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1 Introduction

The mission of this project is to improve assembly code for the Digital Signal Processor 16000
(DSP16k). DSP16k processors are widely used in embedded systems such as cellular phones and
modems. One important characteristic of such systems is their limited amount of memory. Conse-
quently, optimizations that decrease execution time but increase code size substantially should be
applied with caution.

DSP applications are usually compiled and loaded into the devices once and for all. The im-
plication is that the speed of the compiler is of less concern than the speed of the code produced.
Therefore, we can afford algorithms with high complexities to perform optimizations.

The compiler used for the DSP16k is called cc16k, which is a C compiler retargeted to the
DSP16k processor. The cc16k compiler already performs some basic optimizations, e.g., function
inlining. However, since the source files are compiled individually, at the time of the compilation
of each source file, the compiler does not have information about the functions that are defined in
other source files. Thus, many optimizations cannot be fully exploited. For example, inlining is
performed by the cc16k compiler within the same source file but the cc16k compiler cannot delete
the functions inlined in case they are called from functions defined in other source files.

Figure 1 shows the approach used to address this problem in our optimizing compiler. First, all
the source files of a DSP16k application are still individually compiled with the cc16k compiler to
obtain an assembly file for each source file. Next, the optimizer reads in all these assembly files and
processes them as a whole. This way, the optimizer has a global picture of all the functions that
comprise the application. The output from the optimizer is a single assembly file with improved
code. The analysis and optimizations performed by the optimizer that are relevant are listed in
Figure 2.
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Figure 1: Overview of the Optimizing Compiler

Because of the fact that the optimizer knows all the functions defined in an application, it
can afford to perform optimizations that require interprocedural analysis. In particular, four such
optimizations are described in this document: removing dead code, inlining functions, eliminating
unnecessary saves and restores of registers, and converting far transfers of control to near transfers
of control. These optimizations are highlighted in Figure 2. The effectiveness of these optimizations
is measured both in percentage of code size saved and in percentage of execution cycles saved.

2 Removing Dead Code

In this report dead code refers to any code portion that is never executed. One of the reasons that
dead code exists in cc16k-generated code has to do with the way that the cc16k compiler inlines
functions. As mentioned in section 1, the cc16k compiler compiles one source file at a time and



functions are only inlined within the same source file. When the cc16k compiler inlines a function,
it copies code from the callee into the caller, and keeps the function body of the callee in case it is
called from other files. If the function is only called from one place, it becomes dead code.

2.1 The Main Algorithm

Two steps are taken in the process of dead code elimination. In the first step, all basic blocks in an
application that are reachable from the first basic block of the main function during the execution
are marked as such. In the second step, all basic blocks that are not marked are deleted. Before
we get into how the basic blocks are marked and deleted, it is worth explaining what we mean by
saying that one block is reachable from another. First of all, there are three ways that block A can
have a transition to block B:

1. B is the fall-through block of A.
2. B is the target of a branch or jump at the end of A.
3. B is the top block of the function called from A.

If either of the first two cases is true, block B is called a successor of block A. Now we can say that
block B is reachable from A if:

1. There exists a transition from A to B, or
2. X is reachable from A and there exists a transition from X to B.

Figure 3 lists the algorithm used for dead code removal. All C programs start their execution
from the main function. At the assembly code level, the execution starts from the first basic block
of the main function. We refer to this block as block M in this discussion. If we use a node to
represent each basic block and an edge from node A to node B to represent the fact that there is a
transition from A to B, then all the blocks that are reachable from block M form a directed graph
rooted at M. On this graph, the children of a node represent the blocks that can be reached in a
single transition from it in the three ways mentioned above. The reachable nodes from M can be
marked in a depth-first traversal of the graph. Whenever we visit a node, we mark it as reachable,
and then in a recursive step we visit all its children. It is critical that a node be marked before any

PROCEDURE main
read in assembly files
removedeadcode
build call graph
find loops
determine loop iterations
inlineforcaching
cache loops
pushupregisters
inlinesinglecallsite
fartonear

output a single assembly file
END PROCEDURE

Figure 2: Pseudocode for the Optimizer



PROCEDURE removedeadcode
LET B be the list of basic blocks of an application
FOREACH basic block b in B
clear b as not marked
mark (the first basic block of the main function)
FOREACH basic block b in B
IF (b is not marked AND b starts a function)
put b on list L
FOREACH basic block b in the list L
LET f be the function to which b belongs
IF (address of f is taken)
mark (f)
FOREACH basic block b in B
IF (b is not marked)
delete block b from B
END PROCEDURE

PROCEDURE mark (b)
IF (b is the top block of a library function)
RETURN
IF (b is already marked reachable)
RETURN
mark b as reachable
FOREACH successor block s of b
mark (s)
IF (b calls function f)
LET t be the top block of f
mark (t)
END PROCEDURE

Figure 3: Pseudocode for Dead Code Removal



of its children is visited. Otherwise, the traversal routine will end in an infinite recursion if there
are cycles in the graph.
There are two base cases to the recursive algorithm above:

1. The node reached is the first block of a library function.
2. The node is visited already.

In the first base case, we stop going any further when we reach a library function, since the
assembly code of the library routines is not available to us. In other words, no optimization is
extended to the library routines. The second base case occurs when a basic block can be reached
from more than one basic block. One simple example is that a basic block is a common successor
of two different basic blocks.

2.2 Handling Indirect Calls

One complication of the marking step comes from indirect calls, i.e., function calls through pointers.
This presents a problem because the address of a function can be taken and passed to a library
routine and then this function can be called from the library routine. Since we do not have the
assembly code for the library routines, the optimizer cannot detect these calls. Consequently, some
of the reachable blocks can be missed. We have made the decision not to delete any function whose
address is ever taken and thus might be called indirectly from library routines. For this reason, the
marking is actually done in two passes. In the first pass, the basic blocks are marked as described
above. Next, every unmarked basic block that is the top block of a function is put on a list. In the
second pass, each of the function that is on the list is checked to see if its address is ever taken. If
it is, a recursive marking is started from its first basic block. This will guarantee that all blocks
that are reachable from the first block of this function will not be deleted.

