
Automatic Detection and Exploitation
of Branch Constraints for Timing Analysis*

Chr istopher A. Healy David B. Whalley
Computer Science Dept., Furman University Computer Science Dept., Florida State Univ.

Greenville, SC 29613 Tallahassee, FL 32306-4530
e-mail: chris.healy@fur man.edu, phone: (864) 294-2233 e-mail: whalley@cs.fsu.edu, phone: (850) 644-3506

Abstract

Predicting the worst-case execution time (WCET) and best-case execution time (BCET) of a real-time pro-
gram is a challenging task.Though much progress has been made in obtaining tighter timing predictions by
using techniques that model the architectural features of a machine, significant overestimations of WCET and
underestimations of BCET can still occur. Even with perfect architectural modeling, dependencies on data
values can constrain the outcome of conditional branches and the corresponding set of paths that can be
taken in a program. While branch constraint information has been used in the past by some timing analyz-
ers, it has typically been specified manually, which is both tedious and error prone. Thispaper describes effi-
cient techniques for automatically detecting branch constraints by a compiler and automatically exploiting
these constraints within a timing analyzer. The result is significantly tighter timing analysis predictions with-
out requiring additional interaction with a user.

Index terms: real-timesystems, worst-case execution time, best-case execution time, timing analysis, infeasible
paths, branch constraints

1. Intr oduction

Obtaining accurate worst-case execution time (WCET) and best-case execution time (BCET) predictions of

programs is a challenging task.However, there is a significant amount of work in real-time scheduling that depends

knowing the WCET of tasks in a system.Without tight WCET predictions, it could not be determined if many real-

time systems would meet their timing requirements. One common practice is to estimate WCET and BCET bounds

by measuring execution time with what a real-time programmer believes is WCET and BCET input data.Unfortu-

nately, it is difficult to derive such input data given complex architectural features and/or complicated control flow in

a program. Thiscan lead a user to believe that timing requirements have been met, when in reality these require-

ments may actually be violated during critical situations. Performing a timing analysis automatically with a timing

analysis tool is a much more desirable solution.

*This work was supported in part by the National Science Foundation under grant number EIA-9806525.A preliminary version of this
work was described in the 1999Real-Time Technology and Applications Symposiumunder the title "Tighter Timing Predictions by Automatic De-
tection and Exploitation of Value-Dependent Constraints."

-1-

Various features of the architecture, such as caches and pipelines, can affect the execution time of a sequence

of instructions and these features need to be modeled while analyzing the control flow of a program. Even with per-

fect architectural modeling, significant overestimations of WCET and underestimations of BCET can still occur

since dependencies on data values can constrain the outcome of conditional branches and restrict the set of paths that

can be taken in a program.We refer to such dependencies as branch constraints. While branch constraint informa-

tion has been used in the past by some timing analyzers, it has typically been specified manually, which is both

tedious and error prone.

This contribution described in this paper includes techniques for automatically detecting branch constraints by

a compiler and efficiently exploiting these constraints by a timing analyzer to obtain tighter timing predictions.The

remainder of the paper has the following organization: First, we describe related work in this area. Second, we

explain techniques to automatically detect branch constraints in a program.Third, we illustrate methods to convert

the branch constraints into path constraints indicating how many times each path can be executed in a loop.Fourth,

we depict how to use the path constraints in loop analysis to tighten the WCET and BCET predictions.Fifth, we

give results for a number of applications that show that significant improvements in timing prediction accuracy can

be obtained by automatically detecting and exploiting branch constraints.Finally, we describe future work in this

area and give the conclusions for the paper.

2. RelatedTiming Analysis Work

Some constraint-based timing analyzers use branch constraints to obtain more accurate estimations of execu-

tion time. Li et al. performed timing analysis using an Implicit Path Enumeration Technique [1]. This technique

used integer linear programming (ILP) to solve constraints about the program to obtain timing predictions.Their

technique automatically calculatesprogram structural constraints from the program control flow graph and used

branch constraints, which they called program functionality constraints. The work of Ottosson and Sjödin [2]

extended the Implicit Path Enumeration Technique by using finite domain constraints to model the architectural fea-

tures of the hardware. However, in both approaches these branch constraints had to be entered manually by the user,

which is both a tedious and error-prone task.

-2-

Recent work by Ermedahl and Gustafsson [3] and by Lundqvist and Stenström [4] uses symbolic execution to

automatically resolve many branch constraints. The approach used by these authors is quite powerful, but effec-

tively requires simulating all paths of a loop for every loop iteration. Thus, symbolic execution requires significant

analysis overhead, which would be undesirable when analyzing long running programs.

Another type of branch constraint is the number of iterations associated with a loop.We hav eimplemented

techniques to automatically determine the minimum and maximum number of iterations for many loops with multi-

ple exit conditions and loops whose number of iterations depend on loop-invariant variables or counter variables of

outer loops [5, 6]. The symbolic execution approaches [3, 4] also provide a more powerful and less efficient method

to calculate bounds on the number of loop iterations. In this paper, we address detecting and exploiting branch con-

straints that constrain execution paths rather than the number of iterations that a loop can execute.

3. Automatic Detection of Branch Constraints

A branch constraint causes the outcome of a conditional branch to be known under certain conditions.The

authors implemented techniques that commonly detect these conditions.These techniques include detecting effect-

based constraints by analyzing the effect that an assignment to a variable will have on a branch and detecting that the

outcome of one branch has a logical correlation with the outcome of another branch. In fact, we have used a similar

type of analysis to detect branches that could be avoided by duplicating code [7]. In addition, we detect iteration-

based constraints by using value range analysis to determine the frequency that a branch will fall through or be

taken. Thiswas accomplished by determining the iterations in which each pathp may be executed. Thisvalue

range analysis is similar to analysis used for compiler optimizations for obtaining predictions on the percentage of

time that a branch will be taken or fall-through [8].Value range analysis was also used to help determine the mini-

mum and maximum number of iterations for loops in a program [5, 9].

3.1. DetectingEffect-Based Constraints

Analysis is performed in the compiler to determine if the outcome of a conditional branch is known at any

given point in the control flow. First, the compiler calculates the set of registers and variables upon which a condi-

tional branch (and its associated comparison instruction) depends. This set is calculated by expanding the effects of

-3-

the comparison instruction associated with the conditional branch.For instance, consider the SPARC instructions

represented as RTLs (Register Transfer Lists) and the associated expanded comparison, shown in Figure 1.A com-

parison is expanded by searching backwards for assignments to registers in the comparison until all registers are

replaced or the beginning of a block is encountered with multiple predecessors.Loop-invariant registers in the

expression are expanded from the preheader of the loop in which they are assigned values. Next, the compiler deter-

mines the set of effects associated with assignments to registers and variables by instructions for each basic block.

Each conditional branch is examined to see if it could be affected by the block. Thus, the compiler can determine

that a basic block updating the global variableg could affect the result of the branch in Figure 1.Updates to the reg-

istersr[1] (%g1) or r[8] (%o0) would have no effect.

A state is associated with each conditional branch, which can have one of three values:unknown, fall-through,

or jump. The authors determine if a branch becomes known by substituting the value assigned for the variable or

register and evaluating the expanded comparison in the compiler. The compiler issues a directive to the timing ana-

lyzer for each branch placed in anunknown, fall-through, or jumpstate by an effect in the block. Thus, this analysis

requiresO(B*C) complexity, whereB is the number of basic blocks andC is the number of conditional branches in

the function. Note that all of the branch constraint analysis presented in this paper was performed within a function

(intra-procedural analysis, not inter-procedural analysis).

Consider the source code in Figure 2(a). The corresponding control flow that is generated by the compiler is

shown in Figure 2(b), constraints are shown in Figure 2(c), and paths are shown in Figure 2(d).Paths will be dis-

cussed in Section 4. While the control flow Figure 2(b) is represented at the source code level, the analysis is per-

formed by the compiler at the machine instruction level after compiler optimizations are applied to provide more

r[8]=R[r[1]+LO[_g]]; /* ld [%g1+%lo(_g)],%o0 */
IC=r[8]?5; /* cmp %o0,5 */
PC=IC<0,L20; /* bl L20 */

r[1]=HI[_g]; /* sethi %hi(_g),%g1 */

Instructions in a Basic Block

IC=r[8]?5; => IC=R[r[1]+LO[_g]]?5; => IC=R[HI[_g]+LO[_g]]?5;

Expanded Comparison

Figure 1: Example of Expanding a Comparison

-4-

(1) 8
(2) 8→9
(3) 8→9→2→3→7
(4) 8→9→2→4→5→7
(5) 8→9→2→4→6→7

(d) Paths in Loop

(a) Source Code

for (i = 0; !quit &&

if (a[i] == 0)
quit = 1;

else if (odd) {
sumodd += a[i];
odd = 0;
}

else {
sumeven += a[i];
odd = 1;
}

sumodd = sumeven = 0;
odd = quit = 0;

i < 1 000; i++)

sumodd=0; 1
sumeven=0;
odd=0; {4J}
quit=0; {8F}
i=0; {2U,9J}

{4F}{4J}

sumodd+=a[i];

odd==0

a[i]!=0 2

quit=1; {8J} 3

4

5

{2F}{2J}

odd=0; {4J}

sumeven+=a[i]; 6
odd=1; {4F}

i++; {2U,9U} 7

quit!=0 8

i<1000 9

(b) Control Flow

10

{8F}{8J}

{9F}
{9J}

(c) Explicit Constraints

(2) blk 1 makes blk 4 jump
(3) blk 1 makes blk 8 fall thru
(4) blk 1 makes blk 9 jump
(5) blk 3 makes blk 8 jump
(6) blk 5 makes blk 4 jump
(7) blk 6 makes blk 4 fall thru

(1) blk 1 makes blk 2 unknown

(8) blk 7 makes blks 2,9 unknown

Figure 2: Example Illustrating Effects of Assignments on Branches

accurate timing predictions. Note that some branches in Figure 2(b) have conditions that are reversed from the code

in Figure 2(a) to depict the branch conditions that are evaluated at the machine instruction level. Only when the con-

dition associated with a branch in a block is evaluated to be true will the jump (J) occur. If the condition is not true,

then control will fall (F) into the next sequential block.The control flow also shows the effect-based constraints,

which are enclosed in curly braces and associated with basic blocks or control-flow transitions. Figure2(c)

describes the explicit branch constraints that are automatically detected by the compiler and passed to a timing ana-

lyzer. The initialization ofi in block 1 (i=0;) puts the branch in block 2 (a[i]!=0) in an unknownstate (2U) and

the branch in block 9 (i<1000) in a jump state (9J). In addition, the assignments toodd in blocks 1 and 5

(odd=0;) and in block 6 (odd=1;) cause the branch in block 4 (odd==0) to jump (4J) and fall through (4F),

respectively. Likewise, the assignment toquit in blocks 1 (quit=0;) and 3 (quit=1;) cause the branch in

block 8 (quit!=0) to fall through(8F) and jump (8J), respectively. Finally, the increment ofi in block 7 (i++;)

sets the states of the branches in blocks 2 (a[i]!=0) and 9 (i<1000) to unknown(2U,9U) since they both depend

-5-

on the value ofi .

