
THE FLORIDA STATE UNIVERSITYCOLLEGE OF ARTS AND SCIENCESEFFECTIVELY EXPLOITING INDIRECT JUMPSByGang-Ryung UhA Dissertation submitted to theDepartment of Computer Sciencein partial ful�llment of therequirements for the degree ofDoctor of PhilosophyDegree Awarded:Fall Semester, 1997

The members of the Committee approve the dissertationof Gang-Ryung Uh defended on October 23, 1997.David B. WhalleyProfessor Directing DissertationSteven F. BellenotOutside Committee MemberR. C. LacherCommittee MemberTheodore P. BakerCommittee MemberSusan I. HruskaCommittee MemberApproved:R. C. Lacher, Chair, Department of Computer Science

To my wife and parents

iii

AcknowledgementsI would like to thank everyone who helps me get through this long journey.

iv

ContentsList of Tables ixList of Figures xAbstract xii1 INTRODUCTION 11.1 Motivation : 21.1.1 Indirect Jumps with Branches : : : : : : : : : : : : : : : 21.1.2 Sequence of Contiguous Branches : : : : : : : : : : : : : 31.1.3 Set of Contiguous and Noncontiguous Branches : : : : : 41.2 Organization of Dissertation : 52 MODIFICATIONS TO THE COMPILER 72.1 Overview of the Compiler : 72.2 Modi�cations of the Compiler : : : : : : : : : : : : : : : : : : : 93 RELATED WORK 124 COALESCING A CONTIGUOUS SEQUENCE OFBRANCHES 144.1 Detecting Sequences of Coalescent Branches : : : : : : : : : : : 14v

4.2 Constructing the Jump Table : : : : : : : : : : : : : : : : : : : 184.3 Estimating the Bene�ts of Coalescing a Set of Contiguous Branches 194.4 Transforming the Control Flow : : : : : : : : : : : : : : : : : : 235 COALESCING A SET OF NONCONTIGUOUS CONDI-TIONAL BRANCHES 255.1 Finding A Set of Branches to Coalesce : : : : : : : : : : : : : : 255.2 Projecting the Restructured Control Flow : : : : : : : : : : : : 296 EFFICIENTLY PERFORMING THE INDIRECT JUMP OP-ERATION 366.1 Padding the Front of the Table : : : : : : : : : : : : : : : : : : 386.2 Using Value-Range Analysis to Avoid the Initial Range Check : 396.2.1 General Algorithm to Determine Bounded Value Ranges 406.2.2 Analyzing E�ects : 406.2.3 Analyzing E�ects for All Possible Paths : : : : : : : : : 426.2.4 Code Duplication for Bounded Value Range Path : : : : 456.3 E�ciently Indexing into the Jump Table : : : : : : : : : : : : : 476.4 Filling Delay Slots for Indirect Jumps : : : : : : : : : : : : : : : 507 OTHER ARCHITECTURAL ISSUES FOR COALESCINGBRANCHES 557.1 Dual Loop Test : 557.2 Branch Target Bu�er(BTB) Support for Branches and IndirectJumps : 58vi

7.2.1 A Conceptual BTB Supporting Branches and IndirectJumps : 607.2.2 Branch Predictors : 617.2.3 BTB Management : 637.2.4 Expected Bene�ts from Branch Coalescing Transforma-tion with BTBs : 648 RESULTS 678.1 Dynamic Measurements by Instrumenting Code : : : : : : : : : 688.1.1 Number of Instructions Executed : : : : : : : : : : : : : 688.1.2 Total Cache Work : 728.1.3 Other Measurements : 738.2 Execution Time Measurements : : : : : : : : : : : : : : : : : : 748.2.1 Measurements on SPARCstation-IPC and SPARCstation-20 748.2.2 Measurements on UltraSPARC-1 : : : : : : : : : : : : : 758.2.3 Branch Prediction Simulation with BTB (Branch TargetBu�er) : 768.3 Compile-Time Overhead : 788.3.1 Reducing the Number of Basic Blocks : : : : : : : : : : : 788.3.2 Avoiding Unnecessary Coalescing Attempts : : : : : : : 808.3.3 Compilation Overhead : : : : : : : : : : : : : : : : : : : 829 FUTURE WORK 8310 CONCLUSIONS 84vii

Appendices 87A Optimized SPARC Assembly Code for Loop Overhead 87B Optimized SPARC Assembly Code for Linear Sequence ofBranches 89C Optimized SPARC Assembly Code for Indirect Jump 92References 95Biographical Sketch 98

viii

List of Tables4.1 Estimating the Number of Executed Instructions : : : : : : : : 225.1 Dataow Information for the Example Control Flow : : : : : : : 295.2 Initial States for Related Branches of Block 1 : : : : : : : : : : : 305.3 States of Related BranchesAssociated with Nonoverlapping ValueRanges of i at the Root Block 1 : : : : : : : : : : : : : : : : : : 337.1 Dual-Loop Test (10,000,000 iterations) : : : : : : : : : : : : : : 588.1 Benchmark Test Files : 688.2 Dynamic Instruction Frequency Measurements : : : : : : : : : : 708.3 Reduced Number of Dynamic Conditional Branches by Generat-ing Indirect Jumps as a Translation Decision of Multiway State-ment (Orig) : 718.4 Reduced Number of Dynamic Conditional Branches by BranchCoalescing (Noncont) : 728.5 Reducing the Cost of Coalescing : : : : : : : : : : : : : : : : : : 728.6 Cache Work Improvement with a Direct-Mapped Cache with32 Byte Line Size : 738.7 Execution Time Measurements for SPARCstation IPC : : : : : 758.8 Execution Time Measurements for SPARCstation-20 : : : : : : 768.9 Execution Time Measurements for Ultra-SPARCstation : : : : : 778.10 Branch Misprediction Ratio and Number of MispredictedBranches with a Direct-Mapped BTB with (0,1) CorrelationPredictor : 798.11 Branch Misprediction Ratio and Number of MispredictedBranches with a Direct-Mapped BTB with (0,2) CorrelationPredictor : 798.12 Branch Misprediction Ratio and Number of MispredictedBranches with a Direct-Mapped BTB with (2,2) CorrelationPredictor : 798.13 Compile Time Measurements : : : : : : : : : : : : : : : : : : : 82ix

List of Figures1.1 Example from ctags (C tag generator) : : : : : : : : : : : : : : : 31.2 Example from grep (pattern search utility) : : : : : : : : : : : : 41.3 Example from wc (word count utility) : : : : : : : : : : : : : : : 52.1 VPCC (Very Portable C Compiler) : : : : : : : : : : : : : : : : 82.2 Modi�ed VPO : 114.1 Algorithm for Detection of Potentially Coalescent Branches : : : 164.2 An Example Control Flow : 174.3 Example of Checking If a Character Is Part of a C Identi�er : : 204.4 DAG with Weighted Edges : 224.5 Coalesced Sequence Starting at Block 20 : : : : : : : : : : : : : 244.6 Coalesced Sequences Starting at Block 20 + 21 : : : : : : : : : 245.1 Reaching Algorithm : 275.2 An Example Control Flow : 285.3 After Propagating Triples at the Block 6 toward the Root Block 1 315.4 After Propagating Triples at the Related Blocks 1, 3, and 6 towardthe Root Block 1 : 325.5 Restructuring Algorithm : 345.6 Graph Representing Restructured Control Flow for Figure 5.2 : 356.1 RTLs to Perform an Indirect Jump from a Jump Table : : : : : 376.2 RTLs after Padding the Front of the Table : : : : : : : : : : : : 386.3 SPARC Instructions with a Bounded Range of Values : : : : : : 39x

6.4 Detection Algorithm for Bounded Value Ranges : : : : : : : : : 416.5 Example Case for Bounding Value Range : : : : : : : : : : : : : 436.6 Code Segment from format() in awk : : : : : : : : : : : : : : : : 446.7 Using Duplication to Distinguish Paths for Coalescing : : : : : : 466.8 SPARC Instructions with Byte Displacements in the Jump Table 476.9 Relocating Segments of Code : : : : : : : : : : : : : : : : : : : 496.10 Code Segment from wcp() in wc : : : : : : : : : : : : : : : : : : 516.11 RTLs after Filling Delay Slot of the Indirect Jump for ExampleC Code in Figure 6.10(a) : 537.1 Code to Measure the Execution Time for Loop Overhead : : : : 577.2 Code to Measuring the Execution Time for Loop Overhead andLoop Body : 577.3 A Branch Target Bu�er : 617.4 An Example for a Mispredicted Branch : : : : : : : : : : : : : : 627.5 The states in a two-bit predicton scheme : : : : : : : : : : : : : 627.6 An Example Code Fragment for Branch Correlation : : : : : : : 637.7 Placing the Most Likely Target : : : : : : : : : : : : : : : : : : 658.1 Control Flow Representations for Indirect Jump Table shown inFigure 6.3 : 81
xi

AbstractThis dissertation describes a general code-improving transformation that cancoalesce conditional branches into an indirect jump from a table. Applying thistransformation allows an optimizer to exploit indirect jumps for many othercoalescing opportunities besides the translation of multiway branch statements.First, dataow analysis is performed to detect a set of coalescent conditionalbranches, which are often separated by blocks of intervening instructions. Sec-ond, several techniques are applied to reduce the cost of performing an indi-rect jump operation, often requiring the execution of only two instructions ona SPARC. Finally, the control ow is restructured using code duplication toreplace the set of branches with an indirect jump. Thus, the transformationessentially provides early resolution of conditional branches that may originallyhave been some distance from the point where the indirect jump is inserted. Thetransformation can be frequently applied with often signi�cant reductions in thenumber of instructions executed, total cache work, and execution time. In fact,over twice the bene�t was achieved from exploiting indirect jumps as a generalcode-improving transformation instead of using the traditional approach of pro-ducing indirect jumps as an intermediate code generation decision. In addition,the author show that with comparable branch target bu�er support, indirectjumps improve branch prediction since they cause fewer mispredictions than theset of branches they replaced. xii

Chapter 1INTRODUCTIONMost high-level languages provide multiway branch statements to allow pro-grammers to write more readable code. The characteristic feature of a multi-way statement is the ability to select an action based on the value of a controlexpression. Without performing any optimization, a compiler would translateeach case label of the multiway statement into a conditional branch. Because ofthe widespread usage of multiway statements, instruction sets commonly sup-port an indirect jump from a table in order to reduce the cost of such sequencesof conditional branches. As a result, compiler front ends typically generate anindirect jump from a table as one translation alternative1 for multiway state-ments [25, 28].This traditional approach for using indirect jumps poses two problems. First,it is di�cult to determine when the indirect jump can be e�ectively used in amachine-independent fashion since an accurate cost-bene�t estimate can onlybe made after generating machine code. Second, many code-improving opportu-nities suitable for using an indirect jump may be missed when only consideringthis operation for the translation of a multiway statement.This dissertation describes a general code-improving transformation that ex-ploits indirect jumps after code generation. As the instruction issue rate andpipeline depth of processors increase, e�cient handling of branches becomes1The other popular alternatives include linear search, binary search, and hashing.1

2more vital. This improving transformation reduces the number of branchesand mispredictions by coalescing several conditional branches into an indirectjump. First, dataow analysis is performed to detect a set of possibly non-contiguous conditional branches that can be potentially coalesced into a singleindirect jump. Second, control-ow analysis is used to determine how the con-trol ow should be restructured to perform the coalescing. Third, analysis isaccomplished to determine how to most e�ciently generate the indirect jumpoperation. The cost of the original branches is also estimated and the indirectjump transformation is applied when deemed worthwhile. Finally, the originalcontrol ow is modi�ed by duplicating basic blocks when necessary.1.1 MotivationExploiting indirect jumps after code generation can be quite bene�cial sinceadditional branches from other control statements besides multiway statementscan be coalesced into a single indirect jump. The examples in this sectionare given in C to more concisely depict branches that can be coalesced intoindirect jumps. The control ow of the restructured C code segments would becomparable to a restructured ow graph of basic blocks with an indirect jumpfrom a table.1.1.1 Indirect Jumps with BranchesConsider the Original code segment shown in Figure 1.1. A typical C compilerwould translate the switch statement into an indirect jump from a table andwould generate a conditional branch for the for statement. Yet, the conditionalbranch comparing *sp with zero would immediately precede the indirect jump.

3An optimizer could recognize this sequence of branches and be able to coalescethe extra conditional branch that compares the variable with zero into the indi-rect jump. Note that one can view this branch as another case for the switchstatement as shown in the Restructured code segment.
 case ’p’:

 ...

 case ’k’:

 ...

 ...

 }

}

 case ’\0’:

 goto out;

 case ’p’:

 ...

 case ’k’:

 ...

}

out:

Original Restructured

for (sp = line; *sp; sp++) { for (sp = line; ; sp++) {

 switch (*sp) { switch (*sp) {Figure 1.1: Example from ctags (C tag generator)1.1.2 Sequence of Contiguous BranchesOther common instances may occur due to programming style. The Originalcode segment, depicted in Figure 1.2, shows a series of if statements comparingthe same variable to di�erent constants. A typical C compiler would translatethese if statements as a sequence of conditional branches. However, the codecould have been equivalently written as a single switch statement as shownin the Restructured code segment. An optimizer could detect the originalsequence of conditional branches and could coalesce such contiguous branchesinto a single indirect jump. Use of multiple macros may also result in severalconsecutive comparisons being performed. Thus, branch coalescing is appeal-ing since coalescing is less a�ected by program style (whether or not multiwaybranches are used).

4
c = *sp++;

switch (c) {

Restructured

 goto cerror;

Original

if ((c = *sp++) == 0)

case 0: goto cerror;

}

if (c == ’>’) { ... }

if (c == ’(’) { ... }

if (c == ’)’) { ... }

case ’<’: ...

case ’>’: ...

case ’(’: ...

case ’)’: ...

case ’1’: case ’2’: case ’3’:

case ’7’: case ’8’: case ’9’:

if (c == ’<’) { ... }

default: ...

