numbers of available 
a
he levels and their line sizes. It alsoreports the loop (if any) identi�ed for tuning in the iterative sear
h. For this loop, itthen reports the maximum safe unrolling, and whether it 
an be SIMD ve
torized.For ea
h 
oating point s
alar and array a

essed in the loop, the analysis furtherreports its type, sets and uses. Finally, the analysis returns a list of all su
h s
alarsthat are valid targets for a

umulator expansion (see Se
tion 5.4), and all su
h arraysthat are valid targets for prefet
h (by default any array whose referen
es in
rementwith the loop, but the user 
an override this behavior, for instan
e to prohibit prefet
hon arrays known to be 
a
he-resident, using mark-up). Figure 5.1(a) and (b) showsthe results of this analysis when run on ddot (Figure A.5) and daxpy (Figure A.4),respe
tively.
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5.4 Current Fundamental TransformationsAs previously mentioned, fundamental optimizations are applied only on the opt-loop, and in a known order, and the following subse
tions present these fundamentaloptimizations in the order in whi
h they are applied. For ea
h su
h transformation,we list an abbreviation whi
h is used in the paper to refer to this optimization.Fundamental optimizations are applied before other optimizations both be
ause theyrequire more high-level analysis than the repeatable optimizations, and be
ausetheir transformations are higher level as well (SIMD ve
torization, whi
h is fairlyar
hite
ture-spe
i�
, is the ex
eption to this rule). Therefore, when examples areneeded to 
larify a fundamental optimization, we will normally do so in ANSI C,even though the 
ompiler, of 
ourse, performs these transforms on our LIL (low levelintermediate language).After the optimizations are surveyed, Se
tion 5.4.7 dis
usses the default valuesused for these parameters in the empiri
al sear
h, as well as how they are 
ontrolledin FKO.5.4.1 SIMD Ve
torization (SV)SIMD Ve
torization (SV) transforms the loop nest (when legal) from s
alarinstru
tions to ve
tor instru
tions. Ve
tor instru
tions operate on multiple elementsof a given type at the same time (thus the `Single Instru
tion Multiple Data' of SIMDve
torization). Applying SV typi
ally results in keeping the number of instru
tionsin the loop 
onstant, but its e�e
t on loop 
ontrol and 
omputation done per iterationis similar to unrolling by the ve
tor length (4 for single pre
ision, 2 for double). Thisextremely modest ve
tor length is the primary distinguishing fa
tor between SIMDve
torization and ve
torization for traditional ve
tor ma
hines, but this di�eren
e isof su
h magnitude that signi�
antly di�erent optimization strategies are required.69



Both the x86 and PowerPC ar
hite
tures have SIMD ve
tor units whi
h aresupported through ISA extensions. On both ma
hines, the ve
tor length is 128bits. The PowerPC ve
tor unit (AltiVe
 unit), however, 
annot operate on doublepre
ision 
oats, and so 
an operate on four single pre
ision 
oats or a varying numberof integral values at a time. FKO presently supports SIMD ve
torization only on thex86, and so the following dis
ussion fo
uses on it ex
lusively.The x86 ve
tor units are utilized through a series of ISA extensions in
ludingMMX (MultiMedia eXtensions), 3DNow!, SSE (Streaming SIMD Extensions), SSE2,and SSE3. MMX deals primarily with operating on integer ve
tors (unimportant toour present dis
ussion), while 3DNow! is an AMD spe
i�
ation that has been largelysuperseded by SSE, and so we will not des
ribe it here. SSE, or SSE1, mainly addedsupport for operating on single pre
ision ve
tors, SSE2 added double pre
ision ve
torsupport, and SSE3 in
ludes some extra ve
tor permutation 
ode, and instru
tionsspe
ialized for 
omplex arithmeti
.As mentioned, the ve
tor length for all 
urrent ma
hines is 128 bits, whi
h allowsfor parallel operation on four single pre
ision values, or two double pre
ision values.Thus we say the ve
tor length (ve
len) is two for double pre
ision, and four forsingle. All 
urrent ma
hines 
an employ these instru
tions to do ve
len 
oating pointoperations (FLOPs)/
y
le. Therefore, the theoreti
al peak will be four FLOPs/
y
lefor single pre
ision, and two FLOPs/
y
le for double.Ve
tor instru
tions are available not only for 
omputation, but for loads and storesas well. Loads and stores must be 128-bit aligned to get maximal performan
e, andspe
ial workarounds must be employed when the data is not so aligned. Optimallyhandling alignment issues is a 
ompli
ated issue in its own right, and is thereforedis
ussed separately in Se
tion 5.5.Some substantial analysis is required to ensure that SV is legal, and so it is theoptimization we apply �rst. Performing SV before any other optimization allowsus to assume the input 
ode is in the restri
ted format generated by our front-end,70



whi
h 
onsiderably eases the burden of analysis. The transformation is either appliedto the loop as a whole, or it is not applied at all (i.e. we do not mix 
oating pointve
tor and s
alar 
ode in the loop). Our 
urrent implementation therefore requires:1. All arrays a

essed in the loop are 128 bit aligned,2. All arrays being ve
torized are a

essed 
ontiguously in su

essive iterations ofthe loop,3. The dependen
e distan
e between su

essive elements of su
h arrays is> ve
len,4. All 
oating point 
omputation in the loop is of the same pre
ision, and 
onsistsof solely of a mixture of absolute value, add and multiply,5. S
alars applied to ve
torized arrays must meet the 
riteria given in Se
-tion 5.4.1.1.All of these requirements ex
ept alignment are determined by analysis (seeSe
tion 5.5 for details on alignment), and SIMD ve
torization is not performed whenthe loop does not meet these 
riteria. Note that this \all-or-nothing" approa
h hasbeen 
hosen as it is well-mat
hed to the kinds of operations we are interested in(ex
ept for a few Level 1 BLAS, all of the BLAS may be fully ve
torized in thisway). As we expand the supported kernels to less regular and/or non-
ontiguousoperations, we may want to employ a more general strategy, where more arbitraryve
torization opportunities are sear
hed for after a series of optimizations (in
ludingloop unrolling), as in [36℄. However, this style of ve
torization, while more 
exible inappli
ation, is also more fragile, in that other optimizations 
an make it more andmore diÆ
ult to fully ve
torize the loop. Therefore, if we are unable to 
apture thesame fun
tionality as a fundamental optimization, this style of ve
torization wouldbe added as an additional repeatable transformation when and if it is needed.71



Sin
e ve
torizing the loop is 
omputationally similar to unrolling by ve
len, thistransformation also produ
es a 
leanup loop (dumped to the end of the fun
tion)whi
h handles those 
ases where the number of iterations of the loop are not evenmultiples of ve
len. Let N be the number of times the loop will iterate (N is almostalways a run-time variable). SIMD ve
torization adds a 
onditional bran
h on Nboth before (to handle N < ve
len) and after the ve
torized loop (to handle Nmod ve
len 6= 0). Se
tion 5.4.2 shows an example of 
reating su
h 
leanup 
ode foran unrolling of four, and Se
tion 5.7.1.1 shows ve
torization at a lower level.5.4.1.1 Handling S
alars in SVSV is applied primarily to arrays whose a

ess 
hanges with the loop iteration,but the loop body will almost always in
lude referen
es to s
alar (single value)temporaries that are involved in the 
omputations on these arrays. These s
alarvalues must be 
hanged to ve
tor values by the 
ompiler. Essentially, any temporaryor variable whose address does not move with the loop is treated as a s
alar for thispurpose. S
alars that are live on loop entry or exit must be transformed from s
alarto ve
tor on loop entry, and from ve
tor to s
alar on exit, and how this is legallydone depends on usage, as outlined below.Input s
alars whose �rst use is assignment or multipli
ation should have all ve
torvalues initialized to the s
alar value, whereas s
alars used as a target of ve
tor adds(a

umulators) should have only one value set to the s
alar value, and the rest of theve
tor should be set to zero.Output s
alars reverse this pro
ess. Be
ause it is always the 
ase in our kernels,our present implementation only ve
torizes 
ode where any output s
alars area

umulators. If their last use was an a

umulator, the individual ve
tor valuesmust be summed after the loop to produ
e the required result.On loops with multiple basi
 blo
ks, it is possible to have mixed �rst (last) usagein di�ering blo
ks that represent di�erent paths of 
ow through the loop. If this72



mixed usage o

urs (eg., a variable's �rst use in one path is assignment, but �rstuse elsewhere is as an a

umulator), then ve
torization will not be applied. Thereare no 
ases in the present kernels, and we know of none in all of the BLAS, wherethis problem prevents ve
torization. However, if mixed usage be
omes a problem,transformations su
h as s
alar expansion and loop unswit
hing [24℄ 
an be employedto enable SV.5.4.2 Loop Unrolling (UR)Loop Unrolling [24℄ (UR) dupli
ates the loop body of the loop Nu times. Sin
eit is performed after SIMD ve
torization the 
omputational unrolling is a
tuallyNu � ve
len when ve
torization is also applied.If it is possible to do so, our unrolling avoids repetitive index and pointerupdates, as well as having only one test/bran
h for the unrolled loop. Just as withve
torization, a 
leanup loop is automati
ally generated to handle when the iteration
ount is not a multiple of the unroll fa
tor, and 
onditional bran
hes are inserted sothat the 
orre
t answer is always produ
ed regardless of the iteration 
ount. As aminor optimization, if a loop is both ve
torized and then unrolled, only one 
leanuploop is generated and used.Figure 5.2 shows a simple dot produ
t loop before and after unrolling to 4. Notethat the loop 
ontrol optimization dis
ussed in the following se
tion is always appliedduring unrolling as well, resulting in loop index reversal when the loop index is notreferen
ed in the loop.5.4.3 Optimize Loop Control (LC)Optimize Loop Control (LC) is the only fundamental optimization that is alwaysapplied when legal, and it attempts to optimize the loop bran
hing and index
omputation when possible. On the x86, this primarily 
onsist of transformingthe loop from the form for(i=0; i<N; i++) to the equivalent for(i=N; i; i--)73



for (i=0; i < N; i++) {dot += X[0℄ * Y[0℄;X++;Y++;}return(dot);(a) before loop unrolling

if (N < 4) {i = N;goto CU;}for (i=N-3; i > 0; i -= 4) {dot += X[0℄ * Y[0℄;dot += X[1℄ * Y[1℄;dot += X[2℄ * Y[2℄;dot += X[3℄ * Y[3℄;X += 4; Y += 4;}i += 3;if (i != 0) goto CU;return(dot);CU:for (; i; i--) {dot += X[0℄ * Y[0℄;X++; Y++;}return(dot)(b) after loop unrollingFigure 5.2: Dot produ
t before and after UR and LCwhen i's only use in the loop is for loop 
ontrol. This se
ond formulation avoidsa 
omparison required by the �rst on the x86 (and indeed, most ar
hite
tures), aswell as enabling the 
ompiler to avoid assigning N to a register throughout the bodyof the loop. This transformation also handles the index 
omputations ne
essary to
orre
tly handle loop unrolling and ve
torization eÆ
iently.5.4.4 A

umulator Expansion (AE)A

umulator Expansion (AE): In order to avoid unne
essary pipeline stalls, AEuses a spe
ialized version of s
alar expansion [24℄ to break dependen
ies in s
alars thatare ex
lusively the targets of 
oating point adds within the loop. Figure 5.3(a) showsa dot produ
t loop that has been unrolled by a fa
tor of 2. If the FPU is pipelined,and the pipe length is greater than one, this 
ode will result in an unneeded pipeline74



1 dot = s t a r t ;2 for ( i =0; i < N; i += 2) f3 dot += X[ 0 ℄ � Y[ 0 ℄ ;4 dot += X[ 1 ℄ � Y[ 1 ℄ ;5 X += 2; Y += 2;6 g (a) Without AE
1 dot = s t a r t ; dot1 = 0 . 0 ;2 for ( i =0; i < N; i += 2) f3 dot +=X[ 0 ℄ � Y[ 0 ℄ ;4 dot1 += X[ 1 ℄ � Y[ 1 ℄ ;5 X += 2; Y += 2;6 g7 dot += dot1 ;(b) With AE=2Figure 5.3: DDOT before and after A

umulator Expansionstall. After line 3 is exe
uted, the register holding dot will not be available to addinto as required by line 4 for pipeline length 
y
les, and so line 4 will 
ause a delayea
h time through the loop. A

umulator expansion removes this dependen
y byusing multiple s
alars to store the a

umulator, as shown in Figure 5.3(b). Note thatfor a ma
hine with a FPU pipeline length of four, for example, we would probablywant to unroll to at least that length, and use four registers, rather than the twoshown in this simple example.In this example, we have shown dot being initialized to a start value. Noti
ethat the additional a

umulators generated by AE must be set to zero (line 1of Figure 5.3(b)), and summed into dot after the loop is 
omplete (line 7 ofFigure 5.3(b)).5.4.5 Prefet
h (PF)The next fundamental transformation is prefet
h (PF). This transformation 
anprefet
h any/all/none of the arrays that are a

essed within the loop, sele
t the typeof prefet
h instru
tion to employ, vary the distan
e from the 
urrent iteration tofet
h ahead, as well as provide various simple s
heduling methodologies. Prefet
hesare s
heduled within the unrolled loop be
ause many ar
hite
tures dis
ard prefet
heswhen they are issued while the memory bus is busy, and so they 
an be an ex
eption tothe general rule that modern x86 ar
hite
tures are relatively insensitive to s
heduling(due to their aggressive use of dynami
 s
heduling, out-of-order exe
ution, register75



renaming, et
.). Note that prefet
hing one array 
an require multiple prefet
hrequests in the unrolled loop body, as ea
h x86 prefet
h instru
tion fet
hes onlyone 
a
he line of data.5.4.6 Non-temporal Writes (WNT)Our �nal fundamental transformation is non-temporal writes (WNT), whi
hemploys non-temporal write instru
tions on the spe
i�ed output array. Non-temporalwrites are designed to be useful when the value written will not be a

essed againsoon, but its implementation varies strongly by ar
hite
ture (for instan
e, on theOpteron WNT is only useful for write-only arrays, but it is useful for any outputarray that does not need to be retained in the 
a
he on the P4E).5.4.7 Default ValuesThere are two types of \default" values for these optimizations. One is whi
hfundamental transformations are automati
ally applied by FKO without spe
ial 
ags,and only LC is handled in this way. All other fundamental transformations areapplied only when the requisite 
ag is passed to FKO. The other \default" of interestis what values iFKO employs during the empiri
al sear
h, and these defaults are asfollows: Let L be the line size of the �rst prefet
hable 
a
he, and Le the number ofelements of a given type in su
h a line (for example, if L = 32 bytes, Le would be 4for a double pre
ision s
alar, 8 for a single pre
ision s
alar, or 2 for a SIMD ve
tor ofeither type), then the initial values for the iFKO's sear
h are: SV='Yes' (if legal),WNT='No', PF(type,dist) = ('prefet
hnta', 2� L), UR=Le, AE='None'.5.5 SIMD Alignment IssuesAs previously mentioned, ve
tor loads and stores are by default assumed to be128-bit aligned. The 
urrent FKO implementation assumes su
h alignment whenever76