Figure 2(b) also shows implicit branch constraints. When a branch has a given outcome, then it will have the

same outcome again unless the variables or registers being compared are affected. Thus,a fall-through (F) or jump

(J) transition from a branch will implicitly cause that same branch to be in afall-throughor jumpstate, respectively.

These implicit constraints are not explicitly passed to a timing analyzer since a timing analyzer can create them

when it is performing analysis on paths.

There are also situations where one conditional branch may be logically correlated with another conditional

branch. Inother words, the direction taken by one conditional branch may indicate the direction taken by another

conditional branch. The source code in Figure 3(a) and corresponding control flow in Figure 3(b) depict such a situ-

ation. If block 2 (a[i]>=0) falls into block 3, then the value ofa[i] is negative and block 5 (a[i]<=0) must

jump to block 7 (5J). This is described by branch constraint 3 in Figure 3(c). Note that if block 2 (a[i]>=0)

jumps to block 4, there is no guarantee that block 5 (a[i]<=0) will fall through to block 6 since the value ofa[i]

could have been zero. The compiler evaluates each pair of branches in a function to determine if there is a logical

correlation between one branch and another. Thus, this analysis requiresO(C2) complexity, whereC is the number

(3) blk 2 fall thru makes blk 5 jump
(4) blk 5 fall thru makes blk 2 jump
(5) block 7 makes blocks 2,5,7 unknown

(c) Explicit Constraints

(2) blk 1 makes blk 7 jump
(1) blk 1 makes blk 2 unknown

(a) Source Code

if (a[i] < 0)
sumneg += a[i];

sumall += a[i];
if (a[i] > 0)

sumpos += a[i];
}

i++) {
for (i = 0; i < 1000;
sumpos = 0;
sumneg = sumall = 0;

(1) 2→4→5→7
(2) 2→3→4→5→7
(3) 2→4→5→6→7
(4) 2→3→4→5→6→7

(d) Paths in Loop

1sumneg=0;
sumall=0;
sumpos=0;
i=0; {2U,7J}

2

3

4

5

6

7

{2F,5J}

{5F,2J}

{2J}

{5J}

a[i]>=0

sumneg+=a[i];

sumall+=a[i];

a[i]<=0

sumpos+=a[i];

i++; {2U,5U,7U}
i<1000

8

{7F}

(b) Control Flow

{7J}

Figure 3: Example Illustrating a Logical Correlation between Branches

-6-

of conditional branches. Note that a branch is always logically correlated with itself and these self correlations are

implicit constraints. The example of the paths shown in Figure 3(d) will be described in Section 4.

The exact conditions when it is known that one branch is logically correlated with another branch have been

described in previous work [7] and are depicted in Table 1.In general, a conditional branch can only be correlated

with another branch when one argument of each comparison is identical and the other argument of each comparison

is a constant or the same invariant value. Table 1 depicts the different cases when the result of one branch is corre-

lated with another branch. Column 1 shows a known result from one branch. This result is determined by not only

the operands of the comparison and the branch relational operator, but also by whether or not the branch was taken.

The second column in Table 1 depicts the condition associated with the correlated branch. The third and fifth

columns of Table 1 define the requirements for the correlated branch to jump or fall through, respectively.

Table 1: Logically Correlated Branch Requirements

known correlated jump fall through
result branch requirement requirement

example example

v = c1 v = c2 c1 = c2 v = 10 → v = 10 c1 ≠ c2 v= 10 → ¬(v = 15)
since 10 = 10 since 10≠ 15

v ≠ c2 c1≠ c2 v= 10 → v ≠ 15 c1= c2 v = 10 → ¬(v ≠ 10)
since 10≠ 15 since10 = 10

v rel2 c2 c1 rel2 c2 v = 10 → v < 20 ¬(c1 rel2 c2) v = 10 → ¬(v > 20)
since 10 < 20 since ¬(10 > 20)

v ≠ c1 v= c2 N/A N/A c1 = c2 v≠ 10→ ¬(v = 10)
since 10 = 10

v ≠ c2 c1= c2 v ≠ 10→ v ≠ 10 N/A N/A
since 10 = 10

v rel1 c1 v rel2 c2 addeq(rel1) = addeq(rel2) v≥ 11→ v > 10 opp(noeq(rel1), noeq(rel2)) v≥ 10→ ¬(v < 10)
&& since ’≥’ = ’ ≥’ & & since opp(’>’, ’<’)

c1* addeq(rel1) c2* && 11≥ 10+1 ¬(c1*addeq(rel2) c2*) && ¬(10≤ 10-1)

v = c2 N/A N/A c1 noeq(rel1) c2 v≥ 20→ ¬(v = 10)
since 20 > 10

v ≠ c2 c1noeq(rel1) c2 v≥ 20→ v ≠ 10 N/A N/A
since 20 > 10

where
(1) v is a variable
(2) c is a constant
(3) rel is ’<’, ’ ≤’, ’>’, or ’ ≥’
(4) opp(rel1,rel2) returns true when (x rel1 y) && (x rel2 y) can never both be true (e.g. x > y && x < y)
(5) noeq(rel)returns the relational operator without any equality (e.g. noeq(’≥’) and noeq(’>’) both return ’>’)
(6) addeq(rel)returns the relational operator with an equality (e.g. addeq(’≥’) and addeq(’>’) both return ’≥’)
(7) c* is a constant that is adjusted by 1 in the appropriate direction if addeq(rel) != rel

-7-

3.2. DetectingIteration-Based Constraints

A basic induction variable is a variable or register that is incremented or decremented by a constant value on

each iteration of a loop. Some branches compare a basic induction variable to a constant. In these situations, the

compiler can determine the ranges of iterations in which such a branch will fall through or jump.For each of these

branches, the compiler derives the information shown in Table 2.

If the branch meets all of the requirements in Table 2, then the compiler next calculates on which iteration the

branch will change direction, which is determined using Equation 1.Table 3 depicts the various cases in which the

branch condition will always or never be satisfied, and also how the compiler determines the appropriate value to use

for adjust in Equation 1. Once the compiler has determined the value ofI, it produces directives for a timing ana-

lyzer indicating ranges of iterations for each of the two outgoing edges from the block containing the branch.The

relop and the direction of the increment (i.e. the sign ofbefore+after) are used to determine which edge is taken on

the firstI−1 iterations.

(1)I =

limit − (initial + before) + adjust

before+ after

+ 2

Table 2: Information Calculated for Each Iteration Branch

Term Explanation Requirement

variable The control variable on which the branch depends,
which is the variable or register being compared to
a constant in the block containing the branch.

The control variable must be a basic induction
variable, which is an integer variablev whose only
assignments within the loop are of the formv : =
v ± c wherec is an integer constant [10].

limit The value being compared to thevariable in the
block containing the branch.

The limit must be an integer constant.

relop The relational operator used to compare thevari-
ableand thelimit.

initial The value of thevariablewhen the loop is entered. The initial value must be an integer constant.

before The amount by which thevariable is changed be-
fore reaching the branch in each iteration.

The amount by which the control variable is incre-
mented or decremented must be an integer con-
stant and these constant changes must occur on
each complete iteration of the loop.

after The amount by which thevariable is changed after
reaching the branch in each iteration.

The amount by which the control variable is incre-
mented or decremented must be an integer con-
stant and these constant changes must occur on
each complete iteration of the loop.

adjust An adjustment value of−1, 0, or 1, which com-
pensates for the difference between relational op-
erators (e.g. < and≤).

-8-

Table 3: How to Determine When a Branch Changes Direction

Operator Condition Test Result adjust

<= first ≤ limit & incr > 0 is false on theIth iteration 0
<= first ≤ limit & incr ≤ 0 always true
<= first > limit & incr ≥ 0 always false
<= first > limit & incr < 0 is true on theIth iteration 1

< first < limit & incr > 0 is false on theIth iteration −1
< first < limit & incr ≤ 0 always true
< first ≥ limit & incr ≥ 0 always false
< first ≥ limit & incr < 0 is true on theIth iteration 0

> first ≤ limit & incr > 0 is true on theIth iteration 0
> first ≤ limit & incr ≤ 0 always false
> first > limit & incr ≥ 0 always true
> first > limit & incr < 0 is true on theIth iteration 1

>= first < limit & incr > 0 is true on theIth iteration −1
>= first < limit & incr ≤ 0 always false
>= first ≥ limit & incr ≥ 0 always true
>= first ≥ limit & incr < 0 is false on theIth iteration 0

Wherefirst = initial + before, incr = before+ after,
I is defined in Equation 1, andadjustis used in Equation 1.

Consider the source code and corresponding control flow shown in Figures 4(a) and 4(b).While i can range

from 0..999 as each path in the loop is entered, the number of corresponding iterations in the loop will range from

1..1000. Thus,the compiler associates ranges of iterations with transitions from blocks that compare basic induction

variables to constants by using Equation 1.For instance, block 3 (i<=249) will only fall through to block 4 when

the loop is performing the last 750 iterations ([251..1000]). Constraints5-8 in Figure 4(c) depict the range of itera-

tions when various transitions in the loop can be taken. Animplicit iteration-based constraint is that the header of

the loop (block 2 in Figure 4(b)) can be executed in every loop iteration ([1..1000]for Figure 4). Sometimes a basic

induction variable is compared to non-constant loop invariant values, as shown in block 2 (i==m) of Figure 4(b).

