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Abstract

This dissertation describes a general code-improving transformation that can
coalesce conditional branches into an indirect jump from a table. Applying this
transformation allows an optimizer to exploit indirect jumps for many other
coalescing opportunities besides the translation of multiway branch statements.
First, dataflow analysis is performed to detect a set of coalescent conditional
branches, which are often separated by blocks of intervening instructions. Sec-
ond, several techniques are applied to reduce the cost of performing an indi-
rect jump operation, often requiring the execution of only two instructions on
a SPARC. Finally, the control flow is restructured using code duplication to
replace the set of branches with an indirect jump. Thus, the transformation
essentially provides early resolution of conditional branches that may originally
have been some distance from the point where the indirect jump is inserted. The
transformation can be frequently applied with often significant reductions in the
number of instructions executed, total cache work, and execution time. In fact,
over twice the benefit was achieved from exploiting indirect jumps as a general
code-improving transformation instead of using the traditional approach of pro-
ducing indirect jumps as an intermediate code generation decision. In addition,
the author show that with comparable branch target buffer support, indirect
jumps improve branch prediction since they cause fewer mispredictions than the

set of branches they replaced.
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Chapter 1
INTRODUCTION

Most high-level languages provide multiway branch statements to allow pro-
grammers to write more readable code. The characteristic feature of a multi-
way statement is the ability to select an action based on the value of a control
expression. Without performing any optimization, a compiler would translate
each case label of the multiway statement into a conditional branch. Because of
the widespread usage of multiway statements, instruction sets commonly sup-
port an indirect jump from a table in order to reduce the cost of such sequences
of conditional branches. As a result, compiler front ends typically generate an
indirect jump from a table as one translation alternative! for multiway state-
ments [25, 28].

This traditional approach for using indirect jumps poses two problems. First,
it is difficult to determine when the indirect jump can be effectively used in a
machine-independent fashion since an accurate cost-benefit estimate can only
be made after generating machine code. Second, many code-improving opportu-
nities suitable for using an indirect jump may be missed when only considering
this operation for the translation of a multiway statement.

This dissertation describes a general code-improving transformation that ex-
ploits indirect jumps after code generation. As the instruction issue rate and

pipeline depth of processors increase, efficient handling of branches becomes

IThe other popular alternatives include linear search, binary search, and hashing.



more vital. This improving transformation reduces the number of branches
and mispredictions by coalescing several conditional branches into an indirect
jump. First, dataflow analysis is performed to detect a set of possibly non-
contiguous conditional branches that can be potentially coalesced into a single
indirect jump. Second, control-flow analysis is used to determine how the con-
trol flow should be restructured to perform the coalescing. Third, analysis is
accomplished to determine how to most efficiently generate the indirect jump
operation. The cost of the original branches is also estimated and the indirect
jump transformation is applied when deemed worthwhile. Finally, the original

control flow is modified by duplicating basic blocks when necessary.

1.1 Motivation

Exploiting indirect jumps after code generation can be quite beneficial since
additional branches from other control statements besides multiway statements
can be coalesced into a single indirect jump. The examples in this section
are given in C to more concisely depict branches that can be coalesced into
indirect jumps. The control flow of the restructured C code segments would be
comparable to a restructured flow graph of basic blocks with an indirect jump

from a table.

1.1.1 Indirect Jumps with Branches

Consider the Original code segment shown in Figure 1.1. A typical C compiler
would translate the switch statement into an indirect jump from a table and
would generate a conditional branch for the for statement. Yet, the conditional

branch comparing *sp with zero would immediately precede the indirect jump.



An optimizer could recognize this sequence of branches and be able to coalesce
the extra conditional branch that compares the variable with zero into the indi-
rect jump. Note that one can view this branch as another case for the switch

statement as shown in the Restructured code segment.

Ori gi nal Rest ruct ured
for (sp = line; *sp; sp++) { for (sp =1line; ; sp++) {
switch (*sp) { switch (*sp) {
case 'p’: case '\0':
- goto out;
case 'k’: case 'p’:
.. case 'k’:
}
} }
out:

Figure 1.1: Example from ctags (C tag generator)

1.1.2 Sequence of Contiguous Branches

Other common instances may occur due to programming style. The Original
code segment, depicted in Figure 1.2, shows a series of if statements comparing
the same variable to different constants. A typical C compiler would translate
these if statements as a sequence of conditional branches. However, the code
could have been equivalently written as a single switch statement as shown

in the Restructured code segment. An optimizer could detect the original

sequence of conditional branches and could coalesce such contiguous branches
into a single indirect jump. Use of multiple macros may also result in several
consecutive comparisons being performed. Thus, branch coalescing is appeal-
ing since coalescing is less affected by program style (whether or not multiway

branches are used).



Origi nal Rest ruct ured
if ((c = *sp++) == 0) C = *sp++;
goto cerror; switch (c) {

if (c=='<){ ...} case O: goto cerror;

if (c==">){ ...} case '<':

if (c="0C){ ...} case '>':

if (e==")"){...1} case ' (':

if (c>'1 &&c<='9){ ...} case ')’ :
case '1': case '2': case '3':
case '4’: case '5' : case '6:
case '7': case '8 : case '9':
defaul t:

}
Figure 1.2: Example from grep (pattern search utility)

1.1.3 Set of Contiguous and Noncontiguous Branches

Often there are paths in which intervening instructions exist between branches
that compare the same variable to constants and these intervening instructions
do not update this variable. Consider the following Original code segment
shown in Figure 1.3. A typical C compiler would translate each if statement
into conditional branch(es). At first, it may appear that only the sequence of
conditional branches shown in the shaded boxes can be coalesced into an in-
direct jump. However, the statement charct-+-; does not affect the branch
variable c.  An optimizer could determine the existence of path(s) between
branches comparing the same variable to constants where the variable is un-
affected. The optimizer could modify the original control flow by duplicating
code to allow the branch for the EOF check to also be coalescent. As shown in
the Duplicated code segment, all of the branches in the shaded boxes can be
effectively considered as being contiguous and coalescent for a single indirect

jump. The Restructured code segment shows equivalent code written with a




Origi nal Dupl i cat ed Rest ruct ured
for (i 5) { for (i 5) { for (7)1
c = getc(fp) c = getc(fp) c = getc(fp);
if (c == EOF) if (c == EOF) switch (c) {
br eak; br eak; case EOF: goto out;
charct ++; if (7 ' <c&&c<0177) { case 041:
if (" '<c&&c<0177) { charct ++; ..
if (!token) { if (!'token) { case 0176:  charct ++:
wor dct ++; wor dct ++; if (!token){
t oken++; t oken++; wor dct ++;
} } t oken++;
conti nue; conti nue;
} } conti nue;
if (c=="\n") if (c=="\n") { case '\n’: charct++;
i nect ++; charct ++; i nect ++;
else if (cl= ’&& | i nect ++; goto end;
cl="\t) } _ . charct ++;
conti nue; else i f (ENSD &2 default: conti nue;
token = O; cl="\t") {
} charct ++; case '’
conti nue; case '\t': charct ++;
} }
el se end: token = 0;
charct ++; }
token = 0;
} out:

Figure 1.3: Example from we (word count utility)
switch statement.

1.2 Organization of Dissertation

The dissertation is organized in the following manner. Chapter 2 gives a de-
scription of the compiler that has been used and modified to exploit indirect
jumps after code generation. Chapter 3 briefly describes related compiler op-
timizations to reduce the cost of conditional branches. In order to detect and
replace more branches into a single indirect jump than would be done in the
traditional way, several detection and restructuring algorithms are introduced
in Chapters 4 and 5 that can allow a compiler to better exploit indirect jumps

as a code-improving transformation. Chapter 4 explains the algorithms to de-



tect a contiguous sequence of coalescent conditional branches and to transtform
the control flow for coalescing the detected branches into a single indirect jump.
Chapter 5 depicts the more general algorithms to detect a set of potentially non-
contiguous coalescent conditional branches, which are often separated by blocks
of intervening instructions, and to restructure the control flow by code duplica-
tion when necessary. These algorithms allow the compiler to detect and coalesce
more branches per indirect jump than the algorithms described in Chapter 4.
Thus, the performance benefits from coalescing noncontiguous branches can
be contrasted with the simpler analysis required for only coalescing contiguous
branches.

Chapter 6 presents several techniques that reduce the cost of performing an
indirect jump operation, often requiring the execution of only two instructions
on a SPARC. The task of filling delay slots for indirect jumps is also dealt
with in this chapter. Chapter 7 shows execution time results from performing
dual loop tests [10, 2] on SPARCstations to estimate the impact on pipeline
stalls when the branch coalescing transformation was applied as another code
improving transformation. Furthermore, the benefits of target buffer support for
indirect jumps are discussed in this chapter. Various performance measurements
are given in Chapter 8 that justify the validity of applying the code-improving
transformation that is described in this dissertation. Chapter 9 suggests topics

for future research. Finally, Chapter 10 concludes the dissertation.



Chapter 2
MODIFICATIONS TO THE COMPILER

2.1 Overview of the Compiler

Figure 2.1 shows the overall structure of the vpo (Very Portable Optimizer [4])
compiler system. The front-end of the compiler, ¢fe [12], produces intermediate
code from a given C preprocessed file. The code expander translates the inter-
mediate code into unoptimized lists of machine-dependent effects, called RT'Ls
(Register Transfer Lists). RTLs have the form of conventional expressions and

assignments over the hardware’s storage cells. For example, the RTLs

IC=r[8]710;

PC=IC:0,L001;

represent two machine instructions.! The first RTL compares a register to con-
stant 10 and the second RTL transfers the control to the address L001 when
the two values are equal. While any particular RTL is machine specific, the
general form of the RTL is machine-independent. This allows general machine-
independent algorithms to be written that implement code improving transfor-
mations on machine-dependent code.

All phases of the back-end of the compiler, vpo (Very Portable Optimizer),

manipulate RTLs. The RTLs are stored in a data structure that also contains

!These instructions are generated by cfe when translating high level control statements,
such as if or if-then-else statements.



[
C preprocessed
Sour ce
Code

RTLs
(Regi ster
Transfer Lists)

CFE
(C Front - End)

VPO
(Very Portable

[
[
I nternedi at e
Repr esent ati on

Opti mi zer)

[
[
SPARC M
ASSEMBLY CODE
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information about the order and control flow of the RTLs within a function.
By manipulating RTLs as the sole intermediate representation, the following

benefits can be achieved.

1. Most optimizations can be invoked in any order and can be allowed to
iterate until no further improvement can be found. Therefore, many phase

ordering problems are eliminated.?

2. The effect of a modification to the set of RTLs comprising a function is

relatively simple to grasp.”

2.2 Modifications of the Compiler

In order to exploit the indirect jump operation the following modifications were
made to the compiler. The front-end of the compiler, ¢fe, was modified to
always produce a linear sequence of conditional branches when translating a
C switch statement. An additional code-improving transformation phase to
coalesce branches into an indirect jump from a table was added to the back-end
of the compiler, vpo.

Coalescing of branches was treated as a transformation for a loop. Loop

transformations, such as loop-invariant code motion, typically require extra reg-

?In contrast, a more conventional compiler system will perform optimizations on vari-
ous different representations. For instance, machine-independent transformations are often
performed on intermediate code and machine-dependent transformations, such as peephole
optimizations, are often performed on assembly code.

3In contrast, most conventional compiler systems generate code after optimizations. Thus,
the optimizations are actually performed on intermediate code. Since there is typically not a
one-to-one mapping between an intermediate code operation and a machine instruction, the
effect of a modification on the final code that will be generated may not be obvious in these
systems.
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isters. Most compiler optimizers perform these transformations starting with
the innermost loops first to secure registers for the most frequently executed
code segments. When an indirect jump occurs inside a loop, performing code
motion on the loop-invariant instructions for calculating the jump table ad-
dress requires a register. Thus, as depicted in Figure 2.2, the author coalesced
branches from the innermost loop outward after all other transformations for
a given loop have been initially attempted. Afterwards, branch coalescing was

also attempted on the outermost level of an entire function.
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Branch Chaining
Useless Jump Elimination
Dead Code Elimination
Eliminate Unconditional Jumps by Reordering Code
Instruction Selection
Evaluation Order Determination
Global Instruction Selection
Register Assignment
Jump Minimization
Instruction Selection
DO {
Register Allocation
Instruction Selection
Common Subexpression Elimination
Dead Variable Elimination
Loop Optimizations:
Code Motion
Recurrences
Loop Strength Reduction
Induction Variable Elimination
If (First Pass)
BRANCH COALESCING
Useless Jump Elimination
Cheaper Instruction Replacement
Instruction Selection
} WHILE (change)
BRANCH COALESCING
Setup Entry and Exit
Instruction Scheduling
Fill Slots
Useless Jumps

Figure 2.2: Modified VPO



Chapter 3
RELATED WORK

Several authors have suggested heuristics for deciding between different methods
of translating multiway branch statements [25, 16, 5, 28]. These methods include
a linear search (branch for each case value), binary search, hashing, and indirect
jumps from tables. The approach used in this dissertation initially generates
conditional branches to perform a linear search and relies on the code-improving
transformation to coalesce these and other branches into indirect jumps. The
techniques used in this dissertation to reduce the cost of performing an indirect
jump from a table often make binary searches, hashing, and other alternative
methods less beneficial.