2.3 Removing Unmarked Basic Blocks

The next step is to go through the list of all basic blocks, and delete the ones that are not marked.
One thing that has to be mentioned here is that in the implementation, dead code removal is
performed before other optimizations and analysis. This way, even when a complete function is
removed, no other analysis results need to be updated.

One issue that has come up again and again in the implementation of the various optimizations
is how to traverse a linked list while nodes are being removed at the same time. It can become
complicated when multiple nodes are removed at once at different locations in the same list. The
problem is that the position of the next node is stored in the current node, but the current node
could be deleted. In the case of dead code removal, the problem is relatively simple: all that needs
to be done is to record the position of the next node before the current node is deleted.

The last point to make about dead code removal is that even though the basic unit of code
removal is a basic block, it could have been chosen to be a function. The advantage of using a
basic block as the unit is that code removal is more fine-grained. With this approach, dead code
within a function can also be eliminated. The disadvantage is that if dead code within a function
is infrequent, the optimizer will be less efficient compared with having a function as the unit.

Figure 4 shows an example of dead code removal from the test program edn. The main function
in the application calls a number of functions in turn. One of these functions, namely, vec_mpy is
chosen for the purpose of illustration. Before dead code removal is applied, the assembly code of two
functions generated by the cc16k compiler are shown. We can see that code from function vec_mpy
has already been inlined into the main function. However, the original function of vec_mpy is kept
by the cc16k compiler. After applying dead code removal, function vec_mpy is removed since it is
not called from anywhere, and its address it never taken.



C Source Code

DSP16k Assembly Code

Before After
void vec_mpy(short y[], _vec_mpy: _main:
short x[], y=a0
short scale){ a2 = Oxfiftffeb y = 0x00000003
int i; _.L11: a2 = Oxffftfi6b
for(i=0; i<150; i++) xl = *rl++4 -.L25:
y[i]+=(scale*x[i])>>15; x =xl xl = *rd++
} p0 = xh*yh pl = xl*yl x =xl
al = pl p0 = xh*yh pl = xl*yl
main(){ al =al >> 15 al =pl
aOh = *r0 al =al >> 15
short ¢ = 0x3; a0 = a0 >> 16 a0h = *r5
a0 =al + al a0 = a0 >> 16
vec_mpy(a, b, c); *r0++ = a0l a0 = a0 + al
a2 =a2+1 *r54++4 = a0l
} if le goto _.L11 a2=a2+1
if true return if le goto _.L.25
_main: if true return
y = 0x00000003
a2 = Oxfiffff6b
_.L25:
xl = *rd++
x =xI1
p0 = xh*yh pl = xl*yl
al =pl
al =al >> 15
aOh = *rj5
a0 = a0 >> 16
a0 =al + al
*r5++ = a0l
a2=a2+1

if le goto _.L.25

if true return

Figure 4: Example of Dead Code Removal from Test Program edn




3 Inlining Functions

There are many benefits from inlining a function. An intuitive one comes from the elimination of
the call instruction in the caller and the return instruction in the callee. If the callee is not a leaf
function, another benefit comes from the elimination of the save and restore of its return address.
This is possible because after the code from the callee is inlined into the caller, it is no longer a
function of its own. In addition, because the caller is not a leaf function to begin with, its return
address is already saved. Therefore, no additional work needs to be done even if the inlining of the
callee introduces new function calls to the caller. Additional reduction of code size may be possible
if the caller becomes a leaf function after all the functions that it calls are inlined, at which point the
save and restore of the return address of the caller can be eliminated as well. Furthermore, inlining
may provide opportunities for additional compiler optimizations. The kind of inlining discussed in
Section 3.1 is done precisely for this reason.

As mentioned before, the cc16k compiler already does some limited function inlining. The goal
of this part of the project is to be able to inline any function when it is desirable to do so. The
next two subsections each discuss one situation where inlining is desirable.

3.1 Inlining Functions to Make Loops Cacheable

One situation where inlining is desirable is related to the zero overhead loop buffer (ZOLB) of the
DSP16k architecture. This buffer can be seen as a cache that can contain up to 31 instructions. The
instructions in the ZOLB can be executed a specified number of times without any loop overhead.
Hence, placing a loop in the ZOLB has significant benefit in execution time. Unfortunately, a loop
cannot be placed in the ZOLB unless it satisfies the following three rather stringent conditions:

1. It has no transfers of control except at the exit block.
2. It has a known number of iterations.
3. It has no more than 31 instructions.

A loop is said to be cacheable if it satisfies the above conditions and therefore can be placed in the
ZOLB.

The requirement that a cacheable loop does not contain any transfer of control (TOC) instruc-
tions implies that if a loop contains a call instruction, it cannot be placed in the ZOLB. The hope
is that if we inline the function called, the call instruction will be eliminated and the loop might
become cacheable. On the other hand, if there are branches or jumps not in the exit block, inlining
will not help. When a function is inlined to make loops cacheable, the code size may increase if the
function is called from more than one place. Because caching a loop has significant performance
gain, the code size increase is considered an acceptable sacrifice.

The number of iterations of a loop is a property of the loop that cannot be changed by inlining
functions. Before inlining is carried out, an analysis is performed to get the number of iterations
of each loop in the application. This analysis was implemented by Dr. Whalley. The number of
iterations of a loop is stored in a field associated with the data structure used to represent loops.

To check the third condition, we can pretend that we are trying to inline all the functions called
from the loop. If there is no reason that prevents any of these functions from being inlined, we then
count the number of resulting instructions in the loop. The following modifications to the code are
taken into consideration:

1. The call instruction in the caller will be removed after inlining.

2. The return instruction in the callee will be removed after inlining.



3. After the loop is cached, the branch or jump instruction that controls the loop will be removed
as well. The loop will be controlled by an implicit register instead.

If all function calls in a loop can be inlined, and the resulting loop consists of no more than 31
instructions, the actual inlining is performed.
A functions cannot be inlined unless it satisfies the following requirements:

1. The function is not a library function.
2. The call is not an indirect call.
3. The function consists of a single basic block.