 ...

if (c >= ’1’ && c <= ’9’) { ... }

...

case ’4’: case ’5’: case ’6’:Figure 1.2: Example from grep (pattern search utility)1.1.3 Set of Contiguous and Noncontiguous BranchesOften there are paths in which intervening instructions exist between branchesthat compare the same variable to constants and these intervening instructionsdo not update this variable. Consider the following Original code segmentshown in Figure 1.3. A typical C compiler would translate each if statementinto conditional branch(es). At �rst, it may appear that only the sequence ofconditional branches shown in the shaded boxes can be coalesced into an in-direct jump. However, the statement charct++; does not a�ect the branchvariable c. An optimizer could determine the existence of path(s) betweenbranches comparing the same variable to constants where the variable is un-a�ected. The optimizer could modify the original control ow by duplicatingcode to allow the branch for the EOF check to also be coalescent. As shown inthe Duplicated code segment, all of the branches in the shaded boxes can bee�ectively considered as being contiguous and coalescent for a single indirectjump. The Restructured code segment shows equivalent code written with a

5
for (; ;) {

 c = getc(fp)

 if (c == EOF)

 if (’ ’<c&&c<0177) {

for (; ;) {

 c = getc(fp);

 switch (c) {

 case EOF:

Restructured

 break;

 charct++;

 }

 else if (c!=’ ’&&

 c!=’\t’) {

 continue;

 }

 charct++;

 linect++;

 }

 charct++;

 if (c==’\n’) {

 if (!token) {

 wordct++;

 token++;

 }

 continue;

 else
 charct++;

 token = 0;
}

 goto out;

Duplicated

 case 0176:

 wordct++;
 token++;

 if (!token){

 }
 continue;

 charct++;

 case ’\n’:

 linect++;
 goto end;

 charct++;

 default:
 continue;

 charct++;

 case ’ ’:

 case ’\t’: charct++;

 }

 end: token = 0;

}

out:

 ...

 case 041:

for (; ;) {

}

 c = getc(fp)

 if (!token) {

 wordct++;

 token++;

 }

 continue;

 }

 linect++;

 continue;

 if (c == EOF)

 if (c==’\n’)

 c!=’\t’)

 else if (c!=’ ’&&

 if (’ ’<c&&c<0177) {

 token = 0;

 charct++;

Original

 break;

Figure 1.3: Example from wc (word count utility)switch statement.1.2 Organization of DissertationThe dissertation is organized in the following manner. Chapter 2 gives a de-scription of the compiler that has been used and modi�ed to exploit indirectjumps after code generation. Chapter 3 briey describes related compiler op-timizations to reduce the cost of conditional branches. In order to detect andreplace more branches into a single indirect jump than would be done in thetraditional way, several detection and restructuring algorithms are introducedin Chapters 4 and 5 that can allow a compiler to better exploit indirect jumpsas a code-improving transformation. Chapter 4 explains the algorithms to de-

6tect a contiguous sequence of coalescent conditional branches and to transformthe control ow for coalescing the detected branches into a single indirect jump.Chapter 5 depicts the more general algorithms to detect a set of potentially non-contiguous coalescent conditional branches, which are often separated by blocksof intervening instructions, and to restructure the control ow by code duplica-tion when necessary. These algorithms allow the compiler to detect and coalescemore branches per indirect jump than the algorithms described in Chapter 4.Thus, the performance bene�ts from coalescing noncontiguous branches canbe contrasted with the simpler analysis required for only coalescing contiguousbranches.Chapter 6 presents several techniques that reduce the cost of performing anindirect jump operation, often requiring the execution of only two instructionson a SPARC. The task of �lling delay slots for indirect jumps is also dealtwith in this chapter. Chapter 7 shows execution time results from performingdual loop tests [10, 2] on SPARCstations to estimate the impact on pipelinestalls when the branch coalescing transformation was applied as another codeimproving transformation. Furthermore, the bene�ts of target bu�er support forindirect jumps are discussed in this chapter. Various performance measurementsare given in Chapter 8 that justify the validity of applying the code-improvingtransformation that is described in this dissertation. Chapter 9 suggests topicsfor future research. Finally, Chapter 10 concludes the dissertation.

Chapter 2MODIFICATIONS TO THE COMPILER2.1 Overview of the CompilerFigure 2.1 shows the overall structure of the vpo (Very Portable Optimizer [4])compiler system. The front-end of the compiler, cfe [12], produces intermediatecode from a given C preprocessed �le. The code expander translates the inter-mediate code into unoptimized lists of machine-dependent e�ects, called RTLs(Register Transfer Lists). RTLs have the form of conventional expressions andassignments over the hardware's storage cells. For example, the RTLsIC=r[8]?10;PC=IC:0,L001;represent two machine instructions.1 The �rst RTL compares a register to con-stant 10 and the second RTL transfers the control to the address L001 whenthe two values are equal. While any particular RTL is machine speci�c, thegeneral form of the RTL is machine-independent. This allows general machine-independent algorithms to be written that implement code improving transfor-mations on machine-dependent code.All phases of the back-end of the compiler, vpo (Very Portable Optimizer),manipulate RTLs. The RTLs are stored in a data structure that also contains1These instructions are generated by cfe when translating high level control statements,such as if or if-then-else statements. 7

8

ASSEMBLY CODE

Source

 Code

(Register

 Transfer Lists)

C preprocessed

(C Front-End)

Intermediate

Representation
(Very Portable

 Optimizer)

 CFE
 RTLs

 VPO

 Expander
 Code

 SPARCFigure 2.1: VPCC (Very Portable C Compiler)

9information about the order and control ow of the RTLs within a function.By manipulating RTLs as the sole intermediate representation, the followingbene�ts can be achieved.1. Most optimizations can be invoked in any order and can be allowed toiterate until no further improvement can be found. Therefore, many phaseordering problems are eliminated.22. The e�ect of a modi�cation to the set of RTLs comprising a function isrelatively simple to grasp.32.2 Modi�cations of the CompilerIn order to exploit the indirect jump operation the following modi�cations weremade to the compiler. The front-end of the compiler, cfe, was modi�ed toalways produce a linear sequence of conditional branches when translating aC switch statement. An additional code-improving transformation phase tocoalesce branches into an indirect jump from a table was added to the back-endof the compiler, vpo.Coalescing of branches was treated as a transformation for a loop. Looptransformations, such as loop-invariant code motion, typically require extra reg-2In contrast, a more conventional compiler system will perform optimizations on vari-ous di�erent representations. For instance, machine-independent transformations are oftenperformed on intermediate code and machine-dependent transformations, such as peepholeoptimizations, are often performed on assembly code.3In contrast, most conventional compiler systems generate code after optimizations. Thus,the optimizations are actually performed on intermediate code. Since there is typically not aone-to-one mapping between an intermediate code operation and a machine instruction, thee�ect of a modi�cation on the �nal code that will be generated may not be obvious in thesesystems.

10isters. Most compiler optimizers perform these transformations starting withthe innermost loops �rst to secure registers for the most frequently executedcode segments. When an indirect jump occurs inside a loop, performing codemotion on the loop-invariant instructions for calculating the jump table ad-dress requires a register. Thus, as depicted in Figure 2.2, the author coalescedbranches from the innermost loop outward after all other transformations fora given loop have been initially attempted. Afterwards, branch coalescing wasalso attempted on the outermost level of an entire function.

11
Branch ChainingUseless Jump EliminationDead Code EliminationEliminate Unconditional Jumps by Reordering CodeInstruction SelectionEvaluation Order DeterminationGlobal Instruction SelectionRegister AssignmentJump MinimizationInstruction SelectionDO f Register AllocationInstruction SelectionCommon Subexpression EliminationDead Variable EliminationLoop Optimizations:Code MotionRecurrencesLoop Strength ReductionInduction Variable EliminationIf (First Pass)BRANCH COALESCINGUseless Jump EliminationCheaper Instruction ReplacementInstruction Selectiong WHILE (change)BRANCH COALESCINGSetup Entry and ExitInstruction SchedulingFill SlotsUseless JumpsFigure 2.2: Modi�ed VPO

Chapter 3RELATED WORKSeveral authors have suggested heuristics for deciding between di�erent methodsof translating multiway branch statements [25, 16, 5, 28]. These methods includea linear search (branch for each case value), binary search, hashing, and indirectjumps from tables. The approach used in this dissertation initially generatesconditional branches to perform a linear search and relies on the code-improvingtransformation to coalesce these and other branches into indirect jumps. Thetechniques used in this dissertation to reduce the cost of performing an indirectjump from a table often make binary searches, hashing, and other alternativemethods less bene�cial.There has been some research on other techniques for avoiding conditionalbranches. A superoptimizer will generate an exhaustive set of bounded se-quences of instructions with the goal of �nding a sequence that will producethe same e�ect as a more expensive sequence of instructions. The more expen-sive sequence can then be recognized in a traditional optimizer and replacedwith the less expensive sequence. This technique has been used to eliminateconditional branches over short instruction sequences in many instances on theIBM RS/6000 [14]. Loop unrolling has been used to avoid executions of theconditional branch associated with a loop termination condition [11]. Loopunswitching moves a conditional branch with a loop-invariant condition before12

13the loop and duplicates the loop in each of the two destinations of the branch[1]. Conditional branches have also been avoided by code duplication [20]. Thismethod determines if there are paths where the result of a conditional branchwill be known and duplicates code to avoid execution of the branch. The methodof avoiding conditional branches using code duplication has been extended usinginterprocedural analysis [6].The approach in this dissertation is similar to the above techniques in thatit improves performance despite the penalty of increasing code size. However,there are often situations where several branches can be coalesced into a singleindirect jump to avoid the execution of branches that these other techniquescould not. Our approach essentially provides early resolution of branches thatmay originally have been some distance away in the control ow from the pointwhere the indirect jump is inserted.

Chapter 4COALESCING A CONTIGUOUS SEQUENCE OFBRANCHESChapters 4 and 5 explain several algorithms to detect and replace more branchesinto a single indirect jumps than those from only considering indirect jumpswhen translating multiway statements. The approach for coalescing a con-tiguous sequence of conditional branches into an indirect jump from a tableis explained in Chapter 4. The more general approach for coalescing a set ofpotentially noncontiguous conditional branches, which are often separated byblocks of intervening instructions, is described in the next chapter.The task for coalescing a contiguous sequence of conditional branches wasaccomplished in the following manner. First, contiguous conditional branches,which can be potentially coalesced into an indirect jump, are identi�ed. Second,the execution cost of the sequence of branches is estimated. Finally, when theindirect jump transformation is deemed bene�cial, the original control ow istransformed to replace the detected branches by the instructions to perform anindirect jump.4.1 Detecting Sequences of Coalescent BranchesA general algorithm for detecting a sequence of branches that can be coalescedtogether may provide additional opportunities that would not be available bygenerating indirect jumps only when translating multiway selection statements.14

15The analysis for the approach described in this dissertation to detect sequencesof branches that can be coalesced into an indirect jump required the followingconditions.1. The branches must be contiguous in the control ow. In other words, the in-structions implementing the comparisons and branches must be connectedby control-ow transitions with no intervening instructions.2. Each branch must compare the same variable (or register) with a constant.3. At most one branch can have no incoming transitions from another branchin this set. Thus, at most one branch can be the head of the sequence.The algorithm for detecting a sequence of branches that can be coalesced isgiven in Figure 4.1. The algorithm not only will detect a coalescent sequenceof branches, but will also attempt to maximize the number of branches to becoalesced.Figure 4.2 contains an example ow graph that is used to illustrate thealgorithm. Assume that the blocks 2, 4, 20, 21, 22, and 23 contain branchesthat compare the same branch variable with a constant. Also assume that blocks2, 4, 22, and 23 contain no other instructions besides a comparison and branch.Consider the case in which the detection of a sequence of branches is attemptedat block 2. The algorithm recursively searches backwards and mark blocks 2,23, 20, and 21 as visited. Assume block 20 is chosen as the head of the sequencesince it is the �rst block detected that has no visited immediate predecessor. Atthis point the algorithm recursively searches forward and collects blocks 20, 22,23, 2, and 4 as the sequence of branches to be coalesced.

16PROCEDURE Detect_Sequence(){ FOR each block B DO {IF (B contains a branch thatcompares variable V with a constant) {Search_Back(B, V);H = Choose_Head();Collect_Blocks(B, V);}}}PROCEDURE Search_Back(B, V){ mark B as visited;IF (B has no instructionspreceding its compare and branch) {FOR each immediate predecessor P of B DO {IF (P has not been visited &&P has a branch &&P compares V with a constant) {Search_Back(P, V);}}}}PROCEDURE Choose_Head(){ FOR each block B marked as visited DO {IF (B has no immediate predecessormarked as visited) {RETURN B;}}RETURN visited block that dominatesthe most visited blocks;}PROCEDURE Collect_Blocks(B, V){ mark B as collected;FOR each immediate successor S of B DO {IF (S has not been collected &&S starts with a compare and branch &&S compares V with a constant) {Collect_Blocks(S, V);}}}Figure 4.1: Algorithm for Detection of Potentially Coalescent Branches

17
...

...

...

...

...
...

...

...
...

1

2

3 4

5 6

20 21

22 23 24

25 26 27Figure 4.2: An Example Control Flow

184.2 Constructing the Jump TableOnce it has been determined that a set of conditional branches can be coalesced,a jump table must be constructed in order to perform the transformation. Con-struction of a jump table requires two steps.1. Identify all possible targets for the indirect jump.2. Associate each possible value of the branch variable with a single potentialtarget.To e�ciently accomplish these steps, a DAG (Directed Acyclic Graph) is builtas the blocks containing the coalescent branches are collected. Each node in theDAG represents one of the coalescent branches. Each edge represents either atransition between two such branches or a transition to a potential target of theindirect jump.The bene�ts of using a DAG are as follows. First, all possible targets forthe indirect jump can be quickly identi�ed since they will be the targets ofthe transitions out of the DAG. Second, each nonoverlapping value range of thebranch variable can be easily associated with a single target by propagating valueranges of the variable through the DAG. Each node will have two outgoing edges,one for the true (taken) transition and the other for the false (fall-through)transition. The possible range of values at each node is calculated by unioningthe e�ect of applying the relational operator of each immediate predecessor nodeon its corresponding input range.The use of a DAG allows coalescing of branches that check if a variable iswithin a speci�c range. For instance, the C code segment in Figure 4.3(a) checks

19if a character could be part of a C identi�er. Figure 4.3(b) depicts the DAG thatwas built representing the control ow of the coalescent branches in the codesegment. Nonoverlapping value ranges of the condition variable are mappedto the targets out of the DAG (A, B, C, D, and E). Note that at most onetarget from a transition out of the DAG will be permitted to have unboundedvalue ranges. For instance, only the D target has value ranges that cannot berepresented in a jump table. Such a target would correspond to the default caseof a C switch statement.4.3 Estimating the Bene�ts of Coalescing a Set ofContiguous BranchesBefore coalescing a set of contiguous branches, the compiler attempts to de-termine if the transformation is worthwhile. Our compiler inspects the DAGrepresenting the branches to be coalesced. The number of instructions througheach path in the DAG is calculated. The average number of instructions re-quired to traverse the DAG is estimated by calculating a probability for eachpath through the DAG. The compiler also determines the number of instruc-tions required to perform the indirect jump. If a bene�t is predicted, then thebranches are coalesced.The probability of taking each path was estimated to obtain a more accu-rate prediction for the average number of instructions executed to traverse theDAG. Past studies always assumed that each case of a multiway selection state-ment, except for the default case, is equally likely [28]. However, the improving

20
if ((c >= ’a’ && c <= ’z’) ||
 (c >= ’A’ && c <= ’Z’) ||
 (c >= ’0’ && c <= ’9’) ||
 (c == ’_’))
{
 ...
}

(b) DAG Used for Value Range Analysis

(a) C Code Segment

T: Min..96

T: 48..57

 96..96, 123..Max

(C) 48..57

(D) Min..47, 58..64, 91..94,

c < 97

c <= 122 c < 65

c <= 90 c < 48

c <= 57 c != 95

T: 97..122 T: Min..64

T: 65..90 T: Min..47

 96..96, 123..Max
T: Min..47, 58..64, 91..94,

(A) 97..122

(B) 65..90

(E) 95..95

F: 95..95F: 58..64, 91..96, 123..Max

F: 48..64, 91..96, 123..MaxF: 91..96, 123..Max

F: 65..96, 123..MaxF: 123..Max

F: 97..Max

(’a’..’z’)

(’A’..’Z’)

(’0’..’9’)

(’_’)Figure 4.3: Example of Checking If a Character Is Part of a C Identi�er

21transformation described in this dissertation coalesces branches that are gener-ated from control statements other than multiway selection statements. Manystudies have recently used heuristics [3], value range propagation [22], or em-pirical data from the execution of other programs [8] to predict the directionthat branches will take. A di�erent approach that is an extension of using valuerange propagation was found to be most e�ective by the author for the im-proving transformation in this dissertation. The range of values associated withthe variable being compared at each node in the DAG was inspected when itwas determined that the values being compared were within the range of pos-sible character values. Each character value was also weighted according to anestimated frequency of common use. For instance, values representing ASCIIletters and digits were assigned a higher weight than values representing controlcharacters. The probability for the direction that a branch would take was cal-culated by using a ratio between the sum of the weights of the possible valuesof each of the two outgoing transitions from the branch. The probability of apath being taken through the DAG was simply the factor of the probability ofeach branch decision along that path. If the compiler could not determine thatthe comparisons were with character values, then each branch in the DAG wasassumed to have an equal probability of being taken or falling through.Figure 4.4 shows an example DAG with probabilities assigned to each transi-tion. The DAG consists of three nodes, where each node represents two instruc-tions, a comparison and conditional branch. There are �ve unique paths throughthe DAG. By using probabilities associated with the transitions, a weighted av-erage number of instructions can be calculated as shown in Table 4.1.