There has been some research on other techniques for avoiding conditional
branches. A superoptimizer will generate an exhaustive set of bounded se-
quences of instructions with the goal of finding a sequence that will produce
the same effect as a more expensive sequence of instructions. The more expen-
sive sequence can then be recognized in a traditional optimizer and replaced
with the less expensive sequence. This technique has been used to eliminate
conditional branches over short instruction sequences in many instances on the
IBM RS/6000 [14]. Loop unrolling has been used to avoid executions of the
conditional branch associated with a loop termination condition [11]. Loop

unswitching moves a conditional branch with a loop-invariant condition before

12
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the loop and duplicates the loop in each of the two destinations of the branch
[1]. Conditional branches have also been avoided by code duplication [20]. This
method determines if there are paths where the result of a conditional branch
will be known and duplicates code to avoid execution of the branch. The method
of avoiding conditional branches using code duplication has been extended using
interprocedural analysis [6].

The approach in this dissertation is similar to the above techniques in that
it improves performance despite the penalty of increasing code size. However,
there are often situations where several branches can be coalesced into a single
indirect jump to avoid the execution of branches that these other techniques
could not. Our approach essentially provides early resolution of branches that
may originally have been some distance away in the control flow from the point

where the indirect jump is inserted.



Chapter 4

COALESCING A CONTIGUOUS SEQUENCE OF
BRANCHES

Chapters 4 and 5 explain several algorithms to detect and replace more branches
into a single indirect jumps than those from only considering indirect jumps
when translating multiway statements. The approach for coalescing a con-
tiguous sequence of conditional branches into an indirect jump from a table
is explained in Chapter 4. The more general approach for coalescing a set of
potentially noncontiguous conditional branches, which are often separated by
blocks of intervening instructions, is described in the next chapter.

The task for coalescing a contiguous sequence of conditional branches was
accomplished in the following manner. First, contiguous conditional branches,
which can be potentially coalesced into an indirect jump, are identified. Second,
the execution cost of the sequence of branches is estimated. Finally, when the
indirect jump transformation is deemed beneficial, the original control flow is
transformed to replace the detected branches by the instructions to perform an

indirect jump.

4.1 Detecting Sequences of Coalescent Branches

A general algorithm for detecting a sequence of branches that can be coalesced
together may provide additional opportunities that would not be available by

generating indirect jumps only when translating multiway selection statements.

14
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The analysis for the approach described in this dissertation to detect sequences
of branches that can be coalesced into an indirect jump required the following

conditions.

1. The branches must be contiguous in the control flow. In other words, the in-
structions implementing the comparisons and branches must be connected

by control-flow transitions with no intervening instructions.
2. Each branch must compare the same variable (or register) with a constant.

3. At most one branch can have no incoming transitions from another branch

in this set. Thus, at most one branch can be the head of the sequence.

The algorithm for detecting a sequence of branches that can be coalesced is
given in Figure 4.1. The algorithm not only will detect a coalescent sequence
of branches, but will also attempt to maximize the number of branches to be
coalesced.

Figure 4.2 contains an example flow graph that is used to illustrate the
algorithm. Assume that the blocks 2, 4, 20, 21, 22, and 23 contain branches
that compare the same branch variable with a constant. Also assume that blocks
2,4, 22, and 23 contain no other instructions besides a comparison and branch.
Consider the case in which the detection of a sequence of branches is attempted
at block 2. The algorithm recursively searches backwards and mark blocks 2,
23, 20, and 21 as visited. Assume block 20 is chosen as the head of the sequence
since it is the first block detected that has no visited immediate predecessor. At
this point the algorithm recursively searches forward and collects blocks 20, 22,

23, 2, and 4 as the sequence of branches to be coalesced.
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PROCEDURE Detect_Sequence()

FOR each block B DO {

IF (B contains a branch that
compares variable V with a constant) {

Search_Back(B, V);
H = Choose_Head();
Collect_Blocks(B, V);

}
}
}

PROCEDURE Search_Back(B, V)

mark B as visited;
IF (B has no instructions

preceding its compare and branch) {
FOR each immediate predecessor P of B DO {

IF (P has not been visited &&
P has a branch &&

P compares V with a constant) {
Search_Back(P, V);

}
}
}
}

PROCEDURE Choose_Head()
FOR each block B marked as visited DO {

IF (B has no immediate predecessor
marked as visited) {

RETURN B;

}
}

RETURN visited block that dominates
the most visited blocks;

}

PROCEDURE Collect_Blocks(B, V)

mark B as collected;
FOR each immediate successor S of B DO {

IF (S has not been collected &&
S starts with a compare and branch &&
S compares V with a constant) {

Collect_Blocks(S, V);

}
}

Figure 4.1: Algorithm for Detection of Potentially Coalescent Branches
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4.2 Constructing the Jump Table

Once it has been determined that a set of conditional branches can be coalesced,
a jump table must be constructed in order to perform the transformation. Con-

struction of a jump table requires two steps.
1. Identify all possible targets for the indirect jump.

2. Associate each possible value of the branch variable with a single potential

target.

To efficiently accomplish these steps, a DAG (Directed Acyclic Graph) is built
as the blocks containing the coalescent branches are collected. Fach node in the
DAG represents one of the coalescent branches. Each edge represents either a
transition between two such branches or a transition to a potential target of the
indirect jump.

The benefits of using a DAG are as follows. First, all possible targets for
the indirect jump can be quickly identified since they will be the targets of
the transitions out of the DAG. Second, each nonoverlapping value range of the
branch variable can be easily associated with a single target by propagating value
ranges of the variable through the DAG. Each node will have two outgoing edges,
one for the true (taken) transition and the other for the false (fall-through)
transition. The possible range of values at each node is calculated by unioning
the effect of applying the relational operator of each immediate predecessor node
on its corresponding input range.

The use of a DAG allows coalescing of branches that check if a variable is

within a specific range. For instance, the C code segment in Figure 4.3(a) checks
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if a character could be part of a C identifier. Figure 4.3(b) depicts the DAG that
was built representing the control flow of the coalescent branches in the code
segment. Nonoverlapping value ranges of the condition variable are mapped
to the targets out of the DAG (A, B, C, D, and E). Note that at most one
target from a transition out of the DAG will be permitted to have unbounded
value ranges. For instance, only the D target has value ranges that cannot be
represented in a jump table. Such a target would correspond to the default case

of a C switch statement.

4.3 Estimating the Benefits of Coalescing a Set of

Contiguous Branches

Before coalescing a set of contiguous branches, the compiler attempts to de-
termine if the transformation is worthwhile. Our compiler inspects the DAG
representing the branches to be coalesced. The number of instructions through
each path in the DAG is calculated. The average number of instructions re-
quired to traverse the DAG is estimated by calculating a probability for each
path through the DAG. The compiler also determines the number of instruc-
tions required to perform the indirect jump. If a benefit is predicted, then the
branches are coalesced.

The probability of taking each path was estimated to obtain a more accu-
rate prediction for the average number of instructions executed to traverse the
DAG. Past studies always assumed that each case of a multiway selection state-

ment, except for the default case, is equally likely [28]. However, the improving
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if ((c>"a && c <='2") ||
(c>"'A & c<='7) ||
(c >="'0 & c <='9) ||
(c =="_))
{
}
(@) C Code Segment
F: 97.. Max
T: Mn..96
|c <65 |
‘F: 65..96, 123..Max
) T. Mn..64
/ Y
(A 97..122 |C <= 90 \ |Cc < 48 |
ca.z) ‘F: 91..96, 123..Max ‘F: 48..64, 91..96, 123..Max
h T. 65..90 T. Mn..47
(B) 65..90 |C <= 57 \ [c!=295 \
(A7) F: 58..64, 91..96, 123..Max‘ F: 95..95
" T 48..57 T: Mn..47, 58..64, 91..94,

96..96, 123..Max

e
(C) 48..57 /

(0.79) (D) Mn..47, 58..64, 91..94, (E) 95..95
96..96, 123..Max ()

(b) DAG Used for Value Range Analysis

Figure 4.3: Example of Checking If a Character Is Part of a C Identifier
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transformation described in this dissertation coalesces branches that are gener-
ated from control statements other than multiway selection statements. Many
studies have recently used heuristics [3], value range propagation [22], or em-
pirical data from the execution of other programs [8] to predict the direction
that branches will take. A different approach that is an extension of using value
range propagation was found to be most effective by the author for the im-
proving transformation in this dissertation. The range of values associated with
the variable being compared at each node in the DAG was inspected when it
was determined that the values being compared were within the range of pos-
sible character values. Each character value was also weighted according to an
estimated frequency of common use. For instance, values representing ASCII
letters and digits were assigned a higher weight than values representing control
characters. The probability for the direction that a branch would take was cal-
culated by using a ratio between the sum of the weights of the possible values
of each of the two outgoing transitions from the branch. The probability of a
path being taken through the DAG was simply the factor of the probability of
each branch decision along that path. If the compiler could not determine that
the comparisons were with character values, then each branch in the DAG was
assumed to have an equal probability of being taken or falling through.

Figure 4.4 shows an example DAG with probabilities assigned to each transi-
tion. The DAG consists of three nodes, where each node represents two instruc-
tions, a comparison and conditional branch. There are five unique paths through
the DAG. By using probabilities associated with the transitions, a weighted av-

erage number of instructions can be calculated as shown in Table 4.1.



Conditional
Branch 1

0.8 0.2
Conditional Conditional
Branch 2 Branch 3

0.3

0.4 0.6

dest A dest B dest C

Figure 4.4: DAG with Weighted Edges

Table 4.1: Estimating the Number of Executed Instructions

Unique Path | Propagated Weight | Num of Instructions
1,2,A 0.8%0.3=0.24 4
1,2,3,B | 0.8%0.7%0.4=0.224 6
1,2,3,C | 0.8%0.7%0.6=0.336 6
1,3,B 0.2%0.4=0.08 4
1,3,C 0.2%0.6=0.12 4
Weighted 5.12
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4.4 Transforming the Control Flow

After ensuring that the estimated execution cost of the detected sequence of
coalescent branches outweighs the cost of performing an indirect jump operation,
the branch at the head of the sequence being coalesced will be replaced by the
instructions to perform the indirect jump. The original transitions from this
head block will be deleted and replaced by transitions associated with the jump
table targets. The other branches may or may not need to be deleted depending
upon if transitions from other blocks can reach these branches.

Consider again the flow graph in Figure 4.2. The sequence of branches
starting at block 20 (20, 22, 23, 2, 4) are coalesced into an indirect jump in
Figure 4.5. The branch at block 20 was replaced by the indirect jump. The
branch in block 22 was deleted after dead code elimination. The other branches
will remain since there are transitions from block 21 and block 1 that can reach
these branches. Figure 4.6 shows the effect of another coalescing transformation
that replaces the branch in block 21 with an indirect jump. The branch in
block 23 is deleted since its only other predecessor transition would be removed.
Eventually, a coalescing transformation could be attempted on block 2 as well.
The author did not coalesce a set of branches unless it was estimated that more
than two branches would be executed on average. The detailed reason for this

constraint is described later in Section 7.1.



Figure 4.6: Coalesced Sequences Starting at Block 20 4 21
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Chapter 5

COALESCING A SET OF NONCONTIGUOUS

CONDITIONAL BRANCHES

The task for coalescing a set of potentially noncontiguous conditional branches,
which are often separated by blocks of instructions, into an indirect jump was
accomplished in the following manner. First, a set of coalescent conditional
branches, which may or may not have intervening instructions, is identified.
Second, a graph for the projected control flow is built to coalesce this set of
conditional branches into an indirect jump. When the transformation is deemed
beneficial, the original control flow is transformed according to the graph by

duplicating basic blocks when necessary.

5.1 Finding A Set of Branches to Coalesce

A conditional branch is considered reachable from a point in a given control
flow if there exists a path from that point to the conditional branch without
the branch variable being affected. In order to find the largest set of coalescent
branches, analysis is performed as follows. For each basic block B, the reachable
branches from the exit point of B are determined. When B contains a condi-

tional branch, the optimizer calculates the reachable branches that depend on
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the same branch variable as that of B. We denote such branches as related and
denote B as the root block of these branches. After detecting all sets of related
branches, the optimizer selects the set with the largest number of branches. The
largest set should be chosen first since branch coalescing requires the allocation
of registers.

The desired reachability information is collected by calculating the following

state information for each basic block B.
e in: Set of blocks containing a reachable branch from the entry of B.

e out: Set of blocks containing a reachable branch from the exit of B.

This includes the conditional branch in B, if one exists.

o effect: Set of blocks containing a branch instruction whose branch variable

is updated by some instructions in B.

This state information is calculated by solving the following dataflow equations.

out[B] = out[B] U (| Jin[S5]) (5.1)

in[B] = out[B] \ effect|B] (5.2)

Equations (5.1) and (5.2) were solved by the iterative algorithm shown in
Figure 5.1. When the algorithm terminates, the out state of each basic block B
contains the reachable branches from the exit point of B.1

Applying the iterative algorithm described in Figure 5.1 to the example

control flow in Figure 5.2 produces the dataflow information as indicated by

!This algorithm is guaranteed to terminate since for any given control flow, (1) there
exists a finite number of conditional branches, and (2) the in and out states of each block
monotonically increase.
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DO
FOR each block B DO
/* caleulate B — OUT from the SUCCESSORS
and its own branch */
B->0UT := NULL.
FOR each immediate successor S of B DO
B->0UT := B->0UT U S->IN.

END FOR

IF ( B contains a branch instruction) THEN

B->0UT := B->0UT U S->IN.

/* caleulate B — IN using B — OUT */
B->IN := B->0UT \ B->EFFECT.
END FOR

WHILE any changes

Figure 5.1: Reaching Algorithm



_ 2. T

Exit of the |oop

JUu @

1.
update "i" |=>136
i >5

F

3.
update "k" | _, 57
i > 7 ’

8. _
update "k" =>57

(Dark Grey): Block containing the conditional branch
that is potentially coalesced

(Light Grey): Block containing the conditional branch
that won't be coal esced

(White): Block containing no conditional branch

Figure 5.2: An Example Control Flow
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Table 5.1. Since block 1 has the largest set of related branches, the compiler
will first attempt to coalesce these branches by placing instructions to perform
an indirect jump at the root block 1. However, it is possible that related branch
sets of two or more blocks have the same cardinality. In this case the optimizer
will choose the block that dominates the most blocks having branches in the

same related set.