The first requirement is obvious since we do not have the code of library functions. The second
requirement is for simplification. Aslong as we are not removing the body of the callee after inlining
it, there is no danger. An example of an indirect call instruction is “if true call pt0”, where pt0
is a register. Since the name of the function does not appear in the call instruction, it is a bit
complicated to locate the body of the callee. This is due to the fact that once the address of a
function is taken, it can be manipulated as data. For example, it can be stored in data structures
and passed in registers between function calls. Keeping track of this address requires a difficult
analysis. Considering that indirect calls are relatively uncommon in DSP applications, it was not
worth attempting to inline them. The third requirement has some justification but can be relaxed
as well. As mentioned before, a cacheable loop does not contain any transfers of control. By
choosing to inline single-block functions only, we guarantee that no additional transfers of control
are introduced into the loop. This choice also simplifies the algorithm in that no recursive inlining
is necessary, since a single-block function cannot contain any functions calls. It is imaginable that
we can have a loop L that has a call to function A, which has multiple blocks due to a call to
function B, and that after inlining B into A, A becomes a single block function, which can in turn
be inlined into loop L. However, a function can be of multiple blocks because of branches or jumps
as well, which will prevent a loop from being cached. Furthermore, a cacheable loop contains no
more than 31 instructions. Even though recursive inlining may result in a loop with no transfers
of control, it is likely to result in more instructions than a ZOLB can hold. For these reasons, I
chose not to inline multiple-block functions. In the next section, we will be inlining all functions
called from a single site. Without the constraints that are imposed by the ZOLB, we will be able
to do a much more thorough job in inlining functions. For example, recursive inlining and inlining
of multiple-block functions are all performed.

Figure 5 gives the algorithm for inlining functions to make loops cacheable. The algorithm
summarizes the important points discussed above. When we actually inline a function, the code
from the callee is simply copied to the place where it is called. Afterwards, if the address of the
callee is never taken and the number of call sites of the callee becomes zero after inlining, we delete
the inlined function.

Figure 6 gives an example of a DSP16k assembly program that consists of two functions: _abs
and _main. Note that only part of _main is shown. Function _main has a loop that starts at the
label _L5 and ends in the branch instruction “if le goto L5”. This loop has two blocks, the first
block ends in a call instruction, and the rest of the loop comprises the second block, which is the
exit block of the loop. Because the call instruction is a TOC instruction that does not belong to the
exit block, the loop cannot be placed in the ZOLB. If we inline function _abs, the call instruction
will be replaced with the body of function _abs not including the return instruction. After inlining,
the loop will satisfy all the conditions for it to be cached. Figure 6 shows the program before and
after function _abs is inlined. Notice that after inlining, function _abs is deleted because it is not
called from elsewhere. The cached version of the loop is not shown here, since caching a loop is not
part of this project. But it was done by Dr. Whalley as a separate optimization in the optimizer.



PROCEDURE inlineforcaching
FOREACH loop L in the application
IF (need_inline (L))
FOREACH call instruction in loop L
inline the function called
FOREACH function f in the application
IF (f.callsites == O AND address of f is not taken)
delete f
END PROCEDURE

PROCEDURE need_inline (L)
IF (L does not have a known number of iterations)
return FALSE
FOREACH basic block b in loop L
IF (b ends in a branch OR b ends in a jump)
return FALSE
IF (b has a call)
IF (the function called is a library function)
return FALSE
IF (the call is indirect)
return FALSE
IF (the function called is multi-block)
return FALSE
hasdirectuserfunccalls = TRUE
IF (hasdirectuserfunccalls == FALSE)
return FALSE
numinsts = 0
FOREACH basic block b in loop L
FOREACH assembly line m in b
IF (m is not a call)
numinsts ++
ELSE
FOREACH assembly line n in the function called
IF (n is not a return)
numinsts ++
numinsts -- # the branch instruction will be removed after caching
IF (numinsts <= 31)
return TRUE
ELSE
return FALSE
END PROCEDURE

Figure 5: Pseudocode for Inlining to Make Loops Cacheable
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However, it is worth mentioning again that after caching, the branch instruction “if le goto L5”
will be removed. This is important because it affects our calculation that determines whether a
loop is cacheable.

Before After
_abs: a0 = a0
if It a0 = -a0
if true return
_main: _main:
rd = _a rd = _a
ab =20 ab =20
ad = -9999 ad = -9999
L5: a0 = *r44++ L5: a0 = *r44+
call _abs a0 = a0
ad = ad + al if 1t a0 = -a0
ad —ad + 1 adb =ad + al
if le goto L5 ad=ad +1
e if le goto L5
if true return ...
if true return

Figure 6: Example of Inlining to Make Loops Cacheable

3.2 Imnlining Functions Called from A Single Site

To inline functions called from only one site, we first need to determine at how many sites each
function is called. A function can either be called explicitly, i.e., by its name, or it can be called
implicitly, i.e., through a pointer. Explicit calls are relatively easy to count, since each call contains
the name of the function called. Implicit calls, on the other hand, require some thought. If a
function is called through a pointer, then the address of the function is taken and assigned to
a register. This register can be passed to a library function as an argument, in which case, the
function can be called by the library function indirectly. Without the code of library functions, it is
impossible to determine the number of sites where a function is called indirectly. Furthermore, as
is explained in Section 3.1, even if the address of a function is not passed to any library function, it
can still be difficult to determine which function is invoked at each indirect call. For these reasons,
we do not inline any function whose address is ever taken. This way, we will not accidentally delete
a function that is only called indirectly from library routines. To summarize, the following lists the
criteria we use to determine if a function can be inlined for the purpose discussed in this section:

1. The function is not a library function.
2. The address of the function is never taken.

3. The function is only called from one site.

3.2.1 The Basic Algorithm

The basic algorithm for in-lining functions that are called from a single site is given in Figure 7.
This algorithm is based on the following observation. If we use a node to represent each function,
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and an edge from A to B to represent a call from function A to function B, then the functions and
calls in an application form a directed graph, which is referred to as the call graph. The root of
the call graph is the main function. To inline all functions that satisfy the criteria listed above, the
nodes on the call graph are traversed in a depth-first fashion. When a node is being visited, all its
children that can be inlined are inlined immediately. If a child cannot be inlined, a recursive call is
made on the child.