The value ofmis not known, but it is invariant with respect to the loop. When the comparison of such a branch is an

equality test (== or !=), then the transition that occurs when the two values are equal can take place at most once for

each execution of the loop since the basic induction variable changes by a constant value on each iteration.Con-

straint 3 in Figure 4(c) shows that the compiler determines that block 2 will jump to block 6 at most once (2J once).

The paths shown in Figure 4(d) will be described in Section 4. The detection of iteration-based constraints requires

O(C) complexity, whereC is the number of conditional branches, since each branch must be inspected once.Note

that this detection of iteration-based constraints takes place after the compiler has performed induction variable anal-

ysis.

-9-

summid = sumall = 0;

i++) {
for (i = 0; i < 1000;

if (i != m &&

summid += a[i];
sumall += a[i];
}

(a) Source Code

249<i && i<750)

(1) 2−>6→7
(2) 2−>3→6→7
(3) 2−>3→4→6→7
(4) 2−>3→4→5→6→7

(d) Paths in Loop

1

2

3

4

5

6

7

8

(b) Control Flow

{2F}

{4F} [1..750]

{7F}

summid=0;

i==m

i<=249

i>=750

summid+=a[i];

sumall+=a[i];

i++; {3U,4U,7U}

{7J}

{3F,4J}

{3F} [251..1000]

{2J once}

[751..1000]

i=0; {3J,4F,7J}

sumall=0;

i<1000

{3J,4F}[1..250]

(10) blk 7 makes blks 2,3,4,7 unknown

(2) blk 1 makes blk 4 fall thru
(3) blk 2 will jump at most once

(1) blk 1 makes blks 3,7 jump

(4) blk 3 jump makes blk 4 fall thru

(6) blk 3 jump in iters [1..250]
(5) blk 3 fallthru in iters [251..1000]

(7) blk 4 fallthru in iters [1..750]
(8) blk 4 jump in iters [751..1000]
(9) blk 4 jump makes blk 3 fall thru

(c) Explicit Constraints

Figure 4: Example Illustrating Ranges of Iterations Associated with Branch Outcomes

4. Exploiting Branch Constraints in a Timing Analyzer

The analysis techniques described in the previous section to identify branch constraints could be used by a

variety of timing analyzers, which include those that use an integer linear programming (ILP) solver. While an ILP

approach can be simple, elegant, and quite powerful, there are a few disadvantages. For instance, an ILP approach

works best when each basic block can be associated with a single time, which allows this time to be expressed as a

constraint associated with that block. Caching and pipelining change the context in which a block could be executed

and can often affect its associated execution time. While approaches have been suggested for addressing caching

behavior [1], it is still unclear how pipelining can be effectively modeled across multiple blocks. More importantly,

the time required for the analysis does not scale well with an ILP approach since thousands of constraints may have

to be solved for even relatively small programs. Some programs that required only a few seconds of timing analysis

using more traditional approaches [11, 12] required minutes using an ILP approach [1]. In fact, ILP methods can be

used to solve many compiler optimization problems, but are infrequently used in production compilers due to scala-

bility problems. Finally, when a timing requirement is violated, a user would like to know where the time is being

spent in the code associated with the constraints. The timing analysis approach described in this paper not only

-10-

produces WCET and BCET predictions for an entire program, but also gives the WCET and BCET for each func-

tion, loop and path in the program [13].In contrast, an ILP approach only calculates a single WCET and BCET pre-

diction for the entire program. Thus, the authors decided it would be worthwhile to investigate how branch con-

straints could be exploited by a non-ILP based timing analyzer.

Figure 5 depicts the overall organization of the non-ILP timing analysis environment that was modified to

exploit branch constraint information. An optimizing compiler [14] was used to produce control flow and branch

constraint information as a side effect of the compilation of a file.This information includes the number of itera-

tions associated with loops in the program.1 [5] A static instruction cache simulator uses the control flow informa-

tion to construct a control-flow graph of the program that consists of the call graph and the control flow of each

function. Theprogram control-flow graph is then analyzed and a caching categorization for each instruction in the

program is produced [15].A separate categorization is given for each loop level in which the instruction is con-

tained. Thesecategorizations are described in Table 4. Data caching categorization and analysis was not used in

this study. Next, a timing analyzer uses the control flow and constraint information, caching categorizations, and

machine dependent information (e.g. pipeline characteristics) as input to make timing predictions [16, 11, 17].

Given a program’s control-flow information and instruction caching categorizations along with the processor’s

instruction set information, the timing analyzer then derives best-case and worst-case estimates for each path, loop

Configuration
Caching

Simulator

Cache

Static

CompilerSource
Interface

User Timing

Predictions

Timing
Analyzer

andConstraint
Files

C Control Flow

Information

Cache

Categorizations

Instruction
Dependent Timing
Machine

Information

User

Requests

Figure 5: Overview of Process to Obtain Timing Predictions

1 If the number of iterations cannot be determined by compile-time analysis, then the user is prompted for the minimum and maximum val-
ues of the variables on which the loop depends.Likewise, the user can specify this information as assertions within the source code [5, 9].Speci-
fying minimum and maximum values of variables is much safer than specifying the number of loop iterations since the user is not always aware
of the code generation strategies or optimizations performed by the compiler that may affect the number of iterations executed in a loop.

-11-

Table 4: Definitions of Instruction Categories for Worst-Case Analysis

Caching Category Definition

always miss The instruction is not guaranteed to be in cache when it is referenced.

always hit The instruction is guaranteed to be in cache when it is referenced.

first miss The instruction is not guaranteed to be in cache on its first reference each time the loop is
executed, but is guaranteed to be in cache on subsequent references.

first hit The instruction is guaranteed to be in cache on its first reference each time the loop is ex-
ecuted, but is not guaranteed to be in cache on subsequent references.

and function within the program.To statically estimate the caching behavior of a program as accurately as possible,

functions are distinguished by function instances. An instance depends on the calling sequence, that is, it depends

on the immediate call site within its caller as well as the caller’s call site, etc. The instancei of a function corre-

sponds to theith occurrence of the function within a depth-first traversal of the call graph [16].A timing analysis

tree is constructed, where each node of the tree corresponds to a loop or function in the function instance graph.

Each node is considered a natural loop.2 A node that represents a function instance is treated as a loop that will iter-

ate exactly once when entered.The timing analyzer determines the set of possible paths for each node. The loops in

the timing analysis tree are processed in a bottom-up manner. In other words, the WCET and BCET for a loop are

not calculated until the times for all of its immediate child loops are known. Thismeans that the timing analyzer

determines execution time for programs by first analyzing the innermost loops and functions, and proceeding to

higher level loops and functions until it reachesmain() . After processing themain function, a graphical user

interface is invoked that allows the user to request predictions for specified portions of the program [18].

The remainder of this section will describe the details of how the timing analyzer makes use of the branch

constraints to compute the WCET and BCET predictions for a particular loop or function.In particular, constraints

on paths are generated from the branch constraints.For example, effect-based branch constraints can be used to

determine if a given path is infeasible, or that one path cannot follow some other path on a subsequent iteration of

2 A natural loop is a loop with a single entry block. While the static simulator can process unnatural loops, the timing analyzer is restricted
to only analyzing natural loops since it would be difficult for both the timing analyzer and user to determine the set of possible blocks associated
with a single iteration in an unnatural loop.Likewise, the timing analyzer is also restricted to direct calls and nonrecursive programs. Itis often
difficult to automatically determine the set of functions that could be invoked with an indirect call. While cycles can be detected in a call graph
and could be viewed as a loop, it would be difficult for a timing analyzer or a user to determine the number of iterations through such a cycle. It
should be noted that unnatural loops and indirect calls occur quite infrequently in typical C applications.

-12-

the loop. Further constraints arise from analyzing which paths can execute on the first iteration.For each pathp,

iteration-based constraints are used to determine the range of iterations in whichp may execute. Oncethe path con-

straints have been calculated, they are used in the worst-case and best-case loop analysis algorithms. The purpose of

using these path constraints is to tighten the execution time predictions.For instance, if the timing analyzer can

determine that the longest (shortest) path is infeasible or can only execute for a proper subset of the loop’s iterations,

then the WCET (BCET) bound will be tighter.

4.1. AnalyzingBranch Constraints to Create Path Constraints

The timing analyzer uses the branch constraints to calculate a minimum and maximum number of iterations

associated with each path during the execution of a loop.Table 5 depicts worst-case information associated with

each loop path described in Figures 2(d), 3(d), and 4(d).Table 6 shows the analogous best-case path iteration infor-

mation for each loop path described in Figure 2(d). The second and third example loops are not shown in Table 6

because their best case iteration information is identical to their worst case information from Table 5. The first loop

example from Figure 2 does have a different number of iterations for worst case and best case, and this results in a

different set of possible iterations and number of maximum iterations for each path. The total number of loop itera-

tions is automatically calculated using techniques described in previous work [5]. A loop path is a sequence of

blocks in a loop connected by control-flow transitions. Eachpath starts with the loop header. Exit paths are termi-

nated by a block with a transition out of the loop.Continuepaths are terminated by a block with a transition to the

loop header. The next two columns indicate the range of possible and unique iterations associated with each path.

Possible iterationsindicate in which iterations the specified path can possibly be taken. Unique iterationsindicate in

which iterations only the specified path could be taken. Thepossible and unique iterations are used to constrain the

maximum and minimum number of iterations in which a path can be taken, which are shown in the final two

columns. Ifthe timing analyzer determines that a pathp may be taken on at most one iteration, thenp is called a

oncepath. Thepresence of a once path in a loop causes the unique range and the minimum number of iterations

corresponding to each of the other paths to be reduced by one.For instance, for the loop in Figure 4, path 1 is a

once path.Consequently, the unique range and minimum iteration information for paths 2-4 are updated to reflect

the possibility that path 1 may execute one time.