Table 5.1: Dataflow Information for the Example Control Flow

Block No. | effect After The Algorithm Related Branches
n | out
block 1 1,3,6 null 1,3,6 {1,3,6}
block 2 1,3,6 null 3,6 null
block 3 5,7 3,6 3,5,6,7 {3,6}
block 4 9 null 9 null
block 5 null 5,6,7 5,6,7 {5,7}
block 6 null 6,7 6,7 {6}
block 7 9 7 7,9 {7}
block 8 5,7 null null null
block 9 null 9 9 {9}

5.2 Projecting the Restructured Control Flow

Once a set of related branches has been selected, the optimizer projects the
revised control flow to coalesce these branches into a single indirect jump. The
restructured control flow is calculated by recording states in each block for these
related branches. The state associated with each related branch is defined to be
a set of triples, where each triple consists of the following components: (1) the
block containing that branch, (2) whether the branch will be taken (T) or not
taken (F), and (3) the value range of the branch variable to satisfy the condition

that is specified by the second component.
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The projected control flow is calculated in the following manner. For a given
set of related branches and its associated root block, the optimizer propagates the
state (triples) of each related branch backward through the control flow (toward
its root block). When the propagation completes, the optimizer determines the
sequence of related branches that would be executed starting from the root block
for each nonoverlapping value range of the branch variable. At this point, cost-
benefit analysis is performed to determine whether or not coalescing the set of
related branches into an indirect jump is worthwhile. If it is deemed beneficial,
then a graph is incrementally built to project the desired restructuring at the
root block. If the optimizer determines that there will be no significant code-size
increase, then the graph will later be used to modify the actual control flow.

As an illustration, consider the example control flow in Figure 5.2 with one
additional assumption that the branch variable 1 was detected to contain an
unsigned character value [0..255]. For the set of related branches at the root

block 1, Table 5.2 shows the initial states associated with these branches.

Table 5.2: Initial States for Related Branches of Block 1

Related Branches Initial States ( Triples)

related branch in block 1 || (1,T,[6..255]), (1,F,[0..5])

related branch in block 3 || (3,T,[8..255]), (3,F,[0..7])

related branch in block 6 || (6,T,[0..9]),(6,F,[10..255])

In order to propagate the triples for branch 6 toward the root block 1, this
state information should be propagated through block 3. The transition from

block 3 to block 6 can occur only when the value of branch variable i is in
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the range [8..255]. Similarly, the transition from block 1 to block 3 can occur
only when the value of branch variable i is in the range [6..255]. Therefore, the
value ranges of the triples for branch 6 should be properly adjusted during the
propagation to reflect these two transitions. As shown in Figure 5.3, the value
ranges of the triples for branch 6 are intersected with [8..255] at block 3, and

the adjusted value ranges are intersected with [6..255] at the root block 1.

update"i* | (6 T.[8..9])
(6, F,[10..255])

T [6..255] 4\

(6, T,[8..9])
(6, F, [10..255])

T[8..255] \

(6, T,[0..9])
(6, F,[10..255])

6. (6,T,[0..9])
| <10 (6 F [10..255])

Figure 5.3: After Propagating Triples at the Block 6 toward the Root
Block 1

Figure 5.4 shows the triples at the root block 1, after propagating all the
states of these related branches. The value ranges of triples often overlap with
some value ranges of other triples. This situation happens when more than one
branch in the set of related branches can be executed for a given branch variable
value. By properly reorganizing such overlapping value ranges, as depicted in
Table 5.3, the optimizer can determine for each value range of i which related

branches will be executed and whether these branches are taken (T) or not
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(1,F[0..5])
~ ( (1,T,[6..255])

L pdateri | (6.T.[8.91)  (3,F[6..7])
_ i >5 | (6F[10..255) (3,T,[8..25])
T [6..255] 4\ /r

T
" update”k" | (6. T.[8..9]) (3,F[0..7])
i > 7 (6,F [10..255]) (3,T,[8..255])

T[8..255] \

(6, T,[0..9])
(6, F, [10..255])

6. (6,T,[0..9])
I <10 (6 F [10..255])

Figure 5.4: After Propagating Triples at the Related Blocks 1, 3, and 6 to-
ward the Root Block 1

taken (F).

Similar cost-benefit analysis, as described in Chapter 4.3, is performed at
this point to determine whether or not it is beneficial to coalesce the related
branches of the root block into an indirect jump. The optimizer first checks if
the values being compared are characters (represented in a byte). The optimizer
weights the character values according to an estimated frequency of common
use. For instance, values representing ASCII letters were assigned a higher
weight than values representing control characters. The cost of executing the
branches was calculated as a sum of products, where each product was obtained
by multiplying the weights of the characters in each value range and the number
of branches associated with that range. If the optimizer could not determine

that the comparisons were with characters, then each value was given the same
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Table 5.3: States of Related Branches Associated with Nonoverlapping
Value Ranges of i at the Root Block 1

Value Range of 1 || States of Related Branches
[0..5] 1,k
[6..7] 1,T and 3,F
[8..9] 1,T and 3,T and 6,T
[10..255] 1,T and 3,T and 6,F

weight. The cost of executing the branches is compared to the cost of performing
the indirect jump, which is described in the next section.

It the analysis determines that branch coalescing is worthwhile, then the
restructuring algorithm shown in Figure 5.5 will produce a graph to efficiently
represent the revised control flow to coalesce these related branches into an
indirect jump at the root block. The central idea is that a new node will be
added when no current node for that block exists with the same states for
the related branches. The projected graph of the restructured control flow for
Figure 5.2 is shown in Figure 5.6. The related branch in root block 1 will be
replaced in the restructured code by instructions to perform an indirect jump.
Note that a basic block represented with a dashed box indicates that the related

branch is unnecessary and will not be placed in the restructured code.
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PROCEDURE Build_Graph_From_Root(root_node,root_block)
{
root_node = NewlNode(NULL,root_block,NULL);

FOR each non-overlapping value range VRANGE of
the branch variable DO {
current_states = related branch states associated with VRANGE;

IF (current_states indicate related branch in root_block is taken)
Build_Graph(root_node,root_block->taken,

current_states,root_block);
ELSE

Build_Graph(root_node,root_block->not_taken,
current_states,root_block);

}
}

PROCEDURE Build_Graph(pred_node,successor_block,
current_states,root_block)
{

/* Do not allow a cycle back to root_block */
IFRésuccessor_block == root_block)

>

/* Calculale new states */

new_states = intersection between current_states and related
branch states associated with successor block;

IF (successor_block with new_states already
exists in the graph) {
Connect pred_node to the existing node;
RETURN;

/* Create a new node for successor_block and
append it to pred_node */
new_node = NewNode(pred_node,successor_block,new_states);

IF (successor_block contains related branch) {
Mark new_node that the branch can be eliminated;

IF (new_states indicate that successor of new node will be
the branch target)

Build_Graph(new_node,successor_block->taken,

new_states,root_block);
ELSE

Build_Graph(new_node,successor_block->not_taken,
new_states,root_block);
%LSE
FOR each immediate successor block SUCC of successor_block DO {
Build_Graph(new_node,SUCC,
new_states,root_block);

Figure 5.5: Restructuring Algorithm
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Figure 5.6: Graph Representing Restructured Control Flow for Figure 5.2
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Chapter 6

EFFICIENTLY PERFORMING THE INDIRECT

JUMP OPERATION

Compiler writers have long considered performing an indirect jump from a jump
table as a very expensive operation. The tasks associated with performing an

indirect jump includes the following:
1. checking if the value being compared is within a bounded range,
2. calculating the address of the jump table,
3. calculating the offset used to index into the table,
4. loading the target address from the table, and
5. performing the indirect jump.

The number of instructions required to perform an indirect jump from a
jump table can vary depending upon a number of factors. For the C switch
statement shown in Figure 6.1(a), Figure 6.1(b) depicts SPARC instructions

represented as RTLs that are used to implement a corresponding indirect jump

(disregarding the instruction in the delay slot of the indirect jump).! Similar

!These SPARC instructions are generated by the pece [18], gee [29], and vpce [4] compilers.
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instructions are available on most RISC machines. It would appear that at least
5 pairs of conditional branches must be executed to make coalescing branches
into an indirect jump operation worthwhile on the SPARC since 8 instructions

are used to implement an indirect jump.

(a) (b)
switch (c) { r[8]=r[8]-97; # 1. Subtract the lowest case value
case 'a': | C=r[8] ?4; # 2. Compare with (highest-lowest)
PC=I ChO, L27; # 3. Perform unsigned > branch to
ensure the value is within range
case 'b': (L27 is the default address)
r[20] =H[LO1]; # 4. Get High portion of address of
jump table
case 'C': r[20]=r[20] | LO LO1]; #5. Get Low portion of the address
r[8]=r[8] <<2; # 6. Align value on a word boundary
so can index into jump table
case 'd': r[8]=Mr[8]+r[20]]; #7.Load target destination out of
. jump table
PC=r[8]; # 8. Perform an indirect jump
case 'e’: LO1:
.WORD L22 # Target address for case 'a’
.VWORD L23 # Target address for case 'b’
defaul t: .WORD L24 # Target address for case 'c’
cee .WORD L25 # Target address for case 'd’
.WORD L26 # Target address for case 'e’
} L27:

Figure 6.1: RTLs to Perform an Indirect Jump from a Jump Table

By statically analyzing the code surrounding an indirect jump operation,
the optimizer can significantly reduce the cost of performing an indirect jump.
Many optimizers can detect that instructions 4 and 5 are loop invariant and
therefore can move these instructions out of a loop. The author implemented

techniques that often avoid the execution of instructions 1-3 and 6 as well.
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6.1 Padding the Front of the Table

Instructions 1-3 in Figure 6.1(b) are used to check if the expression is in the

range of possible case values. Instruction 1 can be avoided when the lowest case

value is positive and relatively close to zero. The jump table can be padded

with the addresses corresponding to the default target. This technique is illus-

trated in Figure 6.2, which contains the instructions of Figure 6.1(b) with the

modifications resulting from padding the front of the jump table. Instruction

2 in Figure 6.2 uses the highest case value in the comparison when padding is

applied. Note also that instructions 4 and 5 in Figure 6.1(b) were removed in

Figure 6.2 since it was assumed they are loop invariant for this example.

IC=r[8]7103; #
PC=IChO,L27; #

r[8]l=r[8]<<2; #

r[8]=M[r[8]+r[20]]; #

PC=r[8];

LO1:
.word

.word
.word
.word
.word
.word
.word

.word
L27:

L27
L27

L27
L22
L23
L24
L25
L26

HHHFEHHH HHE =

2. Compare with (highest-lowest)

3. Perform unsigned > branch to
ensure the value is within range
(L27 is the default address)

6. Align value on a word boundary
so can index into jump table

7. Load target destination out of
jump table

8. Perform an indirect jump

Target Address for O
Target Address for 1

Target Address for 96 (’a’-1)
Target Address for ’a’
Target Address for ’b’
Target Address for ’c¢’
Target Address for ’d’
Target Address for ’e’

Figure 6.2: RTLs after

Padding the Front of the Table
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6.2 Using Value-Range Analysis to Avoid the Initial

Range Check

The initial range check (instructions 1-3 in Figure 6.1(b)) can be completely
avoided if a bounded range of case values is known and an entry can be stored
in the table for each value [28]. Assume that the value range of the variable
c in Figure 6.1(a) is [0..255]. The indirect jump operation associated with the
known value range of the branch variable is depicted in Figure 6.3.2

Once a set of related branches has been selected, the optimizer vpo uses
demand-driven analysis to recursively search all the possible paths backward
from the root block to determine if the range of case values is bounded. In
the following subsections, a general algorithm for such range determination is

depicted, and several cases that can be handled by the algorithm are illustrated.

r[8]=r[8]<<2; # 6. Align value on a word boundary
so can index into jump table

r[8]=M[r[8]+r[20]]; # 7. Load target destination out of
jump table

PC=r[8]; # 8. Perform an indirect jump

LOo1:

.word L27 # Target Address for O

.word L27 # Target Address for 1

.word L27 # Target Address for 96 (’a’-1)

.word L22 # Target Address for ’a’

.word L23 # Target Address for ’b’

.word L24 # Target Address for ’c’

.word L2b # Target Address for ’d’

.word L26 # Target Address for ’e’

.word L27 # Target Address for 102 (’e’+1)

.word L27 # Target Address for 103

.word L27 # Target Address for 255

L27:

Figure 6.3: SPARC Instructions with a Bounded Range of Values

ZNote that 256 targets are listed in the table. Often this space is reduced by a factor of
four as described in the next section.
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6.2.1 General Algorithm to Determine Bounded Value Ranges

A general algorithm for determining if the range of case values is bounded is

shown in Figure 6.4. The essence of this algorithm is as follows.

1. Expand a branch variable using previous effects on the variable by recur-

sively searching all the possible paths backward from the root block.

2. Whenever an expansion occurs, parse and evaluate the expanded expression

to determine whether or not the range of case values can be determined.

The algorithm returns a state with a detected range of case values if one of

the following conditions exists.

e bounded: The value ranges of a branch variable can be enumerated in

a jump table.

e unbounded: The value ranges of the branch variable cannot be enu-

merated in a jump table.

e duplicated: The value ranges of the branch variable can be enumerated
in a certain execution path. This state provides an extra opportunity for
the optimizer to perform an indirect jump more efficiently in the bounded

execution path by duplicating some blocks of instructions.