SV is applied. FKO already possesses all the transformations ne
essary to handlenon-aligned a

ess safely, but we 
urrently assume alignment be
ause we do not havethe required infrastru
ture to handle these 
ases eÆ
iently. Sin
e we 
an leveragehigher level routines to ensure that these alignment requirements are met, we willadd non-aligned 
onsiderations expli
itly to FKO only on
e we have expanded theframework so that they may be handled eÆ
iently as well as safely.As dis
ussed later, produ
ing a highly-tuned non-aligned 
ode takes expli
ittuning for the non-aligned 
ase (i.e., the tuning de
isions made for the aligned
ode will not, in general, be valid for the non-aligned), and so we �rst 
on
entrateon tuning the aligned 
ases, letting ATLAS handle getting them so aligned. Thefollowing se
tions dis
uss these alignment issues in further detail. First, Se
tion 5.5.1dis
usses how we use ATLAS to guarantee alignment so that we 
an assume
orre
t alignment in kernels generated by FKO. After this overview, we dis
uss thea
tual transformations that 
an be employed (both by ATLAS presently, and FKOultimately) to 
orre
tly handle these 
ases. Se
tion 5.5.2 dis
usses a safe method thatworks for all 
ases, but results in ineÆ
ient 
ode. Se
tion 5.5.3 provides an overviewof how loop peeling 
an be used to for
e alignments in those 
ases where all relevantmemory addresses have the same alignment. Se
tion 5.5.4 then des
ribes how this 
anbe extended to handle mutual misalignment, and Se
tion 5.5.5 dis
usses some possiblere�nements that 
an be applied when the pointers in question arise from a 
onstantlystrided multidimensional array (a very 
ommon 
ase). Finally, Se
tion 5.5.6 des
ribeshow we envision adding this 
ompli
ated support to the framework.5.5.1 Present Handling of AlignmentIn our present use of FKO, we exploit ATLAS's framework to guarantee align-ment. All of ATLAS's timers and testers optionally a

ept 
ags that tell them tofor
e parti
ular alignments, and so we en
ounter no problems during tuning. Whenit is time to use the FKO-generated kernels to build an ATLAS-tuned library, we77



use multiple implementation to add the routine to ATLAS. At this stage, we writewrapper 
ode by hand that guarantees parti
ular alignment(s), using the te
hniquesdis
ussed in the following se
tions. Also, the ATLAS framework already guaranteesalignment for the Level 3 BLAS kernels, and so we know we don't need to handlethese 
ases for some of our more important targets.5.5.2 Handling Alignment Safely, but IneÆ
ientlySin
e ve
torization has an impli
it 
omputational unrolling, a s
alar 
leanup loop(whi
h has no ve
tor alignment requirements) is always generated. Trivially, we 
ouldadd a bran
h to this 
leanup anytime our operands are not appropriately aligned.While this would mean that the 
ode would handle all 
ases 
orre
tly, the non-aligned
ase would not only be s
alar 
ode, but largely untuned s
alar 
ode at that. It is forthis reason that we do not use this me
hanism.5.5.3 Fixing Some Alignment Problems through Loop PeelingA subset of alignment problems may be addressed through simple loop peel-ing [24℄. Again, we have most of the infrastru
ture needed for this, in that peeling
an reuse with very little modi�
ation the unrolling and 
leanup infrastru
tures.In peeling for alignment, iterations of the loop are peeled and 
onditionallyexe
uted based on alignment, but the iterations that are peeled are s
alar iterations,so that we do the appropriate number of s
alar iterations until the relevant pointersare 128-bit aligned, and then we enter the ve
torized loop.This method fully solves the problem if and only if all ve
torized pointershave the same alignment. If two or more ve
tors are mutually misaligned (eg, P0mod 128 = 32 and P1 mod 128 = 64), then at least one pointer is still misaligned,and more 
ompli
ated te
hniques are required, as des
ribed in the following se
tions.78



5.5.4 Handling Mutual MisalignmentIf two or more pointers are mutually misaligned, the general solution is to for
ethe alignment of one of the pointers via peeling as before, and then generate 
odethat assumes the given array/pointer is aligned, and any others are not. Obviously,if one array is a

essed more than the others (for instan
e, if one array both usedand set while other arrays are use only), then that array is the obvious target forpeeling for alignment.To make this more 
on
rete, assume we are a

essing two single pre
ision arrays,X (read only) and Y (both read and written), and that X mod 128 = 32 and Ymod 128 = 64. In this 
ase we use loop peeling to for
e Y to be aligned to 128(whi
h in this example would result in doing two s
alar iterations of the loop beforeentering the ve
torized loop). With Y for
ed to the 
orre
t alignment, we would nowempiri
ally tune a sub-kernel spe
ialized for aligned Y and non-aligned X.There are at least two general te
hniques to try in these 
ases. On the x86, thereare non-aligned ve
tor loads, whi
h are slower than the aligned loads. Therefore, the�rst te
hnique would involve using non-aligned loads on X, but then it makes senseto do some s
heduling to re
e
t the fa
t that X a

ess is slower than Y a

ess. Forinstan
e, we might want to software pipeline all X a

esses so that this iterationfet
hes the next iteration's X data.Another, even more aggressive, te
hnique is to instantiate the various possibilitiesof X misalignment, and then use aligned a

ess on X, but permute the data beforeapplying it to Y . This in fa
t is required for the PowerPC, where the AltiVe
 unitdoes not support non-aligned load. Again, if we are required to permute one array'sdata before use, we will probably want to software pipeline it so that waiting on thepermute does not 
reate a bottlene
k.
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As 
an be seen, handling the non-aligned 
ase represents a more signi�
ant tuningproblem than SV itself, and this is the main reason we have not yet handled iteÆ
iently in FKO.5.5.5 Spe
ial Alignment Considerations for Constantly Strided Multidi-mensional ArraysConstantly strided multidimensional arrays are 
ommon in 
oating point kernels.For instan
e, the Level 2 and 3 BLAS operate on 
onstantly strided two-dimensionalarrays. The non-unit stride of these arrays, in elements of the native type, is 
alledthe lda (Leading Dimension of Array). When outer loop unrolling is performed onsu
h arrays, the inner loop then gets multiple pointers, whi
h may be mutuallymisaligned, depending on lda. To make this more 
on
rete, 
onsider a doublepre
ision 
olumn-major array with lda = 7. Sin
e there are two double pre
isionelements in a SIMD ve
tor, all 
ontiguous 
olumns will be mutually misaligned by64 bits. However, every se
ond 
olumn will have the same alignment.More generally, if there are Ne native elements in a SIMD ve
tor, a parti
ular
olumn j is guaranteed to have the same alignment as 
olumn j+Ne, regardless of lda.Further, if (lda�sizeof()) mod 128 = 0, then all 
olumns have the same alignment.NOTE: swap the word `row' for `
olumn' in the above analysis for row-major arrays.We 
an use these insights to redu
e alignment 
omplexities when unrolling outerloops, or more generally, anytime we 
an dis
over that inner-loop pointers 
ome from
onstantly strided arrays.5.5.6 Adding Misalignment Support to the FrameworkAs this dis
ussion has made 
lear, well-tuned misalignment support is a 
ompli-
ated issue. Support will undoubtedly be phased in as we develop iFKO. For instan
e,the peeling and safety 
ases dis
ussed in Se
tions 5.5.3 and 5.5.2 will probably80



be added soon, sin
e we already have the needed infrastru
ture, and peeling, inparti
ular, does 
ompletely solve the problem for kernels that a

ess only one array.The next step will require signi�
ant overhead, and will probably only beundertaken when we have some a
tual usage that require it. In this step, we wouldadd expli
it tuning for non-aligned 
ases, whi
h requires extensions throughout theframework, in
luding the sear
h, the transformations supported, and instru
tionsavailable in 
ode generation.On
e we are able to expli
itly tune for misalignment, we will still initially usemultiple implementation to 
hoose when to 
all parti
ular versions (ea
h tuned inseparate iFKO invo
ations). On
e suÆ
ient performan
e and generality is availablein this tuning, we 
an automate the sear
h of all misalignment sub
ases and thegeneration of the wrapper 
ode as well.5.6 Current Repeatable TransformationsRepeatable transformations 
an not only be applied multiple times, but aretypi
ally applied in a series (or optimization blo
k) whi
h is repeated while they arestill su

essfully transforming the 
ode. This is useful for synergisti
 optimizations(eg., register allo
ation and 
opy propagation). All of these operations may be appliedto a s
ope (a set of basi
 blo
ks, typi
ally a given loop nest or the entire fun
tion).FKO's present interfa
e allows the user to spe
ify that these optimizations be appliedto the optloop, or globally to the entire fun
tion. As we will see in Se
tion 5.6.10,most of these transformations are by default �rst exhaustively applied to the optloop,and then applied globally as well.We presently support repeatable transformations for improving register usageand 
ontrol 
ow. In register usage optimization, we support register allo
ation(Se
tion 5.6.1) and various types of 
opy propagation (Se
tions 5.6.2 and 5.6.3).Several of our register usage improving transformations (Se
tions 5.6.7, 5.6.8 and5.6.9) are in fa
t peephole optimizations that exploit the fa
t that the x86 is not81



a true load/store ar
hite
ture (relatively important when the ISA has only eightregisters, but the underlying hardware may have more than a hundred). Finally, weperform bran
h 
haining (Se
tion 5.6.6), useless jump elimination (Se
tion 5.6.4),and useless label elimination (Se
tion 5.6.5), whi
h, when applied together, mergebasi
 blo
ks (
riti
al after extensive loop unrolling).5.6.1 Register Allo
ation (ra)This is our most 
omplex repeatable transformation. It performs interferen
egraph based register allo
ation on an relatively arbitrary s
ope (a s
ope being a listof basi
 blo
ks). This optimization is applied both within and a
ross basi
 blo
ks.We assume that the s
ope has a single preheader (a single prede
essor blo
k thatmust be passed through in order to rea
h all blo
ks in the s
ope), but allow formultiple su

essors to the s
ope, whi
h we 
all post-tails. We use loop terms su
h asheader and tail be
ause our most important s
opes are indeed loop bodies.If a variable is live on s
ope entry, then the register load of that variable is hoistedto the preheader of the s
ope, and if a variable is live on s
ope exit, and a store isrequired, then the register-to-memory store is pushed into the relevant post-tail(s).The most 
ommon s
ope is a loop body, and when applied in this way to a variablelive throughout the loop, all asso
iated memory a

esses will be hoisted/pushed outof the loop.Presently, FKO by default applies ra to the loop identi�ed for empiri
al tuning,and then to the entire fun
tion. As we 
onsider more deeply nested loops, we willapply ra to ea
h loop level in turn, starting from the innermost. Performing ra onthe innermost loop �rst ensures that the inner loop's register needs are 
ompletelymet before outer loops are 
onsidered, whi
h is 
riti
al in 
oating point kernels,where long-running loops are the 
ommon 
ase. Until registers are exhausted, raand 
opy propagation applied to outer loops will 
ontinue to expand the live rangeto the maximum extent, and eventually moving the load (store) to beginning (end)82



of the fun
tion, if possible. Thus, this rather 
ompli
ated version of ra provides aneÆ
ient algorithm for register spilling in the 
ase of register exhaustion, as well asallowing us to postpone implementation of a more generalized loop-invariant 
odemotion.5.6.2 Copy Propagation (
p)Copy propagation [24℄ is a te
hnique for removing unne
essary register-to-registermoves, often generated by pre
eding optimization phases, su
h as register allo
ation.Our implementation operates both inter- and intra-blo
k, and performs severalrelated transformations. Trivially, it deletes any su
h move where the sour
e anddestination are the same register.In it's main use, our 
opy propagation phase pro
eeds through the s
ope inforward order, looking for register-to-register moves. If the sour
e register is deadat this point, we delete the register-to-register move, and repla
e all su

eedingreferen
es of the destination register with the sour
e register, until either the sour
ebe
omes live again, or the destination is dead. If the sour
e is still live, we do thesame, but stop the propagation if the destination register is set. When we are for
edto stop the propagation before the destination register's live range is 
omplete, weput the register-to-register move ba
k into the 
ode, but as far down in the s
ope aspossible (hopefully out of a 
riti
al path, for instan
e). If 
opy propagation must behalted on the next instru
tion after the move, no 
hange is made.5.6.3 Reverse Copy Propagation (r
)Our 
urrent reverse 
opy propagation (r
) operates only within a basi
 blo
k.We look for register-to-register moves where the sour
e register is dead, but startingat the bottom of the blo
k and pro
eeding towards the beginning. When we �ndsu
h a move, we �nd the initialization of the sour
e's live range, and if it is in this83



blo
k, we delete the move and 
hange all referen
es to the sour
e register betweenthat initialization and the move to the destination register.Thus, this transformation is designed to 
omplement 
p, in that 
p attempts tomaximize live ranges (and thus minimize moves) by �nding moves and extending thesour
e's live range forward in the 
ode, while this optimization instead extends thedestination's live range ba
kwards. When applied together, this 
an remove obsta
lesto 
opy propagation 
aused by register reuse, whi
h would otherwise require registerrenaming.5.6.4 Useless Jump Elimination (uj)This transformations removes any un
onditional jumps to blo
ks that are posi-tioned dire
tly after the jump.5.6.5 Useless Label Elimination (ul)Removes lo
al labels that are either not referen
ed in the routine, or have noexe
utable statements between them and another label. In this latter 
ase, allreferen
es to the removed label are repla
ed by the retained label. This has thee�e
t of removing empty basi
 blo
ks when possible.5.6.6 Bran
h Chaining (b
)Repla
es bran
hes to un
onditional jumps (or a 
hain of su
h jumps) with abran
h to the �nal target.5.6.7 Enfor
e Load Store (ls)The x86 is not a true load/store ISA, and thus many of its non-load instru
tionsallowmemory addresses as sour
es. This transformation removes any su
h in-memoryusage, repla
ing them with the more standard load to register, followed by register84



use. This is useful in exposing the possibility of register reuse (with 
orrelatedhoisting/pushing) to the other optimization phases. An example of how this 
anbe useful is given in Se
tion 5.7.2.5.6.8 Remove One Use Loads (u1)This is an x86-spe
i�
 peephole optimization whi
h sear
hes for loads to a registerwhose live range is 
omplete on the �rst use (it 
annot be applied to sets, as thex86 ISA does not provide non-store instru
tions that a

ept destination operandsthat address memory). When an in-memory version of the instru
tion exists, u1then deletes the expli
it load, and 
hanges the use to an in-memory version of theinstru
tion. This redu
es register pressure, and is therefore almost always worthapplying on these systems.5.6.9 Last Use Load Removal (lu)Like u1, this is an x86-spe
i�
 peephole optimization employed to redu
e registerpressure. As dis
ussed, lu repla
es single-use instru
tions with their in-memoryequivalents. For registers that are a

essed multiple times, we 
an sometimes avoid anunne
essary load by 
hanging the last use of the register to an in-memory instru
tion.This is done by 
hanging the order of the instru
tion, so that a multiple-use registeris overwritten on its last use (i.e., we 
hange the use of that register to a set, and theregister now 
ontains a live range that was originally in another register). Be
ause weswap the sour
e and destination, the instru
tion that we are 
hanging to in-memorymust be 
ommutative, or we 
annot apply lu. This is probably the hardest of allthe repeatable optimizations to explain, and so a review of the a
tual example of itsappli
ation given in Se
tion 5.7.3 may be needed for more 
omplete understanding.
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-L 1 0 4 ls 2 3 4-G 2 10 3 b
 uj ul-L 3 10 5 ra 
p r
 u1 lu-G 4 10 5 ra 
p r
 u1 lu(a) as 
ommand-line args