-13-

Table 5: Worst-Case Path Information for Figures 2(d), 3(d), and 4(d)

Total Loop Path Exit Continue Possible Unique Minimum Maximum
Iterations ID Path Path Iterations Iterations Iterations IterationsExample

1 Y N [1001..1001] ∅ 0 1
2 Y N [1001..1001] ∅ 0 1Loop in

3 N Y [1000..1000] ∅ 0 1
4 N Y [2..1000] ∅ 0 500
5 N Y [1..1000] [1..1] 1 500

Figure 2
1,001

1 Y Y [1..1000] ∅ 0 1,000
2 Y Y [1..1000] ∅ 0 1,000Loop in

3 Y Y [1..1000] ∅ 0 1,000
4 N/A N/A N/A N/A N/A N/AFigure 3

1,000

1 Y Y [1..1000] ∅ 0 1
2 N Y [1..250] [1..250]-1 249 250Loop in

3 Y Y [751..1000] [751..1000]-1 249 250
4 N Y [251..750] [251..750]-1 499 500Figure 4

1,000

Table 6: Best-Case Path Information for Figure 2(d)

Total Path Path Possible Unique Min Max
Iters Type ID Iterations Iters Iters Iters

Loop

Loop exit 1 [2..2] ∅ 0 1
in exit 2 [2..2] ∅ 0 1

Figure cont 3 [1..1] ∅ 0 1
2 cont 4 N/A ∅ 0 0

cont 5 [1..1] ∅ 0 1

2

Figure 6 gives a high-level description of the algorithm used to calculate the information given in the last four

columns of Table 5.The algorithm is organized into eleven steps. Exceptfor the construction of the REACH_SELF

table in step 3, the complexity of the algorithm isO(P2), whereP is the number of paths in the loop.3 In practice, the

construction of the REACH_SELF table was not time consuming since we found that most paths in a loop could

either immediately follow themselves or could only exit the loop. The following section provides examples to illus-

trate how this information is calculated.

4.2. UsingEffect-Based Constraints

Effect-based constraints are either associated with a block or a transition between blocks.For each path in a

loop the timing analyzer traverses the basic blocks and transitions between blocks in the order in which the path

would be executed. Whenan effect-based constraint is encountered, it is added to a list of constraints for that path.

3 If the number of paths within a loop exceeds a reasonable limit, then the control flow is partitioned to reduce the timing analysis com-
plexity [19].

-14-

struct path {
struct range_node range; /* iterations when path can be taken */
struct range_node uniqrange; /* iterations when only this path can be taken */
boolean once; /* path can be taken at most once for each loop execution */
int nonuniqiters; /* number of iterations when other overlapping paths can be taken at most once*/
int miniters; /* minimum times path can be taken for a loop execution */
int maxiters; /* maximum times path can be taken for a loop execution */
int set; /* set of paths in loop with overlapping ranges with this path */

};

boolean CAN_FOLLOW[numpaths][numpaths]; /* can one path follow another */
int REACH_SELF[numpaths]; /* number of iterations before a path can follow itself */

/* 1. disregard infeasible paths*/
FOR each path P in the loop DO

Propagate effect-based constraints in P.
IF any transition in P is not feasible THEN

Disregard P from the analysis.

/* 2. calculate CAN_FOLLOW table using effect-based constraints*/
FOR each path P in the loop DO

IF P is a c ontinue path THEN
FOR each path Q in the loop DO

Propagate effect-based constraints
at end of P through Q.

IF any infeasible transition in Q THEN
CAN_FOLLOW[P][Q] = FALSE.

ELSE
CAN_FOLLOW[P][Q] = TRUE.

ELSE
FOR each path Q in the loop DO

CAN_FOLLOW[P][Q] = FALSE.

/* 3. calculate REACH_SELF table using CAN_FOLLOW table */
FOR each path P in the loop DO

IF CANFOLLOW[P][P] THEN
REACH_SELF[P] = 1.

ELSIF P is n ot a continue path THEN
REACH_SELF[P] = 0.

ELSE
Recursively inspect the CAN_FOLLOW table
to determine the shortest number of paths
to be traversed before P can be reached.
Zero represents P cannot reach itself.

/* 4. processonceconstraints*/
FOR each path P in the loop DO

IF a once constraint was found on
a t ransition in P THEN
P->once = TRUE.

ELSE
P->once = FALSE.

P->nonuniqiters = 0.
FOR each block B in P DO

IF B’s other outgoing transition has a
once constraint THEN
P->nonuniqiters += 1.

/* 5. initialize possible iteration path information, whereN
represents the total loop iterations*/

FOR each path P in the loop DO
P->range = ∅ .
IF P is a c ontinue path THEN

P->range = P->range ∪ [1..max(N-1,1)].
IF P is an e xit path THEN

P->range = P->range ∪ [N.. N].

/* 6. constrain possible iterations using iteration-based constraints*/
FOR each path P in the loop DO

Propagate iteration-based constraints in P.
P->range = P->range ∩

iteration range at end of P.
IF P->range = ∅ THEN

Disregard P from the analysis.

/* 7. constrain iterations of each path that cannot reach itself*/
Construct a DAG D representing the execution

order of paths P where REACH_SELF[P] == 0.
FOR each non-leaf path P in D, where P is not

processed until all paths it can reach
are processed DO

S = f irst immediate successor of P.
P->range.low = S->range.low - 1.
P->range.high = S->range.high - 1.
FOR each remaining path S that is an

immediate successor of P in D DO
IF S->range.low - 1 < P->range.low THEN

P->range.low = S->range.low - 1.
IF S->range.high - 1 > P->range.high THEN

P->range.high = S->range.high - 1.

/* 8. calculate unique iterations for each path*/
FOR each path P in the loop DO

P->uniqrange = P->range
FOR each path Q, where Q ≠ P DO

P->uniqrange = P->uniqrange − Q->range.

/* 9. assign minimum number of iterations for each path*/
FOR each path P in the loop DO

P->miniter =
number of iterations in P->uniqrange.

P->miniter -= P->nonuniqiters.

/* 10. assign maximum number of iterations for each path*/
FOR each path P in the loop DO

IF REACH_SELF[P] = 0 OR P->once THEN
P->maxiter = 1.

ELSE
P->maxiter =

number of iterations in P->range.
IF REACH_SELF[P] > 1 THEN

P->maxiter =
ceil(P->maxiter/REACH_SELF[P]).

/* 11. assign each path to a set of paths*/
s = 0 .
FOR each path P in the loop DO

IF P->range ∩ with existing set i THEN
P->set = i;

ELSE
P->set = ++s;

Figure 6: Algorithm for Calculating Path Iteration Information in Table 5

-15-

If another effect-based constraint is later encountered for that same branch, then the current constraint is nullified.

Effect-based constraints can be used to detect infeasible paths.Figure 7 depicts the constraints being propa-

gated through path 4 in Figure 3(d). The transition from block 2 to block 3 causes the branch in block 5 to be placed

in a jump state (5J). Thebranch in block 5 is encountered with this constraint (5J) still in effect and the transition

from block 5 to block 6 in path 4 is deemed illegal. Whensuch an infeasible path is encountered, the timing ana-

lyzer disregards the path from the analysis to prevent any additional analysis time to be spent on it.

2 3 4 5 6 7

{2F,5J} {2F,5J}
{2F,5J} {2F,5J} {2F,5J}

{2F,5J}
invalid

Figure 7: Path 4 in Figure 3(d) Is Not Feasible

The maximum number of iterations for a path can sometimes be constrained by information associated with

effect-based constraints. Consider paths 1 and 2 in Figure 2(d), which areexit paths because they end with a transi-

tion to block 10 that is outside the loop. Branch constraint 5 in Figure 2(c) indicates that when block 3 (quit=1;)

in Figure 2(b) is executed, block 8 (quit!=0) will jump to block 10. When the timing analyzer detects that an

effect-based constraint can reach the end of the path without nullification, the timing analyzer propagates the con-

straint through all the paths of the loop to see if it can reach the branch identified in the constraint.Figure 8 illus-

trates that the constraint causing the branch in block 8 tojump (8J) reaches the end of path 3 and that paths 2, 3, 4,

and 5 cannot follow path 3 since they require a fall through from block 8 to block 9.Figure 9 shows that the con-

straints for branch 4 reaching the end of paths 4 and 5 from Figure 2 contains the opposite outcome of branch 4 in

their respective paths. Thiscauses these paths not to be taken on the next loop iteration.

9 2 3 7
{8F} {8F,9J} {2F,8F,9J}

{8F} {8F,9J}
{2F,8J,9J}

{8J}{2F,8J,9J}

path 3: 8

paths 2,3,4,5: 8 9
invalid

•••

{8J}

Figure 8: Paths 2, 3, 4, and 5 Cannot Follow Path 3 in Figure 2(d)

-16-

{8F}
{8F} {8F,9J}

{8F,9J}
{2J,8F,9J}

{2J,8F,9J}
{2J,4F,8F,9J}

{2J,4J,8F,9J}
{2J,4J,8F,9J}

{4J,8F}path 4:

8 9 2 4 6 7

{8F}
{8F}

{8F,9J}
{8F,9J}

{2J,8F,9J}
{2J,8F,9J}

{2J,4J,8F,9J}
{2J,4F,8F,9J}

{2J,4F,8F,9J}
{4F,8F}path 5:

8 9 2 4 5 7

Figure 9: Paths 4 and 5 Cannot Immediately Follow the Same Path in Figure 2(d)

A CAN_FOLLOW matrix is constructed by the timing analyzer that indicates for each path the set of other

paths that can legally follow it on the next iteration. If the constraint from one path can reach its associated branch

in other paths without being nullified, then such paths that have transitions that do not satisfy the constraint are

marked as illegal in the matrix. No paths are allowed to follow a path that only exits. Table 7 depicts the matrix for

which paths can legally follow each path that are shown in Figure 2(d).