6.2.2 Analyzing Effects

For a given root block, a bounded value range of the branch variable can often
be determined by examining each effect backward from the root. Consider the C

code depicted in the left column of Figure 6.5 with an assumption that the block
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PROCEDURE Bounded_Path(RTL_pointer, Register)

{

current_block = basic block containing RTL_pointer.
expanded_expr = Register.

Value_Range_State = None.

Set_of_value_range = NULL.

Set_of_duplicated_block = NULL.

/* Exzpand and evaluate expanded_expr within curreni_block
If the expanded_expr is determined to be BOUNDED, add
the bounded value range 1o Set_of value range and relurn */

WHILE (RTL_pointer = previous_rtl(RTL_pointer)) {
Expand_and_Evaluate(RTL_pointer, expanded_expr,
Set_of_value_range,
Value_Range_State).

IF (expanded_expr is either BOUNDED or UNBOUNDED)
RETURN Value_Range_State.

/¥ Alias effect such as v[9]=r[8] */

ELSE IF (expanded_expr == Register &&
RTL_pointer points to the instruction
that assigns Register to New_Register)

expanded_expr = Register = New_Register.

}
/* Neither BOUNDED nor UNBOUNDED state can be determined by

evaluating expanded_expr. Ezpand and evaluate the expression
by recursively looking back all predecessor blocks */

FOR each predecessor block of current_block DO {
temp_expr = expanded_expr.
Recursively expand and evaluate temp_expr starting from
the predecessor until temp_expr is determined to be
either BOUNDED or UNBOUNDED.

IF (temp_expr is determined to be BOUNDED)
Add the associated value range to Set_of_value_range.

}

IF (Value_Range_State is both BOUNDED and UNBOUNDED &&
there exists a single execution path along which
the value range is BOUNDED) {

Calculate Set_of_duplicated_block by taking intersection
among sets of blocks along all possible execution
paths to the root block.

RETURN REPLICATED.

ELSE IF (Value_Range_State == BOUNDED)
RETURN BOUNDED.

SE
RETURN UNBOUNDED.

Figure 6.4: Detection Algorithm for Bounded Value Ranges
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containing the condition “c == a” has been selected as the root. The bounded
value range of the condition variable ¢ was detected by expanding register r[8],
which contains the temporary value of ¢, with previous effects on that register.
The right column of Figure 6.5 depicts the RTLs when the branch coalescing

analysis was about to be performed. The expansion of r[8] was accomplished

as follow.
1. r[8] # register containing values of ’c’
2. r[8]}24 # instruction 2: right shift(’}’) by 24 bits

3. (b[16]{24)}24 # instruction 1: left shift(’{’) by 24 bits

After the above expansion, the value range of r[8] was determined as bounded
to the interval [-128..127], since the resulted effect from 24 bit left-shift followed
by 24 bit right-shift is to mask the signed 8 bit value from r[8]. In a simi-
lar manner, the value range of a branch variable is determined as bounded to
[0..255] when the variable can be expanded as the effect of unsigned byte load
or conversion to an unsigned character value. Some other useful bounds were

obtainable from the C mask operation, *&’.

6.2.3 Analyzing Effects for All Possible Paths

For a given root block, a bounded value range of the branch variable was often
determined by recursively searching all the possible paths backward from the
root. Consider the C code segment shown in Figure 6.6 with an assumption that
the block containing the condition “flag == 07 has been selected as the root.
The value range of the variable flag was determined by recursively searching

all the possible paths backward from the root block. The optimizer determines



Example C source

[ RTLs

char c;

if (c == ’a’)
AQ);

else if (c == ’b’)
B();

else if (c == ’¢’)

cO);

rl8l=bl16]1{24;
rl8l=r[8]}24;

# Block for ¢ == ’a’

IC=r[8]797;
PC=IC!0,L18;

# Block for A()

# Block for ¢ == b’
L18:

IC=r[8]798;
PC=IC!0,L22;

# Block for B()

# Block for ¢ == ¢’
L22:

IC=r[8]799;

PC=IC!0,L25;

# Block for C()

+

. sll
2. sra

. cmp
. bne

. cmp
. bne

. cmp
. bne

%10,24,%00
%00,24,%00

%00,97
L18

%00,98
L22

%00, 99
L25

Figure 6.5: Example Case for Bounding Value Range
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that the value of flag is bounded by the interval [0..4], since the value of flag

is set to a certain constant in that interval for every possible path reaching the

root.

int flag;

é%jtch (*s) {

’ ) ’ l

case 'f’': case 'e’': case '@g':
flag_= [}
br eak;
case 'd’:
flag =[2}
br eak;
case '0': case 'Xx’
flag = *(s-1) =="'1" 2 [2: [3
br eak;
case 's’
flag =[4}
br eak;
defaul t:
flag :I:}
br eak;
}

if (flag == 0) |{

}

Figure 6.6: Code Segment from format() in awk
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6.2.4 Code Duplication for Bounded Value Range Path

Often a path of blocks is detected where the range of values is bounded and one
or more paths are detected where the range is unbounded. Code is duplicated
when deemed worthwhile to allow coalescing of branches to occur on the path
with the bounded range. For example, Figure 6.7(a) shows a C code segment
in we, and the effects of the C statements in the shaded area are represented
as RTLs with the control flow in Figure 6.7(b). The reaching algorithm in
Figure 5.1 determined block 20 as the most beneficial root block. Note that
the conditional branches in block 20 and block 24 were considered to be related
since r[10] is an alias of r[8] by the RTL r[10]=r[8].

Blocks 17 to 19 contain RTLs generated from invoking the getc() macro.
Block 18 contains an RTL (r[8]=B[r[9]1]1&255;) that loads an unsigned char-
acter from a buffer and bounds the range of values from 0..255. Block 19
contains a call to _filbuf, which results in the value associated with r[10]
being unbounded since no interprocedural analysis was performed. The opti-
mizer recursively searches backwards and finds that blocks 20 and 18 are within
a path back to the point where the range of values is bounded. Likewise, the
compiler finds that blocks 20 and 19 are within a path where the range of values
is unbounded. The intersection between the blocks in a bounded path and the
blocks within any unbounded paths results in the block(s) that must be du-
plicated to distinguish the bounded path. Figures 6.7(c) shows the RTLs with
the modified control flow after duplication of the block 20 and coalescing of the
set of related branches. Coalescing can occur at the duplicated root (block 207)

without an initial range check since the range of values is now bounded. Limits
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were placed on the amount of code allowed to be duplicated to prevent large

code size increases.

©

! block 17

(@ (b)
for (;;) { ! block 17
c = getc(fp);
if
br eak;
charct ++; ! block 18
if ' <c && r[9]1=Rr[16]+4];

c < 0177) {

r[10] =r[ 9] +1;

Rl r[16] +4] =r[ 10] ;
r[ 8] =B[r[9]] &255;

PC=L64;

! block 18 (no unconditional jump)

r[9]=R[r[16] +4];
r[10] =r[9] +1;

R r[16] +4] =r[10];
r[8]=B[r[9]] &55;

! block 19

r[8]=r[16];
CALL _filbuf();

! block 20’ (duplicated block)
r[10]=r[8];

! block 20
L64:
r[10]=r[8];
1C=r[8]?-1;
PC=I C! 0, L65;

l

r[10] =r [ 10] <<2;
r[10] =M r [ 10] +r[ 20] ] ;
PC=r[10];

AT

! block 24

I C=r[ 10] ?32;
PC=I C<=0, L66;

- l

Bounded Path = bl ock
bl ock
Unbounded Pat h = bl ock
bl ock

18,

20

19,

20

Dupl i cated Bl ock = bl ock

20

! block 19
! block 20
! block 24

Figure 6.7: Using Duplication to Distinguish Paths for Coalescing
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6.3 Efficiently Indexing into the Jump Table

Instruction 6 in Figure 6.3 left shifts the value by 2 since each element of the
jump table contains a complete target address requiring 4 bytes. Consider tables
containing byte displacements instead of complete word addresses. For instance,
Figure 6.8 shows how the code in Figure 6.3 can be transformed to use byte
displacements. There are two advantages for using byte displacements. First,
the left shift will no longer be necessary. Second, the table only requires one
fourth the amount of space. Thus, a jump table for a value range associated

with a character can be compressed from 256 to 64 words.

# r[20] is the jump table address (LO01)
# r[22] is the base address (L02) for the displacement

r[8]=M[r[8]+r[20]1]; # 7. Load target destination out of jump table
PC=r[8]+r[22]; # 8. Perform an indirect jump

.seg ‘‘data’’

LO1:

.byte L27-L02 # Target Address for 0

.byte L27-L02 # Target Address for 1

.byte L27-L02 # Target Address for 96 (’a’-1)
.byte L22-L02 # Target Address for ’a’

.byte L23-L02 # Target Address for ’b’

.byte L24-L02 # Target Address for ’c’

.byte L25-L02 # Target Address for ’d’

.byte L26-L02 # Target Address for ’e’

.byte L27-L02 # Target Address for 102 (’e’+1)
.byte L27-L02 # Target Address for 103

.byte L27-L02 # Target Address for 255

.align 4

.seg ‘‘text’’

L27:

Figure 6.8: SPARC Instructions with Byte Displacements in the Jump Table

The disadvantages include requiring an additional register to calculate the
base address for the displacements and not always having displacements small

enough to fit within a byte. There are two approaches that were used to help
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ensure that the displacements are not too large. First, a label for the base of the
displacements was placed at the instruction that was the midpoint between the
first and last indirect jump targets. The jump table is always placed in the data
segment so it will not cause the distance between indirect jump targets to be
increased. Note this requires the calculation of the addresses of two labels (the
one at the beginning of the jump table and the one used for the base address
of the displacements). Before applying this approach, the compiler first ensures
that the indirect jump would be in a loop and registers are available to move
the calculation of both addresses out of the loop.

Second, the targets of the indirect jump may be moved to reduce the distance
between targets. The instructions within a program may be divided into relo-
catable segments. Each segment starts with a basic block that is not fallen into
from another block and ends with a block containing an unconditional transfer
of control. An example of relocatable code segments is given in Figure 6.9. As-
sume each of the labels in the figure are potential targets of one indirect jump.
There are three ways segments can be moved to reduce the distance between

targets.

1. A segment that does not contain any targets for a specific indirect jump
can be moved when it is between segments containing such targets. For
example, segment D can be moved to follow segment A since both segments

contain no targets for the indirect jump.

2. The segment containing the most instructions preceding the first target
label in a segment can be moved so it will be the first segment containing

targets. For example, segment C has blocks of instructions preceding the
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block containing its first target label (L2). By moving segment C to follow
segment D, these instructions preceding L2 will be outside the indirect

jump target range.

. Likewise, the segment containing the most instructions following the last
target label in its own segment can be moved so it will be the last positional
segment containing targets. For example, segment B has the most instruc-
tions following its last target label (L1) and is moved to follow segment
E. Jump tables are only converted to tables containing byte displacements
when all targets of the indirect jump will be within the range of a byte

displacement after relocating segments of code.

Before After
'ué 'ué
target range L Jump L 1ump
-- Li— —
l D
| B .
\ Jjump
| . ——
um -
1 | Jump target range
: [ L2 3 r?]p
! C j ! ﬁ
I L2| I
1 jump . L3 —
| E— | ) E
l [ 1 [ Jump
| D Ll —
| jump
‘ L2
13— B
jump jump
F [ F

Figure 6.9: Relocating Segments of Code
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6.4 Filling Delay Slots for Indirect Jumps

The optimizer vpo previous to this work only filled delay slots of indirect jumps
with instructions that precede the jump. This approach was reasonable since
indirect jumps with tables occurred infrequently and filling the delay slot from
one of several targets is more complicated than filling the delay slot of a branch
instruction. After implementing the transformation to coalesce branches, indi-
rect jumps occurred much more frequently. The compiler has been modified
to fill the delay slot of an indirect jump with an instruction from one of the
targets if it could not be filled with an instruction that preceded the jump. An
instruction from a target block could only be used to fill the delay slot if it did
not affect any of the live variables or registers entering any of the other target
blocks.

Filling a slot for an indirect jump is less advantageous than that for a con-
ditional branch (or unconditional jump) since more targets are associated with
an indirect jump. Therefore, the optimizer wvpo tried the following method to
usefully fill slots for indirect jumps. Since each target of an indirect jump has
been associated with certain range(s) of case values, the probability of the tran-
sition from an indirect jump to a certain target can be statically estimated. The
optimizer vpo ranks the indirect jump targets based upon such estimation, and
attempts to fill its slot with the instruction from the most probable target.

When a set of branches that are originally separated by some intervening
instructions is selected for branch coalescing, the actual transformation is ac-
complished by duplicating these intervening instructions. In such a case, the

usefulness of filling slots for indirect jumps can be significantly improved. For
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example, consider the following C code in Figure 6.10(a). The detection and
restructuring algorithms in Chapter 4 allow the optimizer to detect all the
branches in the shaded area as coalescent and transform these branches into
an indirect jump by duplicating the effects of wd++ to several destinations of
the coalescent branches. The restructured code in Figure 6.10(b) shows the
comparable C code after the transformation.