22
dest A

0.7

 0.6

dest B dest C

Conditional

 Branch 1

Conditional

 Branch 2

Conditional

 Branch 3

0.40.3

0.8 0.2

Figure 4.4: DAG with Weighted EdgesTable 4.1: Estimating the Number of Executed InstructionsUnique Path Propagated Weight Num of Instructions1,2,A 0.8*0.3=0.24 41,2,3,B 0.8*0.7*0.4=0.224 61,2,3,C 0.8*0.7*0.6=0.336 61,3,B 0.2*0.4=0.08 41,3,C 0.2*0.6=0.12 4Weighted 5.12

234.4 Transforming the Control FlowAfter ensuring that the estimated execution cost of the detected sequence ofcoalescent branches outweighs the cost of performing an indirect jump operation,the branch at the head of the sequence being coalesced will be replaced by theinstructions to perform the indirect jump. The original transitions from thishead block will be deleted and replaced by transitions associated with the jumptable targets. The other branches may or may not need to be deleted dependingupon if transitions from other blocks can reach these branches.Consider again the ow graph in Figure 4.2. The sequence of branchesstarting at block 20 (20, 22, 23, 2, 4) are coalesced into an indirect jump inFigure 4.5. The branch at block 20 was replaced by the indirect jump. Thebranch in block 22 was deleted after dead code elimination. The other brancheswill remain since there are transitions from block 21 and block 1 that can reachthese branches. Figure 4.6 shows the e�ect of another coalescing transformationthat replaces the branch in block 21 with an indirect jump. The branch inblock 23 is deleted since its only other predecessor transition would be removed.Eventually, a coalescing transformation could be attempted on block 2 as well.The author did not coalesce a set of branches unless it was estimated that morethan two branches would be executed on average. The detailed reason for thisconstraint is described later in Section 7.1.

24
1

2

3 4

5 6

20 21

23 24

25 26 27

...

...

...
...

...

...

...
...

...Figure 4.5: Coalesced Sequence Starting at Block 20
...

...

...

...

...
...

...

...
...

1

2

3 4

5 6

20 21

24

25 26 27Figure 4.6: Coalesced Sequences Starting at Block 20 + 21

Chapter 5COALESCING A SET OF NONCONTIGUOUSCONDITIONAL BRANCHESThe task for coalescing a set of potentially noncontiguous conditional branches,which are often separated by blocks of instructions, into an indirect jump wasaccomplished in the following manner. First, a set of coalescent conditionalbranches, which may or may not have intervening instructions, is identi�ed.Second, a graph for the projected control ow is built to coalesce this set ofconditional branches into an indirect jump. When the transformation is deemedbene�cial, the original control ow is transformed according to the graph byduplicating basic blocks when necessary.5.1 Finding A Set of Branches to CoalesceA conditional branch is considered reachable from a point in a given controlow if there exists a path from that point to the conditional branch withoutthe branch variable being a�ected. In order to �nd the largest set of coalescentbranches, analysis is performed as follows. For each basic block B, the reachablebranches from the exit point of B are determined. When B contains a condi-tional branch, the optimizer calculates the reachable branches that depend on25

26the same branch variable as that of B. We denote such branches as related anddenote B as the root block of these branches. After detecting all sets of relatedbranches, the optimizer selects the set with the largest number of branches. Thelargest set should be chosen �rst since branch coalescing requires the allocationof registers.The desired reachability information is collected by calculating the followingstate information for each basic block B.� in: Set of blocks containing a reachable branch from the entry of B.� out: Set of blocks containing a reachable branch from the exit of B.This includes the conditional branch in B, if one exists.� e�ect: Set of blocks containing a branch instruction whose branch variableis updated by some instructions in B.This state information is calculated by solving the following dataow equations.out[B] = out[B] [([in[S]) (5.1)in[B] = out[B] n effect[B] (5.2)Equations (5.1) and (5.2) were solved by the iterative algorithm shown inFigure 5.1. When the algorithm terminates, the out state of each basic block Bcontains the reachable branches from the exit point of B.1Applying the iterative algorithm described in Figure 5.1 to the examplecontrol ow in Figure 5.2 produces the dataow information as indicated by1This algorithm is guaranteed to terminate since for any given control ow, (1) thereexists a �nite number of conditional branches, and (2) the in and out states of each blockmonotonically increase.

27
DOFOR each block B DO/* calculate B ! OUT from the SUCCESSORSand its own branch */B->OUT := NULL.FOR each immediate successor S of B DOB->OUT := B->OUT [S->IN.END FORIF (B contains a branch instruction) THENB->OUT := B->OUT [S->IN./* calculate B ! IN using B ! OUT */B->IN := B->OUT n B->EFFECT.END FORWHILE any changesFigure 5.1: Reaching Algorithm

28

F

1.

2.

3.

4.

Exit of the loop

i > 5

F

i > 7

F T

5.

F

i < 10

k > 0

T

F

6.

7.

T

j < 3
9.

=> 1,3,6

=> 1,3,6

F

8.

T

k > 9
T

T

=> 5,7

=> 9

 => 9

=> 5,7

update "j"

update "k"

update "i"

update "i"

update "k"

update "j"

(Light Grey): Block containing the conditional branch

(White): Block containing no conditional branch

(Dark Grey): Block containing the conditional branch

 that won’t be coalesced

 that is potentially coalescedFigure 5.2: An Example Control Flow

29Table 5.1. Since block 1 has the largest set of related branches, the compilerwill �rst attempt to coalesce these branches by placing instructions to performan indirect jump at the root block 1. However, it is possible that related branchsets of two or more blocks have the same cardinality. In this case the optimizerwill choose the block that dominates the most blocks having branches in thesame related set.Table 5.1: Dataow Information for the Example Control FlowBlock No. e�ect After The Algorithm Related Branchesin outblock 1 1,3,6 null 1,3,6 f1,3,6gblock 2 1,3,6 null 3,6 nullblock 3 5,7 3,6 3,5,6,7 f3,6gblock 4 9 null 9 nullblock 5 null 5,6,7 5,6,7 f5,7gblock 6 null 6,7 6,7 f6gblock 7 9 7 7,9 f7gblock 8 5,7 null null nullblock 9 null 9 9 f9g5.2 Projecting the Restructured Control FlowOnce a set of related branches has been selected, the optimizer projects therevised control ow to coalesce these branches into a single indirect jump. Therestructured control ow is calculated by recording states in each block for theserelated branches. The state associated with each related branch is de�ned to bea set of triples, where each triple consists of the following components: (1) theblock containing that branch, (2) whether the branch will be taken (T) or nottaken (F), and (3) the value range of the branch variable to satisfy the conditionthat is speci�ed by the second component.

30The projected control ow is calculated in the following manner. For a givenset of related branches and its associated root block, the optimizer propagates thestate (triples) of each related branch backward through the control ow (towardits root block). When the propagation completes, the optimizer determines thesequence of related branches that would be executed starting from the root blockfor each nonoverlapping value range of the branch variable. At this point, cost-bene�t analysis is performed to determine whether or not coalescing the set ofrelated branches into an indirect jump is worthwhile. If it is deemed bene�cial,then a graph is incrementally built to project the desired restructuring at theroot block. If the optimizer determines that there will be no signi�cant code-sizeincrease, then the graph will later be used to modify the actual control ow.As an illustration, consider the example control ow in Figure 5.2 with oneadditional assumption that the branch variable i was detected to contain anunsigned character value [0..255]. For the set of related branches at the rootblock 1, Table 5.2 shows the initial states associated with these branches.Table 5.2: Initial States for Related Branches of Block 1Related Branches Initial States (Triples)related branch in block 1 (1,T,[6..255]), (1,F,[0..5])related branch in block 3 (3,T,[8..255]), (3,F,[0..7])related branch in block 6 (6,T,[0..9]),(6,F,[10..255])In order to propagate the triples for branch 6 toward the root block 1, thisstate information should be propagated through block 3. The transition fromblock 3 to block 6 can occur only when the value of branch variable i is in

31the range [8..255]. Similarly, the transition from block 1 to block 3 can occuronly when the value of branch variable i is in the range [6..255]. Therefore, thevalue ranges of the triples for branch 6 should be properly adjusted during thepropagation to reect these two transitions. As shown in Figure 5.3, the valueranges of the triples for branch 6 are intersected with [8..255] at block 3, andthe adjusted value ranges are intersected with [6..255] at the root block 1.
i < 10

(6,T,[0..9])

(6,F,[10..255])

6.

update "i"
1.

update "k"
3.

T [6..255]

T [8..255]

i > 5

i > 7

(6,T,[8..9])

(6,F,[10..255])

(6,T,[8..9])

(6,F,[10..255])

(6,T,[0..9])

(6,F,[10..255])

5.
k > 9Figure 5.3: After Propagating Triples at the Block 6 toward the RootBlock 1Figure 5.4 shows the triples at the root block 1, after propagating all thestates of these related branches. The value ranges of triples often overlap withsome value ranges of other triples. This situation happens when more than onebranch in the set of related branches can be executed for a given branch variablevalue. By properly reorganizing such overlapping value ranges, as depicted inTable 5.3, the optimizer can determine for each value range of i which relatedbranches will be executed and whether these branches are taken (T) or not

32
i < 10

(6,T,[0..9])

(6,F,[10..255])

6.

update "i"
1.

update "k"
3.

T [6..255]

T [8..255]

(3,F,[0..7])

(3,T,[8..255])

(3,T,[8..255])
(3,F,[6..7])

i > 5

i > 7

(1,T,[6..255])
(1,F,[0..5])

(6,T,[8..9])

(6,F,[10..255])

(6,T,[8..9])

(6,F,[10..255])

(6,T,[0..9])

(6,F,[10..255])

5.
k > 9Figure 5.4: After Propagating Triples at the Related Blocks 1, 3, and 6 to-ward the Root Block 1taken (F).Similar cost-bene�t analysis, as described in Chapter 4.3, is performed atthis point to determine whether or not it is bene�cial to coalesce the relatedbranches of the root block into an indirect jump. The optimizer �rst checks ifthe values being compared are characters (represented in a byte). The optimizerweights the character values according to an estimated frequency of commonuse. For instance, values representing ASCII letters were assigned a higherweight than values representing control characters. The cost of executing thebranches was calculated as a sum of products, where each product was obtainedby multiplying the weights of the characters in each value range and the numberof branches associated with that range. If the optimizer could not determinethat the comparisons were with characters, then each value was given the same

33Table 5.3: States of Related Branches Associated with NonoverlappingValue Ranges of i at the Root Block 1Value Range of i States of Related Branches[0..5] 1,F[6..7] 1,T and 3,F[8..9] 1,T and 3,T and 6,T[10..255] 1,T and 3,T and 6,Fweight. The cost of executing the branches is compared to the cost of performingthe indirect jump, which is described in the next section.If the analysis determines that branch coalescing is worthwhile, then therestructuring algorithm shown in Figure 5.5 will produce a graph to e�cientlyrepresent the revised control ow to coalesce these related branches into anindirect jump at the root block. The central idea is that a new node will beadded when no current node for that block exists with the same states forthe related branches. The projected graph of the restructured control ow forFigure 5.2 is shown in Figure 5.6. The related branch in root block 1 will bereplaced in the restructured code by instructions to perform an indirect jump.Note that a basic block represented with a dashed box indicates that the relatedbranch is unnecessary and will not be placed in the restructured code.

34PROCEDURE Build_Graph_From_Root(root_node,root_block){ root_node = NewNode(NULL,root_block,NULL);FOR each non-overlapping value range VRANGE ofthe branch variable DO {current_states = related branch states associated with VRANGE;IF (current_states indicate related branch in root_block is taken)Build_Graph(root_node,root_block->taken,current_states,root_block);ELSEBuild_Graph(root_node,root_block->not_taken,current_states,root_block);}}PROCEDURE Build_Graph(pred_node,successor_block,current_states,root_block){ /* Do not allow a cycle back to root block */IF (successor_block == root_block)RETURN;/* Calculate new states */new_states = intersection between current_states and relatedbranch states associated with successor block;IF (successor_block with new_states alreadyexists in the graph) {Connect pred_node to the existing node;RETURN;}/* Create a new node for successor block andappend it to pred node */new_node = NewNode(pred_node,successor_block,new_states);IF (successor_block contains related branch) {Mark new_node that the branch can be eliminated;IF (new_states indicate that successor of new node will bethe branch target)Build_Graph(new_node,successor_block->taken,new_states,root_block);ELSEBuild_Graph(new_node,successor_block->not_taken,new_states,root_block);}ELSEFOR each immediate successor block SUCC of successor_block DO {Build_Graph(new_node,SUCC,new_states,root_block);}} Figure 5.5: Restructuring Algorithm

35
[6..7]
1T,3F

[8..9]
1T,3T,6T

 2

[0..5]
1F

[10..255]
1T,3T,6F

1

3b 3T,6T

5a 6T

 6T6a

3c 3T,6F

5b 6F

 6F6b

3a 3F

3

4 5

6

7

8

9

Exit of the loop

Go back to the Block 1Figure 5.6: Graph Representing Restructured Control Flow for Figure 5.2

Chapter 6EFFICIENTLY PERFORMING THE INDIRECTJUMP OPERATIONCompiler writers have long considered performing an indirect jump from a jumptable as a very expensive operation. The tasks associated with performing anindirect jump includes the following:1. checking if the value being compared is within a bounded range,2. calculating the address of the jump table,3. calculating the o�set used to index into the table,4. loading the target address from the table, and5. performing the indirect jump.The number of instructions required to perform an indirect jump from ajump table can vary depending upon a number of factors. For the C switchstatement shown in Figure 6.1(a), Figure 6.1(b) depicts SPARC instructionsrepresented as RTLs that are used to implement a corresponding indirect jump(disregarding the instruction in the delay slot of the indirect jump).1 Similar1These SPARC instructions are generated by the pcc [18], gcc [29], and vpcc [4] compilers.36

37instructions are available on most RISC machines. It would appear that at least5 pairs of conditional branches must be executed to make coalescing branchesinto an indirect jump operation worthwhile on the SPARC since 8 instructionsare used to implement an indirect jump.
(a) (b)

r[8]=r[8]-97;

IC=r[8]?4;

PC=ICh0,L27;

r[20]=HI[L01];

r[20]=r[20]|LO[L01];

r[8]=r[8]<<2;

r[8]=M[r[8]+r[20]];

PC=r[8];

L01:

.WORD L22

.WORD L23

.WORD L24

.WORD L25

.WORD L26

L27:

switch (c) {

 case ’a’:

 ...

 case ’b’:

 ...

 case ’c’:

 ...

 case ’d’:
 ...

 case ’e’:

 ...

 default:
 ...