PROCEDURE inlinesinglecallsite (parent)
IF (parent is a library function)
RETURN
IF (parent is already visited)
RETURN
mark parent as visited
FOREACH child c called by parent
IF (c is not a library function AND
the address of c is not taken AND
c.callsites == 1)
mergecode (parent, c)
# after mergecode(), functions called from c are added to the end
# of parent’s list of children
ELSE IF (parent and child are not the same function)
inlinesinglecallsite (c)
END PROCEDURE

PROCEDURE setcallsites
FOREACH function f in the application
f.callsites = 0
FOREACH function f in the application
FOREACH function p called by f explicitly
IF (p is not a library routine)
p.-callsites ++;
END PROCEDURE

Figure 7: Pseudocode for Inlining Functions Called from A Single Site

It is worth pointing out that when a child is inlined into its parent, all the functions called by
the child become the functions called by the parent. Therefore, not only is the call graph changed
because of the removal of the node for the child, it is also changed due to the fact that all the nodes
that are called by the child move one level up and become the children of the parent. If we look
closely at the implementation, we notice that the main algorithm is recursive, and that within each
recursion, there is a loop that guarantees that all the children of the parent being visited will be
considered for inlining. This loop goes through a list of the functions that are called explicitly by
the parent. If we inline a child that have some function calls of its own, these functions will become
functions called by the parent, and therefore should be added to the list of the calls made by the
parent. These functions cannot be inserted at arbitrary positions of the list. For example, if they
are added at the beginning of the list, since the loop has already passed that point, these newly
added children of the parent will not be considered for inlining. For this reason, they are appended
at the end of the list to guarantee that the loop will eventually come to examine them.

The example given in Figure 8 will make the execution of this algorithm clear. Six snapshots
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of the call graph of an application during the inlining process are shown. For clarity, only seven
functions that are relevant are chosen. Snapshot (1) shows the call graph of seven functions before
the algorithm is applied. Node M represents the main function, and the asterisk next to function A
indicates that the address of A is taken. The recursive algorithm starts at M. During the recursion
on M, all its children are considered for the possibility of being inlined. Since the address of A is
taken, it cannot be inlined into M. Instead, a recursive call is invoked on A, which first results in
the inlining of C into A. Snapshot (2) is the call graph after C is inlined. Next, D is inlined in a
similar way. As the result of the inlining of D, the functions called by D, namely, E and F, become
functions called by A. This change shows up on the call graph in snapshot (3) as the adoption of
E and F by A after D is removed. Now that £ and F are children of A, they are considered for
inlining as well. The next two snapshots, i.e., (4) and (5) show the call graph after E is inlined and
after F' is inlined, respectively. At this point, all the children of A have been inlined, so the recursion
on A returns to M, where the other child of M, namely B, is inlined. When the algorithm stops,
two functions remain. M is the main function, therefore, cannot be inlined. A remains because its
address is taken.

() () () () (W) (W)
@ ® @ 6 G@
© © (0) ® ® ®)

® ® & G

M @ ©) © ® ()

Figure 8: Example 1 of Inlining Functions Called from A Single Site

3.2.2 Recursive Functions in the Application

Another point to make about the main algorithm is that whenever we visit a parent node, before
any of its children is considered for inlining, we mark the parent as visited. This is to prevent infinite
recursions in the case where there are recursive functions in the assembly code being optimized.
This marking will also prevent nodes that are reached from multiple parents from being examined
repeatedly for the possibility of inlining.

The example given in Figure 9 focuses on functions called from more than one site and recursive
functions in the application. Eight snapshots of the call graph of an application during the inlining
process are shown. In each snapshot, the dark circle is the parent being visited, and the dashed
circle is the child being considered for inlining. Snapshot (1) shows the moment when the recursion
is on M, and A is being considered for inlining into M. Of course, A cannot be inlined because it is
called from two sites, i.e., M and B. As a result, a recursive call is made on A. In snapshot (2), C is
being considered for inlining into A. Because the address of C is taken, it cannot be inlined either.
The recursion goes deeper onto C' where F is the candidate for inlining, as illustrated in snapshot
(3). E is only called from C and its address is not taken, therefore, it can indeed be inlined into
C. Snapshot (4) shows the call graph after F is inlined, and the recursion retracts to M where B
is the candidate for inlining. Since B is called from M and D, it is not inlined. In snapshot (5),
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the recursion moves to B, and A is examined for the possibility of being inlined. Again, A is not
inlined due to the fact that it is called from two sites. Now the recursion moves to A for the second
time. Only this time A is already marked as visited, so the recursion returns before its child C is
considered redundantly for inlining. This is illustrated in snapshot (6) by the absence of a dashed
circle. When the recursion returns to B, as shown in snapshot (7), the other child of B, i.e., D is the
one to be inlined. Snapshot (8) shows the call graph after D is inlined into B. There are two things
that are quite interesting in snapshot (8). First, after D is inlined, the call from D to B becomes a
call from B to itself, hence the arrow from B to B. Second, since B calls itself, in other words, it is
its own child, it is considered for inlining just like any other children of B’s. This is why the circle
around B is both dark and dashed. Of course, an immediate recursive function that is reachable
from the main function can never be inlined because it is called from at least two places. If it were
not reachable from the main function, it would not have been reached by the algorithm.

ol © @ o
> 0% 0% 6% &% ®

) (6) @) 8

\

Figure 9: Example 2 of Inlining Functions Called from A Single Site

3.2.3 Updating Data Structures

The hard part of inlining functions called from only one site is to keep all the data structures
associated with different levels of abstraction of the application being optimized in a consistent
state. Almost every data structure internal to the optimizer is being affected by this optimization.
Just to mention a few obvious ones, lines of assembly code are deleted and moved around, basic
blocks are moved around and merged together, predecessor-successor relationships are changed,
and functions are deleted. What really makes the matter worse is that these data structures are
interwoven. Before changing one item, careful analysis has to be done as to what will be affected
by this change. Without going into too much detail of the implementation, the following gives a
list of things that have to be accomplished:

1. Remove the save and restore of the return address of the callee.

2. Remove the last instruction in the callee if it is an unconditional return.
3. Unhook basic blocks in the callee and insert them into the caller.
4

. Update the field in the data structure for basic blocks that stores the function to which a
basic block belongs for all the blocks inlined from the callee.