(a) Original Code (b) Restructured Code

after Duplicating "wd++"

whi | e agai n:
switch (*wd++) { switch (*wd) {
case '\0":
ipr(linect); br eak;
br eak; case 'l :
we++;
i pr(wordct); ipr(linect);
br eak; goto agai n;
case 'w:
i pr(charct); wd++;
br eak; i pr(wordct);
} goto agai n;
case 'c’:
wd++;
ipr(charct);
goto agai n;
defaul t:
wd++;
goto agai n;
}

Figure 6.10: Code Segment from wep() in we

After coalescing with code duplication, most of targets of the indirect jump
have identical effects of wd++ as depicted in Figure 6.10(b). Thus, the code
duplication from branch coalescing potentially provides extra opportunities to
fill the delay slot of the indirect jump with a useful instruction. However, there
is one more complication that should be resolved for successfully filling an in-

struction of wd++ for the delay slot of the indirect jump. The RTLs shown in
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Figure 6.11(a) depict the restructured code after branch coalescing transforma-
tion occurs for the example C code. Note that hardware register r[24] contains
the temporary value of wd. It appears that r[24]=r[24]+1 cannot be filled for
the delay slot, since r[24] is both set and referenced among targets of the

indirect jump. However, r[24]=r[24]+1 can be filled for the following reasons:

e r[24]=r[24]+1 has no dependency with other instructions within the in-

direct jump target block containing the same instruction.

o r[24]=r[24]+1 has no set-and-reference conflict when the analysis is per-
formed by considering the targets containing that instruction as one con-

ceptual target.

In order to fill such an indirect jump delay slot as described in the situation

above, the following extra steps were added to wpo.

1. For each target of the indirect jump, evaluate the probability that the target
may be taken using the associated case values in the jump table. When
the range of case values is bound to values representing ASCII letters,
the probability is further weighted using estimated character frequency

distribution of common use.
2. Sort the indirect jump targets based on the evaluated probabilities.

3. Starting from the most probable jump target to the least, make a list
of all the instructions that can be potentially filled for the indirect jump
without considering effects from other jump targets. Whenever an identical
instruction is found in an other target block, add the associated probability

to that of the instruction.



(a) Before filling del ay
slot for indirect junp

33

(b) After filling del ay
slot for indirect junp

r{8]=(B[r[24]]1{24)}24;
r[9]=(B[r8] +r[20]]1{24)}24;
PC=r[ 9] +r[ 21] ;

del ay sl ot ‘

.seg "data"
. byte L0019-L0017

L0020:

. byte L82-L0017

. byte LO016- L0017
. byte LO017-L0017
. byte LO018-L0017
.align 4

.seg "text"

L0019:
r[24] =r[24] +1;
PC=L83;

L0018:
r[24] =r[24] +1;
r[8]=r[26];

L0017:
r[24] =r[24] +1;
PC=L87;

LOO16:
r[24] =r[24] +1;
r[8]=r[25];

L82:
PC=RT;
NL=RS[ ] ;

r{8]=(B[r[24]]1{24)}24;
r[9]=(B[r8] +r[20]]{24)}24;
PC=r[9] +r[ 21] ;

r[24] =r[24] +1; ‘

.seg "data"
. byte L0019-L0017

L0020:

. byte L82-L0017

. byte LOO16- L0017
. byte LO017-L0017
. byte LO018-L0017
.align 4

.seg "text"

L0019:
I filled for the indirect junp
PC=L83;

L0018:
I filled for the indirect junp
r{8]=r[26];

LOO17:
I filled for the indirect junp
PC=L87;

LOO016:
I filled for the indirect junp
r[8]=r[25];

L82:
PC=RT;
NL=RS[ ] ;

Figure 6.11: RTLs after Filling Delay Slot of the Indirect Jump for Example
C Code in Figure 6.10(a)
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(a) If an instruction does not exist in the list, then insert the RTL with

its associated block address and probability.

(b) else (the same RTL already found on other target block), add the
associated probability to that of the existing RTL in the list and add
the associated block address to the block address list of the existing

RTL.

. Starting from the most probable instruction, determine if this instruction
sets any variables or registers that could be live when entering any of the
target blocks that do not have this instruction. If there is no conflict, then
fill the delay slot with this instruction and delete it from the appropriate

target blocks.



Chapter 7

OTHER ARCHITECTURAL ISSUES FOR

COALESCING BRANCHES

The cost of performing an indirect jump from a jump table can vary on different
machines. Not only can the number of instructions required to perform this
operation vary, but indirect jump instructions (as well as conditional branches)

can also result in pipeline stalls on many machines.

7.1 Dual Loop Test

To realistically estimate the pipeline impact on RISC architectures from replac-
ing several conditional branches into an indirect jump, a dual loop test [10, 2] has
been conducted on a SPARCstation-IPC, SPARCstation-5, SPARCstation-20,
and UltraSPARC-1.

e Pirst, an optimized executable! for the C code in Figure 7.1 has been
generated to estimate the execution time involved with loop overhead. Let

Eioop denote such an executable.

! Appendix A shows the optimized SPARC assembly code.

)
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e Second, two optimized executables?with linear branches and with an indi-
rect jump from a table, were generated for the C code shown in Figure 7.2.
Let Epipear and Eipgireer denote such executables, respectively. Note that
Elinear requires the execution of 2.5 branches on average for each loop iter-
ation. Note that Fj,4irct has been generated such that all the conditions
in the loop body have been coalesced into an indirect jump operation re-

quiring only two SPARC instructions as shown in Figure 6.8.

e Third, the author ran each executable 20 times, and chose the shortest

execution time for each executable. Let 7, 75, peneer @0d TE, 40, TED-

resent such shortest execution times respectively. (7g,,.., - TE.,,) gives a
relative estimate of the total time required to execute the the conditional
branches over all iterations. (7g, . .., - TEloop) gives a relative estimate of
the time that is required to perform an indirect jump operation as shown

in Figure 6.8, over all iterations.

e Finally, by varying the number of conditions in the loop, the relative im-

pact of conditional branches versus an indirect jump has been measured as

shown in Table 7.1.

From the dual loop test as described above, the author found that an indirect
jump as depicted in Figure 6.1(c) required about the same execution time as
two pairs of compare and branch instructions for most SPARCstations except
the UltraSPARC-1. Therefore, the indirect jump transformation is only applied

when it is estimated that more than two coalescent branches in the set will on

ZAppendices B and C show the optimized SPARC assembly code respectively.
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int i;
main()

long int j, k, 1;
struct timeval before,after;

gettimeofday(&before, (struct timezone *)NULL);
K = 0;

1=0;
for (j=0; j<10000000; j++) {
i=3&3;

¥
gettimeofday(&after, (struct timezone *)NULL);

after.tv_sec —= before.tv_sec;
after.tv_usec —= before.tv_usec;

if (after.tv_usec < 0)
after.tv_usec——, after.tv_usec += 1000000;

printf(‘‘The elapsed time: %91d.%021d\n’’,
after.tv_sec, after.tv_usec/10000);

Figure 7.1: Code to Measure the Execution Time for Loop Overhead

ééftimeofday(&before, (struct timezone *)NULL);
k = 0;
1l=0;
for (j=0; j<10000000; j++) {
i=3&3;

/* 2.5 DYNAMIC NUMBER OF BRANCHES */
if (i == 0) {
k

=k + 4;

1l = 4;

b o

else if (i == 1) {
K=k +1;
1l1=1;

b o

else if (i == 2) {
K=k + 2;
1= 2;

b .

else if (i == 3) {
k =k - 3;
1= 3;

¥

gettimeofday(&after, (struct timezone *)NULL);

printf(‘ ‘The elapsed time: %91d.%021d\n’’,
after.tv_sec, after.tv_usec/10000);
¥

Figure 7.2: Code to Measuring the Execution Time for Loop Overhead and Loop Body
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Table 7.1: Dual-Loop Test (10,000,000 iterations)

Linear Search Indirect Jump

2.5 br | 4.5 br | 85 br || 2.5 br | 4.5 br | 8.5 br

Machine Type Loop Cost

SPARCstation-1PC 3.65s 3.82s | 5.b3s | 8.82s 2.61s | 2.71s | 2.76s
SPARCstation-b 0.88s 1.03s 1.65s | 2.74s 0.63s | 0.76s | 0.76s
SPARCstation-20 0.51s 0.93s 1.60s | 2.65s 0.87s | 0.93s | 0.93s

UltraSPARC-1 0.40s 0.50s | 1.16s 1.56 1.50s | 1.51s | 1.51s

average be executed. For the UltraSPARC-1, an indirect jump as depicted in
Figure 6.1 required about the same execution time as eight pairs of compare and
branch instructions. The major reason is that the UltraSPARC-1 (a Superscalar
architecture) provides the hardware branch target/prediction buffer support for
branches, but no hardware support for indirect jumps. In the following section,
the author argues that, with a comparable hardware branch target/prediction

buffer support, such unbalanced execution time discrepency can be eliminated.

7.2 Branch Target Buffer(BTB) Support for Branches

and Indirect Jumps

One characteristic feature of RISC machines is pipelining. Pipelining divides
the execution of each instruction into several stages. Different stages can be
overlapped in execution to increase processor throughput. However, there are
several obstacles that limit the full exploitation of pipelining. One of the most
serious obstacles is branch instructions. If the current instruction turns out
to be a branch, then the CPU should predict in advance whether or not the
branch is taken and what the target address will be in order to preserve a

steady flow through the pipeline. However, the execution path of a branch



39

cannot be easily resolved in advance. Thus, branches typically cause delays in
the pipeline [30, 23, 9, 15].

A Branch Target Buffer (BTB) can reduce these pipeline disruptions by
predicting the path of the branch and caching information used by the branch.
Various pieces of information can be kept in the BTB, including tags associ-
ated with the branch address, the branch target address, and branch prediction
information [23]. However, it has been reported that BTB-based prediction
schemes perform poorly for indirect jumps, since the target of an indirect jump
can change with every dynamic instance of that branch [9, 30]. In fact, some
compilers provide techniques that insert extra conditional branches that check
for likely targets to avoid the execution of indirect jumps from a table [17] or
indirect calls [7].

Most modern architectures seldom support indirect jumps in BTB due to
such poor misprediction ratios for indirect jumps. However, consider the results
shown in Figure 7.1. An UltraSPARC-1 could execute about eight pairs of
compare and branch instructions in the time required to perform an indirect
jump operation. One reason for the lower relative performance for indirect
jumps on the UltraSPARC-1 was that this machine uses a BTB to provide
architectural support for branches. There was no target buffer support on the
UltraSPARC-1 for indirect jumps, which resulted in all indirect jumps being
treated as mispredictions.

In the following sections, the author claims that, with comparable BTB sup-
port for indirect jumps, the branch coalescing transformation can be beneficial

in reducing the total number of dynamic branch mispredictions. First, a con-
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ceptual design of BTBs is proposed that can provide comparable target buffer
support for indirect jumps. Second, various branch prediction approaches will
be described. Using more sophisticated branch prediction approaches as well
as increasing the number of entries in BTBs is known to improve BTB perfor-
mance [23]. Third, issues will be presented about how to manage BTBs that
support branches and indirect jumps. Finally, with comparable BTB support
for indirect jumps, the author will provide arguments describing why the to-
tal number of branch mispredictions can be reduced by the branch coalescing
transformation. In addition, another compiler technique will be introduced that

can potentially reduce the number of dynamic indirect jump mispredictions.

7.2.1 A Conceptual BTB Supporting Branches and Indirect Jumps

Target buffers are available to reduce the cost of indirect jumps on some ma-
chines. These buffers are typically specialized to support indirect jumps gener-
ated from return statements since indirect jumps from tables are not generated
frequently by most compilers [15](see page 276). However, BTBs can be easily
extended to support indirect jumps from tables by considering an indirect jump
as another PC-relative branch instruction [15](see page 274). For instance, Fig-
ure 7.3 shows one conceptual view of a BTB, which, like a cache, can have
several alternative designs. If the appropriate tag is not found in the buffer,
then the hardware predicts that the branch will not be taken. If the appropri-
ate tag is found in the buffer and a branch predictor indicates the branch as
taken, then the hardware predicts that the branch will be taken. Otherwise,

the branch is predicted as not taken.
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PC of instruction to fetch

Taglook up Predicted PC Valid bit  Branch Predictor

Number of
entries

in branch-
target

buffer.

Instruction is not predicted to
be a branch. Proceed normally.

Instruction is a branch and the predicted
PC should be used as the next PC.

Figure 7.3: A Branch Target Buffer

7.2.2 Branch Predictors

The n-bit predictor scheme predicts the outcome of the branch using 2" state
diagram. When n is equal to one, the predictor predicts the next execution path
of a branch based upon the previous outcome of the branch. This predictor has
a performance drawback such that, when a loop branch is almost taken, the
same branch will likely be predicted incorrectly twice, rather than once. As an
illustration for such a mispredicted branch, consider the example code fragment
shown in Figure 7.4. Assume that one-bit prediction information is in the BTB
for branch 2. Mispredicting the tenth iteration of branch 2 is inevitable since
one-bit prediction information indicates that branch 2 will be taken. However,
when branch 2 is accessed again after entering the inner loop for the second
time, branch 2 will be mispredicted as not taken. Thus, the prediction accuracy
for branch 2 that is taken in 90% of the iterations turns out to be only 80%.

In order to remedy this, two-bit predictor are often used. Consider the two-
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v:;h;]..}a:(i‘< 10) { /* branch 1 */
%hgll’(j < 10) { /* branch 2 */
3+
it

>

}

Figure 7.4: An Example for a Mispredicted Branch

bit state diagram shown in Figure 7.5. By having intermediate branch prediction
states, such as State 1 and State 2, the above performance shortcoming of one-
bit predictor can be resolved. The two-bit predictor approach has been reported
to do almost as well as the more general n-bit predictors [15](see page 263), and

most machines rely on the two-bit predictor instead of the more general n-bit

predictor.
.- Taken
v. y
State 3 Not taken State 2
Predict taken Taken """ Predict taken
A
Taken Not taken
State 1 State 0
Predict not taken Predict not taken
! A
rNot t aken

Figure 7.5: The states in a two-bit predicton scheme

In many cases, the execution path of a branch can be easily determined
by observing the outcomes of the previous branch executions [21]. Consider

the code fragment in Figure 7.6. If the branch 1 and 2 are taken, then the
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if (aa == 2) /* branch 1 */
aa = 0;

if (bb == 2) /* branch 2 */
bb = 0;

if (aa '= bb) { /* branch 3 */

¥

Figure 7.6: An Example Code Fragment for Branch Correlation

execution path of branch 3 can be easily predicted as not taken. The n-bit
predictors can be further improved to make a prediction by using the outcomes
of other branches. Such predictors are known as (m,n) correlation predictors.
They use the outcome of the previous m branches to choose from 2™ branch
predictors, each of which is a n-bit predictor for a single branch. The (m,n)
predictors require one m-bit shift register to store the outcomes of the last m
branch execution (0 for not taken, 1 for taken). This shift register can identify 2™
different contexts of a branch. Studies reported that (m,n) correlation predictors

provide more accuracy than that of n-bit predictors [21, 15].