}

1. Subtract the lowest case value
2. Compare with (highest-lowest)
3. Perform unsigned > branch to

 ensure the value is within range
 (L27 is the default address)
4. Get High portion of address of
 jump table
5. Get Low portion of the address
6. Align value on a word boundary
 so can index into jump table
7. Load target destination out of
 jump table
8. Perform an indirect jump

Target address for case ’a’
Target address for case ’b’
Target address for case ’c’
Target address for case ’d’
Target address for case ’e’Figure 6.1: RTLs to Perform an Indirect Jump from a Jump TableBy statically analyzing the code surrounding an indirect jump operation,the optimizer can signi�cantly reduce the cost of performing an indirect jump.Many optimizers can detect that instructions 4 and 5 are loop invariant andtherefore can move these instructions out of a loop. The author implementedtechniques that often avoid the execution of instructions 1-3 and 6 as well.

386.1 Padding the Front of the TableInstructions 1-3 in Figure 6.1(b) are used to check if the expression is in therange of possible case values. Instruction 1 can be avoided when the lowest casevalue is positive and relatively close to zero. The jump table can be paddedwith the addresses corresponding to the default target. This technique is illus-trated in Figure 6.2, which contains the instructions of Figure 6.1(b) with themodi�cations resulting from padding the front of the jump table. Instruction2 in Figure 6.2 uses the highest case value in the comparison when padding isapplied. Note also that instructions 4 and 5 in Figure 6.1(b) were removed inFigure 6.2 since it was assumed they are loop invariant for this example.IC=r[8]?103; # 2. Compare with (highest-lowest)PC=ICh0,L27; # 3. Perform unsigned > branch toensure the value is within range(L27 is the default address)r[8]=r[8]<<2; # 6. Align value on a word boundaryso can index into jump tabler[8]=M[r[8]+r[20]]; # 7. Load target destination out ofjump tablePC=r[8]; # 8. Perform an indirect jumpL01:.word L27 # Target Address for 0.word L27 # Target Address for 1...word L27 # Target Address for 96 ('a'-1).word L22 # Target Address for 'a'.word L23 # Target Address for 'b'.word L24 # Target Address for 'c'.word L25 # Target Address for 'd'.word L26 # Target Address for 'e'L27: Figure 6.2: RTLs after Padding the Front of the Table

396.2 Using Value-Range Analysis to Avoid the InitialRange CheckThe initial range check (instructions 1-3 in Figure 6.1(b)) can be completelyavoided if a bounded range of case values is known and an entry can be storedin the table for each value [28]. Assume that the value range of the variablec in Figure 6.1(a) is [0..255]. The indirect jump operation associated with theknown value range of the branch variable is depicted in Figure 6.3.2Once a set of related branches has been selected, the optimizer vpo usesdemand-driven analysis to recursively search all the possible paths backwardfrom the root block to determine if the range of case values is bounded. Inthe following subsections, a general algorithm for such range determination isdepicted, and several cases that can be handled by the algorithm are illustrated.r[8]=r[8]<<2; # 6. Align value on a word boundaryso can index into jump tabler[8]=M[r[8]+r[20]]; # 7. Load target destination out ofjump tablePC=r[8]; # 8. Perform an indirect jumpL01:.word L27 # Target Address for 0.word L27 # Target Address for 1...word L27 # Target Address for 96 ('a'-1).word L22 # Target Address for 'a'.word L23 # Target Address for 'b'.word L24 # Target Address for 'c'.word L25 # Target Address for 'd'.word L26 # Target Address for 'e'.word L27 # Target Address for 102 ('e'+1).word L27 # Target Address for 103...word L27 # Target Address for 255L27:Figure 6.3: SPARC Instructions with a Bounded Range of Values2Note that 256 targets are listed in the table. Often this space is reduced by a factor offour as described in the next section.

406.2.1 General Algorithm to Determine Bounded Value RangesA general algorithm for determining if the range of case values is bounded isshown in Figure 6.4. The essence of this algorithm is as follows.1. Expand a branch variable using previous e�ects on the variable by recur-sively searching all the possible paths backward from the root block.2. Whenever an expansion occurs, parse and evaluate the expanded expressionto determine whether or not the range of case values can be determined.The algorithm returns a state with a detected range of case values if one ofthe following conditions exists.� bounded: The value ranges of a branch variable can be enumerated ina jump table.� unbounded: The value ranges of the branch variable cannot be enu-merated in a jump table.� duplicated: The value ranges of the branch variable can be enumeratedin a certain execution path. This state provides an extra opportunity forthe optimizer to perform an indirect jump more e�ciently in the boundedexecution path by duplicating some blocks of instructions.6.2.2 Analyzing E�ectsFor a given root block, a bounded value range of the branch variable can oftenbe determined by examining each e�ect backward from the root. Consider the Ccode depicted in the left column of Figure 6.5 with an assumption that the block

41PROCEDURE Bounded_Path(RTL_pointer, Register){ current_block = basic block containing RTL_pointer.expanded_expr = Register.Value_Range_State = None.Set_of_value_range = NULL.Set_of_duplicated_block = NULL./* Expand and evaluate expanded expr within current blockIf the expanded expr is determined to be BOUNDED, addthe bounded value range to Set of value range and return */WHILE (RTL_pointer = previous_rtl(RTL_pointer)) {Expand_and_Evaluate(RTL_pointer, expanded_expr,Set_of_value_range,Value_Range_State).IF (expanded_expr is either BOUNDED or UNBOUNDED)RETURN Value_Range_State./* Alias e�ect such as r[9]=r[8] */ELSE IF (expanded_expr == Register &&RTL_pointer points to the instructionthat assigns Register to New_Register)expanded_expr = Register = New_Register.}/* Neither BOUNDED nor UNBOUNDED state can be determined byevaluating expanded expr. Expand and evaluate the expressionby recursively looking back all predecessor blocks */FOR each predecessor block of current_block DO {temp_expr = expanded_expr.Recursively expand and evaluate temp_expr starting fromthe predecessor until temp_expr is determined to beeither BOUNDED or UNBOUNDED.IF (temp_expr is determined to be BOUNDED)Add the associated value range to Set_of_value_range.}IF (Value_Range_State is both BOUNDED and UNBOUNDED &&there exists a single execution path along whichthe value range is BOUNDED) {Calculate Set_of_duplicated_block by taking intersectionamong sets of blocks along all possible executionpaths to the root block.RETURN REPLICATED.}ELSE IF (Value_Range_State == BOUNDED)RETURN BOUNDED.ELSERETURN UNBOUNDED.} Figure 6.4: Detection Algorithm for Bounded Value Ranges

42containing the condition \c == a" has been selected as the root. The boundedvalue range of the condition variable c was detected by expanding register r[8],which contains the temporary value of c, with previous e�ects on that register.The right column of Figure 6.5 depicts the RTLs when the branch coalescinganalysis was about to be performed. The expansion of r[8] was accomplishedas follow.1. r[8] # register containing values of 'c'2. r[8]}24 # instruction 2: right shift('}') by 24 bits3. (b[16]{24)}24 # instruction 1: left shift('{') by 24 bitsAfter the above expansion, the value range of r[8] was determined as boundedto the interval [-128..127], since the resulted e�ect from 24 bit left-shift followedby 24 bit right-shift is to mask the signed 8 bit value from r[8]. In a simi-lar manner, the value range of a branch variable is determined as bounded to[0..255] when the variable can be expanded as the e�ect of unsigned byte loador conversion to an unsigned character value. Some other useful bounds wereobtainable from the C mask operation, '&'.6.2.3 Analyzing E�ects for All Possible PathsFor a given root block, a bounded value range of the branch variable was oftendetermined by recursively searching all the possible paths backward from theroot. Consider the C code segment shown in Figure 6.6 with an assumption thatthe block containing the condition \flag == 0" has been selected as the root.The value range of the variable flag was determined by recursively searchingall the possible paths backward from the root block. The optimizer determines

43
Example C source RTLschar c;...if (c == 'a')A();else if (c == 'b')B();else if (c == 'c')C();...

r[8]=b[16]{24; # 1. sll %l0,24,%o0r[8]=r[8]}24; # 2. sra %o0,24,%o0...# Block for c == 'a'...IC=r[8]?97; # 3. cmp %o0,97PC=IC!0,L18; # 4. bne L18# Block for A()...# Block for c == 'b'L18:IC=r[8]?98; # 5. cmp %o0,98PC=IC!0,L22; # 6. bne L22# Block for B()...# Block for c == 'c'L22:IC=r[8]?99; # 7. cmp %o0,99PC=IC!0,L25; # 8. bne L25# Block for C()...Figure 6.5: Example Case for Bounding Value Range

44that the value of flag is bounded by the interval [0..4], since the value of flagis set to a certain constant in that interval for every possible path reaching theroot.
...

switch (*s) {

case ’f’: case ’e’: case ’g’:

 break;

case ’d’:

 ...

 break;

case ’o’: case ’x’:

 break;

case ’s’:

 break;

default:

 break;

}

 ...

}

...

 flag = 1;

 flag = 2;

 flag = 4;

 flag = 0;

if (flag == 0) {

int flag;

 flag = *(s-1) == ’1’ ? 2 : 3;

Figure 6.6: Code Segment from format() in awk

456.2.4 Code Duplication for Bounded Value Range PathOften a path of blocks is detected where the range of values is bounded and oneor more paths are detected where the range is unbounded. Code is duplicatedwhen deemed worthwhile to allow coalescing of branches to occur on the pathwith the bounded range. For example, Figure 6.7(a) shows a C code segmentin wc, and the e�ects of the C statements in the shaded area are representedas RTLs with the control ow in Figure 6.7(b). The reaching algorithm inFigure 5.1 determined block 20 as the most bene�cial root block. Note thatthe conditional branches in block 20 and block 24 were considered to be relatedsince r[10] is an alias of r[8] by the RTL r[10]=r[8].Blocks 17 to 19 contain RTLs generated from invoking the getc() macro.Block 18 contains an RTL (r[8]=B[r[9]]&255;) that loads an unsigned char-acter from a bu�er and bounds the range of values from 0..255. Block 19contains a call to filbuf, which results in the value associated with r[10]being unbounded since no interprocedural analysis was performed. The opti-mizer recursively searches backwards and �nds that blocks 20 and 18 are withina path back to the point where the range of values is bounded. Likewise, thecompiler �nds that blocks 20 and 19 are within a path where the range of valuesis unbounded. The intersection between the blocks in a bounded path and theblocks within any unbounded paths results in the block(s) that must be du-plicated to distinguish the bounded path. Figures 6.7(c) shows the RTLs withthe modi�ed control ow after duplication of the block 20 and coalescing of theset of related branches. Coalescing can occur at the duplicated root (block 20')without an initial range check since the range of values is now bounded. Limits

46were placed on the amount of code allowed to be duplicated to prevent largecode size increases.
(a)

for (;;) {
 c = getc(fp);
 if (c == EOF)
 break;
 charct++;

 if (’ ’ < c &&

 c < 0177) {

 PC=IC<=0,L66;

 ...

 IC=r[10]?32;

(b)

 ...

 ...

 r[9]=R[r[16]+4];

 r[10]=r[9]+1;

 R[r[16]+4]=r[10];

 r[8]=B[r[9]]&255;

 PC=L64;

 r[8]=r[16];

 CALL _filbuf();

 L64:

 r[10]=r[8];

 IC=r[8]?-1;

 PC=IC!0,L65;

 ...

 ...

 ...

(c)

 ...

 ...

 ...

! block 24

! block 20

! block 19

! block 17! block 17

! block 18

! block 19

! block 20

! block 24

! block 18 (no unconditional jump)
 r[9]=R[r[16]+4];

 r[10]=r[9]+1;

 R[r[16]+4]=r[10];

 r[8]=B[r[9]]&255;

 r[10]=r[10]<<2;

 r[10]=M[r[10]+r[20]];

 PC=r[10];

 r[10]=r[8];

! block 20’ (duplicated block)

 Duplicated Block = block 20

 Bounded Path = block 18,

 block 20

 Unbounded Path = block 19,

 block 20Figure 6.7: Using Duplication to Distinguish Paths for Coalescing

476.3 E�ciently Indexing into the Jump TableInstruction 6 in Figure 6.3 left shifts the value by 2 since each element of thejump table contains a complete target address requiring 4 bytes. Consider tablescontaining byte displacements instead of complete word addresses. For instance,Figure 6.8 shows how the code in Figure 6.3 can be transformed to use bytedisplacements. There are two advantages for using byte displacements. First,the left shift will no longer be necessary. Second, the table only requires onefourth the amount of space. Thus, a jump table for a value range associatedwith a character can be compressed from 256 to 64 words.# r[20] is the jump table address (L01)# r[22] is the base address (L02) for the displacementr[8]=M[r[8]+r[20]]; # 7. Load target destination out of jump tablePC=r[8]+r[22]; # 8. Perform an indirect jump.seg ``data''L01:.byte L27-L02 # Target Address for 0.byte L27-L02 # Target Address for 1...byte L27-L02 # Target Address for 96 ('a'-1).byte L22-L02 # Target Address for 'a'.byte L23-L02 # Target Address for 'b'.byte L24-L02 # Target Address for 'c'.byte L25-L02 # Target Address for 'd'.byte L26-L02 # Target Address for 'e'.byte L27-L02 # Target Address for 102 ('e'+1).byte L27-L02 # Target Address for 103...byte L27-L02 # Target Address for 255.align 4.seg ``text''L27:Figure 6.8: SPARC Instructions with Byte Displacements in the Jump TableThe disadvantages include requiring an additional register to calculate thebase address for the displacements and not always having displacements smallenough to �t within a byte. There are two approaches that were used to help

48ensure that the displacements are not too large. First, a label for the base of thedisplacements was placed at the instruction that was the midpoint between the�rst and last indirect jump targets. The jump table is always placed in the datasegment so it will not cause the distance between indirect jump targets to beincreased. Note this requires the calculation of the addresses of two labels (theone at the beginning of the jump table and the one used for the base addressof the displacements). Before applying this approach, the compiler �rst ensuresthat the indirect jump would be in a loop and registers are available to movethe calculation of both addresses out of the loop.Second, the targets of the indirect jump may be moved to reduce the distancebetween targets. The instructions within a program may be divided into relo-catable segments. Each segment starts with a basic block that is not fallen intofrom another block and ends with a block containing an unconditional transferof control. An example of relocatable code segments is given in Figure 6.9. As-sume each of the labels in the �gure are potential targets of one indirect jump.There are three ways segments can be moved to reduce the distance betweentargets.1. A segment that does not contain any targets for a speci�c indirect jumpcan be moved when it is between segments containing such targets. Forexample, segmentD can be moved to follow segmentA since both segmentscontain no targets for the indirect jump.2. The segment containing the most instructions preceding the �rst targetlabel in a segment can be moved so it will be the �rst segment containingtargets. For example, segment C has blocks of instructions preceding the