Lo
al ls while (CHANGES)while (CHANGES) ff Global raGlobal b
 Global 
pGlobal uj Global r
Global ul Global u1g Global luwhile (CHANGES) gf Loop raLoop 
pLoop r
Loop u1Loop lug (b) as pseudo
odeFigure 5.4: Repeatable optimization defaults5.6.10 Default ValuesPresently, the iterative sear
h does not vary the repeatable optimizations, andalways uses the defaults (applied after any fundamental optimizations), whi
h aresummarized in Figure 5.4. 5.7 FKO in A
tionIn this se
tion we use a
tual 
ode generated by FKO to illustrate how someof these transformations work in pra
ti
e. Se
tion 5.7.1 uses ddot (Figure A.5) todemonstrate register allo
ation, 
opy propagation, one use load elimination, and,most importantly, SIMD ve
torization. Se
tion 5.7.2 then uses dasum (Figure A.3)to illustrate prefet
h, enfor
e load/store, and the linked transformations of loopunrolling and useless label elimination. Finally, Se
tion 5.7.3 employs daxpy (Fig-ure A.4) to explore the use of non-temporal writes and last use load removal.Be
ause this is a
tual 
ode generated by FKO, it is in IA-32 assembly, whi
his not as a

essible as the ANSI C examples shown previously. However, manyof the lower-level optimizations (eg., SIMD ve
torization, register allo
ation, 
opy86



propagation, et
.) are diÆ
ult to illustrate in high level languages. Comments areprovided that explain the general e�e
ts of lines of interest, and we provide a fewnotes here as an aid for those interested in examining these examples in greater detail.Assembly for the x86 is two operand (in most 
ases; it is, after all, CISC), andin the gnu diale
t generated by FKO, the last operand is always the destination.As previously mentioned, FKO uses SSE for both s
alar and ve
tor instru
tions.All examples use double pre
ision data, and double pre
ision SSE instru
tions endin the suÆx d. S
alar SSE instru
tions' se
ond to last 
hara
ter is s, and ve
torinstru
tions (whi
h operate in parallel on multiple s
alars) have this 
hara
ter set top. Thus, [movsd, mulsd, addsd℄ are SSE op
odes to perform s
alar double pre
isionmove, multiply and add, respe
tively, and their ve
tor equivalents are [movpd, mulpd,addpd℄. Integer instru
tions are typi
ally suÆxed by l (for long, as this ISA has itsroots in 8-bit operation). Constants are pre�xed by $, registers by %, and the SSEregisters are xmm0 through xmm7, while the sta
k pointer is esp.5.7.1 DDOT Example Illustrating ra, 
p, r
, u1, and SVIn this se
tion, we use the Level 1 BLAS kernel ddot to illustrate registerallo
ation/assignment (ra), 
opy propagation (
p), reverse 
opy propagation (r
),remove one use loads (u1), and SIMD ve
torization (SV). The ddot kernel performsa ve
tor produ
t operation, and its HIL loop is shown in Figure 5.5(a).Figure 5.5(b) shows the same region of 
ode in assembly, when generated byFKO without any optimization other than optimize loop 
ontrol, whi
h is alwaysapplied when legal. For this ar
hite
ture, reversing the loop allows us to avoid a
omparison instru
tion, and so we see in lines 26-30 that the loop given in our HIL,whi
h was of the form for(i=0; i < N; i++), has been transformed to one of theform for(i=N; i; i--).Note that our front-end generates simplisti
 load/store versions of ea
h operation:for any 
omputation, all operands are loaded from memory, then the 
omputation is87



1 LOOP i = 0 , N2 LOOPBODY3 x = X[ 0 ℄ ;4 y = Y[ 0 ℄ ;5 dot += x � y ;6 X += 1;7 Y += 1;8 LOOP END9 RETURN dot ;(a) Relevant HIL Loop1 . l o 
 a l LOOP 02 LOOP 0 :3# x = X[ 0 ℄ ;4 movl 36(%esp ) ,%edx5 movsd (%edx ) ,%xmm06 movlpd %xmm0 ,16(%esp )7# y = Y[ 0 ℄8 movl 32(%esp ) ,%edx9 movsd (%edx ) ,%xmm010 movlpd %xmm0 ,8(%esp )11# dot += x � y ;12 movsd 16(%esp ) ,%xmm013 movsd 8(%esp ) ,%xmm114 mulsd %xmm1 ,%xmm015 movsd (%esp ) ,%xmm216 addsd %xmm0 ,%xmm217 movlpd %xmm2 ,(%esp )18# X += 119 movl 36(%esp ) ,%edx20 addl $8 , %edx21 movl %edx ,36(%esp )22# Y += 123 movl 32(%esp ) ,%edx24 addl $8 , %edx25 movl %edx ,32(%esp )26# whi le(�� i ) ;27 movl 44(%esp ) ,%edx28 subl $1 , %edx29 movl %edx ,44(%esp )30 jne LOOP 031 . l o 
 a l LOOP END 032 LOOP END 0 :(b) Assembly, no optimization otherthan LC

1# Hoisted loads from ra2 movl 48(%esp ) ,%ebp3 movsd 4(%esp ) ,%xmm24 movl 36(%esp ) ,%eax5 movl 40(%esp ) ,%e
x6 . l o 
 a l LOOP 07 LOOP 0 :8# x = X[ 0 ℄ ;9 movl %e
x ,%edx10 movsd (%edx ) ,%xmm011 movsd %xmm0 ,%xmm112# y = Y[ 0 ℄13 movl %eax ,%edx14 movsd (%edx ) ,%xmm015 movsd %xmm0 ,%xmm316# dot += x � y ;17 movsd %xmm1 ,%xmm018 movsd %xmm3 ,%xmm119 mulsd %xmm1 ,%xmm020 movsd %xmm2 ,%xmm221 addsd %xmm0 ,%xmm222 movsd %xmm2 ,%xmm223# X += 124 movl %e
x ,%edx25 addl $8 , %edx26 movl %edx ,%e
x27# Y += 128 movl %eax ,%edx29 addl $8 , %edx30 movl %edx ,%eax31# whi le(�� i ) ;32 movl %ebp ,%edx33 subl $1 , %edx34 movl %edx ,%ebp35 jne LOOP 036 . l o 
 a l LOOP END 037 LOOP END 0 :38# Pushed s t o r e from ra39 movlpd %xmm2 ,4(%esp )(
) Assembly, after raFigure 5.5: DDOT Loop in HIL and Assembly with no optimization, andra 88



performed, and then result is stored ba
k to memory. Lines 3-17 are all involved inperforming a simple dot += X[0℄*Y[0℄, for instan
e. At this point, registers are liveonly a
ross a single 
omputation, and so there is no reuse. FKO relies on repeatableoptimizations to improve register usage, as the shown in the following examples.Figure 5.5(
) shows the same assembly, but this time we have applied registerassignment/allo
ation. In lines 2-5 we see that the loads of the variables i (the loopindex), dot, X (pointer to �rst ve
tor), and Y (pointer to se
ond ve
tor) have beenhoisted out of the loop. Further, sin
e dot is live on output and written in the loop,the store of dot ba
k to memory has been pushed out of the loop, to line 39. Atthis point, the size of the 
ode supporting the loop has been expanded, as we haveadded the hoisted/pushed 
ode, while 
hanging a�e
ted loads to register-registermoves. Not only do we have repetitive moves, but noti
e that line 22 a
tually movesa register to itself! Cleaning up all these unne
essary register moves is the job of thevarious 
opy propagation forms.Figure 5.6(a) shows this same 
ode, but we have applied forward 
opy propagation(
p) as well as ra, and we have done them in this order, and 
ontinued to apply themtogether until they no longer transform the 
ode. While this has redu
ed the numberof unne
essary moves, there are still some obvious ones, as in lines 9 and 10, wherethe fa
t that we reused the xmm0 register has for
ed us to retain the move to xmm1.Adding reverse 
opy propagation (r
) to the optimization blo
k handles these kinds ofrenaming problems, as shown in Figure 5.6(b), where line 8 loads the value dire
tlyinto xmm1. Reverse 
opy propagation started with the register-to-register move atline 10 of Figure 5.6(a), and determined that the sour
e's live range began on line 9.The move on line 10 was then deleted, and and the destination register (xmm1) wassubstituted for the sour
e register (xmm0) on line 9, leading to line 8 of Figure 5.6(b).The 
ode is starting to look mu
h better, but we 
an redu
e register pressureby making one of the loads impli
it. Exploiting the CISC ISA in this way is the89



1# Hoisted loads from ra2 movl 48(%esp ) ,%ebp3 movsd 4(%esp ) ,%xmm24 movl 36(%esp ) ,%eax5 movl 40(%esp ) ,%e
x6 . l o 
 a l LOOP 07 LOOP 0 :8# x = X[ 0 ℄ ;9 movsd (%e
x ) ,%xmm010 movsd %xmm0 ,%xmm111# y = Y[ 0 ℄12 movsd (%eax ) ,%xmm013# dot += x � y ;14 mulsd %xmm0 ,%xmm115 addsd %xmm1 ,%xmm216# X += 117 addl $8 , %e
x18# Y += 119 addl $8 , %eax20# whi le(�� i ) ;21 subl $1 , %ebp22 jne LOOP 023 . l o 
 a l LOOP END 024 LOOP END 0 :25# Pushed s t o r e from ra26 movlpd %xmm2 ,4(%esp )(a) Assembly, after ra and 
p

1 movl 48(%esp ) ,%ebp2 movsd 4(%esp ) ,%xmm23 movl 36(%esp ) ,%eax4 movl 40(%esp ) ,%e
x5 . l o 
 a l LOOP 06 LOOP 0 :7# x = X[ 0 ℄ ;8 movsd (%e
x ) ,%xmm19# y = Y[ 0 ℄10 movsd (%eax ) ,%xmm311# dot += x � y ;12 mulsd %xmm3 ,%xmm113 addsd %xmm1 ,%xmm214# X += 115 addl $8 , %e
x16# Y += 117 addl $8 , %eax18# whi le(�� i ) ;19 subl $1 , %ebp20 jne LOOP 021 . l o 
 a l LOOP END 022 LOOP END 0 :23# Pushed s t o r e from ra24 movlpd %xmm2 ,4(%esp )(b) Assembly, after ra, 
p and r
Figure 5.6: DDOT Loop Assembly with ra, 
p, and r
job of remove one use loads (u1), whi
h merges a 
omputation and load into oneinstru
tion. Note that redu
ing register pressure is not an obvious bene�t in the
urrent loop, but after additional transformations su
h as unrolling and a

umulatorexpansion, it 
an be
ome 
riti
al. Even absent su
h 
hanges, additional bene�t maybe provided both by the in
reased 
ode density and having the additional registeravailable for later use in global appli
ation of ra.Figure 5.7 demonstrates u1. In order to make the examples more 
ompa
t, wehereafter omit the hoisted/pushed load/stores and the 
omputation identifying 
om-ments. Therefore, Figure 5.7(a) re
apitulates Figure 5.6(b) without su
h instru
tions,and Figure 5.7(b) shows the same 
ode after u1 is added to the optimization blo
k.We see that we have one less instru
tion in the loop, and the register xmm3 is no90



1 . l o 
 a l LOOP 02 LOOP 0 :3 movsd (%e
x ) ,%xmm14 movsd (%eax ) ,%xmm35 mulsd %xmm3 ,%xmm16 addsd %xmm1 ,%xmm27 addl $8 , %e
x8 addl $8 , %eax9 subl $1 , %ebp10 jne LOOP 0(a) DDOT Loop Assembly with ra,
p, and r

1 . l o 
 a l LOOP 02 LOOP 0 :3 movsd (%e
x ) ,%xmm14 mulsd (%eax ) ,%xmm15 addsd %xmm1 ,%xmm26 addl $8 , %e
x7 addl $8 , %eax8 subl $1 , %ebp9 jne LOOP 0(b) DDOT Loop Assembly with ra,
p, r
, and u1Figure 5.7: DDOT Loop Assembly with ra, 
p, r
 and u1longer used. This is be
ause the load of xmm3 from line 4 of Figure 5.7(a) has beenmerged into the 
omputational instru
tion on line 4 of Figure 5.7(b).5.7.1.1 SIMD Ve
torizationThe next step is to show how SIMD Ve
torization is applied. Sin
e SV makesglobal 
hanges to the fun
tion, it is not easily understood by viewing isolated 
odefragments, and therefore Figure 5.8 shows the 
omplete assembly generated afterve
torization. For the sake of both 
larity and brevity, we have applied all repeatableoptimizations using the defaults given in Se
tion 5.6.10.Ve
torization 
reates many 
omplexities, one of whi
h is the need to keep ve
torsaligned to 128 bits. This is problemati
 in that the IA-32 ABI (Appli
ation BinaryInterfa
e) only guarantees sta
k pointer alignment to 32 bits. Thus, in lines 7 and8, we shift o� the last 4 bits of the sta
k pointer so that it is known to be alignedto 128 (note that the sta
k grows downward in this ISA, and so this just results inexpanding our lo
al frame by a bit). On this ar
hite
ture FKO normally employsthe frame pointer as a general purpose register (otherwise, the 
ompiler would onlyhave six available integer registers, as two would be tied up pointing to the sta
k).However, sin
e how mu
h the shifts 
hange the sta
k pointer is not known at 
ompiletime, we must save the old sta
k pointer, or we will unable to re
over it (in orderto restore the sta
k pointer on fun
tion exit, or to a

ess parameters passed to the91



1 . t e x t2 . g l o b l ATL UDOT3ATLUDOT:4# Ensure 128 b i t al ignment o fs ta
k ptr5 movl %esp ,%edx6 subl $128 , %esp7 shrl $4 , %esp8 shll $4 , %esp9 movl %edx ,8(%esp )10# Save r e g i s t e r s & ld o ld sta
kptr new reg11 movl %ebp ,(%esp )12 movl %ebx ,4(%esp )13 movl 8(%esp ) ,%ebp14# para 0 , name=N15 movl 4(%ebp ) ,%edx16 movl %edx ,%eax17# para 1 , name=X18 movl 8(%ebp ) ,%edx19 movl %edx ,%e
x20# para 2 , name=in
X : UNUSED21# para 3 , name=Y22 movl 16(%ebp ) ,%edx23# para 4 , name=in
Y : UNUSED24# I n i t i a l i z e l o 
 a l s to
ons tant s25 xorpd %xmm0 ,%xmm026# END OF FUNCTION PROLOGUE27 subl $1 , %eax28 jle CUNE LOOP 029# In i t a

umulator ve
 to r f o rdot30 movsd %xmm0 ,%xmm231 xorpd %xmm0 ,%xmm032 movsd %xmm2 , %xmm033 movl %eax ,%ebp34 movapd %xmm0 , %xmm235 movl %e
x ,%eax36 movl %edx ,%e
x37 . l o 
 a l LOOP 0