5. Fix predecessor-successor relations among the call block (the block in the caller that made the
call), the basic block following the call block, the top block from the callee, and the return
block from the callee.

6. Convert conditional and unconditional returns in the code from the callee to branches and
jumps to the block after the call block, respectively.

7. Merge the top block of the callee with the call block of the caller.
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8. Merge the call block with its next block if the callee is a single-block function that does not
end in a TOC instruction and that the the next block does not have a label.

9. Merge the last block (if different from the top block) from the callee with the block after the
call block if the former does not end in a TOC instruction and the latter does not have a
label.

10. Remove the call instruction from the caller.

11. Decrement the number of call sites of the callee by 1.

12. Functions called explicitly by the callee become functions called explicitly by the caller.
13. Functions called implicitly by the callee become functions called implicitly by the caller.
14. Delete the save and restore of return address of the caller if it becomes a leaf function.
15. Delete the callee.

Two key points will be made about the above list of operations here. First, the cc16k compiler
may generate multiple return instructions in a single function. These return instructions may be
unconditional or conditional. For different types of return instructions, readers are referred back
to Table 1. After the code of the callee is inlined into the caller, if the last basic block from the
callee contains an unconditional return, it is no longer needed and therefore it is removed. Other
returns still play important roles in controlling the flow of execution of the application and thus
cannot be removed. To preserve the semantics of these returns after inlining, conditional returns
and unconditional returns are converted into branches and jumps, respectively. The target of these
branches and jumps is the block after the call block. A label may need to be added to this target
block if it does not already have one. Because of these added branches and jumps, new predecessor-
successor relations are introduced. Figure 10 shows an example where a function with multiple
returns is inlined. After inlining, the conditional return “if pl return” is converted to a branch “if
pl goto _.L01”, where _.L01 is a label newly assigned to the block after the call block.

The second point to make is that to be able to carry out the above operations correctly, it
is essential that the partial orderings among some operations are preserved. The above list gives
one correct ordering. For example, one cannot merge the bottom block from the callee with the
block after the call block before converting returns from the callee to branches or jumps. Again,
we can use Figure 10 to illustrate this point. According to the semantics of the assembly code, the
conditional return should transfer control to the instruction “a5 = a5 + a0”. If the bottom block
from the callee were merged with the block after the call block first, the instructions from “a0 =
-a0” to “if le goto _.L5” would belong to the same basic block and the instruction “ad = a5 + a0”
would appear in the middle of the basic block. If we attempted to convert the conditional return
to a branch after that, we would have a transfer of control into the middle of a basic block, which
would violate the definition of a basic block.

4 Optimization on Nonscratch Registers

4.1 Moving Saves and Restores to Callers

The calling convention for the DSP16k is that the caller is responsible for all scratch registers it
wants saved, and the callee is responsible for all nonscratch registers. Examples of nonscratch
registers include a4, a8, a6, a7, r4, r5, and r6. When the cc16k compiler generates code, it saves
all nonscratch registers that are used by a function. However, this is not always necessary. For
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Before After
_main: _main:
sp——2 sp——2
*sp——2 = ad *sp——2 = ad
*sp——2 = ab *sp——2 = ab
*sp——2 =r4 *sp——2 =r4
*sp = pr *sp = pr
r4d = a 4= _a
ab=20 ab=20
ad = Oxfffffc19 ad = Oxfffffc19
_.L5: _.L5:
far call _abs a0 = al
ab=ad + al if pl goto _.LO1
ad=ad + 1 a0 = -a0
if le goto _.L5 | _.LO1:
a0 = ab ab=ad+ al
pr = *sp++2 ad=ad +1
rd = *sp++2 if le goto _.L5
ab = *sp++2 a0 = ad
ad = *sp++2 pr = *sp++2
if true return rd = *sp++2
_abs: ab = *sp++42
a0 = a0 ad = *sp++2
if pl return if true return
a0 = -a0

if true return
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Figure 10: Example of Inlining Functions with Multiple Returns




example, if after the call a nonscratch register in the caller is set before used, there is no need to
save it in the callee.

If a function save a nonscratch register that is not live after any call to this function, the save
and restore of this register can be moved up to all the callers of this function. If the function is
called from multiple sites, this may result in an increase of code size. However, for reasons explained
shortly, this optimization turns out to be beneficial most of the time. First, if a function is called
from within a loop, moving the save and restore instructions up the call graph can reduce the
number of instructions executed dynamically. Second, even though the save and restore may be
duplicated at the direct callers, the process does not stop there. These duplicate copies in the direct
callers may again be moved to the callers of their own. In fact, the process is carried out recursively
from the leaves of the call graph to the root. In some cases, all these duplicate copies eventually
become one at the root, i.e., the main function.

Figure 11 shows the algorithm to move saves and restores of nonscratch registers. The algorithm
does a traversal of the call graph. When a function is visited, checks are done to see if it is a library
function, if its address is ever taken, or if it is already visited. If any of the above is true, the
current recursion is immediately ended. Since no code for library functions is available, they are
not considered in this algorithm. If the address of a function is taken, it may be called from a
library function. Since in this algorithm, saves and restores of registers in a function may need to
be extracted to its callers, having a library function as a potential caller prevents such an operation
to be done. The last check can prevent work being done redundantly on a function called from
multiple sites. More importantly, it prevents infinite recursion in the case where there are cycles
in the call graph. The next step is to mark the node as visited. If the node has any children, the
children are visited before any other operations are performed on the node itself. After the children
are all visited, the nonscratch registers in the current node are examined in sequence. If a register is
not live at any call points of the current function, the save and restore instructions of it are moved
to all the callers of the current function.