49block containing its �rst target label (L2). By moving segment C to followsegment D, these instructions preceding L2 will be outside the indirectjump target range.3. Likewise, the segment containing the most instructions following the lasttarget label in its own segment can be moved so it will be the last positionalsegment containing targets. For example, segment B has the most instruc-tions following its last target label (L1) and is moved to follow segmentE. Jump tables are only converted to tables containing byte displacementswhen all targets of the indirect jump will be within the range of a bytedisplacement after relocating segments of code.
target range

Before After

L2
L3

A

B

C

D

F

E

A

D

C

E

B

F

jump

target range

L1

L3

jump

jump

jump

jump

jump

jump

jump

jump

jump

L1

L2

Figure 6.9: Relocating Segments of Code

506.4 Filling Delay Slots for Indirect JumpsThe optimizer vpo previous to this work only �lled delay slots of indirect jumpswith instructions that precede the jump. This approach was reasonable sinceindirect jumps with tables occurred infrequently and �lling the delay slot fromone of several targets is more complicated than �lling the delay slot of a branchinstruction. After implementing the transformation to coalesce branches, indi-rect jumps occurred much more frequently. The compiler has been modi�edto �ll the delay slot of an indirect jump with an instruction from one of thetargets if it could not be �lled with an instruction that preceded the jump. Aninstruction from a target block could only be used to �ll the delay slot if it didnot a�ect any of the live variables or registers entering any of the other targetblocks.Filling a slot for an indirect jump is less advantageous than that for a con-ditional branch (or unconditional jump) since more targets are associated withan indirect jump. Therefore, the optimizer vpo tried the following method tousefully �ll slots for indirect jumps. Since each target of an indirect jump hasbeen associated with certain range(s) of case values, the probability of the tran-sition from an indirect jump to a certain target can be statically estimated. Theoptimizer vpo ranks the indirect jump targets based upon such estimation, andattempts to �ll its slot with the instruction from the most probable target.When a set of branches that are originally separated by some interveninginstructions is selected for branch coalescing, the actual transformation is ac-complished by duplicating these intervening instructions. In such a case, theusefulness of �lling slots for indirect jumps can be signi�cantly improved. For

51example, consider the following C code in Figure 6.10(a). The detection andrestructuring algorithms in Chapter 4 allow the optimizer to detect all thebranches in the shaded area as coalescent and transform these branches intoan indirect jump by duplicating the e�ects of wd++ to several destinations ofthe coalescent branches. The restructured code in Figure 6.10(b) shows thecomparable C code after the transformation.
}

(a) Original Code (b) Restructured Code

 after Duplicating "wd++"

 wd++;

 wd++;

 wd++;

 wd++;

while (*wd)

 switch (*wd++) {

 case ’l’:

 ipr(linect);

 break;

 case ’w’:

 ipr(wordct);

 break;

 case ’c’:

 ipr(charct);

 break;

 }

again:

switch (*wd) {

case ’\0’:

case ’l’:

 break;

 ipr(linect);

 goto again;

case ’w’:

 ipr(wordct);

 goto again;

 ipr(charct);

 goto again;

case ’c’:

default:

 goto again;Figure 6.10: Code Segment from wcp() in wcAfter coalescing with code duplication, most of targets of the indirect jumphave identical e�ects of wd++ as depicted in Figure 6.10(b). Thus, the codeduplication from branch coalescing potentially provides extra opportunities to�ll the delay slot of the indirect jump with a useful instruction. However, thereis one more complication that should be resolved for successfully �lling an in-struction of wd++ for the delay slot of the indirect jump. The RTLs shown in

52Figure 6.11(a) depict the restructured code after branch coalescing transforma-tion occurs for the example C code. Note that hardware register r[24] containsthe temporary value of wd. It appears that r[24]=r[24]+1 cannot be �lled forthe delay slot, since r[24] is both set and referenced among targets of theindirect jump. However, r[24]=r[24]+1 can be �lled for the following reasons:� r[24]=r[24]+1 has no dependency with other instructions within the in-direct jump target block containing the same instruction.� r[24]=r[24]+1 has no set-and-reference conict when the analysis is per-formed by considering the targets containing that instruction as one con-ceptual target.In order to �ll such an indirect jump delay slot as described in the situationabove, the following extra steps were added to vpo.1. For each target of the indirect jump, evaluate the probability that the targetmay be taken using the associated case values in the jump table. Whenthe range of case values is bound to values representing ASCII letters,the probability is further weighted using estimated character frequencydistribution of common use.2. Sort the indirect jump targets based on the evaluated probabilities.3. Starting from the most probable jump target to the least, make a listof all the instructions that can be potentially �lled for the indirect jumpwithout considering e�ects from other jump targets. Whenever an identicalinstruction is found in an other target block, add the associated probabilityto that of the instruction.

53

NL=RS[];

r[8]=(B[r[24]]{24)}24;

r[9]=(B[r8]+r[20]]{24)}24;

PC=r[9]+r[21];

.byte L0019-L0017

...

L0020:

.byte L82-L0017

...

.byte L0016-L0017

...

.byte L0017-L0017

...

.byte L0018-L0017

...

.align 4

.seg "text"

L0019:

L0018:

L0017:

L0016:

L82:

PC=RT;

PC=L83;

r[8]=r[26];

PC=L87;

r[8]=r[25];

! filled for the indirect jump

! filled for the indirect jump

! filled for the indirect jump

! filled for the indirect jump

(a) Before filling delay

 slot for indirect jump

(b) After filling delay

 slot for indirect jump

r[8]=(B[r[24]]{24)}24;

r[9]=(B[r8]+r[20]]{24)}24;

PC=r[9]+r[21];

.seg "data"

.byte L0019-L0017

...

L0020:

.byte L82-L0017

...

.byte L0016-L0017

...

.byte L0017-L0017

...

.byte L0018-L0017

...

.align 4

.seg "text"

L0019:

L0018:

L0017:

L0016:

L82:

PC=RT;

PC=L83;

r[8]=r[26];

PC=L87;

r[8]=r[25];

r[24]=r[24]+1;

r[24]=r[24]+1;

r[24]=r[24]+1;

r[24]=r[24]+1;

.seg "data"

delay slot r[24]=r[24]+1;

NL=RS[];Figure 6.11: RTLs after Filling Delay Slot of the Indirect Jump for ExampleC Code in Figure 6.10(a)

54(a) If an instruction does not exist in the list, then insert the RTL withits associated block address and probability.(b) else (the same RTL already found on other target block), add theassociated probability to that of the existing RTL in the list and addthe associated block address to the block address list of the existingRTL.4. Starting from the most probable instruction, determine if this instructionsets any variables or registers that could be live when entering any of thetarget blocks that do not have this instruction. If there is no conict, then�ll the delay slot with this instruction and delete it from the appropriatetarget blocks.

Chapter 7OTHER ARCHITECTURAL ISSUES FORCOALESCING BRANCHESThe cost of performing an indirect jump from a jump table can vary on di�erentmachines. Not only can the number of instructions required to perform thisoperation vary, but indirect jump instructions (as well as conditional branches)can also result in pipeline stalls on many machines.7.1 Dual Loop TestTo realistically estimate the pipeline impact on RISC architectures from replac-ing several conditional branches into an indirect jump, a dual loop test [10, 2] hasbeen conducted on a SPARCstation-IPC, SPARCstation-5, SPARCstation-20,and UltraSPARC-1.� First, an optimized executable1 for the C code in Figure 7.1 has beengenerated to estimate the execution time involved with loop overhead. LetEloop denote such an executable.1Appendix A shows the optimized SPARC assembly code.55

56� Second, two optimized executables2with linear branches and with an indi-rect jump from a table, were generated for the C code shown in Figure 7.2.Let Elinear and Eindirect denote such executables, respectively. Note thatElinear requires the execution of 2.5 branches on average for each loop iter-ation. Note that Eindirect has been generated such that all the conditionsin the loop body have been coalesced into an indirect jump operation re-quiring only two SPARC instructions as shown in Figure 6.8.� Third, the author ran each executable 20 times, and chose the shortestexecution time for each executable. Let �Eloop , �Ebranches, and �Eindirect rep-resent such shortest execution times respectively. (�Elinear - �Eloop) gives arelative estimate of the total time required to execute the the conditionalbranches over all iterations. (�Eindirect - �Eloop) gives a relative estimate ofthe time that is required to perform an indirect jump operation as shownin Figure 6.8, over all iterations.� Finally, by varying the number of conditions in the loop, the relative im-pact of conditional branches versus an indirect jump has been measured asshown in Table 7.1.From the dual loop test as described above, the author found that an indirectjump as depicted in Figure 6.1(c) required about the same execution time astwo pairs of compare and branch instructions for most SPARCstations exceptthe UltraSPARC-1. Therefore, the indirect jump transformation is only appliedwhen it is estimated that more than two coalescent branches in the set will on2Appendices B and C show the optimized SPARC assembly code respectively.

57int i;main(){ long int j, k, l;struct timeval before,after;gettimeofday(&before, (struct timezone *)NULL);k = 0;l = 0;for (j=0; j<10000000; j++) {i = j & 3;}gettimeofday(&after, (struct timezone *)NULL);after.tv_sec -= before.tv_sec;after.tv_usec -= before.tv_usec;if (after.tv_usec < 0)after.tv_usec--, after.tv_usec += 1000000;......printf(``The elapsed time: %9ld.%02ld\n'',after.tv_sec, after.tv_usec/10000);}Figure 7.1: Code to Measure the Execution Time for Loop Overhead...gettimeofday(&before, (struct timezone *)NULL);k = 0;l = 0;for (j=0; j<10000000; j++) {i = j & 3;/* 2.5 DYNAMIC NUMBER OF BRANCHES */if (i == 0) {k = k + 4;l = 4;}else if (i == 1) {k = k + 1;l = 1;}else if (i == 2) {k = k + 2;l = 2;}else if (i == 3) {k = k - 3;l = 3;}}gettimeofday(&after, (struct timezone *)NULL);...printf(``The elapsed time: %9ld.%02ld\n'',after.tv_sec, after.tv_usec/10000);}Figure 7.2: Code to Measuring the Execution Time for Loop Overhead and Loop Body

58Table 7.1: Dual-Loop Test (10,000,000 iterations)Machine Type Loop Cost Linear Search Indirect Jump2.5 br 4.5 br 8.5 br 2.5 br 4.5 br 8.5 brSPARCstation-IPC 3.65s 3.82s 5.53s 8.82s 2.61s 2.71s 2.76sSPARCstation-5 0.88s 1.03s 1.65s 2.74s 0.63s 0.76s 0.76sSPARCstation-20 0.51s 0.93s 1.60s 2.65s 0.87s 0.93s 0.93sUltraSPARC-1 0.40s 0.50s 1.16s 1.56 1.50s 1.51s 1.51saverage be executed. For the UltraSPARC-1, an indirect jump as depicted inFigure 6.1 required about the same execution time as eight pairs of compare andbranch instructions. The major reason is that the UltraSPARC-1 (a Superscalararchitecture) provides the hardware branch target/prediction bu�er support forbranches, but no hardware support for indirect jumps. In the following section,the author argues that, with a comparable hardware branch target/predictionbu�er support, such unbalanced execution time discrepency can be eliminated.7.2 Branch Target Bu�er(BTB) Support for Branchesand Indirect JumpsOne characteristic feature of RISC machines is pipelining. Pipelining dividesthe execution of each instruction into several stages. Di�erent stages can beoverlapped in execution to increase processor throughput. However, there areseveral obstacles that limit the full exploitation of pipelining. One of the mostserious obstacles is branch instructions. If the current instruction turns outto be a branch, then the CPU should predict in advance whether or not thebranch is taken and what the target address will be in order to preserve asteady ow through the pipeline. However, the execution path of a branch

59cannot be easily resolved in advance. Thus, branches typically cause delays inthe pipeline [30, 23, 9, 15].A Branch Target Bu�er (BTB) can reduce these pipeline disruptions bypredicting the path of the branch and caching information used by the branch.Various pieces of information can be kept in the BTB, including tags associ-ated with the branch address, the branch target address, and branch predictioninformation [23]. However, it has been reported that BTB-based predictionschemes perform poorly for indirect jumps, since the target of an indirect jumpcan change with every dynamic instance of that branch [9, 30]. In fact, somecompilers provide techniques that insert extra conditional branches that checkfor likely targets to avoid the execution of indirect jumps from a table [17] orindirect calls [7].Most modern architectures seldom support indirect jumps in BTB due tosuch poor misprediction ratios for indirect jumps. However, consider the resultsshown in Figure 7.1. An UltraSPARC-1 could execute about eight pairs ofcompare and branch instructions in the time required to perform an indirectjump operation. One reason for the lower relative performance for indirectjumps on the UltraSPARC-1 was that this machine uses a BTB to providearchitectural support for branches. There was no target bu�er support on theUltraSPARC-1 for indirect jumps, which resulted in all indirect jumps beingtreated as mispredictions.In the following sections, the author claims that, with comparable BTB sup-port for indirect jumps, the branch coalescing transformation can be bene�cialin reducing the total number of dynamic branch mispredictions. First, a con-

60ceptual design of BTBs is proposed that can provide comparable target bu�ersupport for indirect jumps. Second, various branch prediction approaches willbe described. Using more sophisticated branch prediction approaches as wellas increasing the number of entries in BTBs is known to improve BTB perfor-mance [23]. Third, issues will be presented about how to manage BTBs thatsupport branches and indirect jumps. Finally, with comparable BTB supportfor indirect jumps, the author will provide arguments describing why the to-tal number of branch mispredictions can be reduced by the branch coalescingtransformation. In addition, another compiler technique will be introduced thatcan potentially reduce the number of dynamic indirect jump mispredictions.7.2.1 A Conceptual BTB Supporting Branches and Indirect JumpsTarget bu�ers are available to reduce the cost of indirect jumps on some ma-chines. These bu�ers are typically specialized to support indirect jumps gener-ated from return statements since indirect jumps from tables are not generatedfrequently by most compilers [15](see page 276). However, BTBs can be easilyextended to support indirect jumps from tables by considering an indirect jumpas another PC-relative branch instruction [15](see page 274). For instance, Fig-ure 7.3 shows one conceptual view of a BTB, which, like a cache, can haveseveral alternative designs. If the appropriate tag is not found in the bu�er,then the hardware predicts that the branch will not be taken. If the appropri-ate tag is found in the bu�er and a branch predictor indicates the branch astaken, then the hardware predicts that the branch will be taken. Otherwise,the branch is predicted as not taken.

61
Number of

entries

in branch-

target

buffer.

Tag look up

PC of instruction to fetch

 =
No

Yes

Instruction is not predicted to

be a branch. Proceed normally.

Instruction is a branch and the predicted

PC should be used as the next PC.

...

Predicted PC

..