38 LOOP 0 :39 movapd (%eax ) , %xmm040 mulpd (%e
x ) , %xmm041 addpd %xmm0 , %xmm242 addl $16 , %e
x43 addl $16 , %eax44 subl $2 , %ebp45 jg LOOP 046# Redu
e a

umulator ve
 to r f o rdot47 movl %e
x ,%ebx48 movl %eax ,%e
x49 pshufd $0xee ,%xmm2 ,%xmm150 addpd %xmm1 , %xmm251 movlpd %xmm2 , 80(% esp )52 movsd 80(%esp ) ,%xmm053 movsd %xmm0 ,%xmm254 subl $�1, %ebp55 movl %ebp ,%eax56 jne IFKOCD0 LOOP 057 . l o 
 a l CUDONE LOOP 058 CUDONE LOOP 0 :59# se t return val , r e s t o r e regs, and return60 . l o 
 a l IFKO EPILOGUE61 IFKO EPILOGUE:62 movsd %xmm2 ,104(%esp )63 fldl 104(%esp )64 movl (%esp ) ,%ebp65 movl 4(%esp ) ,%ebx66 movl 8(%esp ) ,%esp67 ret68 . l o 
 a l CUNE LOOP 069 CUNE LOOP 0 :70 addl $1 , %eax71 movsd %xmm0 ,%xmm272 movl %edx ,%ebx73 . l o 
 a l IFKOCD0 LOOP 074 IFKOCD0 LOOP 0 :75 movsd (%e
x ) ,%xmm076 mulsd (%ebx ) ,%xmm077 addsd %xmm0 ,%xmm278 addl $8 , %e
x79 addl $8 , %ebx80 subl $1 , %eax81 jne IFKOCD0 LOOP 082 jmp CUDONE LOOP 0Figure 5.8: SIMD Ve
torized DDOT Assembly92



routine). Therefore, we see that line 5 
opies the original sta
k pointer to a temporaryregister before the sta
k pointer is modi�ed. This temporary register is then used tostore the old sta
k pointer to the newly allo
ated sta
k frame (line 9), allowing theoriginal sta
k pointer to be a target for register allo
ation like any other lo
al (it isloaded to a new register on line 13).Line 25 initializes dot to zero for use in the loop. However, the dot that has justbeen set is a s
alar. The loop, however, has been ve
torized, and so it needs dotin a ve
tor register. This is done on lines 31, 32 and 34. A 
areful examination ofthese lines reveals that they are, in fa
t, not needed. This is easily dis
overable inthe assembly, but not apparent in our LIL. These lines are not needed be
ause forFKO on the x86, ve
tor and s
alar registers are aliased, and so we 
an use normalmoves to transfer them, and in this 
ase, both our s
alar and ve
tor dot registerswind up assigned to the physi
al register xmm2. However, our LIL assumes thats
alar and ve
tor registers are separate (as indeed they often are, for instan
e onthe PowerPC, or indeed on the x86 if we used the x87 FPU for s
alar 
oating point
omputation), and thus by default goes through memory when transferring betweens
alar and ve
tor registers. In this 
ase, FKO has avoided going through memory, butstill retains some useless register-to-register moves. We will need to introdu
e somemore ar
hite
ture-spe
i�
 information into the 
opy propagation phases (indi
atingexa
tly how s
alar and ve
tor registers are aliased) to avoid these moves. Be
ausethese s
alar/ve
tor 
onversions are always introdu
ed outside the main loop, wehave not bothered to introdu
e this system-dependent optimization yet, but we willprobably do so eventually, parti
ularly as we examine more 
omplex kernels (whereouter-loop transforms be
ome more 
riti
al, as the inner loop is deeply nested).Lines 31 and 32 are themselves the result of a series of optimizations. They startedout as a store to memory of the s
alar value, followed by a read into a ve
tor register,but 
opy propagation knows how to move a value from a s
alar register to the lower64 bits of the ve
tor register, as shown in line 32. However, this leaves the upper 6493



bits untou
hed, and so the target ve
tor register must be zeroed before the move,whi
h is what instru
tion 31 is doing. Line 34 is a ve
tor-to-ve
tor register move,moving the 
onstru
ted ve
tor register xmm0 to its eventual target, xmm2. Note thatwe 
annot 
onstru
t the ve
tor value in xmm2 dire
tly, due to live range 
on
i
ts.While our LIL treats ve
tor and s
alar registers as separate sets, it of 
ourse hasa

urate dependen
y information, and so it knows that when xmm2 is used as tohold a s
alar value (in this 
ase the s
alar value of dot), whi
hever ve
tor registerthat 
orresponds to it 
annot be assigned until that s
alar live range is 
omplete.Sin
e the s
alar version of xmm2 is not dead until ve
tor 
onstru
tion is 
omplete,and 
onstru
tion takes multiple instru
tions, we have to use the temporary ve
torregister xmm0.Lines 49-53 (after the ve
torized loop) do the opposite: they take the ve
tor valuesof dot, and redu
e them to a s
alar value. After the loop, however, this requiressumming the two partial results as well as moving the data between s
alar/ve
tortypes. Therefore, line 49 moves the upper 64 bits of the ve
tor register xmm2 into thelower 64 bits of xmm1, and we then add them together on line 50, so that the 
ompletedot is in the lower 64 bits of xmm2. Unfortunately, FKO was unable to remove thestore and load to memory this time, and so line 51 stores dot to memory from ave
tor register, line 52 reads it from that lo
ation into a temporary s
alar register,and line 53 moves it to its �nal s
alar destination register. Again, there are manyoptimizations we 
an apply to make this more eÆ
ient, but we have not yet done sosin
e it outside the loop.Lines 38-45 
ontain the ve
torized loop. We see that this loop is essentially thesame as the s
alar loop shown in Figure 5.7(b), with two notable ex
eptions. First,all s
alar instru
tions have been repla
ed by their ve
tor equivalents. Se
ond, theupdate of the pointers is by 16 bytes (128 bits) rather than 8, and the index is updatedby subtra
ting two rather than one. This is be
ause ve
torization is equivalent to as
alar unrolling of two for double pre
ision.94



Be
ause it is equivalent to a 
omputational unrolling of 2, we must have a 
leanuploop for odd values of N , and we must introdu
e the appropriate bran
hes to this
leanup loop, just as we do in unrolling. Lines 74-82 
omprise the s
alar 
leanuploop. Lines 27 and 28 supply the pre-loop bran
h to 
leanup (to handle the 
ase ofN < 2), and lines 54 and 56 do the same for post-ve
tor-loop 
leanup (for the 
aseN > 2, but N mod 2 6= 0).Lines 60-66 
omprise the fun
tion epilogue, whi
h restores the 
allee-savedregisters (in
luding the sta
k pointer), and returns. Lines 62 and 63 reveal another
omplexity of this ar
hite
ture. The IA-32 ABI requires fun
tions returning 
oatingpoint values to store them as the top register of the x87's register sta
k. Movingbetween SSE registers and x87 registers requires going through memory, so line 62stores the return value (dot) from an SSE register, and line 63 loads it to the x87register sta
k top.In our pre-loop test, we subtra
ted UR-1 from the start value of the loop indexin order to get the numbers 
orre
t for eÆ
ient unrolled loop indexing. If we neverenter this loop, however, this value must be added ba
k in, whi
h is why the pre-looptests jumps to the blo
k on lines 69-72, rather than dire
tly to the 
leanup loop, asthe post-loop test does.Note that sin
e the 
leanup loop and 
orresponding 
onditionals are generated,FKO has 
onsiderable freedom to 
hoose where to add these blo
ks. Therefore,we have have added them in su
h a way that the fall-through 
ases assume that theve
torized loop is entered, and loop 
leanup is not required (thus not adding overheadto the most eÆ
ient 
ase).5.7.2 DASUM Example Illustrating UR, AE, PF, ul, and lsIn this se
tion we use dasum (Figure A.3) to illustrate various optimizations.First, we use a simple example to show how the enfor
e load/store ls transformation
an be useful, and then a more detailed listing is given in order to demonstrate how95



1 LOOP i = 0 , N2 LOOPBODY3 x = X[ 0 ℄ ;4 x = ABS x ;5 sum += x ;6 X += 1 ;7 LOOP END(a) As HIL
1 . l o 
 a l LOOP 02 LOOP 0 :3 movsd (%e
x ) ,%xmm04 andpd 16(%esp ) ,%xmm05 addsd %xmm0 ,%xmm26 addl $8 , %e
x7 subl $1 , %eax8 jne LOOP 0(b) Without ls

1 movapd 16(%esp ) ,%xmm32 . l o 
 a l LOOP 03 LOOP 0 :4 movsd (%e
x ) ,%xmm05 andpd %xmm3 ,%xmm06 addsd %xmm0 ,%xmm27 addl $8 , %e
x8 subl $1 , %eax9 jne LOOP 0(
) With lsFigure 5.9: ASUM Looploop unrolling (UR), a

umulator expansion (AE), prefet
h (PF), and useless labelelimination (ul) work together.Figure 5.9(a) shows the dasum written in our HIL. Line 3 loads the array value,line 4 takes its absolute value, and line 5 adds this into the running sum (dasum isthe absolute value sum of an array). Figure 5.9(b) shows this same inner loop inassembly. Here, we are using all of the default optimizations, ex
ept we have turnedo� ls. Line 3 of this listing loads the array value, line 4 takes its absolute value (moreon this below), and line 5 adds the absolute value into the running sum.In order to understand this 
ode, we need to understand how absolute value isperformed using SSE, whi
h does not have an expli
it absolute value instru
tion.Fortunately, a bitwise and 
an be used to produ
e su
h an operation. First, we
onstru
t a 128 bit integral value that has all bits set to 1, ex
ept the sign bit ofea
h ve
len 
oating point elements, whi
h are instead set to 0. Absolute value of as
alar or ve
tor may then be produ
ed by performing a bitwise and of this integralvalue and the register holding the number to be absolute valued. Be
ause we wantto be able to issue absolute value with minimal register use, the front-end generatesthe in-memory version of the instru
tion, as shown on line 4 of Figure 5.9(b) (wherethe integral value has been written to the sta
k lo
ation 16(%esp)). Inside a loop,however, this 
an lead to repetitive memory reads. By running enfor
e load store asshown in the ar
hite
tural defaults, the 
ode in Figure 5.9(
) is 
reated, where this96



1 xorpd %xmm1 ,%xmm12 movsd %xmm1 ,%xmm33 . l o 
 a l LOOP 04 LOOP 0 :5 movsd (%e
x ) ,%xmm06 andpd %xmm2 ,%xmm07 addsd %xmm0 ,%xmm38 . l o 
 a l IFKOCD1 LOOP 09 IFKOCD1 LOOP 0 :10 movsd 8(%e
x ) ,%xmm011 andpd %xmm2 ,%xmm012 addsd %xmm0 ,%xmm313 . l o 
 a l IFKOCD2 LOOP 014 IFKOCD2 LOOP 0 :15 movsd 16(%e
x ) ,%xmm016 andpd %xmm2 ,%xmm017 addsd %xmm0 ,%xmm318 . l o 
 a l IFKOCD3 LOOP 019 IFKOCD3 LOOP 0 :20 movsd 24(%e
x ) ,%xmm021 andpd %xmm2 ,%xmm022 addsd %xmm0 ,%xmm323 addl $32 , %e
x24 subl $4 , %eax25 jg LOOP 0(a) Unrolled to 4

1 xorpd %xmm1 ,%xmm12 movsd %xmm1 ,%xmm33# Shadow a

um i n i t4 xorpd %xmm0 ,%xmm05 movsd %xmm0 ,%xmm46 . l o 
 a l LOOP 07 LOOP 0 :8 prefet
hnta 256(%eax )9 movsd (%eax ) ,%xmm010 andpd %xmm2 ,%xmm011 addsd %xmm0 ,%xmm412 movsd 8(%eax ) ,%xmm013 andpd %xmm2 ,%xmm014 addsd %xmm0 ,%xmm315 movsd 16(%eax ) ,%xmm016 andpd %xmm2 ,%xmm017 addsd %xmm0 ,%xmm418 movsd 24(%eax ) ,%xmm019 andpd %xmm2 ,%xmm020 addsd %xmm0 ,%xmm321 addl $32 , %eax22 subl $4 , %ebp23 jg LOOP 024# A

umulator redu
e25 addsd %xmm4 ,%xmm3(b) With UR=4, ul, PF, and AE=2Figure 5.10: DASUM loop unrolled to 4impli
it load has �rst been 
hanged ba
k to an expli
it load by ls, and then registerassignment has hoisted the load of the integral value out of the loop.Figure 5.10(a) shows the dasum loop that has been unrolled to 4, but withoutapplying useless label elimination. We see that the loop simply repeats Figure 5.9(
)four times, with a few minor 
hanges. First, UR does not just blindly repeat theloop 
ontrol and pointer updates, but instead 
hanges the address referen
es using
onstants in the loop, and does these updates only one time. Noti
e that the loadsfrom the array X have an o�set, as shown on lines 5, 10, 15, and 20 of Figure 5.10(a).We 
an then add UR � sizeof() = 4 � 8 = 32 to the X pointer at the bottom ofthe loop (line 23). If we updated the pointer between ea
h a

ess, there would be apotential slowdown, sin
e an integer add would need to be performed before ea
h of97



the last three loads. In the present formulation, the ar
hite
ture is free (assumingregister renaming is done by the hardware) to issue all four loads in parallel. Line24 shows that the update of the loop index is now by 4, rather than 1.When dupli
ating the loop body, any labels must be made distin
t, and so wesee that the labels of the dupli
ated blo
ks (lines 9, 14 and 19) have a standardpre�x added to them. These extra labels are in fa
t useless in this operation. Iflabels aren't being used, we want to remove them, sin
e most optimizations are morerobust within a basi
 blo
k than when applied a
ross blo
ks.Figure 5.10(b) shows the same loop, but we have applied ul, PF and AE=2.The useless label elimination veri�es that the dupli
ated labels are not referen
edanywhere in the 
ode, and removes them, resulting in a loop 
onsisting of a singlebasi
 blo
k again. On this ar
hite
ture, the 
a
he line size is 128 bytes, or 16 doublepre
ision elements, and so one prefet
h instru
tion (line 8) is suÆ
ient.Our �nal transformation of interest is a

umulator expansion. Noti
e that thesummation updates (lines 7, 12, 17 and 22) of Figure 5.10(a) all update the sameregister, xmm3, but in Figure 5.10(b), we alternate between uses of xmm4 and xmm3(lines 11, 14, 17 and 20). This means that the extra register must be initializedbefore the loop (lines 4 and 5), and added ba
k into the total after the loop (line 25).5.7.3 DAXPY Example Illustrating WNT and luFigure 5.11(a) shows the main daxpy loop in our HIL, while Figure 5.11(b) showsthe assembly generated by FKO when ve
torization is applied, and all repeatabledefaults other than last use removal (lu) are applied.The 
orresponden
e of these two loops is easy to see: in both loops, the �rsttwo lines of the loop body load the input values from their respe
tively arrays, thethird multiplies by the X value by alpha, and the fourth adds the result to the valueobtained from Y . We then store the value ba
k to Y , and in
rement the array and98



1 LOOP i = 0 , N2LOOPBODY3 x = X[ 0 ℄ ;4 y = Y[ 0 ℄ ;5 x = x �alpha ;6 y += x ;7 Y[ 0 ℄ = y ;8 X += 1 ;9 Y += 1 ;10LOOP END(a) As HIL

1 . l o 
 a l LOOP 02 LOOP 0 :3 movapd (%eax ) , %xmm14 movapd (%e
x ) , %xmm35 mulpd %xmm2 , %xmm16 addpd %xmm1 , %xmm37 movl %e
x ,%edx8 movapd %xmm3 , (% edx )9 addl $16 , %e
x10 addl $16 , %eax11 subl $2 , %ebp12 jg LOOP 0(b) As ve
torized assembly

1 . l o 
 a l LOOP 02 LOOP 0 :3 movapd (%eax ) , %xmm14 mulpd %xmm2 , %xmm15 addpd (%e
x ) , %xmm16 movl %e
x ,%edx7 movntpd %xmm1 , (% edx )8 addl $16 , %e
x9 addl $16 , %eax10 subl $2 , %ebp11 jg LOOP 0(
) As assembly, with WNT& luFigure 5.11: DAXPY Loopindex 
ounters (sin
e Figure 5.11(b) has been ve
torized, it in
rements by twi
e asmu
h as Figure 5.11(a)).On the P4E, if this loop traverses enough memory to over
ow the 
a
he, it isa performan
e win to use non-temporal writes (WNT) for the stores of Y , and wehave done so in Figure 5.11(
). Noti
e that the store of Y (line 8) of Figure 5.11(b)uses the instru
tion movapd, while the store of Y (line 7) of Figure 5.11(
) uses itsnon-temporal equivalent, movntpd.The �nal optimization shown here is last use removal (lu). In our our previousexamples, we have usually been able to make one array load impli
it through the useof u1, but we 
annot do so here, be
ause of the usage pattern. It's not a good idea tooverwrite the register holding alpha (xmm2) sin
e it is loop invariant, and overwritingit would require us to reload it in the loop. Therefore, sin
e x86 assembly 
an haveonly sour
e operands 
oming from memory, we are unable to apply u1 to line 5 ofFigure 5.11(b).Instead, we noti
e that the last use of the register holding the value ofX(i)�alpha(xmm1) is in the 
ommutative instru
tion addpd on line 6 of Figure 5.11(b). In this
ase, we 
an make the load of Y impli
it, by reordering the instru
tion so that theY value 
omes from memory, and xmm1 is overwritten (sin
e this was its last use inthe register), as in line 5 of Figure 5.11(
).99