Table 7: Paths That Can Immediately Follow the Loop Paths in Figure 2

Current Paths That Can Immediately Follow
Path in
Loop 1 2 3 4 5

1 N N N N N
2 N N N N N
3 Y N N N N
4 N Y Y N Y
5 N Y Y Y N

After the matrix is completed, it is examined to see if restrictions on the number of iterations associated with

each path can be applied. In general, the timing analyzer examines the matrix for each path to determine the fewest

number of other paths required to be traversed before the current path can be executed again. If the algorithm indi-

cates that a path cannot reach itself, then the path will be assigned a maximum of one iteration.Paths 1, 2, and 3 of

Figure 2(d) are all assigned a maximum number of one iteration because they cannot reach themselves after execut-

ing. If a path cannot directly follow itself, but can eventually be reached again, then it cannot execute on every itera-

tion of the loop. If the algorithm indicates that the number ofK paths required to be executed before acontinuepath

can reach itself is greater than one, then it is assigned a maximum number of iterations fromM shown in Equation 2,

whereR is the possible number of iterations for the path.Paths 4 and 5 of Figure 2(d) can only execute again on the

second iteration after it last executed. Thus,paths 4 and 5 are assignedceil(999/2) andceil(1,000/2), respectively, or

-17-

500 maximum iterations.

(2)M =

R

K

4.3. UsingEffect-Based Constraints On Entering a Loop

The previous section discussed how branch constraints are used to create path constraints within a loop.But

there are further constraints that arise when the loop is entered that affect when paths can initially execute. Thesteps

taken by the timing analyzer related to these initial constraints are as follows.

1. usedata-flow analysis to determine the initial constraints

2. determinethe first iteration on which each path in the loop can execute

3. updatethe range of possible iterations for the paths

4. updatethe minimum and maximum number of iterations of the loop

These steps are described in this section.

The timing analyzer performs data-flow analysis [10] to calculateins andoutsfor each block in a function.

The algorithm for accomplishing this uses a standard data-flow technique, and is given in Figure 10. The inner

FOR-loop in Figure 10 combines the effects from each predecessor block one at a time.The implementation uses

FOR each function in the program DO
DO

change = FALSE
FOR each block in the function DO

in.j = NULL
in.f = NULL
in.u = NULL
IF the block has at least one predecessor (pred) THEN

in.j = pred.out.j
in.f = pred.out.f
FOR each other predecessor block (pred) DO

in.j ∩= pred.out.j
in.f ∩= pred.out.f

in.u = ˜(in.j ∪ in.f)

Initialize this.f, this.u and this.j based on the branch
constraints contained in this block.

out.j = this.j ∪ (in.j - this.f - this.u)
out.f = this.f ∪ (in.f - this.j - this.u)
out.u = this.u ∪ (in.u - this.j - this.f)
IF any in or out bit vector changed THEN

change = TRUE
WHILE change

Figure 10: Calculating Ins and Outs

-18-

six bit vectors for each block: in.jump, in.fallthru, in.unknown, out.jump, out.fallthru and out.unknown. Thejump,

fallthru and unknown bit vectors indicate which branches are made to jump, fall through or become unknown,

respectively, based on this block.For determining the ins and outs of a block, exactly one of the three corresponding

bit vectors must be set, since a branch must be in either a jump, fall through or unknown state.Each block also con-

tains bit vectors indicating if it causes a branch to jump, fall through or become unknown. However, the current

block may have no effect on the branch in question, so it is possible that the bit vectors representing the effect from

the current block may all be zero.

The data-flow equations 3 through 8 determine the ins and outs. Equations 3 and 4 show that the current

block’s ins for the jump (fall through) branches are simply the intersection of the jump (fall through) bit vectors of

the predecessors’ outs.Equation 5 states that the ins for the unknown branches are the complement of the union of

the ins for the jump and fall through branches.For example, if one predecessor out says that a certain branch will

fall through, but another predecessor out says the same branch will jump, then the in of the current block will show

that that branch is unknown due to the conflict between the predecessors.

(3)
B. in. j = ∩

p ∈ preds(B)

p. out. j

(4)
B. in. f = ∩

p ∈ preds(B)

p. out. f

(5)B. in. u = (B. in. j ∪ B. in. f)

(6)B. out. j = B. j ∪ (B. in. j − B. f − B. u)

(7)B. out. f = B. f ∪ (B. in. f − B. j − B. u)

(8)B. out. u = B. u ∪ (B. in. u − B. j − B. f)

Calculating the outs using Equations 6-8 is also straightforward. If the current block has no effect on a

branch, then the out bit vectors will be assigned the value of the ins. Otherwise, the effect of this block will override

the ins to determine the outs of this block.For example, consider a situation where the block in question makes a

-19-

particular branch in blocki jump, while the effect of the ins is to make that jump fall through. In other words, the

value of bit positionB.j
i
is 1, and the bit positionsB.in.j

i
, B.f

i
andB.u

i
equal 0, so that according to Equation 6 the

value ofB.out.j
i
is set to 1. In this case, since this block has an effect, it overrides the ins, so the value of the out bit

vectors will represent that the branch will jump. Note that a block can have at most one effect on a given branch.

After the ins and outs of every block are calculated, the timing analyzer uses the outs of the preheaders to see

which paths can execute on the first iteration.The algorithm in Figure 11 setsp.on_first to true (false) if it

determines pathp can (cannot) execute on the first iteration. The cases in whichp.on_first is false correspond

to situations where a branch in the path contradicts the information from the preheader outs.If a path is found not

able to execute on the first iteration as a result of this algorithm, then in some cases it may be assigned fewer maxi-

mum iterations, and a more accurate timing bound can be obtained. The preheaders’out constraints are propagated

through each path.Any path that does not obey the preheaders’ constraints cannot execute on the first iteration.For

Initialize pre.j and pre.f to be the intersection of the
respective bit vectors of all the header’s immediate
predecessors that are not in the loop.

Initialize pre.u to be the complement of the union
of pre.j and pre.f.

FOR each path (p) in the loop DO
IF we already know the path cannot execute on

first iteration THEN
CONTINUE

p.on_first = TRUE
FOR each block (b) in path p DO

IF there is no branch in this block THEN
CONTINUE

IF all three bit vectors at bit b are zero THEN
CONTINUE

/* if the preheader says this branch must jump*/
pre.j[b] THEN

IF this is not the last block in path THEN
IF number of next block in path == b + 1

p.on_first = FALSE
ELSE

IF a branch transition is part of a
different path in the loop THEN
p.on_first = FALSE

/* if the preheader says this branch must fall through*/
ELSIF pre.f[b] THEN

IF this is not last block in path THEN
IF number of next block in path != b + 1

p.on_first = FALSE
ELSE

IF a f all-through transition is part of a
different path in the loop THEN
p.on_first = FALSE

Figure 11: Which Paths Can Execute on First Iteration

-20-

example, consider the loop in Figure 2.The application of the algorithm in Figure 11 to the paths of this loop is

depicted in Figure 12.This figure shows the propagation of the preheader constraints to determine which paths can

execute on the first iteration. The solid arrows indicate transitions that occur between blocks inside the loop, while

dashed arrows indicate transitions to or from a block outside the loop.Block 1 is the preheader of the loop, and

block 10 is the block to which the loop exits. Thevalue ofodd is initialized to 0 in block 1, which is in the outs of

the preheader of the loop, so the associated branch constraint is{4J}. Thus, on the first iteration of the loop, the

branch in block 4 must be taken. Path 4 contains a transition from block 4 to block 5, which is a fall through situa-

tion, contradicting the preheader constraint.The timing analyzer detects that path 4 cannot execute on the first itera-

tion.

The algorithm in Figure 11 also detects if a loop exit transition in a path causes it to be ineligible to execute on

the first iteration. Consider exit paths 1 and 2 from the loop in Figure 2.Path 1 consists only of block 8, so this

1

1

1

1

1

8 9 2 4 6

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

{2J,4J,8F,9J}
{2J,4J,8F,9J}

{2J,4J,8F,9J}
{2J,4F,8F,9J}

{2J,4F,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

8

{4J,8F,9J}
{4J,8F,9J}

{4J,8F,9J}

9

{4J,8F,9J}
{4J,8F,9J}

2 4

{2J,4J,8F,9J}
{2J,4J,8F,9J}

5

invalid

8 9 2

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

3

{2F,4J,8F,9J}
{2F,4J,8J,9J}

{2F,4J,8J,9J}

7

{4J,8J}

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

{4J,8F,9J}

8 9

{4J,8F,9J}

8

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

7

7

{4F,8F}

path 1:

path 2:

path 3:

path 4:

path 5:

10

10

invalid

invalid

Figure 12: Propagating Preheader Constraints for Figure 2

-21-

block is considered the last block in the path.The timing analyzer determines the successor block to block 8 that is

located outside the loop, which is block 10. The exit transition from block 8 to block 10 is a jump, however the pre-

header constraint is for the branch in block 8 to fall through (see8F constraint shown for path 1 in Figure 12).This

contradiction means that path 1 cannot execute on the first iteration.Path 2 has a similar situation. Its last block is

block 9, and its successor that is located outside the loop is block 10.To exit the loop by taking path 2 implies that

the branch in block 9 must fall through, but the preheader constraint says that it must jump (see9J constraint shown

for path 2 in Figure 12). So the timing analyzer concludes that path 2 cannot execute on the first iteration as well.

For those paths that cannot execute on the first iteration, the next step is to determine on which iteration it can first

be taken. Table 8 shows a Path Distance matrix for the example loop in Figure 2 that is derived from the Can Follow

matrix given in Table 7. The table entries containing∞ indicate that it is impossible for one path to reach the other

path. For paths that cannot execute on the first iteration, the timing analyzer determines on which iteration it can

execute as follows. LetP be the set of paths that can execute on the first iteration, and letQ be the set of paths that

cannot. For each pathq in Q, the timing analyzer finds the shortest number of iterations to reachq from any path in

P. This shortest distance plus 1 represents the first iteration on which pathq can execute. Continuingwith the

example from Figure 2, path 4 belongs to the setQ. Path 5 is a path inP, and according to Table 8 the path distance

from path 5 to path 4 is one iteration. So the timing analyzer concludes that path 4 can first execute on the second

iteration, and the range of possible iterations becomes [2..1000] in worst case and [2..2] for best case.However, in

the best case, path 4 is not an exit path, but its range of possible iterations is [2..2], namely the last iteration. This is

a contradiction since any path that can execute on the last iteration must be an exit path. Thus, path 4 is an infeasible

Table 8: Path Distance Matrix for Figure 2

Current How Many Iterations to Reach Path
Path in
Loop 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ ∞
3 1 ∞ ∞ ∞ ∞
4 2 1 1 2 1
5 2 1 1 1 2

-22-

path in best case, and its maximum iterations is set to 0 as shown in Table 6.