As mentioned before, we mark a node upon visiting it. There is another marker used in this
algorithm to handle the case of cycles in the call graph. The rest of this paragraph explains why
two markers are necessary. If a function is called from two sites, then its node will have two parents
in the call graph. Since after visiting a node all children nodes of it are also visited, this function
will be visited by both parents. After the visit by the first parent, all registers that are not live at
any call points of this function are moved up to all its callers, i.e., the two parents. By the time the
second parent visits, there are no such registers left. We can either waste time examining all the
nonscratch registers again, or simply end the visit by checking one marker. However, this marker
does not solve all problems. Imagine the situation where the main function calls function A and
function A calls function B and function B calls function A recursively. If only one marker is used,
when A is visited, it is marked as such. Then B is visited, and marked as such. Then A is visited
again since it is called by B. Now we see that A is already visited, therefore, go back to B and start
to move registers from B to its callers, node A. Then the recursion retracts to A, the node from
which B is reached. Now since all the children of A have been visited, the next step is to move
some registers from A to its callers, B and main. The problem is that to move registers from A
to B would be reversing the move done at B. For this reason, we use another marker to indicate
whether a node has already been processed. When this marker is used for the above case and when
the recursion retracts to A, we check if any of A’s caller has already been performed on and find
out that B has. This tells us that there is a cycle in the call graph, and we do not do anything for
A. No registers will be moved from A to B or to the main function.

An improvement to the above algorithm is to rename a nonscratch register in a function when
it is live at some call sites. This is possible only when another register is available for renaming. A
register can be used for renaming if it satisfies two conditions:
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PROCEDURE pushupregisters (parent)
IF (address of parent is taken)
RETURN
IF (parent is marked as visited already)
RETURN
mark parent as visited
FOREACH child called by parent
pushupregisters (child)
IF (parent is the main function)
RETURN
IF (a cycle is detected at this point)
RETURN
find all callee-saved registers in parent
FOREACH register p saved that is live at some call points
IF (a replacement register q not live at any call sites exists)
replace p with the replacement q
FOREACH register p saved that is not the pr register
IF (p is not live at any call points)
FOREACH caller that calls parent
add save and restore of p to the caller
delete save and restore of p from parent
update callee-saved registers of parent to reflect the change
END PROCEDURE

Figure 11: Pseudocode for Register Optimization
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1. It is not used in the function being visited.

2. It is not live at any call points of the function being visited.

The first condition is to avoid conflicts. The second condition is imposed because the purpose
of renaming is to enable the save and restore of a register to be moved to its callers. The register
used for renaming certainly has to satisfy the conditions for that operation.

4.2 Adding and Deleting Saves and Restores

By the convention of the cc16k compiler, if any register is saved in a function, the sequence of saves
always starts with a decrement of the stack pointer followed by one or more saves. This initial
decrement of the stack pointer takes the form of “sp——2”. In addition, the pr register, which
holds the return address of a function, is usually the last one saved if it is saved at all. It is worth
pointing out that when it comes to saving and restoring registers, the important thing is that they
are handled in a first-in-last-out order. Which register is saved first or last is immaterial.

The fact that the DSP16k instruction set has post increment and decrement operators applied
to the stack pointer makes the matter of moving saves and restores of registers a little complicated.
A typical example of a save is “*sp——2 = r4”, which saves the register 4/ on the stack and then
decrements the stack pointer by two words. Because of the increment and decrement operators, in
addition to adding an instruction to the code, adjacent instructions may need to be modified as
well. If the added save is the only save instruction in the function, an initial decrement of the stack
pointer has to be added. If there are already other registers saved in the function, then no initial
decrement needs to be added since it must already be in the code. If the pr register is saved, the
new save is added before the save of pr, otherwise, it is added at the end of the save sequence. This
is to conform to the not-so-strict convention that the pr is the last register saved.

For each save instruction added to a function, one or more restores are added, since a function
may have more than one return block in DSP16k assembly. Adding the restore instruction is
relatively simple, since there is only one format in the restore sequence. Every restore includes an
increment to the stack pointer, and there is no trailing increment like the initial decrement. For
example, the instruction “rf = *sp++2” restores the value of 74.

Figure 12 illustrates how the optimization is done with an example from test program stats. The
part of the call graph of this application where elimination of saves and restores actually occurs
is shown. None of the six functions in the graph are leaf functions, which is why they all save
the pr register. Note that some functions called by these six functions are not shown here. In
Figure 12, the registers saved and restored by each function are listed next to the node representing
the function. For example, in part (1), before the optimization is applied, the registers saved and
restored by the main function include r4, 5, and pr, and those by function coef include a4, a5, a6,
a7, r4, 5, r6, and pr. In part (2), saves and restores of registers a4-a7 and r4-r6 are moved from
function coef to the main function. We illustrate this movement with the names of these registers
labeled on the arrow indicating the direction of the movement. These registers are moved because
they are not live at the point in the main function where coef is called. After this, the only register
saved by coef is pr, and the registers saved by the main function expand to a4-a7, r4-r6, and pr,
among which, a4-a7 and 76 have come from coef. In part (3) and part (4), saves and restores of
some registers are moved from stddev and mean to the main function, respectively. As a result,
the number of registers saved by these two functions is reduced. However, the registers saved by
the main function remain the same. This is because the main function is already saving all the
nonscratch registers of interest at the end of stage (b). The saves and restores of 74 and 75 remain
in stddev because these registers are live at the point where stddev is called from the main function
and no registers are available to rename them. Next, when the algorithm visits function rand at
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stage (e), it notices that register r4 is live at the point where it is called from init. Therefore, the
algorithm attempts to rename 74 to a register that is not used in rand and is not live at the point
where rand is called. Indeed, it finds register 5 and renames 74 to r5 and moves the save and
restore of 5 to function init. These operations are illustrated in part (5), where the label “rf—r5”
on an arrow indicates that 74 is first renamed to r5 and then the save and restore of r5 are moved
to the function pointed to by the arrow. Similarly, in part (6), register r4 is renamed to r6 and
then the save and restore of r6 are moved from 4nit to the main function. A comparison of the
registers saved in part (1) to those in part (6) shows that the optimization eliminated the saves and
restores of 13 registers, which correspond to 26 DSP16k assembly instructions.