5.8 Current Iterative Sear
hThe present iterative sear
h varies only the fundamental optimizations. Therepeatable optimizations are therefore always those given in Se
tion 5.6.10, whileour fundamental defaults are outlined in Se
tion 5.4.7. The master sear
h performsthe following sub-sear
hes in this order: WNT Sear
h: FKO is queried for the arraysthat are set in the loop, and non-temporal writes are tried on ea
h in turn, and areused for that array if they provide a speedup. PF Type Sear
h: Ea
h supported typeof prefet
h instru
tion is tried for \prefet
h for read" and \prefet
h for write". Bestvalues are kept. PF Distan
e Sear
h: For ea
h prefet
h target (returned by FKOanalysis) a linear sear
h is performed using line size in
rements. We also try notprefet
hing the array, and prefet
hing shorter distan
es less than the line size. Bestdis
overed values for ea
h array are retained. Loop Unroll Sear
h: Try all powers oftwo between [1:128℄. Powers of two are used be
ause they allow for a qui
k sear
hand keep data a

ess in a given loop iteration a multiple of the 
a
he line size; amore 
omplete sear
h would probably yield some improvement, but this value will bere�ned further by later stages of the sear
h anyway. A

umulator Expansion Sear
h:Try performingAE on all valid targets (returned by FKO) in turn. This optimizationdepends on unrolling, so we try a few di�erent unrollings for ea
h expansion. Letthe number of a

umulators 
urrently being tried for a given variable be Na, andthe present unrolling fa
tor be Nu. Our present sear
h tries all Na in the range2 � Na � 6 (six is a safe maximum for the x86, where the ISA has only 8 registers).For ea
h su
h Na, we try using the 
urrent loop unrolling, Nu. When there is amismat
h between Na and Nu, we try additional loop unrollings in order to avoid
ross-iteration pipeline stalls. More pre
isely, if Nu < Na, additionally try the loopunrolling of Na. If Nu > Na and Nu mod Na 6= 0, we try two additional unrollingsof dNuNa e �Na and bNuNa 
 �Na. 100



CHAPTER 6EXPERIMENTAL RESULTS AND ANALYSISThis 
hapter presents and analyzes results on two of today's premier x86 imple-mentations, and is organized in the following way: Se
tion 6.1 outlines the 
oatingpoint kernels that are being optimized, Se
tion 6.2 dis
usses version and timingmethodology information, and Se
tion 6.3 presents the raw results. Se
tion 6.4then provides the main analysis of these results, while Se
tion 6.5 points out someinteresting (but non-essential) details. Finally, in those few 
ases where iFKO failsto provide the fastest implementation, Se
tion 6.6 des
ribes the transformations thatthe most su

essful tuning te
hnique utilized to get the fastest kernel, so it is 
learwhether or not the required optimization(s) 
an be eventually be generalized intoour 
ompilation framework.6.1 Problem Domain and Surveyed RoutinesThe general domain of this resear
h is 
oating point kernels, but this paperfo
uses on the Level 1 BLAS. The Level 1 BLAS are ve
tor-ve
tor operations, mostof whi
h 
an be expressed in a single for-loop. These operations are so simple thatit would seem unlikely that empiri
al optimization 
ould o�er mu
h bene�t overmodel-based 
ompilation. One of the key 
ontributions of this initial work is thatwe show that even on su
h well-understood and often-studied operations as these,empiri
al optimization 
an improve performan
e over standard optimizing 
ompilers.Most Level 1 BLAS have four di�erent variants depending on type and pre
isionof operands. There are two main types of interest, real and 
omplex numbers, ea
h101



of whi
h has double and single pre
ision. In this work, we 
on
entrate on single anddouble pre
ision real numbers. The Level 1 BLAS all operate on ve
tors, whi
h 
an be
ontiguous or strided. Again, we fo
us on the most 
ommonly used (and optimizable)
ase �rst, the 
ontiguous ve
tors. For ea
h routine, the BLAS API pre�xes theroutine name with a type/pre
ision 
hara
ter, `s' meaning single pre
ision real, and`d' for double pre
ision real. Sin
e iamax involves returning the index of the absolutevalue maximum in the ve
tor, the API puts the pre
ision pre�x in this routine as these
ond 
hara
ter rather than the �rst (i.e., isamax or idamax rather than ddot orsdot). There are quite a few Level 1 BLAS, and so we study only the most 
ommonlyused of these routines, whi
h are summarized in Table 6.1 (Appendix A provides a
omplete listing of the a
tual kernels input to the 
ompilers, both in ANSI C and inour HIL). The performan
e of the BLAS are usually reported in MFLOPS (millionsof 
oating point operations per se
ond), but some of these routines a
tually do no
oating point 
omputation (eg., 
opy). Therefore, the FLOPs 
olumn gives the valuewe use in 
omputing ea
h routine's MFLOP rate.Table 6.1: Level 1 BLAS summaryNAME Operation Summary FLOPsswap for (i=0; i < N; i++) {tmp=y[i℄; y[i℄ = x[i℄; x[i℄ = tmp} Ns
al for (i=0; i < N; i++) y[i℄ *= alpha; N
opy for (i=0; i < N; i++) y[i℄ = x[i℄; Naxpy for (i=0; i < N; i++) y[i℄ += alpha * x[i℄; 2Ndot for (dot=0.0,i=0; i < N; i++) dot += y[i℄ * x[i℄; 2Nasum for (sum=0.0,i=0; i < N; i++) sum += fabs(x[i℄) 2Nfor (imax=0, maxval=fabs(x[0℄), i=1; i < N; i++) {if (fabs(x[i℄) > maxval){ imax = i; maxval = fabs(x[i℄); }iamax } 2N
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6.2 Methodology and Version InformationAll timings were done with ATLAS version 3.7.8, whi
h we modi�ed to enableve
torization by Intel's C 
ompiler, i

. Most of the loops in ATLAS are written as`for(i=N; i; i--)' or `for(i=0; i != N; i++)' and i

 will not ve
torize eitherform, regardless of what is in the loop. On
e we experimentally determined thatthis loop formulation was preventing i

 from ve
torizing any of the target loops,we simply modi�ed the sour
e of the relevant routines to `for(i=0; i < N; i++)',whi
h i

 su

essfully ve
torizes.Table 6.2: Compiler 
ag and version information by platformg

 i

PLATFORM VER FLAGS VER FLAGS2.8 Ghz P4E 3.3.2 -fomit-frame-pointer -O3 8.0 -xP -O3 -mp1 -stati
(Pentium 4E) -funroll-all-loops1.6 Ghz Opt 3.3.2 -fomit-frame-pointer 8.0 -xW -O3 -mp1 -stati
(Opteron) -O -mfpmath=387 -m64We report numbers for two very di�erent high-end x86 ar
hite
tures, the IntelPentium 4E and AMD Opteron. Further platform, 
ompiler and 
ag information issummarized in Table 6.2 (for the pro�le build and use phases, the appropriate 
agswere suÆxed to those shown Table 6.2.) The ATLAS Level 1 BLAS kernel timerswere utilized to generate all performan
e results. However, we enabled ATLAS'sassembly-
oded walltimer that a

esses hardware performan
e 
ounters in order toget 
y
le-a

urate results. Sin
e walltime is prone to outside interferen
e, ea
htiming was repeated six times, and the minimum was taken. All timings were donesequentially, and run on an unloaded ma
hine. Be
ause these are a
tual timings(as opposed to simulations), there is still some 
u
tuation in performan
e numbersdespite these pre
autions, so small gaps of around a per
entage point may notrepresent true di�eren
es. 103



Therefore, be
ause the sear
h is empiri
al, it is not stri
tly repeatable. Ingeneral, truly bad 
hoi
es are rarely made, as they tend to be above 
lo
k resolution.Nonetheless, te
hniques 
an be employed to improve the results of any empiri
alsear
h. The simplest is to run the sear
h several times, and take the best availabletransformation list found for ea
h routine (i.e., utilize the ddot 
ags from run A,and the samax 
ags from run B). A more sophisti
ated approa
h takes the result ofprevious sear
hes as the starting point of a new sear
h, or reruns 
ertain sub-sear
heswith updated information from subsequent sub-sear
hes, or tweaks various boundinformation in hopes of �nding undis
overed outlying transformations. However, wewanted to 
ompare fully-automati
 use of the present systems, and so ea
h list ofresults was obtained by simply running two s
ripts sequentially. The �rst s
ript timesall �xed methods (g

,i

,ATLAS,FKO), and the se
ond is the the default empiri
alsear
h of iFKO.6.2.1 Input RoutinesAppendix A shows the input routines to all 
ompilers. With the ex
eption ofiamax, the input routines given to FKO were the dire
t translations of these routinesfrom ANSI C to our HIL (i.e., high level optimizations were not applied to the sour
e).Our HIL does not yet support s
oped ifs, however, and so iamax was originally 
odedfor all 
ompilers (in the appropriate language) as shown in Figure A.7(b), whi
h,absent 
ode positioning transformations, is the most eÆ
ient way to implement theoperation. However, this formulation of iamax depressed performan
e signi�
antlyfor i

, while not noti
eably improving g

's performan
e, and so we utilized theimplementation shown in Figure A.7(a) for these 
ompilers.
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6.3 Overview of ResultsThis se
tion presents our experimental results, and explains the formats in whi
hwe present them. These results show adaptation to the kernel, ar
hite
ture, and the
ontext (in this 
ase, out-of-
a
he, or L2-
a
he resident). Analysis of these resultsare provided in the following se
tions.Figures (6.1, 6.2, 6.3, 6.4) report the per
entage of the best observed performan
eprovided by the following methodologies:� g

+ref: Performan
e of ANSI C referen
e implementation 
ompiled by g

.� i

+ref: Performan
e of ANSI C referen
e implementation 
ompiled by i

.� i

+prof: Performan
e of ANSI C referen
e implementation, using i

 andpro�ling. Pro�ling was performed with tuning data identi
al to the data usedin timing.� ATLAS: The best kernel found by ATLAS's empiri
al sear
h, installed withboth i

 and g

. ATLAS empiri
ally sear
hes a series of implementations,whi
h were laboriously written and hand-tuned using mixtures of assemblyand ANSI C, and 
ontain a multitude of both high and low-level optimizations(eg., software pipelining, prefet
h, unrolling, s
heduling, et
.). When ATLAShas sele
ted a hand-tuned all-assembly kernel (as opposed to the more 
ommonANSI C routine with some inline assembly for performing prefet
h), the routinename is suÆxed by a * (eg., d
opy be
omes d
opy*). This is mainly of interestin that hand-tuning in assembly allows for more 
omplete and lower-leveloptimization (eg. SIMD ve
torization, exploitation of CISC ISA features, et
.).� FKO: The performan
e of the kernel when 
ompiled with FKO using defaulttransformation parameters (i.e., no empiri
al sear
h).105



� iFKO: The performan
e of the kernel when iterative 
ompilation is used totune FKO's transformation parameters.For ea
h kernel, we �nd the me
hanism that gave the best kernel performan
e,and all other results are divided by that number (eg. the method that resulted inthe fastest kernel will be at 100%). This allows for the relative bene�t of the varioustuning me
hanisms to be evaluated. This 
omparison is done for ea
h studied kernel,and we add two summary 
olumns. The se
ond-to-last 
olumn (AVG) gives theaverage over all studied routines, and the last 
olumn (VAVG) gives the averagefor the operations where SIMD ve
torization was su

essfully supplied; in pra
ti
e,this means the average of all routines ex
luding iamax, whi
h neither i

 nor iFKOautomati
ally ve
torize.Sin
e all results dis
ussed so far are relative to the best tuning method, it iseasy to lose tra
k of the a
tual performan
e of the individual operations. Therefore,Figure 6.5 shows the speed of these operations in MFLOPS, 
omputed as dis
ussedin Se
tion 6.1. Note MFLOPS is a measure of speed, so larger numbers indi
atebetter performan
e. All timings in this �gure deal only with iFKO (on average, thebest optimizing te
hnique).Figure 6.6 shows the speedup of the in-L2 
a
he timings over the out-of-
a
heperforman
e. One of the most interesting things about this graph is that it providesa very good measure of how bus-bound an operation is, even after prefet
h is applied:If the kernel tuned for in-
a
he usage is only moderately faster than the kernel whentuned in out-of-
a
he timing, the main performan
e bottlene
k is 
learly not memory.The iamax operation, whose performan
e is limited mainly by bran
hes, is a goodexample of this, in that the in-
a
he numbers show no improvement at all. On theother extreme, bus-bound operations su
h as swap or axpy show more than �ve-foldspeedups for in-L2 timings. One oddity in these numbers is that iamax's Pentium 4106



Figure 6.1: Relative speedups of various tuning methods on 2.8Ghz P4E,N=80000, out-of-
a
he

Figure 6.2: Relative speedups of various tuning methods on 1.6GhzOpteron, N=80000, out-of-
a
he 107



Figure 6.3: Relative speedups of various tuning methods on 2.8Ghz P4E,N=1024, in-L2-
a
he

Figure 6.4: Relative speedups of various tuning methods on 1.6GhzOpteron, N=1024, in-L2-
a
he 108



in-L2 performan
e is a
tually slightly slower than out-of-
a
he. This is not a timingerror, and is dis
ussed in Se
tion 6.5.
(a) Out of 
a
he (b) P4E, in Level 2 
a
heFigure 6.5: BLAS performan
e in MFLOPS

(a) P4E (b) OpteronFigure 6.6: Speedup of In-
a
he over Out-of-
a
heTables (6.3, 6.4, 6.5, 6.6) show the transformational parameter values found bythe empiri
al sear
h for ea
h program/
ontext. Se
tion 5.4 de�nes the abbreviationsused in the headings, and Se
tion 5.8 provides the default values used by FKO.The prefet
h parameters varied in
lude instru
tion type (INS) and distan
e in bytes(DST). For ea
h type of prefet
h instru
tion, the sear
h 
hooses between thoseavailable on the ma
hine, and they are reported using the following abbreviations:� none : better performan
e was obtained without prefet
hing that operand,� tX: SSE temporal prefet
h to 
a
he of levelX+1 (eg., prefet
ht0, prefet
ht1,et
.), 109



� nta: SSE non-temporal prefet
h to lowest level of supported 
a
he (prefet
hnta),� w: 3DNow! prefet
h for write (prefet
hw).Figure 6.7 shows the speedup obtained by empiri
ally tuning the various opti-mization parameters, and Figure 6.8 shows the same values but zoomed so that onlythe �rst 150% of speedup is displayed (this is ne
essary be
ause the large Opteronspeedups make it diÆ
ult to see full details for other ar
hite
tures). Therefore, these�gures show the speedup of 
ode tuned by iFKO over that produ
ed by FKO, notover 
ode in whi
h a given transformation has not been applied. For instan
e, FKOdefaults to unrolling so that one iteration of the loop a

esses one 
a
he line of data.In Figure 6.7 we see that the empiri
al tuning of UR often provides modest or nobene�t. However, this does not imply that unrolling is unimportant in these 
ases;instead it says that FKO's default value is good.For ea
h BLAS kernel, we show a bar for ea
h ar
hite
ture (p4e/opt) and 
ontext(i
: in-L2 
a
he, o
: out of 
a
he). Ea
h bar shows the total speedup over FKO,and how mu
h tuning ea
h transformation parameter 
ontributed to that speedup.For instan
e, for the out-of-
a
he P4E tuning of sasum shown in 6.8, empiri
allytuning the [non-temporal writes, prefet
h instru
tion, prefet
h distan
e, unrolling,a

umulator expansion℄, provided speedups of [0, 1, 46, 0, 3℄%, respe
tively, whi
htogether resulted in an iFKO-tuned kernel that ran 1.5 times faster than the samekernel when 
ompiled by FKO. As shown by these graphs, all empiri
ally tunedparameters 
ontributed to speeding up at least some operations/
ontexts.6.4 General AnalysisIn 
omparing the tuning me
hanisms (Figures 6.1, 6.2, 6.3 and 6.4), iFKOprovides the best performan
e on average for all studied ar
hite
tures and 
ontexts,better even than the hand-tuned kernels found by ATLAS's own empiri
al sear
h.110