Similarly, the timing analyzer determined that exit paths 1 and 2 could not execute on the first iteration.How-

ev er, the path distances from path 3 to path 1 and from path 5 to path 2 are both one iteration as indicated in Table 8.

Since both path 3 and path 5 can execute on the first iteration, paths 1 and 2 can first execute on the second iteration

of the loop. For best case analysis, their ranges of possible iterations are adjusted to [2..2] as shown in Table 6.

Their worst-case possible iterations are not updated since they had already been determined to be [1001..1001] in

Table 5.

The timing analyzer enforces a rule that if any exit path can execute on the first iteration, then it must allow all

exit paths to be chosen for the first iteration. The reason for this rule is that in best case, the BCET is assumed to

occur for the minimum number of iterations. Consider a loop having three paths, where paths A and C are exit paths

and path B is a non-exit path. Path A can exit on the first iteration, but path C can only exit after executing path B.

If path A is significantly longer than paths B and C, then it is possible that the execution of paths B and C (two itera-

tions) may be shorter than the execution of path A (one iteration). The authors believe that requiring the best-case

loop analysis algorithm to repeatedly examine a loop for varying numbers of iterations would be overly inefficient.

Specifying the minimum number of iterations before starting loop analysis makes the algorithm much simpler and

only slightly more conservative in this highly unlikely scenario. In the above scenario, the timing analyzer will

make the conservative assumption that path C can execute on the first iteration, and that the minimum number of

iterations is still one.

If it turns out that no exit path can execute on the first iteration, then the timing analyzer updates the number

of iterations of the loop based on when the exit paths can execute. Inthe example from Figure 2, both exit paths can

only execute on the second iteration, so the timing analyzer sets the minimum number of iterations to 2, even though

the compiler had previously determined, before this path analysis was performed, that the minimum number of itera-

tions would have been 1 [5].

-23-

4.4. UsingIteration-Based Constraints

The maximum number of iterations can sometimes be constrained by analyzing iteration-based constraints.

Tables 3 and 4 also show the range of possible iterations that is associated with each path. The header block is

assigned a range that spans all iterations of the loop. This range is propagated through each path. When a transition

is encountered that has an iteration-based constraint, the range in the constraint is intersected with the range in the

current block in the path. Figure 13 illustrates how iteration-based constraints are propagated through path 4 in Fig-

ure 4(d). The transition from block 3 (i<=249) to block 4 results in the range [1..1000] being intersected with

[251..1000], which is the range specified in constraint 5 of Figure 4(c). The transition from block 4 (i>=750) to

block 5 results in the current range of [251..1000] being intersected with [1..750].Thus, path 4 can only possibly

execute in iterations [251..750].

2 3 4 5 6 7
[251..1000][1..1000] [251..750] [251..750] [251..750]

[1..1000] [1..1000] [251..1000] [251..750] [251..750] [251..750]

Figure 13: Iteration-Based Constraints Propagated Through Path 4 in Figure 4

If a path can only be executed in a given range of iterations, then the maximum iterations in which that path

can execute cannot be greater than the number of iterations in the range.A path with no possible iterations is infea-

sible and is removed from the list of paths by the timing analyzer. Note that the range of a path that only exits is

always the last iteration of the loop, which is the case for paths 1 and 2 of Figure 2(d).Likewise, if path A cannot

reach itself and can only be immediately followed by a different path B, which has a range [Bmin..Bmax], then path

A’ s range cannot span more than [Bmin-1..Bmax-1].For instance, Table 7 shows that path 3 of Figure 2(d) always

leads to path 1, which has an iteration range of [1001..1001]. Thus, path 3’s possible range of iterations is

[1001-1..1001-1] or [1000..1000] for WCET analysis.

The minimum number of iterations of a path is calculated by simply subtracting the possible range of itera-

tions of all other paths in the loop from the possible range of iterations for the current path. This determines the

unique set of iterations for the current path, which is the minimum number of times that the path has to be executed.

There is one exception to this rule. Consider path 1 in Figure 4(d). Its maximum number of iterations is one due to

constraint 3 (2J once) in Figure 4(c), which is described in Section 3.2.We do not reduce the range of unique itera-

tions of the other paths, but do indicate that one iteration in these paths may not be unique.

-24-

4.5. Usingthe Path Constraints in Loop Analysis

The authors decided to use the minimum and maximum iterations associated with each loop path to obtain

tighter loop predictions without restricting the order in which these paths are evaluated. Therewere several reasons

for using this approach. First, the approach supports paths that can execute at most once, but in any iteration. For

example, consider path 1 of the loop in Figure 4.This situation may occur frequently in numerical applications.

Special conditions are often checked for the diagonal elements of a matrix (diagonal systems). Second, the approach

deals with paths that have dependencies on other paths, such as paths 4 and 5 in Figure 2.Finally, the timing ana-

lyzer often calculates an average WCET and BCET for a loop using an average number of iterations when the num-

ber of iterations can vary depending on the value of a outer loop counter variable [5, 9]. Using this approach allows

the calculation of a safe average WCET (BCET) since the longest (shortest) paths are selected first in the respective

loop analysis algorithms.

In addition, the timing analyzer determines sets of paths, where the range of iterations of the paths in one set

do not overlap with other sets. Each path is assigned to a single set of paths.The timing analyzer uses the maxi-

mum number of iterations that can be executed by a set of paths, which is the number of iterations in the set’s range.

Table 9 depicts an example with 4 paths and 2 sets.Each set of paths can only execute a maximum of 50 iterations.

Consider only using the maximum iterations of each path , as opposed to checking if the set to which a path belongs

has exhausted its number of iterations.Tw o paths from a single set could be selected and a significant overestima-

tion may occur when the paths in one set require many more cycles than the paths in the other set. This approach

has limitations. Consider if a fifth path existed in this example which could execute in any iteration of the loop.All

of the loop paths would be assigned to a single set, which could result in a conservative timing prediction. The two

Table 9: Example Illustrating Use of Path Sets

Possible Min Max
Iterations Iters ItersPath Set

1 [1..50] 0 50 1
2 [1..50] 0 50 1
3 [51..100] 0 50 2
4 [51..100] 0 50 2

-25-

subsections that follow describe the worst-case and best-case loop analysis algorithms that employ the path con-

straint information.

Figure 14 shows how the WCET loop analysis algorithm uses the path constraint information.Let N be the

maximum number of iterations andP be the number of paths in a loop.The DO-WHILE loop in step 3 will process

at most the minimum ofN or 2P total iterations since the first misses and first hits in each path can miss or hit at

most once, respectively.

/* 1. calculate required and non-required path information*/
req_iters = 0.
FOR P = each path in the loop DO

P->req_iters = P->min_iters.
P->nonreq_iters = P->max_iters - P->min_iters.
req_iters += P->min_iters.

nonreq_iters = N - r eq_iters.

/* 2. process all iterations of the loop*/
iters_handled = 0.
pipeline_info = NULL.
WHILE iters_handled < N DO

/* 3. process iters while longest path has a first miss or first hit*/
DO

IF req_iters < N - i ters_handled THEN
Find longest path P where

P->req_iters+P->nonreq_iters > 0 &&
P->set.maxiters > 0.

ELSE
Find longest path P where

P->req_iters > 0 &&
P->set.maxiters > 0.

Concatenate pipeline_info with the current
worst-case union of executable paths.

iters_handled += 1.
IF P->req_iters > 0 THEN

P->req_iters -= 1.
req_iters -= 1.

ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.

P->set.maxiters -= 1.
WHILE encountered a first miss or first hit

AND iters_handled < N

/* 4. Efficiently process iterations for the current longest path*/
IF iters_handled < N THEN

nonreq_iters_to_do =
min(nonreq_iters, P->nonreq_iters,

P->set.maxiters - P->req_iters).
iters_to_do = P->req_iters + nonreq_iters_to_do.
req_iters -= P->req_iters.
nonreq_iters -= nonreq_iters_to_do.
P->set.maxiters -= iters_to_do.
P->req_iters = 0.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info iters_to_do

times with current worst-case union.
iters_handled += iters_to_do.

Figure 14: WCET Loop Analysis Algorithm

-26-

The algorithm selects the longest path on each iteration of the loop from the set of paths that can still possibly

execute. Inorder to demonstrate the correctness of the algorithm, one must show that no other path for a given itera-

tion of the loop will produce a longer worst-case time than that path selected by the algorithm. Descriptions of how

the caching categorizations and pipeline information is used in the loop analysis and correctness arguments about

selecting the longest path using these categorizations and information have been given in previous work [16, 11].

Thus, it remains to be shown that each time a path is selected, it is really chosen from the set of paths that can still

possibly execute given that the minimum and maximum number of iterations for each path was safely (but perhaps

conservatively) estimated.A path’s number of required iterations is its minimum iterations to be performed.The

non-required iterations of a path is the difference between its maximum and minimum number of iterations.A path

is initially chosen in the IF-THEN-ELSE construct at the beginning of the DO-WHILE loop in step 3 of Figure 14.

If the iterations remaining is greater than the required iterations left to be processed (sum of each path’s minimum

iterations not yet processed), then the path selected is chosen from any path that has any iterations that can be per-

formed. Otherwise,the iterations remaining must be equal to the required loop iterations remaining and the path

must be selected only from paths that have required iterations left to be performed. Step 4 of the algorithm effi-

ciently uses repeated instances of a path that has no first misses or first hits and thus will remain the longest path

since its worst-case behavior cannot change.This code processes the remaining required iterations of the path and

the minimum of the remaining non-required iterations of the path or of the entire loop. Therefore, the set of paths

that can still possibly execute is accurate since a given path’s required iterations are always processed before its non-

required iterations and the number of non-required iterations to be processed for a path is never allowed to exceed

the number of non-required iterations remaining in the loop.

Figure 15 depicts the best-case loop analysis algorithm, which is for the most part analogous to the worst-case

algorithm described in the previous subsection.As a preliminary step, the algorithm computes the number of

required and non-required iterations for each path, as was done in worst case. The rest of the algorithm consists of

two phases. Thefirst phase finds the shortest pathP for the first iteration.For the first iteration only, the timing ana-

lyzer treats all first misses as misses and all first hits as hits when analyzing the cache behavior of all the paths’

instructions. Themajor issue for selecting the shortest pathP is determining which paths are eligible to be selected.