a4-a6 ad-a7
r4-16, pr r4-16, pr 4, pr

a4-a6 a4 ad-a7
r4-16, pr r4-16, pr 4, pr

r4-15, pr a4-a7 r4-15, pr r4-15, pr a4-a7

(C)) )

Figure 12: Example of Elimination of Saves and Restores

5 Optimization on Transfers of Control

A transfer of control (TOC) is either a branch, a jump, a call, or a return instruction. When the
target of a TOC is encoded as a constant in the instruction, a larger offset of the target may require
more bits. This is the case for the DSP16k instruction set, where a far TOC instruction is twice the
size of a near TOC instruction. For lack of information on the offset of the target from the source,
the cc16k compiler always generates a far TOC when faced with a choice between a far TOC and
a near TOC. The goal of the optimization discussed in this section is to convert far transfers of
control to near transfers of control whenever possible.

In the DSP16k instruction set, there are three different instruction sizes: 16 bits, 32 bits, and 64
bits. TOC instructions can be either 16 bits or 32 bits. Different types of TOC instructions of the
DSP16k instruction set are listed in Table 1. As we can see from this table, the target of a transfer
can either be a constant or an address stored in a register. This optimization is concerned with the
former, since the TOC instructions with a register target are already in the minimal 16-bit format.
For constant targets, the 16-bit format is used when the target offset is small enough to fit in 12
bits. The 32-bit format is used otherwise. It is therefore not surprising that the 16-bit format is also
referred to as near transfers of control and the 32-bit format as far transfers of control. Another
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thing that can be observed from Table 1 is that there is no 16-bit encoding for branch instructions
or conditional calls with a constant target. Such instructions can only be encoded in 32 bits. As it
turns out, only the instructions that begin with “if true” or “far” can be potentially reduced to 16
bits, other instructions are either already in a 16-bit format or do not have a 16-bit encoding.

Branch Instructions Size | Action

if condition goto constant 32 none

Jump Instructions Size | Action

goto constant 16 none

near goto constant 16 none

if true goto (pt0|ptl|pt) 16 none

if true goto constant 32 32—16 if offset fits in 12 bits
far goto constant 32 32—16 if offset fits in 12 bits
Call Instructions Size | Action

call constant 16 none

near call constant 16 none

(if condition)? call (ptO|ptl|pr) | 16 none

icall constant 16 none

tcall 16 none

if condition call constant 32 none

if true call constant 32 32 — 16 if offset fits in 12 bits
far call constant 32 32 — 16 if offset fits in 12 bits
Return Instructions Size | Action

return 16 none

if condition return 16 none

ireturn 16 none

treturn 16 none

Table 1: DSP16k Transfer of Control Instructions

5.1 Transfer of Control Instructions in the DSP16k

The cc16k compiler uses an intermediate representation that does not always have a one-to-one
mapping with assembly instructions. At the very end of the compilation, this intermediate rep-
resentation is translated to assembly language. As a result, the cc16k compiler always uses the
32-bit format for TOC instructions with a constant target. In contrast, the optimizer reads in all
the assembly files of an application and processes them together. It is possible for the optimizer
to determine the distance between any two instructions since it has access to all the assembly
instructions.

The algorithm to compute the distance between two instructions is expected to be straightfor-
ward if the size of each instruction in between is known. One complication comes from the fact
that at the assembly code level, an instruction that requires 64 bits is actually two lines of code.
It turns out that determining whether two lines of code belongs to one instruction or not is not a
simple matter. The remedy is to assume that all instructions are 64 bits long. Fortunately, we are
still able to convert most of the candidate 32-bit TOC instructions to the 16-bit format.
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5.2 Forward and Backward Transfers of Control

A forward TOC precedes the target in the assembly file, whereas a backward TOC appears after
the target in the assembly file. When calculating the distance between the source and the target
of a TOC, forward transfers of control and backward transfers of control are treated differently.
To see why it is done this way, lets take a look at how a constant target in a TOC instruction is
encoded. As it turns out, it is encoded as the offset of the address of the target instruction from
the address of the instruction following the TOC. The reason why the instruction after the TOC
instead of the TOC itself is used in calculating the offset is that the program counter is incremented
right after the TOC is fetched. The offset encoded in a TOC instruction represents the number of
16-bit words between the TOC and the target block. For a forward transfer of control, the offset
is a positive value and it is the sum of the sizes of all instructions in between but not including the
source or the target block. For a backward TOC, the offset is a negative value and the absolute
value of this offset is the sum of the sizes of all instructions between and including the source and
the target block. Figure 13 shows an outline of how the offsets are calculated.

PROCEDURE fartonear
LET B be the list of basic blocks in the application
FOREACH basic block cblk in B
LET e be the last instruction in cblk
IF ((e is a jump OR e is a call) AND
the target is a constant AND
(e starts with ‘‘if true’’ OR e starts with ‘‘far’’))
LET dblk be the target basic block of e
LET o denote the offset between e and its target in dblk
LET r be the range of blocks that contribute to o
IF (e is a forward transfer of control)

r = (cblk, dblk), r is an open range
o = sum (instruction sizes in r)

ELSE
r = [dblk, cblk], r is a closed range

o = - sum (instruction sizes in r)
IF (o can fit in 12 bits)
replace ‘‘if true’’ OR ‘‘far’’ in e with ‘‘near’’
END PROCEDURE