7.2.3 BTB Management

The target address for a branch is only placed in the buffer once the branch is
taken. An indirect jump can be considered not taken (and therefore not placed
in the buffer) if the target is the instruction following the indirect jump. If a
branch (or indirect jump) is not in the buffer and it was not taken, then no
delay is necessary since the not taken address is already calculated by the CPU.
To maximize the performance of BTB, a branch (or an indirect jump), which
is not in the BTB and is not taken, never replaces an entry in the buffer [23].

This approach has the effect of never replacing an entry in the buffer with a
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branch (or an indirect jump) that is not taken. Remember that a branch (or
an indirect jump) is predicted as not taken if it is not found in the buffer. If
the actual target of the indirect jump does not match the target in the buffer,
then the branch target buffer is updated to contain the last target of the jump
unless the same target is still predicted as taken. Note that, when the BTB
uses correlating information from a (m,n) correlation predictor, the m-bit shift
register does not reflect the outcome of previous indirect jump executions. The
major reason is that there are several targets of the indirect jump that can be
considered as taken addresses [30]. However, indirect jumps still use correlating

information from the previous m executed branches.

7.2.4 Expected Benefits from Branch Coalescing Transformation
with BTBs

Indirect jumps typically have higher misprediction rates than conditional
branches since an indirect jump may have many possible targets [9]. It is the au-
thor’s contention that higher misprediction rates do not necessarily mean worse
performance. One must remember that several branches are being coalesced
into a single indirect jump. Thus, the total number of mispredictions instead
of the misprediction rate should be used when trying to measure branch target
buffer performance with and without branch coalescing.

The author argues that with comparable branch target buffer support, an
indirect jump will cause no more mispredictions than the set of conditional
branches it replaced. If the target of an indirect jump is mispredicted, then the

target of the indirect jump changed from the last time it was executed. Likewise,
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at least one of the conditional branches that would have been executed instead of
the indirect jump must have had different behavior and would also likely result
in a misprediction. There are actually two reasons why fewer mispredictions
would occur after branch coalescing. First, an indirect jump can cause at most
one misprediction when executed. The execution of a sequence of the replaced
conditional branches may cause multiple mispredictions. Second, there should
be less contention for entries in the branch target buffer since there will be only

one indirect jump as compared to the set of branches the indirect jump replaced.
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Figure 7.7: Placing the Most Likely Target

Architectural and compiler support can be used to further reduce the num-
ber of mispredictions from indirect jumps. Indirect jump history and a target
cache containing the targets of the indirect jump that have been encountered
have been used to improve prediction accuracy [9]. The author used compiler
support to reduce the number of mispredictions. Often targets of an indirect

jump have the block containing the indirect jump as their only predecessor.
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Value range analysis was performed to predict the most likely target for each
indirect jump, which was placed immediately following the indirect jump block
as shown in Figure 7.7. Thus, jumps to this target will result in no delay when
the tag for the indirect jump is not found in the buffer since this address will be
treated as the not taken address. Note that the author does not suggest that
the described approach is the best BTB design and configuration to support
indirect jumps. Instead, the author is simply showing that, with comparable
BTB support for indirect jumps, aggressively coalescing branches into indirect
jumps can result in improved branch prediction performance. The branch pre-
diction simulation results from various configurations will be shown in Chapter
8.1.3. With specialized BTB support for indirect jumps [9], even better results
should be obtained.

Some machines provide other special architectural support for speculative
execution of instructions dependent on branches, such as boosting [27] and
predicted execution [24, 19]. The relative cost of an indirect jump versus the
set of branches it replaces will be affected by such support. The compiler writer
must use appropriate cost estimates based on the architectural support available
for branches and indirect jumps on the target machine. An optimizer could also
later convert indirect jumps into a sequence of conditional branches to exploit

such architectural support.



Chapter 8

RESULTS

Various measurements are given in this chapter that shows the benefits of ap-
plying the branch coalescing transformation. Several common Unix utilities,
as shown in Table 8.1, were selected as benchmarks since such non-numerical
applications tend to have complex conditional control flow.

First, the following dynamic measurements were obtained by instrumenting
the code generated for the SPARC by wpo (Very Portable Optimizer [4]) with

all conventional optimizations applied.

1. Number of instructions executed

2. Cache work

Second, actual execution time measurements on SPARCstations were ob-
tained to determine the soundness of the above measurements. Finally, compile-
time measurements on the SPARCstation were collected to measure the addi-
tional time required to perform the branch coalescing transformation as an extra

optimization phase.

67
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Table 8.1: Benchmark Test Files

PROGRAM DESCRIPTION

awk pattern scanning and processing language

cb a simple C program beautifier

cpp C Compiler Preprocessor

ctags generate tag file for emacs, vi

deroff remove nroff, troff, tbl and eqn constructs

grep search a file for a string or regular expression
hyphen search a file for hyphenated words and lists the words
join relational database operator

lex lexical analysis program generator

nroff format documents for display or line-printer

pr prepare file(s) for printing, perhaps in multiple columns
ptx generate permuted index

sdiff contrast two text files by displaying them side-by-side
sed stream editor

sort sort and collate lines

wce display a count of lines, words and characters

yacc parser generator

8.1 Dynamic Measurements by Instrumenting Code

The following measurements were collected on code generated by compiler vpo
(Very Portable Optimizer) using EASE (Environment for Architectural Study
and Experimentation [13]) on the SPARC architecture for the Unix utilities

described in Table &.1.

8.1.1 Number of Instructions Executed

Table 8.2 shows the number of instructions executed for each benchmark. The
None column contains the number of instructions executed, which was obtained
by modifying the C front end, VPCC, to never translate a C switch statement
using an indirect jump. The Original column shows the percentage change as

compared to None when indirect jumps from tables were only generated by the
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front end of the original compiler. This front end only coalesces branches into
indirect jumps when translating some C switch statements using conventional
heuristics. Note that the Original measurements included filling delay slots for
indirect jumps from target blocks specified in jump tables to fairly compare
the impact of branch coalescing. The measurements show that a substantial
benefit was obtained by conventional translation of multiway selection state-
ments into jump tables. The Cont column shows the results when coalescing
sequences of only contiguous branches using the techniques described in Chapter
4. The Noncont column shows the results when coalescing a set of (contiguous
and noncontiguous) branches, that are often separated by blocks of interven-
ing instructions using the techniques described in Chapter 5. These frequency
measurements indicate that branch coalescing after code generation can effec-
tively reduce the dynamic number of instructions. Coalescing had a negative
impact on performance when performance estimates were overly optimistic or
pessimistic, which occurred for join and nroff.

Table 8.3 contrasts the number of branches executed between the compiler
(None) that strictly translates a multiway statement into a linear sequence of
branches and the compiler (Orig) that translates each multiway statement into
a linear sequence of branches, a heap tree of branches, or an indirect jump from
a table depending on simple heuristics used in the compiler front end. Note
that the benefits shown in the column % Fewer Branch came from both using
an indirect jump and a heap tree of branches as code generation alternatives.
Table 8.4 contrasts the number of branches that executed between the compiler

(None) and the compiler (Noncont) that performs the branch coalescing as a
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Table 8.2: Dynamic Instruction Frequency Measurements

Program None Original Cont | Noncont
awk 13,666,952 | -0.294% | -2.145% | -3.118%
cb 19,739,127 | -12.976% | —20.613% | —21.204%
cpp 30,985,306 | -37.421% | -37.960% | —38.538%
ctags 81,040,455 | —0.545% | —10.984% | —24.160%
deroff 15,511,056 | -0.193% | -1.011% | -1.153%
grep 11,810,070 | -21.620% | —24.370% | —24.370%
hyphen 19,535,372 0.000% | -0.783% | —2.187%
join 3,552,801 0.000% 0.102% 0.325%
lex 10,052,031 | -0.230% | -0.566% | —0.689%
nroff 25,118,855 | —0.155% | -0.015% | —0.017%
pr 78,106,755 0.000% | -7.801% | -7.760%
ptx 20,059,920 0.000% | —8.921% | —10.196%
sdiff 17,582,760 0.000% 0.022% | —-0.017%
sed 17,321,920 | —6.578% | —6.839% | —7.600%
sort 18,921,766 0.000% | —32.862% | —33.053%
we 17,860,086 0.000% | -17.853% | —27.590%
yacc 25,658,688 | -0.194% | -0.303% | —-0.307%
average 25,036,387 | —4.718% | -10.171% | —11.861%

code-improving transformation. The column Branches/Indirect represents
the average dynamic number of conditional branches that were replaced by an
indirect jump from a table. Note that the benefits shown in the column %
Fewer Branch solely came from coalescing set of branches into an indirect
jump.

Table 8.5 shows the proportional benefit of the different techniques used to
coalesce branches (Noncont) as compared to the Original (not the None) mea-
surements. After Code Generation shows the benefits obtained by performing
coalescing in the back end of a compiler as a general improving transformation
instead of a code generation decision. These benefits indicate that a compiler
back end can exploit more opportunities for branch coalescing and make better

coalescing decisions. Front Padding includes padding the front of jump tables
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Table 8.3: Reduced Number of Dynamic Conditional Branches by Generat-
ing Indirect Jumps as a Translation Decision of Multiway State-
ment (Orig)

Prog None Original

Branches || Fewer Branches | % Fewer Branches
awk 2213455 88579 -4.00%
cb 3538146 655680 -18.53%
cpp 6730186 4087213 -60.73%
ctags 17462573 97743 -0.56%
deroff 2722789 9572 -3.50%
grep 2526865 1211778 -47.96%
hyphen 2831171 0 0.00%
join 983936 0 0.00%
lex 1771795 8594 -4.90%
nroff 3654565 14622 -4.00%
pr 12078585 8 0.00%
ptx 3310268 0 0.00%
sdiff 2784468 5 0.00%
sed 3014722 479742 -15.91%
sort 4679991 11 0.00%
wce 3636505 0 0.00%
yacc 4877751 18286 -0.37%
average -8.78%

to avoid subtracting the lowest value compared. Awvoid Initial Range Check
represents when value range analysis was also used to completely eliminate the
initial range check. This technique resulted in a substantial decrease since 2
or 3 instructions were avoided each time it was applied. Also, many more sets
of branches were now coalesced since the cost/benefit analysis would indicate
that the coalescing transformation was worthwhile, when the initial range check
could be avoided. Efficient Indexing includes using byte displacements in jump
tables. Using byte displacements was possible since relocating code segments
quite effectively compressed the target range of indirect jumps. Note that the

last three techniques were often applied on coalesced branches not associated
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Table 8.4: Reduced Number of Dynamic Conditional Branches by Branch
Coalescing (Noncont)

None Noncont
Prog Branches || Fewer Branches | % Fewer Branches | Branches/Indirect
awk 2213455 247368 -11.18% 4.57
cb 3538146 1744080 ~49.29% 10.71
cpp 6730186 4184501 -62.18% 42.87
ctags 17462573 9612642 ~55.056% 9.17
deroff 2722789 114612 -4.21% 4.25
grep 2526865 1352497 -53.52% 9.61
hyphen 2831171 887400 -31.34% 3.07
join 983936 19 0.00% 4.75
lex 1771795 30415 -1.72% 8.39
nroff 3654565 3497 —-0.10% 3.36
pr 12078585 4737895 -39.23% 3.51
ptx 3310268 997270 -30.13% 3.81
sdiff 2784468 4408 —0.16% 1.74
sed 3014722 520839 -15.91% 12.18
sort 4679991 3805448 -81.31% 2.95
we 3636505 2463844 —67.75% 3.39
yace 4877751 49660 -1.02% 6.14
average -29.73% 7.95

with multiway selection statements.

Table 8.5: Reducing the Cost of Coalescing

Techniques Proportional Benefit
After Code Generation 22.61%
Front Padding 8.97%
Avoid Initial Range Check 56.31%
Efficient Indexing 12.11%

8.1.2 Total Cache Work

The branch coalescing impact on caching was a concern since misses from jump
table loads could potentially have negative impact on performance. Table 8.6

shows the average effect Noncont had on instruction caching, data caching, and
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total cache work as compared to the Original cache measurements. The cache
work cycles were calculated using Equation 8.1, where a cache hit and a cache
miss are counted as one cycle and ten cycles respectively [26]. Note that it was
assumed that d-cache accesses could be performed simultaneously with i-cache

accesses.
CacheWork = i_CacheHits + 10 * (i_CacheMisses) + 9 * (d_CacheMisses) (8.1)

The i-cache work of Noncont was reduced since the number of instructions
referenced were diminished as compared to the Original measurements. As
expected, the d-cache work of Noncont was increased since jump table loads after
branch coalescing are more frequently performed as compared to the Original
compiler. The total cache work was decreased since i-cache accesses are more

frequent than d-cache accesses.