If the loop has at least one non-required iteration, thenP may be chosen from any of the continue paths.However, if

-27-

/* 1. calculate required and non-required path information*/
req_iters = 0.
FOR P = each path in the loop DO

P->req_iters = P->min_iters.
P->nonreq_iters = P->max_iters - P->min_iters.
req_iters += P->min_iters.

nonreq_iters = N - r eq_iters.
pipeline_info = NULL.

/* 2. process the first iteration of the loop*/
first_miss_treatment = miss.
first_hit_treatment = hit.
IF req_iters < N THEN

Find shortest path P among the paths in which
P->req_iters + P->nonreq_iters > 0 && P->set.maxiters > 0.

ELSE
Find shortest path P among the paths in which

P->req_iters > 0 && P->set.maxiters > 0.
Concatenate pipeline_info with the current

best-case union of executable paths.
iters_handled = 1.
IF P->req_iters > 0 THEN

P->req_iters -= 1.
req_iters -= 1.

ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.

P->set.maxiters -= 1.

/* 3. process the remaining iterations*/
WHILE iters_handled < N DO

first_miss_treatment = hit.
first_hit_treatment = miss.
IF req_iters < N THEN

Find shortest path P among the paths in which
P->req_iters + P->nonreq_iters > 0 && P->set.maxiters > 0.

ELSE
Find shortest path P among the paths in which

P->req_iters > 0 && P->set.maxiters > 0.
nonreq_iters_to_do = min (nonreq_iters, P->nonreq_iters,

P->set.maxiters - P->req_iters).
iters_to_do = P->req_iters + nonreq_iters_to_do.
req_iters -= P->req_iters.
nonreq_iters -= nonreq_iters_to_do.
P->req_iters = 0.
P->set.max_iters -= iters_to_do.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info with the current

best-case union of executable paths.
iters_handled += iters_to_do.

Figure 15: BCET Loop Analysis Algorithm

the loop has no non-required iterations, thenP may only be selected from those continue paths that have required

iterations.

TheWHILE-DOloop in step 3 of Figure 15 represents the second phase of the best-case algorithm, which pro-

cesses all the remaining iterations of the loop after the first.Note that the timing analyzer treats a function as a loop

with a single iteration, so its best case analysis will only perform the first phase of this algorithm.In the second

phase, all first misses are treated as hits and all first hits are treated as misses.In other words, the instruction cache

-28-

behavior is assumed not to change during the lastn − 1 iterations. Thereason for the difference in how the worst-

case and best-case loop analysis algorithms are organized is due to the classification of first hits in BCET, which can

only hit on the first iteration of a loop [17]. The method of selecting the shortest pathP is the same as in the first

phase. OnceP is selected, it is necessary to calculate the number of iterations to account for pathP, which is done

in the same manner as in the worst-case loop analysis. The timing analyzer will useP for all of its required itera-

tions, plus the minimum ofP’s non-required iterations,P’s set’s maximum iterations remaining and the remaining

non-required iterations of the loop. Since the method of selecting the shortest path for the best-case algorithm is

analogous to selecting the longest path in the worst-case algorithm, the correctness argument for best case would

also follow analogously from the worst-case explanation given above.

5. Results

The authors selected programs where the execution paths were constrained by dependencies on data values to

evaluate the effectiveness of detecting and exploiting branch constraints. The programs used to assess the timing

analyzer effectiveness are depicted in Table 10.TheSumoddeven, Sumnegpos, and Summidallprograms correspond

to the examples illustrated in Figures 2, 3, and 4, respectively. TheDesprogram contains a loop in which the index

variable is being compared to constants, giving rise to iteration-based constraints.The Expint program performs

more computation when a loop variable is equal to a loop-invariant value on a single loop iteration.TheFr enel pro-

gram takes different paths on the odd and even steps in the evaluation of the series.TheGaujacprograms executes

Table 10: Test Programs That Are Constrained by Dependencies on Data Values

Name Descriptionor Emphasis

Des Encryptsand decrypts 64 bits
Expint Computesan exponential integral.
Frenel Computesnoncomplex Fresnel integrals.
Gaujac Computesthe abscissas and weights of a 10 point Gauss-Jacobi quadrature formula.
LU PerformsLU Decomposition on a 100x100 matrix
Sprsin Converts a 20x20 integer matrix into row-indexed sparse storage mode.
Summidall Sumsthe middle half and all elements of a 1,000 integer vector.
Summinmax Sumsthe minimum and maximum of the corresponding elements of two 1,000 integer vectors.
Sumnegpos Sumsthe negative, positive, and all elements of a 1,000 integer vector.
Sumoddeven Sums the odd and even elements of a 1,000 integer vector.

-29-

different paths depending upon the specified iteration of a loop.The LU program contains some nested loops in

which the the body of the inner loop may or may not be entered based on a condition in the outer loop.TheSprsin

program does not perform a computation for a single column (the diagonal element) of each row of a matrix. The

Summinmaxprogram determines the minimum and maximum of each corresponding pair of elements in two vectors

and these two tests are logically correlated. The first six programs in Table 10 can be found inNumerical Recipes in

C [20, 21].

The results of evaluating these programs are shown in Table 11.For each program a direct-mapped instruc-

tion cache configuration containing 8 lines of 16 bytes was used.4 It was assumed that cache hits required one cycle,

cache misses required ten cycles, and all data cache references were assumed to be hits. This is the same cache con-

figuration that was used in previous timing analysis studies [16, 11, 5].The Observed Cyclesrepresent the cycles

required for an execution with worst-case input data.5 The number of cycles was measured by enhancing a tradi-

tional cache simulator [22] to perform pipeline simulation [23].The Estimated Cyclesunder the headingsWithout

Branch Constraint Analysisand With Branch Constraint Analysisindicate the number of cycles estimated by the

timing analyzer without and with using branch constraints, respectively. The Estimated Ratiois the Estimated

Cyclesdivided by theObserved Cycles. Note that an estimated ratio of 1.0 represents a perfect prediction.Thus, the

estimated ratio of 1.014 in the worst-case analysis is over 156 times more accurate than 3.192 (2.192 / 0.014), which

was obtained when the branch constraint analysis was not used.Likewise, the estimated ratio of 0.969 in the best-

case analysis is over 8 times more accurate.

The results show that exploiting branch constraint information in a timing analyzer can significantly tighten

the WCET and BCET predictions.The programsFr enel and Sumoddevenexecute alternating paths in a loop

depending upon a flag variable. Oneof the alternating paths has a slightly longer WCET than the other path in both

of these programs.The timing analyzer was able to determine that the longer path of each program could only be

executed for one half of the iterations, which reduced the overestimations. Inthe case ofSumoddevenin best case,

the compiler originally determined that the loop had a minimum number of iterations of 1, but the timing analyzer

4 A large cache would not be interesting because the test programs would fit into cache and all of the misses would be compulsory misses.
A small cache shows that the timing analyzer can predict less-trivial caching behavior. Likewise, having a line size greater than the size of a sin-
gle instruction tests the ability of the timing analyzer to detect hits due to exploiting spatial locality.

5 We modified the desired relative error of theExpintandGaujacprograms so they would not converge early, which allowed us to obtain
an accurate maximum iterations for a loop and worst-case input data for theObserved Cyclesin Table 11.

-30-

Table 11: WCET and BCET Prediction Results of the Test Programs

WCET Timing Prediction Results

Without Branch With Branch
Constraint Analysis Constraint AnalysisObserved

Estimated Estim. Estim. Estim.
Cycles Ratio Cycles Ratio

Cycles

Name

Des 149,706 172,509 1.152 167,165 1.117
Expint 58,217 1,293,290 22.215 58,289 1.001
Frenel 47,749 48,887 1.029 47,783 1.001
Gaujac 786,786 790,116 1.004 787,134 1.000
LU 23,055,832 23,572,337 1.022 23,444,562 1.017
Sprsin 28,339 28,664 1.011 28,404 1.002
Summidall 15,340 18,090 1.179 15,341 1.000
Summinmax 16,080 17,080 1.062 16,080 1.000
Sumnegpos 11,067 13,068 1.181 11,068 1.000
Sumoddeven 15,093 16,112 1.068 15,102 1.001

Av erage 2,418,421 2,597,715 3.192 2,459,093 1.014

BCET Timing Prediction Results

Without Branch With Branch
Constraint Analysis Constraint AnalysisObserved

Estimated Estim. Estim. Estim.
Cycles Ratio Cycles Ratio

Cycles

Name

Des 65,615 22,247 0.339 57,920 0.883
Expint 125 118 0.944 118 0.944
Frenel 181 172 0.950 172 0.950
Gaujac 45,270 44,566 0.984 45,127 0.997
LU 12,883,939 637,365 0.049 11,847,472 0.920
Sprsin 17,436 17,379 0.997 17,379 0.997
Summidall 15,340 8,072 0.526 15,312 0.998
Summinmax 13,080 13,062 0.999 13,062 0.999
Sumnegpos 9,067 9,049 0.998 9,049 0.998
Sumoddeven 94 63 0.670 94 1.000

Av erage 1,305,015 75,209 0.746 1,200,571 0.969

was able to predict that the loop was required to iterate twice, using the methods described in the previous section.

The result of this analysis was an exact BCET prediction.LU also showed a dramatic tightening in its BCET predic-

tion. Therewere three nested loops in which the timing analyzer was able to exploit iteration-based constraints.