Branch PredictorValid bit

Figure 7.3: A Branch Target Bu�er7.2.2 Branch PredictorsThe n-bit predictor scheme predicts the outcome of the branch using 2n statediagram. When n is equal to one, the predictor predicts the next execution pathof a branch based upon the previous outcome of the branch. This predictor hasa performance drawback such that, when a loop branch is almost taken, thesame branch will likely be predicted incorrectly twice, rather than once. As anillustration for such a mispredicted branch, consider the example code fragmentshown in Figure 7.4. Assume that one-bit prediction information is in the BTBfor branch 2. Mispredicting the tenth iteration of branch 2 is inevitable sinceone-bit prediction information indicates that branch 2 will be taken. However,when branch 2 is accessed again after entering the inner loop for the secondtime, branch 2 will be mispredicted as not taken. Thus, the prediction accuracyfor branch 2 that is taken in 90% of the iterations turns out to be only 80%.In order to remedy this, two-bit predictor are often used. Consider the two-

62i = 1;while (i < 10) { /* branch 1 */j = 1;while (j < 10) { /* branch 2 */...j++;}i++;}...Figure 7.4: An Example for a Mispredicted Branchbit state diagram shown in Figure 7.5. By having intermediate branch predictionstates, such as State 1 and State 2, the above performance shortcoming of one-bit predictor can be resolved. The two-bit predictor approach has been reportedto do almost as well as the more general n-bit predictors [15](see page 263), andmost machines rely on the two-bit predictor instead of the more general n-bitpredictor.
Not taken

Taken

Taken Not taken

Taken

Not taken

Taken

Not taken

Predict not taken

Predict taken Predict taken

Predict not taken

State 3 State 2

State 1 State 0Figure 7.5: The states in a two-bit predicton schemeIn many cases, the execution path of a branch can be easily determinedby observing the outcomes of the previous branch executions [21]. Considerthe code fragment in Figure 7.6. If the branch 1 and 2 are taken, then the

63if (aa == 2) /* branch 1 */aa = 0;if (bb == 2) /* branch 2 */bb = 0;if (aa != bb) { /* branch 3 */....}Figure 7.6: An Example Code Fragment for Branch Correlationexecution path of branch 3 can be easily predicted as not taken. The n-bitpredictors can be further improved to make a prediction by using the outcomesof other branches. Such predictors are known as (m,n) correlation predictors.They use the outcome of the previous m branches to choose from 2m branchpredictors, each of which is a n-bit predictor for a single branch. The (m,n)predictors require one m-bit shift register to store the outcomes of the last mbranch execution (0 for not taken, 1 for taken). This shift register can identify 2mdi�erent contexts of a branch. Studies reported that (m,n) correlation predictorsprovide more accuracy than that of n-bit predictors [21, 15].7.2.3 BTB ManagementThe target address for a branch is only placed in the bu�er once the branch istaken. An indirect jump can be considered not taken (and therefore not placedin the bu�er) if the target is the instruction following the indirect jump. If abranch (or indirect jump) is not in the bu�er and it was not taken, then nodelay is necessary since the not taken address is already calculated by the CPU.To maximize the performance of BTB, a branch (or an indirect jump), whichis not in the BTB and is not taken, never replaces an entry in the bu�er [23].This approach has the e�ect of never replacing an entry in the bu�er with a

64branch (or an indirect jump) that is not taken. Remember that a branch (oran indirect jump) is predicted as not taken if it is not found in the bu�er. Ifthe actual target of the indirect jump does not match the target in the bu�er,then the branch target bu�er is updated to contain the last target of the jumpunless the same target is still predicted as taken. Note that, when the BTBuses correlating information from a (m,n) correlation predictor, the m-bit shiftregister does not reect the outcome of previous indirect jump executions. Themajor reason is that there are several targets of the indirect jump that can beconsidered as taken addresses [30]. However, indirect jumps still use correlatinginformation from the previous m executed branches.7.2.4 Expected Bene�ts from Branch Coalescing Transformationwith BTBsIndirect jumps typically have higher misprediction rates than conditionalbranches since an indirect jump may have many possible targets [9]. It is the au-thor's contention that higher misprediction rates do not necessarily mean worseperformance. One must remember that several branches are being coalescedinto a single indirect jump. Thus, the total number of mispredictions insteadof the misprediction rate should be used when trying to measure branch targetbu�er performance with and without branch coalescing.The author argues that with comparable branch target bu�er support, anindirect jump will cause no more mispredictions than the set of conditionalbranches it replaced. If the target of an indirect jump is mispredicted, then thetarget of the indirect jump changed from the last time it was executed. Likewise,

65at least one of the conditional branches that would have been executed instead ofthe indirect jump must have had di�erent behavior and would also likely resultin a misprediction. There are actually two reasons why fewer mispredictionswould occur after branch coalescing. First, an indirect jump can cause at mostone misprediction when executed. The execution of a sequence of the replacedconditional branches may cause multiple mispredictions. Second, there shouldbe less contention for entries in the branch target bu�er since there will be onlyone indirect jump as compared to the set of branches the indirect jump replaced.
likely
target

most

indirect
jump

...
...

......Figure 7.7: Placing the Most Likely TargetArchitectural and compiler support can be used to further reduce the num-ber of mispredictions from indirect jumps. Indirect jump history and a targetcache containing the targets of the indirect jump that have been encounteredhave been used to improve prediction accuracy [9]. The author used compilersupport to reduce the number of mispredictions. Often targets of an indirectjump have the block containing the indirect jump as their only predecessor.

66Value range analysis was performed to predict the most likely target for eachindirect jump, which was placed immediately following the indirect jump blockas shown in Figure 7.7. Thus, jumps to this target will result in no delay whenthe tag for the indirect jump is not found in the bu�er since this address will betreated as the not taken address. Note that the author does not suggest thatthe described approach is the best BTB design and con�guration to supportindirect jumps. Instead, the author is simply showing that, with comparableBTB support for indirect jumps, aggressively coalescing branches into indirectjumps can result in improved branch prediction performance. The branch pre-diction simulation results from various con�gurations will be shown in Chapter8.1.3. With specialized BTB support for indirect jumps [9], even better resultsshould be obtained.Some machines provide other special architectural support for speculativeexecution of instructions dependent on branches, such as boosting [27] andpredicted execution [24, 19]. The relative cost of an indirect jump versus theset of branches it replaces will be a�ected by such support. The compiler writermust use appropriate cost estimates based on the architectural support availablefor branches and indirect jumps on the target machine. An optimizer could alsolater convert indirect jumps into a sequence of conditional branches to exploitsuch architectural support.

Chapter 8RESULTSVarious measurements are given in this chapter that shows the bene�ts of ap-plying the branch coalescing transformation. Several common Unix utilities,as shown in Table 8.1, were selected as benchmarks since such non-numericalapplications tend to have complex conditional control ow.First, the following dynamic measurements were obtained by instrumentingthe code generated for the SPARC by vpo (Very Portable Optimizer [4]) withall conventional optimizations applied.1. Number of instructions executed2. Cache workSecond, actual execution time measurements on SPARCstations were ob-tained to determine the soundness of the above measurements. Finally, compile-time measurements on the SPARCstation were collected to measure the addi-tional time required to perform the branch coalescing transformation as an extraoptimization phase. 67

68Table 8.1: Benchmark Test FilesPROGRAM DESCRIPTIONawk pattern scanning and processing languagecb a simple C program beauti�ercpp C Compiler Preprocessorctags generate tag �le for emacs, videro� remove nro�, tro�, tbl and eqn constructsgrep search a �le for a string or regular expressionhyphen search a �le for hyphenated words and lists the wordsjoin relational database operatorlex lexical analysis program generatornro� format documents for display or line-printerpr prepare �le(s) for printing, perhaps in multiple columnsptx generate permuted indexsdi� contrast two text �les by displaying them side-by-sidesed stream editorsort sort and collate lineswc display a count of lines, words and charactersyacc parser generator8.1 Dynamic Measurements by Instrumenting CodeThe following measurements were collected on code generated by compiler vpo(Very Portable Optimizer) using EASE (Environment for Architectural Studyand Experimentation [13]) on the SPARC architecture for the Unix utilitiesdescribed in Table 8.1.8.1.1 Number of Instructions ExecutedTable 8.2 shows the number of instructions executed for each benchmark. TheNone column contains the number of instructions executed, which was obtainedby modifying the C front end, VPCC, to never translate a C switch statementusing an indirect jump. The Original column shows the percentage change ascompared to None when indirect jumps from tables were only generated by the

69front end of the original compiler. This front end only coalesces branches intoindirect jumps when translating some C switch statements using conventionalheuristics. Note that the Original measurements included �lling delay slots forindirect jumps from target blocks speci�ed in jump tables to fairly comparethe impact of branch coalescing. The measurements show that a substantialbene�t was obtained by conventional translation of multiway selection state-ments into jump tables. The Cont column shows the results when coalescingsequences of only contiguous branches using the techniques described in Chapter4. The Noncont column shows the results when coalescing a set of (contiguousand noncontiguous) branches, that are often separated by blocks of interven-ing instructions using the techniques described in Chapter 5. These frequencymeasurements indicate that branch coalescing after code generation can e�ec-tively reduce the dynamic number of instructions. Coalescing had a negativeimpact on performance when performance estimates were overly optimistic orpessimistic, which occurred for join and nro�.Table 8.3 contrasts the number of branches executed between the compiler(None) that strictly translates a multiway statement into a linear sequence ofbranches and the compiler (Orig) that translates each multiway statement intoa linear sequence of branches, a heap tree of branches, or an indirect jump froma table depending on simple heuristics used in the compiler front end. Notethat the bene�ts shown in the column% Fewer Branch came from both usingan indirect jump and a heap tree of branches as code generation alternatives.Table 8.4 contrasts the number of branches that executed between the compiler(None) and the compiler (Noncont) that performs the branch coalescing as a

70Table 8.2: Dynamic Instruction Frequency MeasurementsProgram None Original Cont Noncontawk 13,666,952 {0.294% {2.145% {3.118%cb 19,739,127 {12.976% {20.613% {21.204%cpp 30,985,306 {37.421% {37.960% {38.538%ctags 81,040,455 {0.545% {10.984% {24.160%dero� 15,511,056 {0.193% {1.011% {1.153%grep 11,810,070 {21.620% {24.370% {24.370%hyphen 19,535,372 0.000% {0.783% {2.187%join 3,552,801 0.000% 0.102% 0.325%lex 10,052,031 {0.230% {0.566% {0.689%nro� 25,118,855 {0.155% {0.015% {0.017%pr 78,106,755 0.000% {7.801% {7.760%ptx 20,059,920 0.000% {8.921% {10.196%sdi� 17,582,760 0.000% 0.022% {0.017%sed 17,321,920 {6.578% {6.839% {7.600%sort 18,921,766 0.000% {32.862% {33.053%wc 17,860,086 0.000% -17.853% {27.590%yacc 25,658,688 {0.194% {0.303% {0.307%average 25,036,387 {4.718% {10.171% {11.861%code-improving transformation. The column Branches/Indirect representsthe average dynamic number of conditional branches that were replaced by anindirect jump from a table. Note that the bene�ts shown in the column %Fewer Branch solely came from coalescing set of branches into an indirectjump.Table 8.5 shows the proportional bene�t of the di�erent techniques used tocoalesce branches (Noncont) as compared to the Original (not the None) mea-surements. After Code Generation shows the bene�ts obtained by performingcoalescing in the back end of a compiler as a general improving transformationinstead of a code generation decision. These bene�ts indicate that a compilerback end can exploit more opportunities for branch coalescing and make bettercoalescing decisions. Front Padding includes padding the front of jump tables

71Table 8.3: Reduced Number of Dynamic Conditional Branches by Generat-ing Indirect Jumps as a Translation Decision of Multiway State-ment (Orig)Prog None OriginalBranches Fewer Branches % Fewer Branchesawk 2213455 88579 {4.00%cb 3538146 655680 {18.53%cpp 6730186 4087213 {60.73%ctags 17462573 97743 {0.56%dero� 2722789 9572 {3.50%grep 2526865 1211778 {47.96%hyphen 2831171 0 0.00%join 983936 0 0.00%lex 1771795 8594 {4.90%nro� 3654565 14622 {4.00%pr 12078585 8 0.00%ptx 3310268 0 0.00%sdi� 2784468 5 0.00%sed 3014722 479742 {15.91%sort 4679991 11 0.00%wc 3636505 0 0.00%yacc 4877751 18286 {0.37%average {8.78%to avoid subtracting the lowest value compared. Avoid Initial Range Checkrepresents when value range analysis was also used to completely eliminate theinitial range check. This technique resulted in a substantial decrease since 2or 3 instructions were avoided each time it was applied. Also, many more setsof branches were now coalesced since the cost/bene�t analysis would indicatethat the coalescing transformation was worthwhile, when the initial range checkcould be avoided. E�cient Indexing includes using byte displacements in jumptables. Using byte displacements was possible since relocating code segmentsquite e�ectively compressed the target range of indirect jumps. Note that thelast three techniques were often applied on coalesced branches not associated

72Table 8.4: Reduced Number of Dynamic Conditional Branches by BranchCoalescing (Noncont)Prog None NoncontBranches Fewer Branches % Fewer Branches Branches/Indirectawk 2213455 247368 {11.18% 4.57cb 3538146 1744080 {49.29% 10.71cpp 6730186 4184501 {62.18% 42.87ctags 17462573 9612642 {55.05% 9.17dero� 2722789 114612 {4.21% 4.25grep 2526865 1352497 {53.52% 9.61hyphen 2831171 887400 {31.34% 3.07join 983936 19 0.00% 4.75lex 1771795 30415 {1.72% 8.39nro� 3654565 3497 {0.10% 3.36pr 12078585 4737895 {39.23% 3.51ptx 3310268 997270 {30.13% 3.81sdi� 2784468 4408 {0.16% 1.74sed 3014722 520839 {15.91% 12.18sort 4679991 3805448 {81.31% 2.95wc 3636505 2463844 {67.75% 3.39yacc 4877751 49660 {1.02% 6.14average {29.73% 7.95with multiway selection statements.Table 8.5: Reducing the Cost of CoalescingTechniques Proportional Bene�tAfter Code Generation 22.61%Front Padding 8.97%Avoid Initial Range Check 56.31%E�cient Indexing 12.11%8.1.2 Total Cache WorkThe branch coalescing impact on caching was a concern since misses from jumptable loads could potentially have negative impact on performance. Table 8.6shows the average e�ect Noncont had on instruction caching, data caching, and

73total cache work as compared to the Original cache measurements. The cachework cycles were calculated using Equation 8.1, where a cache hit and a cachemiss are counted as one cycle and ten cycles respectively [26]. Note that it wasassumed that d-cache accesses could be performed simultaneously with i-cacheaccesses.CacheWork = i CacheHits + 10 � (i CacheMisses) + 9 � (d CacheMisses) (8.1)The i-cache work of Noncont was reduced since the number of instructionsreferenced were diminished as compared to the Original measurements. Asexpected, the d-cache work of Noncont was increased since jump table loads afterbranch coalescing are more frequently performed as compared to the Originalcompiler. The total cache work was decreased since i-cache accesses are morefrequent than d-cache accesses.Table 8.6: Cache Work Improvement with a Direct-Mapped Cache with 32 ByteLine SizeCACHE SIZE Instruction Data CACHE WORK1K {7.095% +6.680% {5.125%2K {7.220% +7.162% {5.614%4K {4.909% +5.066% {4.288%8K {7.930% +2.598% {7.460%16K {8.231% +3.995% {7.289%32K {7.947% +4.290% {7.328%8.1.3 Other MeasurementsSome other measurements not given in the tables provide useful information.There were on average about 0.901 more instructions executed between branchesafter Noncont as compared to the Original measurements. Thus, the opportu-