Table 8.6: Cache Work Improvement with a Direct-Mapped Cache with 32 Byte

Line Size
CACHE SIZE | Instruction Data CACHE WORK
1K -7.095% +6.680% -5.125%
2K -7.220% +7.162% -5.614%
4K -4.909% +5.066% —4.288%
SK -7.930% +2.598% —7.460%
16K -8.231% +3.995% —7.289%
32K -7.947% +4.290% —7.328%

8.1.3 Other Measurements

Some other measurements not given in the tables provide useful information.
There were on average about 0.901 more instructions executed between branches

after Noncont as compared to the Original measurements. Thus, the opportu-
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nities for scheduling on superscalar and superpipelined machines may be im-

proved. In addition, coalescing only caused a 2.566% code size increase.

8.2 Execution Time Measurements

Execution time measurements were also collected on a SPARCstation-IPC, a
SPARCstation-20, and an UltraSPARC-1. The first two machines did not pro-
vide any branch target /prediction buffer support. The third machine only pro-
vides target /prediction buffer support for branches, but no support for indirect
jumps.

The time measurements were collected using the C run-time library function
times() that uses the unit of time as a tick (1 second = 60 ticks). The execution
times were obtained from the sum of reported user times of ten executions of
each program. Note that these results not only varied significantly during each
measurement trial, but also the results seems to be affected by the different
versions of operating systems, such as SunOS 4.x.x and SunOS 5.x.x. Thus,
the reader should probably not view these execution time measurements as a

reliable indicator of performance.

8.2.1 Measurements on SPARCstation-IPC and SPARCstation-20

The measurement results on these two machines are shown in Tables 8.7 and
8.8. There are a couple of reasons why the execution time decrease probably
was not as significant as the reduction obtained from the number of instruc-
tions executed and total cache work. First, the execution time of an indirect

jump operation required about the same time as two conditional branches. The
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author anticipates that the relative cost of an indirect jump would decrease
with target/prediction buffer support for branches and indirect jumps since the
load delay for fetching the indirect jump target address could be avoided and
fewer mispredictions would occur. Second, Tables 8.7 and 8.8 only show the
measurements from the code compiled by our compiler, which did not include
the C run-time library code. However, the library code did contribute to the

execution time measurements.

Table 8.7: Execution Time Measurements for SPARCstation IPC

SPARCstation IPC
Program | None Orig | Change || Noncont | Change
awk 2121 ts || 2113 ts | —0.38% 2254 ts 5.90%
cb 1442 ts || 1364 ts -5.41% 1320 ts -8.46%
cpp 1484 ts || 1004 ts | —-32.35% 1010 ts | —31.94%
ctags 4392 ts || 4374 ts | —0.41% || 4058 ts | -T7.61%
deroff 917 ts 912 ts | -0.55% 911 ts | -0.65%
grep 442 ts 357 ts | —19.23% 340 ts | —23.08%
hyphen 741 ts 737 ts | -0.54% 736 ts | -0.68%
join 296 ts 296 ts 0.00% 303 ts 2.31%
lex 504 ts 503 ts -0.20% 496 ts -1.59%
nroff 1097 ts || 1100 ts 0.27% 1118 ts 1.88%
pr 2854 ts || 2857 ts 0.11% 2702 ts | -5.33%
ptx 3015 ts || 3027 ts 0.40% 2962 ts -1.76%
sdiff 9263 ts || 9454 ts 2.01% 9280 ts 0.22%
sed 4670 ts || 4449 ts -4.76% 4403 ts -5.72%
sort, 680 ts 683 ts 0.44% 574 ts | —15.59%
we T77 ts 778 ts 0.13% 678 ts | —12.74%
yacc 1163 ts || 1281 ts 9.21% 1295 ts 10.19%
average -3.01% -5.57%

8.2.2 Measurements on UltraSPARC-1

The same exeuction time measurements were also conducted on a UltraSPARC-
1. As shown in Table 8.9, the executables from Noncont compiler compared to

those from None compiler resulted in worse performance (even for the Origi-
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Table 8.8: Execution Time Measurements for SPARCstation-20

SPARCstation-20
Program | None Orig | Change || Noncont | Change
awk 617 ts 622 ts 0.80% 611ts | -0.97%
cb 375 ts 363 ts -3.20% 341 ts -9.07%
cpp 493 ts 349 ts | —29.21% 372 ts | —29.41%
ctags 1267 ts || 1208 ts -4.66% 1109 ts | —12.47%
deroff 275 ts 274 ts | -0.36% 272 ts | -1.09%
grep 182 ts 162 ts | —10.99% 157 ts | —13.74%
hyphen 289 ts 289 ts 0.00% 282 ts | —2.42%
join 141 ts 142 ts 0.70% 144 ts 2.08%
lex 209 ts 206 ts -1.44% 201 ts -3.83%
nroff 381 ts 384 ts 0.78% 385 ts 1.04%
pr 874 ts 878 ts 0.46% 830 ts | -5.03%
ptx 1429 ts || 1425 ts | —0.28% 1385 ts | —3.08%
sdiff 7520 ts || 7479 ts -0.55% 7475 ts -0.60%
sed 1401 ts || 1332 ts | —4.93% 1320 ts | —5.78%
sort, 259 ts 258 ts | -0.39% 256 ts | -1.16%
we 252 ts 250 ts | -0.79% 246 ts | —-2.38%
yace 414 ts 436 ts 5.06% 428 ts 3.27%
average —2.88% -4.98%

nal). The author strongly suspects that such disimprovement stems from no
comparable target/prediction buffer support for the indirect jumps. In order
to properly estimate the execution time impact on this machine by applying
the branch coalescing transformation, EASE (Environment for Architectural
Study and Experimentation [13]) was extended to be able to simulate branch

prediction with BTB support as shown in Figure 7.3.

8.2.3 Branch Prediction Simulation with BTB (Branch Target
Buffer)

Indirect jumps from tables are generally considered to cause poorer branch
prediction performance. The reason for this view is that indirect jumps typ-

ically have higher misprediction rates than conditional branches since an in-
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Table 8.9: Execution Time Measurements for Ultra-SPARCstation

Ultra-SPARCstation
Program | None Orig | Change || Noncont | Change
awk 479 ts 483 ts 0.83% 488 ts 1.84%
cb 261 ts 268 ts 2.61% 266 ts 1.88%
cpp 305 ts 286 ts | —6.23% 279 ts | —-8.53%
ctags 936 ts 943 ts 0.74% 1008 ts 7.14%
deroff 199 ts 205 ts 2.93% 200 ts 0.50%
grep 123 ts 120 ts | —2.44% 118ts | —4.07%
hyphen 206 ts 208 ts 0.96% 225 ts 8.44%
join 104 ts 104 ts 0.00% 106 ts 1.89%
lex 129 ts 135 ts 4.44% 137 ts 5.84%
nroff 239 ts 243 ts 1.65% 242 ts 1.24%
pr 529 ts 534 ts 0.94% 581 ts 8.95%
ptx 1013 ts || 1016 ts 0.30% 1020 ts 0.69%
sdiff 6651 ts || 6676 ts 0.37% 6660 ts 0.14%
sed 922 ts 900 ts 0.37% 893 ts | -3.15%
sort, 178 ts 177ts | —0.56% 207 ts 14.01%
we 171 ts 170 ts | —0.59% 208 ts 17.79%
yacc 284 ts 293 ts 3.07% 285 ts 0.35%
average 0.67% 3.23%

direct jump may have many possible targets. However, the essence of branch
coalescing transformation is to replace several conditional branches into an in-
direct jump. Thus, it was contended that the total number of mispredictions
instead of the misprediction rate should be used when trying to measure branch
target /prediction buffer performance with and without branch coalescing trans-
formation.

Tables 8.10, 8.11, and 8.12 show the decrease in the number of mispredic-
tions from Noncont (branch coalescing) as compared to the Original (not the
None) branch target/prediction buffer measurements. As contended by the au-
thor, even though the misprediction ratio went up after performing the branch
coalescing transformation, the total number of mispredictions was decreased.

Note that both the Original and Noncont buffer measurements supported pre-
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diction for indirect jumps.

8.3 Compile-Time Overhead

Initially, the compile-time overhead of branch coalescing was quite excessive.
Two improvements were made to increase compile-time efficiency for the branch
coalescing transformation. These improvements were decreasing the number of
basic blocks used to represent jump tables and avoiding unnecessary attempts

to coalesce branches.

8.3.1 Reducing the Number of Basic Blocks

The complexity for both data and control-flow analysis for code improving trans-
formations is proportional to the number of basic blocks. In fact, the author
found that most of the compile-time overhead was due to the detrimental effect
that additional basic blocks had on subsequent analysis and transformations.

Originally, VPO (Very Portable Optimizer) represented each entry in the
jump table as a separate basic block. This representation scheme was a concern
to the author since most of the techniques in Chapter 6 to make indirect jumps
more efficient were applied at the cost of duplicating jump table entries. In
order to avoid excessive generation of basic blocks from those techniques, an
alternative scheme has been designed and implemented to compactly represent
the control flow for a jump table.

As an illustration, consider the RTLs shown in Figure 6.3, which is the
snapshot after eliminating the value range check instructions for the indirect

jump by enumerating 256 jump table entries into the jump table. However,



Table 8.10: Branch Misprediction Ratio and Number of Mispredicted Branches with
Direct-Mapped BTB with (0,1) Correlation Predictor

Entries in BTB Branch Misprediction Ratio | Percentage Reductions in
Orig | Noncont | Difference Mispredicted Branches

32 0.1182 | 0.1365 0.0183 —5.60%

64 0.1050 | 0.1152 0.0102 -9.09%

128 0.0935 | 0.1042 0.0107 -9.52%

256 0.0892 | 0.0988 0.0096 -10.35%

512 0.0871 0.0964 0.0094 -10.67%

1024 0.0811 | 0.0961 0.0149 -4.43%
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Table 8.11: Branch Misprediction Ratio and Number of Mispredicted Branches with a
Direct-Mapped BTB with (0,2) Correlation Predictor

Entries in BTB Branch Misprediction Ratio | Percentage Reductions in
Orig | Noncont | Difference Mispredicted Branches

32 0.1118 | 0.1252 0.0134 —-8.11%

64 0.0971 0.1014 0.0043 -12.28%

128 0.0848 0.0899 0.0051 -12.81%

256 0.0804 0.0841 0.0038 -14.11%

512 0.0779 0.0824 0.0045 -14.10%

1024 0.0720 | 0.0817 0.0097 -7.20%

Table 8.12: Branch Misprediction Ratio and Number of Mispredicted Branches with a
Direct-Mapped BTB with (2,2) Correlation Predictor

Entries in BTB Branch Misprediction Ratio | Percentage Reductions in
Orig | Noncont | Difference Mispredicted Branches

32 0.1131 | 0.1271 0.0140 —8.33%

64 0.0969 0.1024 0.0055 -12.07%

128 0.0840 0.0902 0.0062 -12.53%

256 0.0788 | 0.0836 0.0048 -13.56%

512 0.0758 0.0817 0.0059 -13.30%

1024 0.0695 | 0.0809 0.0114 —6.15%
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256 blocks for the jump table, as shown in Figure 8.1(a), could be efficiently
represented into fewer blocks when consecutive jump table entries that contain
the same target address can be grouped into a single basic block. Figure 8.1(b)
shows a compact representation of the original control flow. Note that each basic
block containing a jump table entry has another field to indicate the repetition
count such that the jump table entries can be restored while SPARC assembly

code is being produced.

8.3.2 Avoiding Unnecessary Coalescing Attempts

In wpo, several loop transformations are iteratively applied until no further im-
provement (change(es)) can be made, as depicted in Figure 2.2. Coalescing of
branches was treated as a transformation for a loop since the transformation
typically requires extra registers. The author coalesced the branches from the
innermost loop outward after all other transformations for a given loop have
been initially attempted. Within such a loop optimization framework, unneces-
sary branch coalescing analysis could be avoided. For a given loop, if the branch
coalescing analysis has been already applied without any transformation, then
there is typically no need to re-apply the analysis for the same loop. Most of
transformations from the branch coalescing are typically completed during the
first pass of a loop optimization process. The author found that other improving
transformations rarely provided new opportunities for branch coalescing. There-
fore, the branch coalescing transformation was not applied during the second

pass of the same loop optimization process.



(a) Oginal Control

Fl ow

(b) Alternative

PC=r[8];
LO1:
.word L27

.word L27

.word L27

.word L22

.word L23

e

.word L24

.word L25

.word L26

.word L27
.word L27

.word L27

.word L27

‘ L27: ‘

J

Figure 6.3

Control

Fl ow

PC=r[8];
LO1:
.word L27
.word L27

.word L27

.word L22

.word L24

.word L25

.word L27
.word L27
.word L27

word L27
27:

L

81

Figure 8.1: Control Flow Representations for Indirect Jump Table shown in



8.3.3 Compilation Overhead

Compile time measurements were collected on a SPARCstation-20 using the
C run-time library function times(). The compile times were obtained from
the average of the sum of the reported wuser and system times of 10 compi-
lations of each benchmark. Table 8.13 compares the results with None and
Noncont (that is, with and without the branch coalescing transformation.)
The author suspects that the compilation overhead can be reduced with some
additional tuning. Some portion of compilation overhead in system time is
due to I/0 in producing jump table entries when generating SPARC assembly
code. This overhead can be avoided when an assembler supports a directive

that specifies a repetition factor for consecutive values that are identical (e.g.

.word <value><repetition factor>).