Figure 13: Pseudocode for Far-to-Near Transformation

Figure 14 gives an example for each of the two types of transfers of control discussed in this
section. The first example is a forward jump taken from the benchmark program zc40. The offset
is given in number of 16-bit words, and each instruction is conservatively assume to be 64 bits, i.e.,
4 words. An offset of 16 can easily fit in 12 bits. As a result, the far encoding is transformed into
the near encoding. The second example is a backward TOC that happens to be a call instruction.
The example is taken from the benchmark program matmult. The offset here is a negative value:
—64, which can easily fit in 12 bits as well. Hence, the call instruction is also transformed into the
near version.
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Type Program | Offset Before After
_.L24: _.L24:
a0 -1 a0 -1
if ne goto _.L6 if ne goto _.L6
ad = a3 ad = a3
if ne goto _.L30 if ne goto _.L30
r0 = _out_word r0 = _out_word
a0 = 0x0000000a a0 = 0x0000000a
Forward xc40 16 if true goto _.L33 near goto _.L33
_.L30: _.L30:
a3 -1 a3 -1
if ne goto _.L6 if ne goto _.L6
r0 = _out_word r0 = _out_word
a0 = 0x0000003a a0 = 0x0000003a
_.L33: _.L33:
*r0 = a0 *r) = a0
_InitSeed: _InitSeed:
sp——2 sp——2
*sp = r6 *sp = r6
r6 = sp+0 6 = sp+0
r0 = _Seed r0 = _Seed
a0l =0 a0 =20
*r0 = a0 *r0 = a0
_L2: _L2:
sp = r6 sp = r6
Backward | matmult -64 nop nop
r6 = *sp++2 r6 = *sp++2
nop nop
if true return if true return
_main: _main:
sp——2 sp——2
*sp——2 =16 *sp——2 =16
*sp = pr *sp = pr
r6 = sp+0 6 = sp+0
far call _InitSeed near call _InitSeed
Figure 14: Examples of Far-to-Near Transformation
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6 Results

Five test programs are used to measure the effectiveness of the four optimizations discussed in this
report. Table 2 gives a brief description of these test programs. The results of code size are listed in
Table 3, and those of execution cycles are listed in table 4. The first column of each table gives the
name of the test programs. The second column gives the results after dead code removal is applied.
The third column lists the results after inlining is applied in addition to dead code removal. In
the fourth column, one more optimization, namely, eliminating unnecessary saves and restores of
registers, is added. In the last column, all four optimizations are performed. The percentage is
measured against the effectiveness of the optimizer without using any of these four optimizations.

Program | Description

edn encoding and decoding
fft 128 point complex fft
stats statistics program
matmult | matrix multiplication
total8 image processing

Table 2: Description of Test Programs

As can be seen from the numbers, the optimizations are very effective in reducing the code
size, particularly due to dead code removal which deletes complete functions that are kept by the
cc16k compiler after inlining but are not called from anywhere else. Inlining functions called from
a single site also has a positive yet small effect on reducing code size. Removing unnecessary saves
and restores can have a significant effect in some cases. For example, it resulted in an additional
reduction of 5.26% in code size when applied to stats. The effect of far-to-near transformation in
reducing the code size is small yet it is performed very often due to the commonness of transfer of
control instructions.

Program | dead code removal | + inlining | + remove save/restore | + far-to-near
edn -42.00 % -42.16 % -42.93 % -42.93 %
fft -6.21 % -745 % -8.94 % -9.07 %
stats -2.92 % -5.46 % -10.72 % -11.89 %
matmult -44.62 % -46.22 % -46.02 % -46.02 %
total8 -59.32 % -59.32 % -59.32 % -59.32 %

Table 3: Results of Code Size

The effect of these optimizations on reducing the execution cycles is not as noticeable. One of
the reasons is that even though dead code takes up space, it does not slow down execution because
it is not executed anyway. A near transfer of control takes less space than a far transfer of control,
but it takes just as much time to execute. Therefore, no reduction in execution cycles is expected
from these two optimizations. Inlining functions can make it possible to place a loop in the ZOLB,
in which case the execution time can be reduced significantly. However, caching loops is not part
of this project, therefore, its benefit is not discussed in this report. Interested readers can obtain
relevant papers from Dr. Whalley. Both function inlining and elimination of saves and restores
result in deletion of instructions, therefore, some degree of reduction in execution cycles is expected
from them. The effectiveness of these two optimizations on reducing execution cycles depends very
much on the program to which they are applied. To see any effect at all, the application has to
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provide opportunities for functions to be inlined and for saves and restores to be eliminated. For
this reason test programs consisting of only the main function are not used. When elimination of
instructions occur in an inner loop of a large number of iterations, the effect is expected to be more
obvious. However, no detailed analysis in this respect is done due to two reasons. First, the only
way to get measurements of execution cycles off-site is through the use of a simulator, which runs
many orders of magnitude slower than the real DSP16k chip. A loop of a large number of iterations
can take hours to execute. A more important reason is that the measurements of execution cycles
are not always accurate in the simulator.

Program | dead code removal | + inlining | + remove save/restore | + far-to-near
edn -0.80 % -0.01 % -0.01 % -0.10 %
fft -0.00 % -0.00 % -1.96 % -1.96 %
stats -2.37% -0.03 % -2.40 % -2.40 %
matmult 0.00 % -7.62 % -9.26 % -9.26 %
total8 -0.26 % -0.26 % -0.26 % -0.26 %

Table 4: Results of Execution Cycles

7 Conclusions

The goal of this project is to use information that is not available to the cc16k compiler to perform
interprocedural optimizations. Four such optimizations are: removing dead code, inlining functions,
eliminating unnecessary saves and restores of registers, and converting far transfers of control to
near transfers of control.

Dead code removal and far-to-near transformation are intended to reduce code size. Dead code
removal proves to be very effective when the cc16k compiler inlines functions and keeps the functions
inlined even when they are not called elsewhere. Opportunities for far-to-near transformation exist
in most applications due to the commonness of transfer of control instructions.

Inlining functions to make loops cacheable provides opportunities for caching loops which even-
tually reduces execution cycles. When this optimization is applied, code size may be increased if a
function inlined is called from more than one site.

Inlining functions called from a single site and elimination of unnecessary saves and restores of
registers are expected to reduce code size directly and to decrease execution cycles as the result of
fewer instructions executed. The degree to which these two optimizations reduce code size is usually
small. The effectiveness of these two optimizations in reducing execution cycles is dependent on the
dynamic execution of the application. If instructions from a loop of many iterations are removed
as the result of these two optimizations, the effectiveness is expected to be obvious.
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