Table 6.3: Transformation pa-rameters for 2.8Ghz Pentium 4E,N=80000, all 
a
hes 
ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:Y t0:56 t0:40 4:0dswap Y:Y t0:128 t0:64 2:0s
opy Y:Y none:0 none:0 2:0d
opy Y:Y none:0 none:0 1:0sasum Y:N nta:1024 n/a:0 5:5dasum Y:N t0:1024 n/a:0 5:5saxpy Y:Y nta:1408 nta:32 2:0daxpy Y:Y t0:768 t0:40 2:0sdot Y:N nta:1024 nta:384 3:3ddot Y:N nta:768 nta:384 5:5ss
al Y:Y nta:1792 n/a:0 1:0ds
al Y:Y none:0 n/a:0 2:0isamax N:N nta:640 n/a:0 8:0idamax N:N t0:1664 n/a:0 8:0

Table 6.4: Transformation pa-rameters for 1.6Ghz Opteron,N=80000, all 
a
hes 
ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:N w:1792 w:448 2:0dswap Y:N nta:960 nta:704 1:0s
opy Y:Y none:0 none:0 1:0d
opy Y:Y none:0 none:0 1:0sasum Y:N t0:1664 n/a:0 4:4dasum Y:N nta:1920 n/a:0 4:4saxpy Y:N t0:1536 t0:448 4:0daxpy Y:N nta:1472 t0:832 4:0sdot Y:N nta:1600 nta:1664 3:3ddot Y:N t0:1728 t0:704 4:4ss
al Y:N nta:640 n/a:0 1:0ds
al Y:N nta:1344 n/a:0 1:0isamax N:N nta:768 n/a:0 16:0idamax N:N nta:1920 n/a:0 32:0
Table 6.5: Transformation param-eters for 2.8Ghz P4E, N=1024,only L1 
a
he 
ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:N nta:512 nta:32 16:0dswap Y:N t0:384 t0:40 32:0s
opy Y:N nta:512 nta:1408 2:0d
opy Y:N nta:1152 t0:1152 2:0sasum Y:N t0:1408 n/a:0 16:2dasum Y:N nta:1792 n/a:0 16:2saxpy Y:N t0:768 t0:1152 8:0daxpy Y:N t0:768 t0:384 8:0sdot Y:N nta:896 nta:1664 64:4ddot Y:N nta:1280 nta:1792 32:4ss
al Y:N nta:256 n/a:0 2:0ds
al Y:N nta:1536 n/a:0 2:0isamax N:N t0:1152 n/a:0 32:0idamax N:N nta:256 n/a:0 32:0

Table 6.6: Transformation pa-rameters for 1.6Ghz Opteron,N=1024, only L1 
a
he 
ushedSV: PF X PF Y UR:BLAS WNT INS:DST INS:DST ACsswap Y:N w:256 w:128 32:0dswap Y:N w:128 w:128 32:0s
opy Y:N t0:64 none:0 4:0d
opy Y:N nta:192 none:0 64:0sasum Y:N nta:64 n/a:0 64:3dasum Y:N t0:256 n/a:0 4:4saxpy Y:N nta:128 w:128 4:0daxpy Y:N nta:32 w:128 4:0sdot Y:N nta:192 nta:320 16:4ddot Y:N nta:256 nta:448 6:3ss
al Y:N w:256 n/a:0 32:0ds
al Y:N w:128 n/a:0 4:0isamax N:N t0:32 n/a:0 16:0idamax N:N t0:768 n/a:0 32:0111



Figure 6.7: Per
ent speedup by transform due to empiri
al sear
h

Figure 6.8: Per
ent speedup by transform due to empiri
al sear
h(zoomed) 112



However, there are several individual 
ases where iFKO fails to provide the bestperforman
e. We analyze ea
h su
h 
ase in Se
tion 6.6.In examining the empiri
ally tuned transformation parameter values (Tables 6.3,6.4, 6.5 and 6.6) the most important observation is how variable these parametersare: they vary strongly depending on operation, ar
hite
ture, and 
ontext. They varyweakly (mainly in prefet
h distan
e) on pre
ision as well. Without ve
torization,other parameters would vary more strongly with pre
ision (in ve
torized 
ode doubleand single pre
ision operands are of the same size in bytes, and performing a ve
tor
omputation on that data takes the same number of 
y
les, all of whi
h is not true fors
alar 
ode of di�ering pre
isions). This suggests that any model 
apable of 
apturingthis 
omplexity is going to have to be very sensitive indeed. Note that while empiri
alresults su
h as these 
an be used to re�ne our understanding of relatively opaqueintera
tions (eg., 
ompeting 
ompiler and hardware transformations), whi
h in turnallows for building better theoreti
al models, one of the great strengths of empiri
altuning is that full understanding of why a given series of transformations yieldedgood speedup is not required in order to a
hieve that speedup.Empiri
al methods 
an be invaluable in adapting to unexpe
ted ar
hite
tural
hanges, parti
ularly when the 
ompiler has not yet been (or will never be) fullytuned to the new platform (eg. Intel 
ompiler on AMD platform). Examining theresults for the Opteron demonstrates the strength of empiri
al tuning over evenaggressive pro�ling: noti
e that for both swap and axpy, i

+prof is many timesslower than than i

+ref in Figure 6.2. To understand this behavior, we �rst observethat non-temporal writes (WNT) 
an improve performan
e anytime the operanddoesn't need to be retained in the 
a
he on the P4E. On the AMD Opteron, however,non-temporal writes result in signi�
ant overhead unless the operand is write only.I

's pro�ling dete
ts that the loop is long enough for 
a
he retention not to bean issue, and blindly applies WNT, whereas the empiri
al tuning tries it, sees theslowdown, and therefore does not use it.113



In addition to adapting to the ar
hite
ture, empiri
al methods 
an be utilizedto tune a kernel to the parti
ular 
ontext in whi
h it is being used. Figures 6.3and 6.4 and Tables 6.5 and 6.6 show su
h an example, where the adaptationis to having the operands in-L2-
a
he. This 
hanges the optimization set fairlywidely, in
luding making prefet
h mu
h less important, and WNT a bad idea.Prefet
h is still useful in keeping data in-
a
he in the fa
e of 
on
i
ts, and so wesee it provides greater bene�t for the \noisier" (bus-wise) routines su
h as swap.In-
a
he, 
omputational optimizations be
ome mu
h more important. One su
h istransformation is a

umulator expansion (AE), whi
h on the Pentium 4E a

ountsfor an impressive 43% of sasum speedup in-
a
he, while only improving performan
eby 3% for out-of-
a
he.The e�e
t of 
ontext on whi
h optimizations are most 
riti
al 
an be most easilyseen by examining the AVG results of Figures 6.7 and 6.8. For out-of-
a
he, the mostimportant adaptation is 
learly prefet
h distan
e, whi
h is only modestly importantfor in-
a
he timings, where a

umulator expansion (and for the Opteron, prefet
hinstru
tion type as well) be
omes the more 
riti
al optimization.An interesting trend to noti
e in surveying these results in their entirety is thatthe more bus-bound an operation is, the less prefet
h improves performan
e. Thereason for this seeming paradox is in how prefet
h works: prefet
h is a laten
y-hiding te
hnique that allows data to be fet
hed for later use while doing unrelated
omputation. If the bus is always busy serving 
omputation requests, there is no timewhen the prefet
h 
an be s
heduled that doesn't interfere with an a
tive read or write,and most ar
hite
tures simply ignore them in this 
ase. This is why operations su
has swap or axpy get relatively modest bene�t in out-of-
a
he timings. Sin
e prefet
hoptimization is one of our key strengths for this 
ontext, it is easy to see why iFKOdoes mu
h better on the Opteron than on the P4E (when 
ompared against all tuningme
hanisms, in
luding i

) for this 
ontext: the Opteron, having a slower 
hip andfaster memory a

ess, is less bus bound, and so there is more room for empiri
al114



improvement using this key optimization. For the Opteron's in-
a
he performan
e,iFKO gets a similar boost in performan
e by varying the key parameters for this
ontext, prefet
h instru
tion type and a

umulator expansion.Figures 6.7 and 6.8 illustrate the importan
e of empiri
al tuning. While FKO hasnot undergone the intensive hand-tuning of the driving models for ea
h parti
ularar
hite
ture that o

urs in traditional 
ompiler porting, we tried to pi
k defaultvalues that make sense. Nonetheless, empiri
al tuning provided an almost fa
torof three speedup in the best 
ase. Note that, again, operation, ar
hite
ture, and
ontext all strongly in
uen
e whi
h transformation is most important. As we addmore transformations that 
ompete for the same resour
es, the value of empiri
altuning should 
ontinue to 
limb. For instan
e, software pipelining, a

umulatorexpansion, and register assignment all 
ompete for registers, and thus striking theoptimal balan
e will require information about their relative importan
e to the givenoperation, ar
hite
ture and 
ontext. Empiri
al te
hniques appear to us to be theonly tra
table way to address these 
on
erns.6.5 Interesting AsidesFrom examining the generated assembly, it appears that neither g

 nor i


hose to issue software-dire
ted prefet
h. This makes some sense, in that prefet
h(parti
ularly distan
e) is diÆ
ult to model, while these ve
tor a

ess patterns areeasily dete
ted by the hardware, whi
h allows for the hardware prefet
h unit toexamine the fet
h pattern during runtime in order to optimize. However, iFKOwould have 
hosen `no prefet
h' if the hardware 
ould do a better job, and as thetimings demonstrate, the hardware prefet
h is 
learly no mat
h for empiri
ally-tunedsoftware prefet
h.G

's relative performan
e drop for in-
a
he tuning may at �rst seem surprising,but is easily understood given that g

's main weakness 
ompared to the other
ompilers is that it 
annot auto-ve
torize the loops. In-
a
he, 
omputational115



optimizations are all-important, and ve
torization is the 
omputational optimizationwhi
h generally provides the greatest speedup. Obviously, g

's relatively goodperforman
e on out-of-
a
he P4E is due to the 
ip-side of this: the P4E is morebus-bound than the Opteron, and therefore ve
torization is less important forout-of-
a
he operation.Figure 6.6 presents a puzzle for iamax on the P4E: the iFKO-tuned kernelsare a
tually slightly slower (measured in MFLOPS) when ran and tuned for in-L2operands than for when the kernels are run with 
old 
a
hes! This appears to be afun
tion of the ve
tor length (remember that in-
a
he numbers use N = 1024, andout-of-
a
he numbers use N = 80000): as the length is in
reased, performan
e goesup, until the asymptoti
 performan
e is rea
hed. Note that after tuned prefet
h isadded, this routine is not bus bound. Therefore, there is little to no bene�t fromhaving the operands in 
a
he.Having a long ve
tor length, however, 
onveys several advantages. One obviousone is amortizing loop startup and shutdown. This should be as true for the Opteronas for the P4E, however, and the Opteron did not run slower for the in-
a
he timings(it may appear so for single pre
ision, but these numbers are within 
lo
k resolutionof ea
h other). The P4E also has a tra
e instru
tion 
a
he, whi
h means that thex86-de
oding 
ost is also amortized over the loop length; sin
e the in-
a
he loop isheavily unrolled, this may be a small fa
tor, but it seems unlikely to make su
h anoti
eable di�eren
e. Note that if unrolling was a large burden, it would not haveresulted in speedup, and the empiri
al sear
h would not have retained it. Therefore,the bulk of the di�eren
e is probably due to the way iamax operates on normalizedve
tors. As the ve
tor length grows, the number of bran
hes that are a
tually taken(in order to 
hange the maximum) shrinks in proportion to the total number ofbran
hes that are 
onsidered. Sin
e ea
h of these taken max bran
hes results in amispredi
t, and the P4 has 20 stage pipeline, getting the per
entage of mispredi
ts116



Table 6.7: Loss Case Summary(a) For Out-of-
a
he TimingsAR BEST MFLOPCH BLAS METH iFKO BEST WHYp4e d
opy atl+asm 209 260 fko-nsp4e saxpy i

+prof 580 585 sr
h-
lkp4e daxpy i

+prof 290 293 sr
h-
lkp4e ds
al atl+g

 209 219 sr
h-asup4e isamax atl+asm 1105 1679 fko-anopt s
opy i

+prof 293 310 
lkopt daxpy atl+g

 234 251 sr
h-asuopt isamax atl+asm 990 1494 fko-anopt idamax atl+asm 952 965 fko-an
(b) For In-L2 TimingsAR BEST MFLOPCH BLAS METH iFKO BEST WHYp4e sswap i

+ref 841 883 sr
h-
lkp4e dswap i

+ref 426 442 sr
h-
lkp4e ds
al i

+pref 1007 1025 sr
h-
lkp4e isamax atl+asm 995 2601 fko-anp4e idamax atl+asm 989 1164 fko-an

down is 
riti
al on this ar
hite
ture, and thus the longer the loop, the more eÆ
ientthe algorithm. 6.6 Learning from DefeatIn this se
tion we examine the 
ases where iFKO failed to provide the mostoptimal kernel implementation. Tables 6.7(a) and 6.7(b) summarize the 
ases (forout-of-
a
he and in-L2 
a
he, respe
tively) where the previously reported timingsindi
ate that FKO did not provide the most well-tuned kernel. In these tableswe �rst supply the ar
hite
ture where the loss o

urred (p4e/opt) and the tuningmethodology that provided the best observed performan
e. We then report theperforman
e of the two kernels in question (best tuning method and iFKO) inMFLOPS, followed by the appropriate abbreviation des
ribing the reason for theloss (de�ned below). Many of the 
ases turn out to be the result of sear
h resolutionerrors, and in those 
ases Table 6.8 shows the new parameter values and performan
eresults (this table is des
ribed in greater detail below).There are several possible 
auses for iFKO to lose, and we need to distinguishbetween them in order to draw proper 
on
lusions. The 
ategories of importan
e(and their abbreviations used in Table 6.7) are:117