74nities for scheduling on superscalar and superpipelined machines may be im-proved. In addition, coalescing only caused a 2.566% code size increase.8.2 Execution Time MeasurementsExecution time measurements were also collected on a SPARCstation-IPC, aSPARCstation-20, and an UltraSPARC-1. The �rst two machines did not pro-vide any branch target/prediction bu�er support. The third machine only pro-vides target/prediction bu�er support for branches, but no support for indirectjumps.The time measurements were collected using the C run-time library functiontimes() that uses the unit of time as a tick (1 second = 60 ticks). The executiontimes were obtained from the sum of reported user times of ten executions ofeach program. Note that these results not only varied signi�cantly during eachmeasurement trial, but also the results seems to be a�ected by the di�erentversions of operating systems, such as SunOS 4.x.x and SunOS 5.x.x. Thus,the reader should probably not view these execution time measurements as areliable indicator of performance.8.2.1 Measurements on SPARCstation-IPC and SPARCstation-20The measurement results on these two machines are shown in Tables 8.7 and8.8. There are a couple of reasons why the execution time decrease probablywas not as signi�cant as the reduction obtained from the number of instruc-tions executed and total cache work. First, the execution time of an indirectjump operation required about the same time as two conditional branches. The

75author anticipates that the relative cost of an indirect jump would decreasewith target/prediction bu�er support for branches and indirect jumps since theload delay for fetching the indirect jump target address could be avoided andfewer mispredictions would occur. Second, Tables 8.7 and 8.8 only show themeasurements from the code compiled by our compiler, which did not includethe C run-time library code. However, the library code did contribute to theexecution time measurements.Table 8.7: Execution Time Measurements for SPARCstation IPCProgram None SPARCstation IPCOrig Change Noncont Changeawk 2121 ts 2113 ts {0.38% 2254 ts 5.90%cb 1442 ts 1364 ts {5.41% 1320 ts {8.46%cpp 1484 ts 1004 ts {32.35% 1010 ts {31.94%ctags 4392 ts 4374 ts {0.41% 4058 ts {7.61%dero� 917 ts 912 ts {0.55% 911 ts {0.65%grep 442 ts 357 ts {19.23% 340 ts {23.08%hyphen 741 ts 737 ts {0.54% 736 ts {0.68%join 296 ts 296 ts 0.00% 303 ts 2.31%lex 504 ts 503 ts {0.20% 496 ts {1.59%nro� 1097 ts 1100 ts 0.27% 1118 ts 1.88%pr 2854 ts 2857 ts 0.11% 2702 ts {5.33%ptx 3015 ts 3027 ts 0.40% 2962 ts {1.76%sdi� 9263 ts 9454 ts 2.01% 9280 ts 0.22%sed 4670 ts 4449 ts {4.76% 4403 ts {5.72%sort 680 ts 683 ts 0.44% 574 ts {15.59%wc 777 ts 778 ts 0.13% 678 ts {12.74%yacc 1163 ts 1281 ts 9.21% 1295 ts 10.19%average {3.01% {5.57%8.2.2 Measurements on UltraSPARC-1The same exeuction time measurements were also conducted on a UltraSPARC-1. As shown in Table 8.9, the executables from Noncont compiler compared tothose from None compiler resulted in worse performance (even for the Origi-

76Table 8.8: Execution Time Measurements for SPARCstation-20Program None SPARCstation-20Orig Change Noncont Changeawk 617 ts 622 ts 0.80% 611 ts {0.97%cb 375 ts 363 ts {3.20% 341 ts {9.07%cpp 493 ts 349 ts {29.21% 372 ts {29.41%ctags 1267 ts 1208 ts {4.66% 1109 ts {12.47%dero� 275 ts 274 ts {0.36% 272 ts {1.09%grep 182 ts 162 ts {10.99% 157 ts {13.74%hyphen 289 ts 289 ts 0.00% 282 ts |2.42%join 141 ts 142 ts 0.70% 144 ts 2.08%lex 209 ts 206 ts {1.44% 201 ts {3.83%nro� 381 ts 384 ts 0.78% 385 ts 1.04%pr 874 ts 878 ts 0.46% 830 ts {5.03%ptx 1429 ts 1425 ts {0.28% 1385 ts {3.08%sdi� 7520 ts 7479 ts {0.55% 7475 ts {0.60%sed 1401 ts 1332 ts {4.93% 1320 ts {5.78%sort 259 ts 258 ts {0.39% 256 ts {1.16%wc 252 ts 250 ts {0.79% 246 ts {2.38%yacc 414 ts 436 ts 5.05% 428 ts 3.27%average {2.88% {4.98%nal). The author strongly suspects that such disimprovement stems from nocomparable target/prediction bu�er support for the indirect jumps. In orderto properly estimate the execution time impact on this machine by applyingthe branch coalescing transformation, EASE (Environment for ArchitecturalStudy and Experimentation [13]) was extended to be able to simulate branchprediction with BTB support as shown in Figure 7.3.8.2.3 Branch Prediction Simulation with BTB (Branch TargetBu�er)Indirect jumps from tables are generally considered to cause poorer branchprediction performance. The reason for this view is that indirect jumps typ-ically have higher misprediction rates than conditional branches since an in-

77Table 8.9: Execution Time Measurements for Ultra-SPARCstationProgram None Ultra-SPARCstationOrig Change Noncont Changeawk 479 ts 483 ts 0.83% 488 ts 1.84%cb 261 ts 268 ts 2.61% 266 ts 1.88%cpp 305 ts 286 ts {6.23% 279 ts {8.53%ctags 936 ts 943 ts 0.74% 1008 ts 7.14%dero� 199 ts 205 ts 2.93% 200 ts 0.50%grep 123 ts 120 ts {2.44% 118 ts {4.07%hyphen 206 ts 208 ts 0.96% 225 ts 8.44%join 104 ts 104 ts 0.00% 106 ts 1.89%lex 129 ts 135 ts 4.44% 137 ts 5.84%nro� 239 ts 243 ts 1.65% 242 ts 1.24%pr 529 ts 534 ts 0.94% 581 ts 8.95%ptx 1013 ts 1016 ts 0.30% 1020 ts 0.69%sdi� 6651 ts 6676 ts 0.37% 6660 ts 0.14%sed 922 ts 900 ts 0.37% 893 ts {3.15%sort 178 ts 177 ts {0.56% 207 ts 14.01%wc 171 ts 170 ts {0.59% 208 ts 17.79%yacc 284 ts 293 ts 3.07% 285 ts 0.35%average 0.67% 3.23%direct jump may have many possible targets. However, the essence of branchcoalescing transformation is to replace several conditional branches into an in-direct jump. Thus, it was contended that the total number of mispredictionsinstead of the misprediction rate should be used when trying to measure branchtarget/prediction bu�er performance with and without branch coalescing trans-formation.Tables 8.10, 8.11, and 8.12 show the decrease in the number of mispredic-tions from Noncont (branch coalescing) as compared to the Original (not theNone) branch target/prediction bu�er measurements. As contended by the au-thor, even though the misprediction ratio went up after performing the branchcoalescing transformation, the total number of mispredictions was decreased.Note that both the Original and Noncont bu�er measurements supported pre-

78diction for indirect jumps.8.3 Compile-Time OverheadInitially, the compile-time overhead of branch coalescing was quite excessive.Two improvements were made to increase compile-time e�ciency for the branchcoalescing transformation. These improvements were decreasing the number ofbasic blocks used to represent jump tables and avoiding unnecessary attemptsto coalesce branches.8.3.1 Reducing the Number of Basic BlocksThe complexity for both data and control-ow analysis for code improving trans-formations is proportional to the number of basic blocks. In fact, the authorfound that most of the compile-time overhead was due to the detrimental e�ectthat additional basic blocks had on subsequent analysis and transformations.Originally, VPO (Very Portable Optimizer) represented each entry in thejump table as a separate basic block. This representation scheme was a concernto the author since most of the techniques in Chapter 6 to make indirect jumpsmore e�cient were applied at the cost of duplicating jump table entries. Inorder to avoid excessive generation of basic blocks from those techniques, analternative scheme has been designed and implemented to compactly representthe control ow for a jump table.As an illustration, consider the RTLs shown in Figure 6.3, which is thesnapshot after eliminating the value range check instructions for the indirectjump by enumerating 256 jump table entries into the jump table. However,

79Table 8.10: Branch Misprediction Ratio and Number of Mispredicted Branches with aDirect-Mapped BTB with (0,1) Correlation PredictorEntries in BTB Branch Misprediction Ratio Percentage Reductions inOrig Noncont Di�erence Mispredicted Branches32 0.1182 0.1365 0.0183 {5.60%64 0.1050 0.1152 0.0102 {9.09%128 0.0935 0.1042 0.0107 {9.52%256 0.0892 0.0988 0.0096 {10.35%512 0.0871 0.0964 0.0094 {10.67%1024 0.0811 0.0961 0.0149 {4.43%Table 8.11: Branch Misprediction Ratio and Number of Mispredicted Branches with aDirect-Mapped BTB with (0,2) Correlation PredictorEntries in BTB Branch Misprediction Ratio Percentage Reductions inOrig Noncont Di�erence Mispredicted Branches32 0.1118 0.1252 0.0134 {8.11%64 0.0971 0.1014 0.0043 {12.28%128 0.0848 0.0899 0.0051 {12.81%256 0.0804 0.0841 0.0038 {14.11%512 0.0779 0.0824 0.0045 {14.10%1024 0.0720 0.0817 0.0097 {7.20%Table 8.12: Branch Misprediction Ratio and Number of Mispredicted Branches with aDirect-Mapped BTB with (2,2) Correlation PredictorEntries in BTB Branch Misprediction Ratio Percentage Reductions inOrig Noncont Di�erence Mispredicted Branches32 0.1131 0.1271 0.0140 {8.33%64 0.0969 0.1024 0.0055 {12.07%128 0.0840 0.0902 0.0062 {12.53%256 0.0788 0.0836 0.0048 {13.56%512 0.0758 0.0817 0.0059 {13.30%1024 0.0695 0.0809 0.0114 {6.15%

80256 blocks for the jump table, as shown in Figure 8.1(a), could be e�cientlyrepresented into fewer blocks when consecutive jump table entries that containthe same target address can be grouped into a single basic block. Figure 8.1(b)shows a compact representation of the original control ow. Note that each basicblock containing a jump table entry has another �eld to indicate the repetitioncount such that the jump table entries can be restored while SPARC assemblycode is being produced.8.3.2 Avoiding Unnecessary Coalescing AttemptsIn vpo, several loop transformations are iteratively applied until no further im-provement (change(es)) can be made, as depicted in Figure 2.2. Coalescing ofbranches was treated as a transformation for a loop since the transformationtypically requires extra registers. The author coalesced the branches from theinnermost loop outward after all other transformations for a given loop havebeen initially attempted. Within such a loop optimization framework, unneces-sary branch coalescing analysis could be avoided. For a given loop, if the branchcoalescing analysis has been already applied without any transformation, thenthere is typically no need to re-apply the analysis for the same loop. Most oftransformations from the branch coalescing are typically completed during the�rst pass of a loop optimization process. The author found that other improvingtransformations rarely provided new opportunities for branch coalescing. There-fore, the branch coalescing transformation was not applied during the secondpass of the same loop optimization process.

81

L27:

PC=r[8];

L01:

.word L27

.word L27

...

.word L27

.word L22

.word L23

.word L24

.word L25

.word L26

.word L27

.word L27

.word L27

...

.word L27

.word L27

.word L27

L27:

PC=r[8];

L01:

.word L27

.word L27

...

.word L22

.word L23

.word L24

.word L25

.word L26

.word L27

.word L27

...

.word L27

(a) Orginal Control Flow (b) Alternative Control Flow

Figure 8.1: Control Flow Representations for Indirect Jump Table shown inFigure 6.3

828.3.3 Compilation OverheadCompile time measurements were collected on a SPARCstation-20 using theC run-time library function times(). The compile times were obtained fromthe average of the sum of the reported user and system times of 10 compi-lations of each benchmark. Table 8.13 compares the results with None andNoncont (that is, with and without the branch coalescing transformation.)The author suspects that the compilation overhead can be reduced with someadditional tuning. Some portion of compilation overhead in system time isdue to I/0 in producing jump table entries when generating SPARC assemblycode. This overhead can be avoided when an assembler supports a directivethat speci�es a repetition factor for consecutive values that are identical (e.g..word <value><repetition factor>).Table 8.13: Compile Time MeasurementsProgram None Noncont Extra Overheaduser system user systemawk 39.40 sec 7.18 sec 76.35 sec 7.88 sec +80.82%cb 4.83 sec 0.72 sec 5.48 sec 0.77 sec +12.61%cpp 23.02 sec 3.17 sec 36.28 sec 3.40 sec +51.56%ctags 9.60 sec 0.72 sec 14.07 sec 0.93 sec +45.40%dero� 33.68 sec 1.03 sec 38.17 sec 1.10 sec +13.11%grep 4.68 sec 0.67 sec 6.53 sec 0.78 sec +36.76%hyphen 1.37 sec 0.60 sec 1.53 sec 0.60 sec +9.32%join 3.58 sec 0.62 sec 4.25 sec 0.67 sec +17.06%lex 41.40 sec 3.78 sec 49.22 sec 4.08 sec +17.96%nro� 43.25 sec 6.13 sec 45.83 sec 6.32 sec +5.60%pr 6.03 sec 0.82 sec 6.52 sec 0.85 sec +7.54%ptx 6.42 sec 0.78 sec 7.13 sec 0.78 sec +9.95%sdi� 8.37 sec 0.78 sec 12.40 sec 0.98 sec +45.47%sed 20.52 sec 2.27 sec 24.65 sec 2.45 sec +18.95%sort 9.30 sec 0.68 sec 10.38 sec 0.68 sec +10.85%wc 0.95 sec 0.50 sec 1.50 sec 0.53 sec +40.23%yacc 34.87 sec 2.67 sec 43.47 sec 2.93 sec +23.62%average 17.13 sec 1.95 sec 22.57 sec 2.10 +26.28%

Chapter 9FUTURE WORKThere are other areas that could be investigated to provide additional oppor-tunities for coalescing conditional branches. One factor that limited the op-portunities for coalescing branches into indirect jumps was not performing in-terprocedural analysis to more e�ectively determine value ranges. Often intarguments being compared to constants in one function are loaded from mem-ory as a byte in a di�erent function. Interprocedural analysis would allow the�rst three instructions in Figure 6.1(b) comprising the initial range check to beavoided more frequently.Pro�ling could also be used to help determine when coalescing was worth-while. The author statically estimated the average number of branches thatwould be executed through a set of related branches. Coalescing can have anegative impact on performance when these estimates are overly optimistic orpessimistic. Pro�ling would provide more accurate estimates for coalescing de-cisions. In general, detecting bounded ranges and using an estimated frequencyfor character values provided good heuristics when making coalescing decisions.This approach has promising implications for conventional branch prediction.83

Chapter 10CONCLUSIONSThis dissertation has described compiler support for e�ectively exploiting in-direct jumps. The general improving transformation presented for coalescingbranches after code generation provided bene�ts that otherwise would not beavailable.Two general approaches were designed and implemented to aggressively re-place a set of branches into a single indirect jump as opposed to only consideringindirect jumps when translating multiway statements. The �rst approach allowsthe compiler to detect and coalesce a contiguous sequence of branches into anindirect jump. The second approach provides a more general algorithm thatcan coalesce a set of potentially noncontiguous conditional branches, which areoften separated by blocks of intervening instructions. Thus, better code canbe generated by using the second approach instead of the �rst since a greaternumber of branches per indirect jump can be coalesced. However, the �rst ap-proach is relatively simpler to implement and it requires relatively less complexanalysis than the second.Various techniques were developed and implemented to e�ciently performthe indirect jump operation by analyzing the context of the given machine in-structions. Applying these techniques often resulted in the execution of only two84

85instructions on the SPARC. In order to provide an e�ective branch coalescingtransformation, two cost/bene�t analyses were designed and applied by estimat-ing the average number of branches executed for the detected set of coalescentbranches. In order to coalesce a set of conditional branches, which are oftenseparated by blocks of intervening instructions, a restructuring algorithm us-ing code duplication was designed and implemented. Furthermore, the originaldelay slot �lling scheme was extended to usefully �ll the delay slots of indirectjumps. Thus, a code-improving transformation was designed and implementedin order to essentially provide early resolution of conditional branches that mayoriginally have been some distance from the point where the indirect jump isinserted.BTBs (Branch Target Bu�er) are available to reduce the cost of branches onmany machines. The branch coalescing impact on branch mispredictions wasa concern to the author. The author's contention was that with comparabletarget bu�er support for indirect jumps, the total number of branch mispredic-tions should be reduced since several branches are being coalesced into a singleindirect jump. To justify the contention, the author accomplished the followingtasks. First, the EASE environment [13] was extended to be able to simulatee�ects on branch mispredictions with BTB support for branches and indirectjumps [15](see page 276). Second, in order to better exploit a BTB for indirectjumps, a compiler analysis technique was implemented to locate the most prob-able target of the indirect jump immediately after the jump as a fall-throughdestination. Thus, if an indirect jump is not in the bu�er, then no delay isnecessary since the next address of the indirect jump is already calculated by

86the CPU.Finally, various measurements were collected to demonstrate the bene�t ofapplying the branch coalescing transformation. The additional bene�ts fromcoalescing noncontiguous branches were contrasted with the simpler analysisrequired for only coalescing contiguous branches.The results showed reductions in the number of instructions executed andbranch mispredictions, total cache work, and execution time at the cost of tol-erable compile-time overhead.