Table 8.13: Compile Time Measurements

Program None Noncont Extra Overhead
user system user system
awk 39.40 sec | 7.18 sec || 76.35 sec | 7.88 sec +80.82%
cb 4.83 sec | 0.72 sec 5.48 sec | 0.77 sec +12.61%
cpp 23.02 sec | 3.17 sec || 36.28 sec | 3.40 sec +51.56%
ctags 9.60 sec | 0.72 sec || 14.07 sec | 0.93 sec +45.40%
deroff 33.68 sec | 1.03 sec || 38.17 sec | 1.10 sec +13.11%
grep 4.68 sec | 0.67 sec 6.53 sec | 0.78 sec +36.76%
hyphen 1.37 sec | 0.60 sec 1.53 sec | 0.60 sec +9.32%
join 3.58 sec | 0.62 sec 4.25 sec | 0.67 sec +17.06%
lex 41.40 sec | 3.78 sec || 49.22 sec | 4.08 sec +17.96%
nroff 43.25 sec | 6.13 sec || 45.83 sec | 6.32 sec +5.60%
pr 6.03 sec | 0.82 sec 6.52 sec | 0.85 sec +7.54%
ptx 6.42 sec | 0.78 sec 7.13 sec | 0.78 sec +9.95%
sdiff 8.37 sec | 0.78 sec || 12.40 sec | 0.98 sec +45.47%
sed 20.52 sec | 2.27 sec || 24.65 sec | 2.45 sec +18.95%
sort 9.30 sec | 0.68 sec || 10.38 sec | 0.68 sec +10.85%
wce 0.95 sec | 0.50 sec 1.50 sec | 0.53 sec +40.23%
yacc 34.87 sec | 2.67 sec || 43.47 sec | 2.93 sec +23.62%
average 17.13 sec | 1.95 sec || 22.57 sec 2.10 +26.28%




Chapter 9

FUTURE WORK

There are other areas that could be investigated to provide additional oppor-
tunities for coalescing conditional branches. One factor that limited the op-
portunities for coalescing branches into indirect jumps was not performing in-
terprocedural analysis to more effectively determine value ranges. Often int
arguments being compared to constants in one function are loaded from mem-
ory as a byte in a different function. Interprocedural analysis would allow the
first three instructions in Figure 6.1(b) comprising the initial range check to be
avoided more frequently.

Profiling could also be used to help determine when coalescing was worth-
while. The author statically estimated the average number of branches that
would be executed through a set of related branches. Coalescing can have a
negative impact on performance when these estimates are overly optimistic or
pessimistic. Profiling would provide more accurate estimates for coalescing de-
cisions. In general, detecting bounded ranges and using an estimated frequency
for character values provided good heuristics when making coalescing decisions.

This approach has promising implications for conventional branch prediction.
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Chapter 10

CONCLUSIONS

This dissertation has described compiler support for effectively exploiting in-
direct jumps. The general improving transformation presented for coalescing
branches after code generation provided benefits that otherwise would not be
available.

Two general approaches were designed and implemented to aggressively re-
place a set of branches into a single indirect jump as opposed to only considering
indirect jumps when translating multiway statements. The first approach allows
the compiler to detect and coalesce a contiguous sequence of branches into an
indirect jump. The second approach provides a more general algorithm that
can coalesce a set of potentially noncontiguous conditional branches, which are
often separated by blocks of intervening instructions. Thus, better code can
be generated by using the second approach instead of the first since a greater
number of branches per indirect jump can be coalesced. However, the first ap-
proach is relatively simpler to implement and it requires relatively less complex
analysis than the second.

Various techniques were developed and implemented to efficiently perform
the indirect jump operation by analyzing the context of the given machine in-

structions. Applying these techniques often resulted in the execution of only two

84



89

instructions on the SPARC. In order to provide an effective branch coalescing
transformation, two cost /benefit analyses were designed and applied by estimat-
ing the average number of branches executed for the detected set of coalescent
branches. In order to coalesce a set of conditional branches, which are often
separated by blocks of intervening instructions, a restructuring algorithm us-
ing code duplication was designed and implemented. Furthermore, the original
delay slot filling scheme was extended to usefully fill the delay slots of indirect
jumps. Thus, a code-improving transformation was designed and implemented
in order to essentially provide early resolution of conditional branches that may
originally have been some distance from the point where the indirect jump is
inserted.

BTBs (Branch Target Buffer) are available to reduce the cost of branches on
many machines. The branch coalescing impact on branch mispredictions was
a concern to the author. The author’s contention was that with comparable
target buffer support for indirect jumps, the total number of branch mispredic-
tions should be reduced since several branches are being coalesced into a single
indirect jump. To justify the contention, the author accomplished the following
tasks. First, the EASE environment [13] was extended to be able to simulate
effects on branch mispredictions with BTB support for branches and indirect
jumps [15](see page 276). Second, in order to better exploit a BTB for indirect
jumps, a compiler analysis technique was implemented to locate the most prob-
able target of the indirect jump immediately after the jump as a fall-through
destination. Thus, if an indirect jump is not in the buffer, then no delay is

necessary since the next address of the indirect jump is already calculated by
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the CPU.

Finally, various measurements were collected to demonstrate the benefit of
applying the branch coalescing transformation. The additional benefits from
coalescing noncontiguous branches were contrasted with the simpler analysis
required for only coalescing contiguous branches.

The results showed reductions in the number of instructions executed and
branch mispredictions, total cache work, and execution time at the cost of tol-

erable compile-time overhead.



Appendix A

Optimized SPARC Assembly Code for Loop Overhead

! block 1
.seg ‘‘data’’
.align 8
.global _i

.word O
.seg ‘‘text?’
.global _main
_main:
.1_after = 96
.1_before = 104
save %sp, (-112) ,%sp

add %sp,.1_before, %00
call _gettimeofday,2
mov %g0, %01
mov %g0,%12
mov %g0,%11
sethi  %hi(10000000),%00
or %00,%10(10000000) , %00
cmp %g0, %00
bge L40
mov %g0,%10
! block 2
sethi  %hi(_1i),%02
mov %00, %04
! block 3
L42:
and %10,3,%01
! block 4
add %10,1,%10
! block 5
cmp %10, %04
bl L42
st %hol, [%o2 + %lo(_i)]
! block 6
L40:
add %sp,.1_after,%o0
call _gettimeofday,2
mov %g0, %01
14 [%sp + .1_after],%o3
14 [%sp + .1_beforel,%o4
sub %03, %04 ,%03
st %03, [%sp + .1_after]
1d [%sp + (.1_after + 4)],%o03
1d [%sp + (.1_before + 4)],%04
sub %03, %04 ,%03
cmp %03,%g0
bge L44
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! block

! block
L44:

! block

! block
L49:

L48:
L47:
L46:

st

sub
sethi
or
add
st

8

sethi
add
call
mov
sethi
add
call
mov
sethi
add
call
mov
sethi
1d
sethi

or
call

1d
mov

add
call

mov
9

ret
restore
1

.seg

.ascii

.ascii
.ascii

.ascii

%03, [hsp + (.1_after + 4)]

%03,1,%01
%hi(1000000),%02
%02,%10(1000000) , %02
%o1,%02,%01

%ol,[hsp + (.1_after + 4)]

%hi(L46),%00
%00,%10(L486) ,%00
_printf,2

%10,%01
%hi(L4T),%02
%02,%1o(L4T) ,%00
_printf,2

%12,%01
%hi(L48),%02
%02,%10(L48) ,%00
_printf,2

%11,%01
%hi(L49),%10

[%sp + .1_after],’%11
%hi(10000), %02
%02,%10(10000) ,%o01
.div,2

[%sp + (.1_after + 4)]1,%00
%00, %02
%10,%10(L49),%00
_printf,3

%11,%o01

‘‘data’’

‘‘The elapsed time: %91d.%021d\12\0’’

‘“The value of 1 = %d\12\0’’
‘‘“The value of k = %d\12\0’’
‘‘The value of j = %d\12\0’’
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Appendix B

Optimized SPARC Assembly Code for Linear Sequence

of Branches

!

' brock ?seg ‘‘data’’
.common _i,4,’’data’’
.seg “‘text?’

.global _main
_main:
.1_after = 96
.1_before = 104
save %sp, (-112) ,%sp

add %sp,.1_before, %00
call _gettimeofday,2
mov %go,%oi
mov %hg0, %11
mov %g0,%12
sethi  %hi(1000000),%00
or %00,%10(1000000) , %00
cmp %g0, %00
bge L40
mov %g0,%10
! block 2
sethi  %hi(_1i),%02
mov %00, %04
and %10,3,%01
! block 3
L42:
cmp %01,%g0
bne L43
| block Zt %ol, [%o2 + %lo(_1i)]
! oc
%dd %%5,4,%11
a
mov 4,%12
! block 5
L43:
cmp %ol,1
bne,a L45
cmp %o1,2
! block 6
add %11,1,%11
ba L39
mov 1,%12
! block 7
L45:
bne,a L47
cmp %o01,3
! block 8
add %11,2,%11
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! block
L47:
! block

! block
! block
L39:

! block
L41:

! block
L40:

! block

! block
Lb1:

sub

sub
cmp
bge
st

15
sub

sethi
or
add
st

16

sethi
add
call
mov
sethi
add
call
mov
sethi
add
call
mov
sethi
1d
sethi

or
call

mov
add
call

mov

L39
2,%12

L41
%10,1,%10

%11,3,%11
3,%12

%10,1,%10

%10, %04
L42
%10,3,%01

%sp,.1_after,%o0
_gettimeofday,2

%g0, %01

[%sp + .1_after],%o3

[%sp + .1_beforel,%o4
%03,%04,%03

%03, [hsp + .1_after]

[%sp + (.1_after + 4)],%o03
[%sp + (.1_before + 4)],%04
%03,%04,%03

%03,%g0

L51

%03, [hsp + (.1_after + 4)]

%03,1,%01
%hi(1000000),%02
%02,%10(1000000) , %02
%o1,%02,%01

%ol,[hsp + (.1_after + 4)]

%hi(LE3),%00
%00,%1o(L53) ,%00
_printf,2

%10, %01
%hi(L54),%02
%02,%lo(L54) ,%00
_printf,2

%11,%01
%hi(LEB), %02
%02,%1lo(L55) ,%00
_printf,2

%12, %01
%hi(LE8),%10

[%sp + .1_after],’%11
%hi(10000),%02
%02,%10(10000) ,%01
.div,2

[%sp + (.1_after + 4)]1,%00
%00, %02
%10,%1o(L56) ,%00
_printf,3

%11,%01
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! block 17

ret

restore
! block 1

.seg
L56:

.ascii
Lb55:

.ascii
Lb54:

.ascii
Lb3:

.ascii

91

‘‘data’’

‘“The
‘“The
‘“The
‘“The

elapsed time: %91d.%021d\12\0"’

value of 1 = %d\12\0’’
value of k = %d\12\0’’
value of j = %d\12\0’’



Appendix C

Optimized SPARC Assembly Code for Indirect Jump

!

' brock ?seg ‘‘data’’
.common _i,4,’’data’’
.seg “‘text?’

.global _main
_main:
.1_after = 96
.1_before = 104
save %sp, (-112) ,%sp

add %sp,.1_before, %00
call _gettimeofday,2
mov %g0, %01
mov %g0,%11
mov %g0,%12
sethi  %hi(1000000),%00
or %00,%10(1000000) , %00
cmp %g0, %00
bge L40
mov %g0,%10
! block 2
sethi  %hi(L008),%o04
or %04 ,%10(L008) , %04
sethi  %hi(_i),%gl
mov %00, %02
and %10,3,%01
sethi  %hi(L007),%05
or %05,%Lo(L007) , %05
! block 3
L42:
st %ol, [%gl + %lo(_1)]
1dsb (4ol + %o4l, %00
jmp %00 + %o5
mov 3,%12
.seg ‘‘data’’
.align 4
L008:
.byte L004-L007
! block 4
.byte LO07-L007
! block b
.byte L006-L007
! block 6
.byte LO05-L007
.align 4
.seg ‘‘text?’
! block 7
LO0O4:
add %11,4,%11
ba L39
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! block
LOO7:

mov

mov

! block 9

L00O6:

! block
LOO5:

! block
! block
L39:

! block

! block
L40:

! block

! block
Lb1:

15

sethi
or
add
st

16

sethi
add
call
mov
sethi
add
call
mov
sethi
add
call
mov
sethi
1d
sethi
or
call
1d

mov

4,%12

%11,1,%11
L39
1,%12

%11,2,%11
L39
2,%12

%11,3,%11

%10,1,%10

%10,%02
L42
%10,3,%01

%sp,.1_after,%o0
_gettimeofday,2

%g0, %01

[%sp + .1_after],%o3

[%sp + .1_beforel,%o4

%03, %04 ,%03

%03, [hsp + .1_after]

[%sp + (.1_after + 4)],%o03
[%sp + (.1_before + 4)],%04
%03, %04 ,%03

%03,%g0

L51

%03, [hsp + (.1_after + 4)]

%03,1,%01
%hi(1000000),%02
%02,%10(1000000) , %02
%o1,%02,%01

%ol,[hsp + (.1_after + 4)]

%hi(L53),%00
%00,%1o(L53) ,%00
_printf,2

%10,%01

%hi(L54),%02
%02,%lo(L54) ,%00
_printf,2

%11,%01

%hi(L55),%02
%02,%1o(L55),%00
_printf,2

%12,%01

%hi(L56),%10

[%sp + .1_after],’%11
%hi(10000), %02
%02,%10(10000) ,%o01
.div,2

[%sp + (.1_after + 4)]1,%00
%00 ,%02
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add %10,%1lo(L56),%00

call _printf,3

mov %11,%01
! block 17

ret

restore
! block 1

.seg ‘‘data’’
L56:

.ascii ‘‘The elapsed time: %91d.%021d\12\0’’
L55:
54 .ascii ‘‘The value of 1 = %d\12\0’’
L53‘ .ascii ‘‘The value of k = %d\12\0’’

' .ascii ‘‘The value of j = %d\12\0’’
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