The previous version of the timing analyzer assumed that the inner loop in these three nests would always be

avoided along the best-case path of their respective surrounding loops. But in fact these loops execute on all but one

iteration of the surrounding loops.The Summinmaxand Sumnegposprograms have logically correlated branches

and the timing analyzer was able to detect for each program that the longest path was infeasible due to this

-31-

correlation. Thecompiler detected iteration-based constraints for theDes, Gaujac and Summidallprograms that

indicated that certain paths could only be executed in specific iterations. There was little WCET overestimation in

the previous version of the timing analyzer forGaujacsince these iteration-based constraints were associated with

paths that were not in the most deeply nested loop of the program.However, Summidall’s iteration-based constraints

were for the most frequently executed portion of that program and a significant overestimation of WCET was

avoided. Inbest case, the timing analyzer was able to determine that the loop’s shortest path inSummidallcould

execute at most once, and its second shortest path could execute for at most 250 of the 1,000 iterations.Even the

longest path was required to execute for at least 499 iterations.These iteration-based constraints significantly tight-

enedSummidall’s BCET prediction.Similarly, Descontained an inner nested loop with five paths, and an iteration-

based constraint required the longest path to be executed on 12 of its 16 iterations.Finally, the compiler detected an

iteration-based constraint inSprsinandExpint that was associated with an equality test between a loop variable and

a value that was invariant for that loop. This means that the loop could only execute a path associated with the

equality transition from the block containing the test for a single iteration of the loop.For Sprsinthis path required a

smaller WCET than when the loop variable was not equal to the loop-invariant value. Thus,the overestimation by

the previous version of the analyzer was quite small and would decrease when applied to arrays with larger dimen-

sions. However, the opposite situation occurs inExpint, which has a higher WCET associated with the path where

the loop variable is equal to the loop-invariant value. Thus,exploiting this branch constraint significantly reduces

the WCET overestimation ofExpint.

Several factors contributed to the remaining WCET overestimations and BCET underestimations. First, the

Desprogram in particular had several arrays in which the elements are hard-coded in the data segment, and these

array element values affect various comparisons.These branch constraints were not detected in the compiler. Sec-

ond, as mentioned in previous work [17], in worst case analysis some instructions conservatively categorized as

misses actually hit in cache due to the order in which paths were executed because of dependencies on data values.

Similarly, in best case analysis some instructions were conservatively classified as hits even though they actually

miss in cache.Third, there were some minor limitations to the timing analysis that result in conservative predic-

tions. For instance, the programLU had non-rectangular loop nests where the number of iterations is rounded to an

integer, since the timing analyzer is designed to deal with an integral number of iterations [5, 6].Also, the

-32-

underestimation inLU was partially due to the fact that an iteration-based constraint was not generated by the com-

piler for a condition containing a complex expression that needed to be expanded. Finally, there were slightly con-

servative predictions that resulted from instruction caching categorizations that change between loop levels and their

interaction with the pipeline analysis, affecting both WCET and BCET [11].

Table 12 shows execution time in seconds required to make WCET and BCET predictions for the test pro-

grams for the previous and current versions of the timing analyzer.6 The times were obtained by calculating for each

program the average of the elapsed times of ten executions of the timing analyzer on an UltraSPARC. Theoverall

decrease in elapsed time for the analysis was the result of two factors. First,we modified the timing analyzer to

avoid redundant analysis of a path when its caching behavior has not changed. Second, the new approach does not

analyze a path in a given iteration when the path was infeasible, its maximum iterations had been exhausted, or only

required iterations of other paths were available.

Table 12: Analysis Overhead Results of the Test Programs

Seconds Required for Analysis

Previous Current Time
Analysis Analysis

Time Time
Ratio

Name

Des 2.155 1.422 0.660
Expint 0.374 0.293 0.783
Frenel 0.455 0.298 0.655
Gaujac 3.220 3.692 1.147
LU 1.357 1.253 0.923
Sprsin 0.132 0.129 0.977
Summidall 0.070 0.070 1.000
Summinmax 0.076 0.063 0.829
Sumnegpos 0.058 0.048 0.828
Sumoddeven 0.055 0.060 1.091

Av erage 0.795 0.733 0.889

6. Future Work

There are several additional aspects of using branch constraints in timing analysis that can be investigated.

Many branch constraints were not detected due to function calls separating effects and the branches affected. These

6 The response times given in Table 12 are greater than those given in our previous work [24]. In the previous work, we were only calcu-
lating a program’s WCET, while in this paper the timing analyzer is computing both the WCET and BCET of each program.

-33-

branch constraints could be detected using inter-procedural analysis.Similarly, inter-procedural analysis could also

detect more loop iteration constraints, in the case where one loop contains a call to a function and another loop is in

the called function [25].Further branch constraints could also be obtained from analyzing values assigned to global

variables and arrays.In addition, the branch constraint analysis described in this paper could be used by a tool to

ignore infeasible paths during software testing.

7. Conclusions

This paper has described how branch constraints were automatically detected by a compiler and exploited by a

timing analyzer. We described techniques to efficiently detect effects that can cause the outcome of a branch to

become known and detect ranges of iterations associated with branch outcomes.We presented algorithms that show

how branch constraints were used to constrain the minimum and maximum iterations associated with each path in a

loop and how these path constraints were used in WCET and BCET loop analysis.Finally, we showed results from

a number of test programs whose worst-case and best-case paths were constrained by dependencies on data values.

These results indicate that detection and exploitation of branch constraints can significantly tighten both the WCET

and BCET timing predictions.While branch constraints cannot be as fully exploited using a path constraint

approach as compared to a more general ILP or symbolic interpretation approach, the authors found that almost all

of the constraints from a variety of application programs could be effectively used. Furthermore, the approaches

used for detection and exploitation of branch constraints were shown to be quite efficient and are fully automated,

requiring no interaction from the user.

8. References
[1] Y. S. Li, S. Malik, and A. Wolfe, “Efficient Microarchitecture Modeling and Path Analysis for Real-Time

Software,” Proceedings of the Sixteenth IEEE Real-Time Systems Symposium, pp. 298-307 (December
1995).

[2] G. Ottosson and M. Sjödin, “Worst Case Execution Time Analysis for Modern Hardware Architectures,”
ACM SIGPLAN Workshop on Language, Compiler, and Tools for Real-Time Systems, pp. 47-55 (June 1997).

[3] A. Ermedahl and J. Gustafsson, “Deriving Annotations for Tight Calculation of Execution Time,” Proceed-
ings of European Conference on Parallel Processing, pp. 1298-1307 (August 1997).

[4] T. Lundqvist and P. Stenström, “Integrating Path and Timing Analysis using Instruction-Level Simulation
Techniques,”ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems, pp.
1-15 (June 1998).

[5] C. A. Healy, M. Sjodin, V. Rustagi, and D. B. Whalley, “Bounding Loop Iterations for Timing Analysis,”
Proceedings of the IEEE Real-Time Technology and Applications Symposium, pp. 12-21 (June 1998).

-34-

[6] C. A. Healy, R. van Engelen, and D. B. Whalley, “A General Approach for Tight Timing Predictions of Non-
Rectangular Loops,” WIP Proceedings of the IEEE Real-Time Technology and Applications Symposium, pp.
11-14 (June 1999).

[7] F. Mueller and D. B. Whalley, “Av oiding Conditional Branches by Code Replication,” Proceedings of the
SIGPLAN ’95 Conference on Programming Language Design and Implementation, pp. 56-66 (June 1995).

[8] J. Patterson, “Accurate Static Branch Prediction by Value Range Propagation,” Proceedings of the SIGPLAN
’95 Conference on Programming Language Design and Implementation, pp. 67-78 (June 1995).

[9] C. A. Healy, M. Sjödin, V. Rustagi, and D. B. Whalley, “Supporting Timing Analysis by Automatic Bound-
ing of Loop Iterations,”Real-Time Systems, pp. 121-148 (May 2000).

[10] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers Principles, Techniques, and Tools,Addison-Wesley, Read-
ing, MA (1986).

[11] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Integrating the Timing Analysis of Pipelining and Instruc-
tion Caching,” Proceedings of the Sixteenth IEEE Real-Time Systems Symposium, pp. 288-297 (December
1995).

[12] Y. Hur, Y. H. Bae, S. S. Lim, S. K. Kim, B. D. Rhee, S. L. Min, C. Y. Park, H. Shin, and C. S. Kim, “Worst
Case Timing Analysis of RISC Processors 1995: R3000/R3010 Case Study,” Proceedings of the Sixteenth
IEEE Real-Time Systems Symposium, pp. 308-321 (December 1995).

[13] L. Ko, N. Al-Yaqoubi, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M. Harmon, “Timing Constraint
Specification and Analysis,”Software Practice & Experience, pp. 77-98 (January 1999).

[14] M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer and Linker,” Proceedings of the SIGPLAN
’88 Symposium on Programming Language Design and Implementation, pp. 329-338 (June 1988).

[15] F. Mueller, Static Cache Simulation and Its Applications,PhD Dissertation, Florida State University, Talla-
hassee, FL (August 1994).

[16] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding Worst-Case Instruction Cache Performance,”
Proceedings of the Fifteenth IEEE Real-Time Systems Symposium, pp. 172-181 (December 1994).

[17] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding Pipeline and Instruction Cache
Performance,”IEEE Transactions on Computers48(1) pp. 53-70 (January 1999).

[18] L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M. Harmon, “Supporting the Specification and Anal-
ysis of Timing Constraints,” Proceedings of the IEEE Real-Time Technology and Applications Symposium,
pp. 170-178 (June 1996).

[19] NaghamM. Al-Yaqoubi,Reducing Timing Analysis Complexity by Partitioning Control Flow, Masters Pro-
ject, Florida State University, Tallahassee, FL (1997).

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes in C: The Art of Scien-
tific Computing,Cambridge University Press, New York, NY (1988).

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes in C: The Art of Scien-
tific Computing, Second Edition,Cambridge University Press, New York, NY (1992).

[22] J.W. Davidson and D. B. Whalley, “A Design Environment for Addressing Architecture and Compiler Inter-
actions,”Microprocessors and Microsystems15(9) pp. 459-472 (November 1991).

[23] C. A. Healy, Predicting Pipeline and Instruction Cache Performance,Masters Thesis, Florida State Univer-
sity, Tallahassee, FL (1995).

[24] C. A. Healy and D. B. Whalley, “Tighter Timing Predictions by Automatic Detection and Exploitation of
Value-Dependent Constraints,” Proceedings of the IEEE Real-Time Technology and Applications Symposium,
pp. 79-88 (June 1999).

[25] R. Bodik, R. Gupta, and M. Soffa, “Interprocedural Conditional Branch Elimination,” Proceedings of the
SIGPLAN ’97 Conference on Programming Language Design and Implementation, pp. 146-158 (June
1997).

-35-

-36-