Table 6.8: Better Transformation Parameters Found by RepeatedSear
hes SV: PF X PF Y UR: BEST:ARCH CACHE BLAS WNT INS:DST INS:DST AC MFLOPP4E OC d
opy Y:Y none:0 none:0 2:0 N:205P4E OC saxpy Y:Y nta:384 nta:512 2:0 Y:586P4E OC daxpy Y:Y nta:384 nta:512 2:0 Y:293P4E OC ds
al Y:Y nta:896 N/A:0 1:0 N:210P4E IC sswap Y:N t0:128 t0:1408 4:0 T:899P4E IC dswap Y:N nta:96 nta:1280 1:0 T:443P4E IC ds
al Y:N t0:1536 N/A:0 1:0 Y:1060� 
lk: Two timings are a
tually within 
lo
k resolution. Determined by timingea
h kernel �ve times, if one kernel wins at least four of the head-to-headtimings, it is de
lared the winner, otherwise they are de
lared to be within
lo
k resolution.� sr
h-
lk: Clo
k resolution has 
aused the sear
h reported in this paper to
hoose a less-optimal value for one or more of the empiri
al tuned parameters(for example, assume that UR=16 is optimal, but during the timing of this
ase unrelated load 
aused the timing to be in
ated, and soUR=8 was sele
tedinstead). In order to �nd this kind of error, we run the sear
h for ea
h disputedkernel three additional times, and see if we get better results. If we do, weemploy the 
lo
k resolution test to determine if it is better than the other twokernels in question (�rst, the previous iFKO kernel, and se
ond, the so-far bestkernel). When a rerunning of the sear
h provides an iFKO-tuned kernel that isgenuinely better than that previously reported, we summarize the new resultsin Table 6.8. This table of sear
h results also in
ludes several new 
olumnsfrom the previously reported tables (Tables 6.3, 6.4, 6.5 and 6.6). First, wespe
ify the ar
hite
ture (p4e/opt) and 
a
he state (OC: all 
a
hes 
ushed, IC:only L1 
a
he 
ushed). The last 
olumn of the table is also new, and reportswhether the new kernel was a
tually better than any other tuned kernel (Y),or if it ran within 
lo
k resolution of the best of the other tuned kernels (T),118



or if, even after the sear
h improvement, it is still more than 
lo
k resolutionslower than the best tuned me
hanism (N). To make this determination, weperform the 
lo
k resolution test 
omparing the new iFKO kernel against theprevious best 
ase.� sr
h-as: Our empiri
al sear
h has an error in it's assumptions. For instan
e,perhaps additional parameters need to be empiri
ally tuned, or a greater rangeof values need to be sear
hed for a parameter that is already empiri
ally tuned.It is diÆ
ult to automate the dete
tion of this loss 
ategory, but monitoringfull tuning output for general trends and examining the generated assembliesby eye 
an help.� Lastly, FKO 
an be inadequate in some way:1. fko-ns: FKO does not support a needed transformations. Can bediagnosed by examining the generated assembly, and seeing what trans-formation(s) the best-tuned kernel performed that FKO does not. In this
ase, we need to identify if the transformation 
an be added to FKO, andwhether it will be worthwhile to do so.2. fko-an: The most well-tuned kernel used a transformation that FKO
an apply, but that it failed to apply to the kernel in question be
auseFKO's analysis was unable to determine either how to do so, or if su
h atransformation was legal. In this 
ase, we would like to understand if theanalysis 
an be expanded, and/or if the problem may be addressed usingmarkup.3. fko-ma: FKO has misapplied known optimization(s). I.e., anothermethod has used the same transformations as FKO, but has applied themmore optimally or synergisti
ally. In this 
ase, we will want to examine if119



this di�ering appli
ation is better in general, and if so, if FKO 
an use itas well.One of the main purposes in 
ategorizing these 
ases is determining whi
hlosses represent opportunities for learning, and thus deserve greater examination.Therefore, we do not further analyze the 
ases where Table 6.8 shows iFKO a
tuallyprodu
ing winning or tying results. All other loss 
ases are examined in detail in theirown subse
tion. There are no in-L2 
a
he 
ases where iFKO 
annot produ
e the mostwell-tuned implementation, other than iamax, so ea
h of the following se
tions dealsmainly with out-of-
a
he results. Se
tion 6.6.1 des
ribes the problems leading tothe iamax results for all 
ontexts and ar
hite
tures, Se
tion 6.6.2 investigates d
opyon the P4E and Se
tion 6.6.3 details the issues for ds
al on the same ar
hite
ture.Finally, Se
tion 6.6.4 investigate the daxpy loss on the Opteron.6.6.1 iamax for All Ar
hite
turesThe routine where iFKO is least e�e
tive in general is iamax, and the mainreason for this is easily understood. This operation has a dependen
e distan
e ofone, and we are 
urrently unable to automati
ally ve
torize it. It 
an, however,be legally ve
torized, and the hand-tuned assembly 
ode does so, whi
h allows itto handily outperform iFKO's kernel in many instan
es. Whether or not we 
andis
over how to auto-ve
torize this loop through additional analysis, and how mu
hif any user markup we would need to do so, is an area of resear
h that we have notyet undertaken. Sin
e it is not immediately obvious how to do the required analysis,we are unlikely to spend time on this problem in the immediate future, as this is theonly kernel in all of the BLAS that would bene�t from this �x.The reason for the magnitude of the gap between iFKO and the hand-tunedperforman
e is inherent in the way ve
torization a�e
ts this operation. Normally,ve
torization is primarily a 
omputational optimization, whi
h is usually a fairly120



low-order term in these Level 1 operations as they are more typi
ally 
onstrainedby the bus speed. However, iamax has only a single input ve
tor, and no outputve
tors, and so it is less bus-bound than most. Further, unlike the other surveyedoperations, iamax involves a bran
h. When this bran
h must be taken due to �ndinga new maximum, it will usually be mispredi
ted (as the most 
ommon 
ase is whenthe new value is not larger than the 
urrent maximum), whi
h will 
ause a pipeline
ush. As the P4E has a 20 stage pipeline, this is a signi�
ant 
ost.When iamax is ve
torized, not only does it redu
e the 
omputation by something
lose to the ve
tor length (as in most operations), but it also de
reases the number ofbran
hes exe
uted by a similar amount. As would be expe
ted (due to its in
reasedve
tor length), single pre
ision shows a mu
h larger gap between ve
torized andunve
torized than double pre
ision.6.6.2 Pentium 4E d
opyOn the P4E, the iFKO-tuned kernel is signi�
antly slower than the hand-tunedassembly. The iFKO-tuned kernel gets 205 MFLOPS, whereas the hand-tuneda
hieves 260. In order to understand why, we examine the implementations inquestion. Figure 6.9 shows the listing of the hand-tuned kernel from ATLAS, whileFigure 6.10(a) shows the inner loop of iFKO's tuned kernel.The inner loop of the hand-tuned kernel is 
omprised of lines 44-64 of Figure 6.9.Contrasting this with Figure 6.10(a) might lead to the idea that it is either thegreater unrolling, or the di�ering s
heduling that is providing the speedup. However,Figure 6.10(b) a
tually runs runs slightly slower (198 MFLOPS) than Figure 6.10(a).Note that the loops are still di�erent, in that Figure 6.10(b) uses SSE rather thanFigure 6.9's MMX, but their e�e
tive unrolling and s
heduling are now the same.The real reason for the hand-tuned kernel's substantial win is that it employs anoptimization that FKO does not presently support, 
alled blo
k fet
h [47℄. The basi
idea is to perform a given 
omputation (in this 
ase, a 
opy) in two phases. In the121



1#de f i n e nblk %ebx2#de f i n e N %eax3#de f i n e X %esi4#de f i n e Y %e
x5#de f i n e stX %edx6#de f i n e stXF %edi7#de f i n e NB 5128#de f i n e SH 99 . g l o b a l ATL UCOPY10ATLUCOPY:11 subl $16 , %esp12 movl %ebx , (% esp )13 movl %esi , 4(% esp )14 movl %edi , 8(% esp )15 movl %ebp , 12(% esp )16 movl 20(%esp ) , N17 movl 24(%esp ) , X18 movl 32(%esp ) , Y19 movl N, stXF20 shl $3 , stXF21 addl X, stXF22#23# Find how many NB�size 
hunkswe have got , b a i l if 024#25 movl N, nblk26 shr $SH , nblk27 jz LOOP12829LOOPB:30#31# Burst load X32#33 movl X, stX34 addl $NB�8 , stX35 .align 1636BURST:37 movl �64(stX ) , %ebp38 movl �128(stX ) , %ebp39 subl $128 , stX40 
mp X, stX41 jne BURST42 addl $NB�8 , stX43 .align 16

44LOOP8:45 movl (X) , %mm046 movl 8(X) , %mm147 movl 16(X) , %mm248 movl 24(X) , %mm349 movl 32(X) , %mm450 movl 40(X) , %mm551 movl 48(X) , %mm652 movl 56(X) , %mm753 movntq %mm0, (Y)54 movntq %mm1, 8 (Y)55 movntq %mm2, 1 6 (Y)56 movntq %mm3, 2 4 (Y)57 movntq %mm4, 3 2 (Y)58 movntq %mm5, 4 0 (Y)59 movntq %mm6, 4 8 (Y)60 movntq %mm7, 5 6 (Y)61 addl $64 , Y62 addl $64 , X63 
mp X, stX64 jne LOOP865#66# Keep going un t i l out o fb lo
ks67#68 subl $1 , nblk69 jnz LOOPB7071 
mp X, stXF72 je DONE73LOOP1:74 movl (X) , %mm075 movntq %mm0, (Y)76 addl $8 , Y77 addl $8 , X78 
mp X, stXF79 jne LOOP180DONE:81 s f e n 
 e82 emms83 movl (%esp ) , %ebx84 movl 4(%esp ) , %esi85 movl 8(%esp ) , %edi86 movl 12(%esp ) , %ebp87 addl $16 , %esp88 retFigure 6.9: Hand-tuned d
opy Assembly Routine for P4E122



1 LOOP 0 :2 movapd (%e
x ) , %xmm03 movntpd %xmm0 , (% eax )4 movapd 16(%e
x ) , %xmm05 movntpd %xmm0 , 16(%eax )6 addl $32 , %e
x7 addl $32 , %eax8 subl $4 , %ebp9 jg LOOP 0(a) As generated

9 LOOP 0 :10 movapd (%e
x ) , %xmm011 movapd 16(%e
x ) , %xmm112 movapd 32(%e
x ) , %xmm213 movapd 48(%e
x ) , %xmm314 movntpd %xmm0 , (% eax )15 movntpd %xmm1 , 16(% eax )16 movntpd %xmm2 , 32(% eax )17 movntpd %xmm3 , 48(% eax )18 addl $64 , %e
x19 addl $64 , %eax20 subl $8 , %ebp21 jg LOOP 0(b) Hand-s
heduledFigure 6.10: Inner loop of iFKO-tuned P4E d
opy�rst phase, the operands are burst loaded into 
a
he via a series of 
a
he line lengthseparated loads (lines 33-41 of Figure 6.9). In the se
ond phase (lines 44-64) the
omputation is performed on the data that was loaded in phase 1.In order to bring the data into 
a
he, the problem must be blo
ked or partitioned,and in this 
ase the blo
k fa
tor was 512 double pre
ision elements. The dual phasesresult in the two inner loops, and the blo
king around these phases results in theouter loop around them (this outer loop starts on line 29 and ends on line 69).Blo
k fet
h 
an be parti
ularly e�e
tive for bus-bound operations, where prefet
h
annot help (or indeed, for ar
hite
tures not possessing prefet
h). In normal 
ode,loads are intermixed with 
omputation, and there are multiple loads per 
a
he line.This 
an result in poor bus utilization even when the operation is bus bound. Blo
kfet
h drives the bus at its maximal rate by issuing only one fet
h per 
a
heline,with no delays between requests. As an additional optimization, this burst loop(lines 36-41) runs ba
kwards (i.e., starts at the end of array and iterates to thebeginning), but the fet
hes unrolled inside it run forward. This non-linear fet
hpattern is designed to 
onfuse the hardware prefet
h unit, so that it will not issueany hardware prefet
h instru
tions (whi
h would represent useless overheads on mostar
hite
tures). 123



This optimization 
an be added safely to a general 
ompilation framework, andsin
e it is one of the few te
hniques that 
an help truly bus-bound operations, andbe
ause it 
an be applied to any ar
hite
ture (no spe
ial hardware/ISA supportrequired), we plan to add it to to FKO.6.6.3 Pentium 4E ds
alThe best kernel for this routine is a
tually a hand-written ANSI C implementation(using inline assembly for prefet
h) 
ompiled by g

. The performan
e of thiskernel was reported at 219 MFLOPS, but subsequent timings showed performan
emore in the range of 212. However, it does always beat the iFKO-tuned kernel,whi
h gets performan
e of around 209. Our sear
h always applies ve
torizationwhen legal. In this 
ase, slightly better results are obtained when ve
torizationis not applied. In fa
t, the iFKO-tuned kernel moves slightly ahead if we use anunve
torized kernel, with unrolling of 8, and prefet
h distan
e of 384 bytes. Thisboosted FKO performan
e to an average of 213 MFLOPS, enough to win four outof �ve head-to-head 
omparisons with the hand-tuned 
ode.Therefore, we are left with the question of why the s
alar 
ode would be fasterthan the ve
torized loop. It is diÆ
ult to provide a de�nitive answer, but we 
an
ertainly hazard an edu
ated guess. Ca
he line elements are �lled in-order, and thes
alar 
ode needs to �ll less of the 
a
he line in order to start the 
omputation, whi
h
ould result in slightly fewer stalls on the �rst load from a given 
a
he line. Sin
e this
omputation is 
ompletely bus-bound, ve
torization's greater 
omputational peakis of no bene�t, and thus the s
alar version is very slightly faster. This wouldexplain why the e�e
t is so small, as well as why we don't see it with less bus-boundoperations.This minor improvement does not seem to mandate additional empiri
al tuning,parti
ularly as additional optimizations may render it moot (eg., perhaps with blo
kfet
h or software pipelining of the loads and stores the ve
tor 
ode's 
omputational124



advantage will provide a speedup over s
alar), unless it is shown to be true for morear
hite
tures and operations.6.6.4 Opteron daxpyThe sear
h 
hooses the prefet
h instru
tion type to use before the distan
e istuned. There is obviously a dependen
e here, and our assumption was that thetype of instru
tion used was more fundamental, and thus it made sense to makethis de
ision �rst. However, in this 
ase, while using prefet
hw for the prefet
hof Y at the default distan
e results in slower exe
ution than using prefet
h0, justthe opposite is true on
e the distan
e has been tuned. Changing the Y prefet
hinstru
tion to prefet
hw in the parameters given in Table 6.4 boosts performan
efrom 234 MFLOP to 257, whi
h would make iFKO the best tuning methodology.This points out an error in our assumptions for the sear
h, and we will need toperform additional studies to determine the 
orre
t adjustments to make.In the worst 
ase, we must do a true 2-D sear
h on these parameters: performthe distan
e subsear
h for ea
h supported instru
tion. In order to see how best toaddress this dependen
e, this should probably be implemented and tested a
ross arange of ar
hite
tures so that general trends 
an be determined. Only if no unifyingtrends 
an be spotted will we leave this as iFKO's default methodology, however,sin
e the distan
e sear
h is already our longest-running sub-sear
h.There are various trends that 
ould lend themselves to qui
ker sear
hes. Forinstan
e, if the distan
e is fairly independent of instru
tion type a
ross ar
hite
tures,it makes sense to simply reverse the de
ision order (i.e., sear
h for distan
e �rst, andthen instru
tion type). We performed this reversal, and it resulted in no 
hangefor in-
a
he or P4E performan
e, but boosted Opteron out-of-
a
he performan
eon several operations, without losing performan
e anywhere. So, with our presentsample set, this appears be a superior ordering. Doing the sear
h in this order sped125



up the following routines out-of-
a
he on the Opteron, by the spe
i�ed per
entage:sswap : 9%, saxpy : 15%, daxpy 13%, and sdot : 4%.There are several other options that may work better in general. For instan
e, we
ould retain the present ordering, but after the prefet
h distan
e is tuned, the prefet
hinstru
tion tuning sear
h is performed again, and if this results in a 
hange, the newinstru
tion type is substituted. If and only if a substitution is required, we 
an thenrerun the distan
e sear
h, if the trends show this is ne
essary. Perhaps the bestapproa
h would be to perform a 
rude distan
e sear
h �rst (for instan
e, sear
hingonly powers of two), then tune the instru
tion type, followed by a more 
ompletedistan
e sear
h. It may be that indeed the prefet
h instru
tion type is a morefundamental 
hoi
e, but before distan
e tuning, the di�eren
e between instru
tiontypes is below 
lo
k resolution, leading to essentially a random sele
tion. In this 
ase,a 
rude distan
e tuning should be suÆ
ient to allow for a more a

urate sele
tion.
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CHAPTER 7FUTURE WORK, SUMMARY ANDCONCLUSIONSThis �nal 
hapter provides some 
on
luding remarks, and is organized in thefollowing way: Se
tion 7.1 des
ribes some key areas for future investigation, Se
-tion 7.2 brie
y re
apitulates the highlights of this work, and Se
tion 7.3 draws some
on
lusions from the presented studies.7.1 Future WorkThe amount of future work, in parti
ular the number of optimizations of interest,are so extensive that dis
ussing them in full is probably not possible. Therefore,in this se
tion we 
on
entrate on some broad extensions that are 
learly needed, aswell as the spe
i�
 optimizations that have been identi�ed as parti
ularly bene�
ialbased on our 
urrent results. Se
tion 7.1.1 dis
usses the extensions to our optimizing
ompiler (FKO), while Se
tion 7.1.2 dis
usses some key sear
h issues.7.1.1 Future Work on FKOThere are two optimizations that we believe would improve even our 
urrentresults, both of whi
h would be implemented as fundamental transformations. The�rst is blo
k fet
h, as dis
ussed in Se
tion 6.6.2, whi
h would probably be appliedbefore any other optimization (sin
e this transformation results in additional loops,it would be ne
essary for later fundamental optimizations to tune the 
omputationloop). 127