Appendix AOptimized SPARC Assembly Code for Loop Overhead! block 1.seg ``data''.align 8.global _i_i: .word 0.seg ``text''.global _main_main:.1_after = 96.1_before = 104save %sp,(-112),%spadd %sp,.1_before,%o0call _gettimeofday,2mov %g0,%o1mov %g0,%l2mov %g0,%l1sethi %hi(10000000),%o0or %o0,%lo(10000000),%o0cmp %g0,%o0bge L40mov %g0,%l0! block 2sethi %hi(_i),%o2mov %o0,%o4! block 3L42: and %l0,3,%o1! block 4add %l0,1,%l0! block 5cmp %l0,%o4bl L42st %o1,[%o2 + %lo(_i)]! block 6L40: add %sp,.1_after,%o0call _gettimeofday,2mov %g0,%o1ld [%sp + .1_after],%o3ld [%sp + .1_before],%o4sub %o3,%o4,%o3st %o3,[%sp + .1_after]ld [%sp + (.1_after + 4)],%o3ld [%sp + (.1_before + 4)],%o4sub %o3,%o4,%o3cmp %o3,%g0bge L44 87

88st %o3,[%sp + (.1_after + 4)]! block 7sub %o3,1,%o1sethi %hi(1000000),%o2or %o2,%lo(1000000),%o2add %o1,%o2,%o1st %o1,[%sp + (.1_after + 4)]! block 8L44: sethi %hi(L46),%o0add %o0,%lo(L46),%o0call _printf,2mov %l0,%o1sethi %hi(L47),%o2add %o2,%lo(L47),%o0call _printf,2mov %l2,%o1sethi %hi(L48),%o2add %o2,%lo(L48),%o0call _printf,2mov %l1,%o1sethi %hi(L49),%l0ld [%sp + .1_after],%l1sethi %hi(10000),%o2or %o2,%lo(10000),%o1call .div,2ld [%sp + (.1_after + 4)],%o0mov %o0,%o2add %l0,%lo(L49),%o0call _printf,3mov %l1,%o1! block 9retrestore! block 1.seg ``data''L49: .ascii ``The elapsed time: %9ld.%02ld\12\0''L48: .ascii ``The value of l = %d\12\0''L47: .ascii ``The value of k = %d\12\0''L46: .ascii ``The value of j = %d\12\0''

Appendix BOptimized SPARC Assembly Code for Linear Sequenceof Branches! block 1.seg ``data''.common _i,4,''data''.seg ``text''.global _main_main:.1_after = 96.1_before = 104save %sp,(-112),%spadd %sp,.1_before,%o0call _gettimeofday,2mov %g0,%o1mov %g0,%l1mov %g0,%l2sethi %hi(1000000),%o0or %o0,%lo(1000000),%o0cmp %g0,%o0bge L40mov %g0,%l0! block 2sethi %hi(_i),%o2mov %o0,%o4and %l0,3,%o1! block 3L42: cmp %o1,%g0bne L43st %o1,[%o2 + %lo(_i)]! block 4add %l1,4,%l1ba L39mov 4,%l2! block 5L43: cmp %o1,1bne,a L45cmp %o1,2! block 6add %l1,1,%l1ba L39mov 1,%l2! block 7L45: bne,a L47cmp %o1,3! block 8add %l1,2,%l1 89

90ba L39mov 2,%l2! block 9L47: bne,a L41add %l0,1,%l0! block 10add %l1,3,%l1mov 3,%l2! block 11! block 12L39: add %l0,1,%l0! block 13L41: cmp %l0,%o4bl,a L42and %l0,3,%o1! block 14L40: add %sp,.1_after,%o0call _gettimeofday,2mov %g0,%o1ld [%sp + .1_after],%o3ld [%sp + .1_before],%o4sub %o3,%o4,%o3st %o3,[%sp + .1_after]ld [%sp + (.1_after + 4)],%o3ld [%sp + (.1_before + 4)],%o4sub %o3,%o4,%o3cmp %o3,%g0bge L51st %o3,[%sp + (.1_after + 4)]! block 15sub %o3,1,%o1sethi %hi(1000000),%o2or %o2,%lo(1000000),%o2add %o1,%o2,%o1st %o1,[%sp + (.1_after + 4)]! block 16L51: sethi %hi(L53),%o0add %o0,%lo(L53),%o0call _printf,2mov %l0,%o1sethi %hi(L54),%o2add %o2,%lo(L54),%o0call _printf,2mov %l1,%o1sethi %hi(L55),%o2add %o2,%lo(L55),%o0call _printf,2mov %l2,%o1sethi %hi(L56),%l0ld [%sp + .1_after],%l1sethi %hi(10000),%o2or %o2,%lo(10000),%o1call .div,2ld [%sp + (.1_after + 4)],%o0mov %o0,%o2add %l0,%lo(L56),%o0call _printf,3mov %l1,%o1

91! block 17retrestore! block 1.seg ``data''L56: .ascii ``The elapsed time: %9ld.%02ld\12\0''L55: .ascii ``The value of l = %d\12\0''L54: .ascii ``The value of k = %d\12\0''L53: .ascii ``The value of j = %d\12\0''

Appendix COptimized SPARC Assembly Code for Indirect Jump! block 1.seg ``data''.common _i,4,''data''.seg ``text''.global _main_main:.1_after = 96.1_before = 104save %sp,(-112),%spadd %sp,.1_before,%o0call _gettimeofday,2mov %g0,%o1mov %g0,%l1mov %g0,%l2sethi %hi(1000000),%o0or %o0,%lo(1000000),%o0cmp %g0,%o0bge L40mov %g0,%l0! block 2sethi %hi(L008),%o4or %o4,%lo(L008),%o4sethi %hi(_i),%g1mov %o0,%o2and %l0,3,%o1sethi %hi(L007),%o5or %o5,%lo(L007),%o5! block 3L42: st %o1,[%g1 + %lo(_i)]ldsb [%o1 + %o4],%o0jmp %o0 + %o5mov 3,%l2.seg ``data''.align 4L008:.byte L004-L007! block 4.byte L007-L007! block 5.byte L006-L007! block 6.byte L005-L007.align 4.seg ``text''! block 7L004: add %l1,4,%l1ba L39 92

93mov 4,%l2! block 8L007: add %l1,1,%l1ba L39mov 1,%l2! block 9L006: add %l1,2,%l1ba L39mov 2,%l2! block 10L005: add %l1,3,%l1! block 11! block 12L39: add %l0,1,%l0! block 13cmp %l0,%o2bl,a L42and %l0,3,%o1! block 14L40: add %sp,.1_after,%o0call _gettimeofday,2mov %g0,%o1ld [%sp + .1_after],%o3ld [%sp + .1_before],%o4sub %o3,%o4,%o3st %o3,[%sp + .1_after]ld [%sp + (.1_after + 4)],%o3ld [%sp + (.1_before + 4)],%o4sub %o3,%o4,%o3cmp %o3,%g0bge L51st %o3,[%sp + (.1_after + 4)]! block 15sub %o3,1,%o1sethi %hi(1000000),%o2or %o2,%lo(1000000),%o2add %o1,%o2,%o1st %o1,[%sp + (.1_after + 4)]! block 16L51: sethi %hi(L53),%o0add %o0,%lo(L53),%o0call _printf,2mov %l0,%o1sethi %hi(L54),%o2add %o2,%lo(L54),%o0call _printf,2mov %l1,%o1sethi %hi(L55),%o2add %o2,%lo(L55),%o0call _printf,2mov %l2,%o1sethi %hi(L56),%l0ld [%sp + .1_after],%l1sethi %hi(10000),%o2or %o2,%lo(10000),%o1call .div,2ld [%sp + (.1_after + 4)],%o0mov %o0,%o2

94add %l0,%lo(L56),%o0call _printf,3mov %l1,%o1! block 17retrestore! block 1.seg ``data''L56: .ascii ``The elapsed time: %9ld.%02ld\12\0''L55: .ascii ``The value of l = %d\12\0''L54: .ascii ``The value of k = %d\12\0''L53: .ascii ``The value of j = %d\12\0''

References[1] F. Allen and J. Cocke. Design and Optimization of Compilers. Prentice-Hall, Englewood Cli�s, NJ, 1971.[2] N. Altman and N. Weiderman. Timing variation in dual-loop benchmarks.Technical report, Software Engineering Institute, Carnegie Mellon Univer-sity, Pittsburgh, PA, October 1987.[3] T. Ball and J.R. Larus. Branch prediction for free. In ACM SIGPLANConference on Programming Language Design and Implementation, pages300{313, June 1993.[4] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker.In ACM SIGPLAN Conference on Programming Language Design and Im-plementation, pages 329{338, June 1988.[5] R. L. Bernstein. Producing good code for the case statement. Software-Practice and Experience, 15:1021{1024, October 1985.[6] R. Bodik, R. Gupta, and Mary L. So�a. Interprocedural conditional branchelimination. In ACM SIGPLAN Conference on Programming LanguageDesign and Implementation, June 1997.[7] B. Calder and D. Grunwald. Reducing indirect function call overhead inC++ programs. In Proceedings of the ACM Symposium on Principles ofProgramming Languages, pages 397{408, December 1994.[8] B. Calder, D. Grunwald, and D. Lindsay. Corpus-based static branch pre-diction. In ACM SIGPLAN Conference on Programming Language Designand Implementation, pages 79{92, June 1995.[9] Po-Yung Chang, Eric Hao, and Yale N. Patt. Target prediction for indi-rect jumps. In The 24th Annual International Symposium on ComputerArchitecture, June 1997. 95

96[10] R. M. Clapp, L. Duchesneau, R. A. Volz, T. N. Mudge, and T. Schultze.Toward real-time performace benchmarks for ADA. Communications ofthe ACM, 29(8):760{778, August 1986.[11] J. W. Davidson and S. Jinturkar. Aggressive loop unrolling in a retar-getable, optimizing compiler. In Proceedings of Compiler ConstructionConference, pages 59{73, April 1996.[12] J. W. Davidson and D. B. Whalley. Quick compilers using peephole opti-mizations. Software Practice & Experience, 19(1):195{203, January 1989.[13] J. W. Davidson and D. B. Whalley. A design environment for addressingarchitecture and compiler interactions. Microprocessors and Microsystems,15(9):459{472, November 1991.[14] T. Granlund and R. Kenner. Eliminating branches using a superoptimizerand the gnu c compiler. In ACM SIGPLAN Conference on ProgrammingLanguage Design and Implementation, pages 341{352, June 1992.[15] J. Hennessy and D. Patterson. Computer Architecture: A QuantitativeApproach. Morgan Kaufmann, San Francisco, CA, second edition, 1996.[16] J. L. Hennessy and N. Mendelsohn. Compilation of the Pascal case state-ment. Software-Practice and Experience, 12:879{882, September 1982.[17] A. M. Holler. Optimization for a superscalar out-of-order machine. In Pro-ceedings of the 29th International Symposium on Microarchitecture, pages336{348, December 1996.[18] S. C. Johnson. A Tour Through the Portable C Compiler. Unix Program-mer's Manual 7th Edition Section 33, January 1979.[19] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gal-lagher, and W. W. Hwu. Characterizing the impact of predicated executionon branch prediction. In Proceedings of the 27th International Symposiumon Microarchitecture, pages 217{227, December 1994.[20] F. Mueller and D. B. Whalley. Avoiding conditional branches by code repli-cation. In ACM SIGPLAN Conference on Programming Language Designand Implementation, pages 56{66, June 1995.[21] S. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamicbranch prediction using branch correlation. In Architectural Support forProgramming Languages and Operating Systems, pages 76{84, September1992.

97[22] J. Patterson. Accurate static branch prediction by value range propaga-tion. In ACM SIGPLAN Conference on Programming Language Designand Implementation, pages 929{942, June 1995.[23] C. H. Perleberg and A. J. Smith. Branch target bu�er design and opti-mization. IEEE Transactions on Computers, 42(4):396{412, April 1993.[24] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and branch pre-diction in dynamic ILP processors. In Proceedings of the 21th InternationalSymposium on Computuer Architecture, pages 120{129, April 1994.[25] Arthur Sale. The implementation of case statements in Pascal. Software-Practice and Experience, 11:929{942, September 1981.[26] A. J. Smith. Cache memories. Computing Surveys, 14(3):473{530, Septem-ber 1982.[27] M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting beyond staticscheduling in a superscalar processor. In Proceedings of the 17th Interna-tional Symposium on Computer Architecture, pages 344{353, May 1990.[28] D. A. Spuler. Compiler code generation for multiway branch statementsas a static search problem. Technical report, Dept. of Computer Science,James Cook University, Townsville, 4811, Australia, 1994.[29] R. M. Stallman. Using and Porting GNU CC (version 1.37.1). Free Soft-ware Foundation, Inc., Cambridge, MA, February 1990.[30] D. W. Wall. Limits of instruction-level parallelism. In Architectural Supportfor Programming Languages and Operating Systems, pages 176{188, April1991.

Biographical SketchGang-Ryung Uh was born in Seoul, South Korea in 1960. He earned a Bachaelorof Arts degree in Economics from Hankuk University of Foreign Studies in 1987,and a Master of Science degree in Computer Science from Florida State Univer-sity in 1992. After obtaining the Ph.D degree in Computer science, he plans tocontinue on various compiler backend optimization studies.

98