The se
ond (short-term) transformation of interest is software pipelining, whi
hwould be applied after ve
torization. While the x86's out-of-order exe
ution andregister renaming makes software pipelining the linked multiples and adds less im-portant than on in-order ar
hite
tures, software pipelining of load/use and use/storeshould provide more eÆ
ient implementations, even for the studied Level 1 kernels.At the same time, software pipelining dependent multiplies and adds will be 
riti
alon ar
hite
tures (su
h as the SPARC) that are both in-order and possess separatemultiply and add FPU units.The next targets for optimization would be the Level 3 BLAS. As we have seen,all of these operations are tuned using the in-L1 gemm kernel, whi
h is implementedusing three nested loops. For eÆ
ient optimization of these operations, we willtherefore want to introdu
e additional optimization phases, new pointer support,and extended markup opportunities. In pointer support, we need a way to indi
ate(or derive) when inner-loop pointers a
tually point to separate lo
ations (usually rowsor 
olumns) within a single multidimensional array. Knowing that given inner looppointers 
ome from a single array 
an allow us to alleviate integer register pressurethrough use of CISC indexing on the x86, and this is 
riti
al on the IA-32 ISA, whereinsuÆ
ient integer registers would otherwise restri
t outer loop unrolling to valueswell below the optimal.We will almost 
ertainly want to add an outer-loop markup that allows the userto suggest and limit outer-loop unrolling. The type of outer loop unrolling we areinterested in is 
alled \unroll and jam" [48℄, as unrolling of the outer loop(s) resultsin issuing more instru
tions in the single inner loop, not, for instan
e, dupli
atingthe inner loop, resulting in multiple inner loops. Along with unroll and jam, we willneed a repeatable transformation similar to s
alar repla
ement [24℄ in order to enableregister blo
king.Our present prefet
h strategies always assume that the data being prefet
hed willeventually be used during the loop iterations. In GEMM, it is often the 
ase that it128



is more eÆ
ient to fet
h the next 
a
he blo
k while operating on this one. Therefore,we will want to introdu
e prefet
hing of unrelated memory during 
omputation.Finally, in GEMM, on
e we support unroll and jam, the inner loop (whi
h onthe x86 will always be ve
torized) a
quires multiple a

umulators. We presentlyredu
e any ve
tor a

umulators to s
alars individually in the inner loop epilogue.We 
an optimize this pro
ess when multiple a

umulators are being used, and sin
ethis epilogue 
ode is now nested inside outer loops (and it is usually not the 
asethat it 
an be pushed out of them), it be
omes 
riti
al to do so. We will similarlyneed to make 
opy propagation more eÆ
ient in handling s
alar-to-ve
tor 
onversionsat the beginning and end of the loops, as highlighted in the SV example given inSe
tion 5.7.1.1.While it will not be 
riti
al for our most important Level 3 kernel, as we deal withmore deeply nested loops, it will probably be
ome advantageous to add generalizedloop invariant 
ode motion, in order to hoist/push all operations (rather than justloads and stores) as far out of the loops as possible.On
e iFKO 
an fully tune the Level 3 BLAS, it will be time to 
onsolidate some ofour prexisting support. This in
ludes handling misalignment for SIMD ve
torization,
omplex type support, and additional ar
hite
tures, all dis
ussed in turn below.We have previously dis
ussed misalignment in detail, and we will pro
eed withthis work as outlined in Se
tion 5.5. On
e we have support for exploiting alignmentguarantees based on 2-D array usage, iFKO will be ready to tune the Level 2 BLAS.We will 
ertainly not examine other ar
hite
tures in detail until we 
an 
onvin
-ingly tune both the Level 1 and 3 BLAS, as previously des
ribed. Only at thisstage will it make sense to extend our ar
hite
ture support, and we will examine thePowerPC ar
hite
ture next. This may involve additional optimization support, andwill 
ertainly require tuning various presently-supported phases. For instan
e, SIMDve
torization needs to be ported to support the PowerPC's ve
tor unit, AltiVe
. We129



will also want to examine using the PowerPC's spe
ialized index register for LC(optimize loop 
ontrol).Just as with ANSI C, our HIL does not presently support 
omplex numbers. Of
ourse, 
omplex kernels may be written in terms of real 
omputations, but this isin
onvenient for the implementer. Therefore, it makes sense to add a 
omplex type.Note that this is not needed for Level 3 BLAS support, as ATLAS uses the realkernel to tune the 
omplex 
ase, as dis
ussed in Chapter 3. Complex support will,however, help with the Level 1 and 2 BLAS support. Complex arithmeti
 is 
omposedof a series of dependent real arithmeti
 operations, and sin
e these real operationshave a dependen
e distan
e of one, they 
an be a barrier to SIMD ve
torization ifthey are not handled appropriately. The SSE3 ISA extension added instru
tionsspe
i�
ally designed to handle 
omplex arithmeti
 without unneeded permutation orredundant 
omputation, so FKO will need to exploit SSE3 to avoid these overheads.In order to enable this SIMD optimization, it seems likely that the front end willgenerate syntheti
 LIL instru
tions whi
h are pla
eholders for 
omplex arithmeti
.In SV these syntheti
 instru
tions will then be substituted with the appropriateSSE3 instru
tions, or if SV is not applied, a new fundamental transformation phasewould repla
e them with the appropriate real 
omputations.7.1.2 Future work on iFKO's Sear
hSe
tion 6.6.4 pointed out the need for a better approa
h to prefet
h instru
tionsele
tion, and this will be the �rst area of work for the sear
h. We have also seenthat 
lo
k resolution problems have 
aused substandard results to be issued, andthus it makes sense to examine if the timings 
an be made more pre
ise. Morefundamentally, the addition of unroll and jam will provide several dimensions ofdependent optimizations (eg., for matrix multiply, unrolling the two outer loopsstrongly 
hanges the inner loop). In these 
ases, we must determine if we will befor
ed to employ a full multidimensional sear
h in order to get robust results, or if130



we 
an instead make simplifying assumptions whi
h allow us to severely restri
t theintera
tions. If we 
annot �nd su
h simplifying assumptions, it be
omes very likelythat we will have to abandon the line sear
h for a more advan
ed te
hnique that 
anoptimize the sear
h of su
h a high dimensional spa
e, and both simulated annealingand geneti
 algorithm are promising 
andidates.7.2 SummaryIn the introdu
tion, we dis
ussed the importan
e of performan
e tuning for highperforman
e 
omputing, and highlighted the key weaknesses inherent in traditionalmethodologies. We then des
ribed how empiri
al te
hniques, embodied in the AEOS
on
ept, have proven to be a su

essful response to these 
hallenges. Chapter 3 thendes
ribed our �rst AEOS e�ort, the empiri
ally tuned library generator ATLAS.This pioneering resear
h has proven to be extremely su

essful, in both resear
haims and pra
ti
al use. ATLAS-tuned libraries are used by a worldwide audien
e ofs
ientists, engineers, and edu
ators every day. The su

ess of this proje
t has inspireda great deal of related resear
h, and as a result the ATLAS papers are highly 
ited inthe literature (in both high performan
e 
omputing, and more re
ently, 
ompilationresear
h).The following 
hapters des
ribed the more generalized resear
h we have under-taken re
ently, embodied in our empiri
al 
ompilation framework, iFKO. Chapter 4des
ribed the basi
 ideas behind this work, and the design philosophy we utilize toguide and prioritize our e�orts, with Chapter 5 �lling in the details of our 
urrentimplementation of this framework. Finally, Chapter 6 dis
ussed the results we havea
hieved in applying the 
urrent framework to the Level 1 BLAS.
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7.3 Con
lusionsWe have shown how empiri
al optimization 
an help adapt to 
hanges in op-eration, ar
hite
ture, and 
ontext. We have dis
ussed our approa
h to empiri
al
ompilation, and presented the framework we have developed. We have demonstratedthat even on simple, easily analyzed loops that many would expe
t to be fully opti-mized by existing 
ompilers, empiri
al appli
ation of well-understood transformationsprovides 
lear performan
e improvements. Further, even though our 
urrent paletteof optimizations is limited 
ompared to that available to the hand-tuner, we havepresented results showing that this more fully automated approa
h results in greateraverage performan
e improvement than that provided by ATLAS's hand-tuned (andempiri
ally sele
ted) Level 1 BLAS support. Note that our initial timings show iFKOalready 
apable of improving even Level 3 BLAS performan
e more than i

 or g

,but due to the la
k of outer-loop spe
ialized transformations (a large 
omponent ofour future work) we are presently not 
ompetitive with the best Level 3 hand-tunedkernels. Therefore, as this framework matures, we strongly believe that it will serveto generalize empiri
al optimization of 
oating point kernels, and that it will vastlyredu
e the amount of hand-tuning that is required for high performan
e 
omputing.Finally, it appears 
ertain that an open sour
e version of su
h a framework willbe a key enabler of further resear
h as well. For example, just as ATLAS wasused to provide feedba
k into model-based approa
hes [49℄, iFKO will provide anideal platform for tuning and further understanding the models used in traditional
ompilation, while a fully-featured FKO will provide a ri
h test bed for resear
h onfast sear
hes of optimization spa
es.
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APPENDIXANSI C AND HIL KERNELIMPLEMENTATIONSThis appendix provides the ANSI C and HIL implementations for ea
h studiedroutine. We show the double pre
ision version (the single pre
ision is the same withthe appropriate variable de
larations 
hanged). Figures [A.1, A.2, A.3, A.4, A.5,A.6, A.7℄ show [dswap, d
opy, dasum, daxpy, ddot, ds
al, idamax℄, respe
tively.
void ATL_USWAP(
onst int N,double *X, 
onst int in
X,double *Y, 
onst int in
Y){ int i;double tmp;for (i=0; i < N; i++){ tmp = Y[i℄;Y[i℄ = X[i℄;X[i℄ = tmp;}} (a) ANSI C

ROUTINE ATL_USWAP;PARAMS :: N, X, in
X, Y, in
Y;INT :: N, in
X, in
Y;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x, y;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;y = Y[0℄;X[0℄ = y;Y[0℄ = x;X += 1;Y += 1;LOOP_ENDROUT_END (b) HILFigure A.1: dswap implementations
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void ATL_UCOPY(
onst int N,
onst double *X,
onst int in
X,double *Y, 
onst int in
Y){ int i;for (i=0; i < N; i++)Y[i℄ = X[i℄;} (a) ANSI C

ROUTINE ATL_UCOPY;PARAMS :: N, X, in
X, Y, in
Y;INT :: N, in
X, in
Y;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;Y[0℄ = x;X += 1;Y += 1;LOOP_ENDROUT_END (b) HILFigure A.2: d
opy implementations

double ATL_UASUM(
onst int N,
onst double *X,
onst int in
X){ int i;register double t0=0.0;for (i=0; i < N; i++)t0 += fabs(X[i℄);return(t0);} (a) ANSI C

ROUTINE ATL_UASUM;PARAMS :: N, X, in
X;DOUBLE_PTR :: X;INT :: N, in
X;ROUT_LOCALSINT :: i;DOUBLE :: x, sum;CONST_INIT :: sum = 0.0;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;x = ABS x;sum += x;X += 1;LOOP_ENDRETURN sum;ROUT_END (b) HILFigure A.3: dasum implementations
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void ATL_UAXPY(
onst int N,
onst double alpha,
onst double *X,
onst int in
X,double *Y, 
onst int in
Y){ int i;for (i=0; i < N; i++)Y[i℄ += alpha * X[i℄;} (a) ANSI C

ROUTINE ATL_UAXPY;PARAMS :: N, alpha, X, in
X, Y, in
Y;INT :: N, in
X, in
Y;DOUBLE :: alpha;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x, y;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;y = Y[0℄;x = x * alpha;y += x;Y[0℄ = y;X += 1;Y += 1;LOOP_ENDROUT_END (b) HILFigure A.4: daxpy implementations

double ATL_UDOT(
onst int N,
onst double *X,
onst int in
X,
onst double *Y,
onst int in
Y){ register double dot=ATL_rzero;int i;for (i=0; i < N; i++)dot += X[i℄ * Y[i℄;return(dot);} (a) ANSI C

ROUTINE ATL_UDOT;PARAMS :: N, X, in
X, Y, in
Y;INT :: N, in
X, in
Y;DOUBLE_PTR :: X, Y;ROUT_LOCALSINT :: i;DOUBLE :: x, y, dot;CONST_INIT :: dot = 0.0;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;y = Y[0℄;dot += x * y;X += 1;Y += 1;LOOP_ENDRETURN dot;ROUT_END (b) HILFigure A.5: ddot implementations
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void ATL_USCAL(
onst int N,
onst double alpha,double *X,
onst int in
X){ int i;for (i=0; i < N; i++)X[i℄ *= alpha;} (a) ANSI C

ROUTINE ATL_USCALPARAMS :: N, alpha, X, in
X;INT :: N, in
X;DOUBLE :: alpha;DOUBLE_PTR :: X;ROUT_LOCALSINT :: i;DOUBLE :: x, y;ROUT_BEGINLOOP i = 0, NLOOP_BODYx = X[0℄;x = x * alpha;X[0℄ = x;X += 1;LOOP_ENDROUT_END (b) HILFigure A.6: ds
al implementations
int ATL_UIAMAX(
onst int N,
onst double *X,
onst int in
X){ register double xmax, x0;int i, iret=0;if (N > 0){ xmax = *X;xmax = fabs(xmax);for (i=1; i < N; i++){ x0 = X[i℄;x0 = fabs(x0);if (x0 <= xmax) 
ontinue;else{ xmax = x0;iret = i;}}}return(iret);} (a) ANSI C

ROUTINE ATL_UIAMAX;PARAMS :: N, X, in
X;INT :: N, in
X;DOUBLE_PTR :: X;ROUT_LOCALSINT :: i, imax;DOUBLE :: x, amax;CONST_INIT :: amax = 0.0, imax=0;ROUT_BEGINLOOP i = N, 0, -1LOOP_BODYx = X[0℄;x = ABS x;// Bran
h if we have a new maximumIF (x > amax) GOTO NEWMAX;ENDOFLOOP:X += 1;LOOP_ENDRETURN imax;NEWMAX:amax = x;imax = N-i;GOTO ENDOFLOOP;ROUT_END (b) HILFigure A.7: idamax implementations136
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