Automatic Detection and Exploitation
of Branch Constraints for Timing Analysis

Christopher A. Healy David B. Whalley
Computer Science Dept., Furman University Computer Science Dept., Florida State Univ.
Greenville, SC 29613 Tallahassee, FL 32306-4530

e-mail: chris.healy@furman.edu, phone: (864) 294-2233 e-mail: whalley@cs.fsu.edu, phone: (850) 644-3506

Abstract

Predicting the worst-case execution time (WCET) and best-case execution time (BCET) of a real-timeopr
gram is a challenging task. Though much progress has been made in obtaining tighter timing predictions by
using techniques that model the architectural features of a machine, significant@estimations of WCET and
underestimations of BCET can still occur Even with perfect architectural modeling, dependencies on data
values can constrain the outcome of conditional branches and the cesponding set of paths that can be
taken in a program. While branch constraint information has been used in the past by some timing analyz-
ers, it has typically been specified manuallwhich is both tedious and error pone. Thispaper describes effi-
cient techniques 6r automatically detecting branch constraints by a compiler and automatically exploiting
these constraints within a timing analyzer The result is significantly tighter timing analysis pedictions with-
out requiring additional interaction with a user.

Index terms: real-timesystems, worst-casexeeution time, best-casexecution time, timing analysis, infeasible
paths, branch constraints

1. Introduction

Obtaining accurate worst-casgeeution time (WCET) and best-caseeeution time (BCET) predictions of
programs is a challenging tasklowever, there is a significant amount obvk in real-time scheduling that depends
knowing the WCET of tasks in a systetithout tight WCET predictions, it could not be determined if ynaal-
time systems would meet their timing requirements. One common practice is to estimate WCET and BCET bounds
by measuringxecution time with what a real-time programmer beateis WCET and BCET input dataUnfortu-
nately it is difficult to derve such input data gen complex architectural features and/or complicated controkfla
a program. Thiscan lead a user to belie that timing requirements fia keen met, when in reality these require-
ments may actually be violated during critical situations. Performing a timing analysis automatically with a timing

analysis tool is a much more desirable solution.

*This work was supported in part by the National Science Foundation under grant number EIA-98Q52Bminary version of this
work was described in the 1998al-Tme chnolgy and Applications Symposiumder the title "Tighter Timing Predictions by Automatic De-
tection and Exploitation of Value-Dependent Constraints."

Various features of the architecture, such as caches and pipelinesfecanthaf @ecution time of a sequence
of instructions and these features need to be modeled while analyzing the contoflelprogram. Een with per
fect architectural modeling, significanvepestimations of WCET and underestimations of BCET can still occur
since dependencies on datdues can constrain the outcome of conditional branches and restrict the set of paths that
can be taken in a progranwe refer to such dependencies as branch constraints. While branch constraint informa-
tion has been used in the past by some timing analyzers, it has typically been specified ,mérichlig both

tedious and error prone.

This contribution described in this paper includes techniques for automatically detecting branch constraints by

a compiler and efficiently exploiting these constraints by a timing analyzer to obtain tighter timing predi¢tiens.
remainder of the paper has the followingyanization: First, we describe relatecbrk in this area. Second, we
explain techniques to automatically detect branch constraints in a progtaind, we illustrate methods to ceart

the branch constraints into path constraints indicating fhary times each path can breeuted in a loop.Fourth,

we depict hw to use the path constraints in loop analysis to tighten the WCET and BCET predidtitths.we

give results for a number of applications thatwttbat significant impreements in timing prediction accuracan

be obtained by automatically detecting and exploiting branch constré&iintslly, we describe future work in this

area and ge the conclusions for the paper.

2. RelatedTiming Analysis Work

Some constraint-based timing analyzers use branch constraints to obtain more accurate estimations of e
tion time. Li et al performed timing analysis using an Implicit Path Enumeration Technique [1]. This technique
used integer linear programming (ILP) to solwnstraints about the program to obtain timing predictiofiseir
technique automatically calculatpsogram dructural constaints from the program control fle graph and used
branch constraints, which thecalled program functionality consfaints The work of Ottosson and Sjodin [2]
extended the Implicit Path Enumeration Technique by using finite domain constraints to model the architectural fea-
tures of the hardare. Havever, in both approaches these branch constraints had to be entered manually by, the user

which is both a tedious and error-prone task.

Recent wark by Ermedahl and Gustafsson [3] and by Lundqvist and Stenstrém [4] uses syxdmli®a to
automatically resokr mary branch constraints. The approach used by these authors is quite powerfufebut ef
tively requires simulating all paths of a loop faresy loop iteration. Thus, symbolic xecution requires significant

analysis werhead, which would be undesirable when analyzing long running programs.

Another type of branch constraint is the number of iterations associated with aieofaveimplemented
techniques to automatically determine the minimum and maximum number of iterations joloo@swith multi-
ple it conditions and loops whose number of iterations depend on lgagaint variables or counter variables of
outer loops [5, 6]. The symbolixecution approaches [3, 4] also provide a more powerful and less efficient method
to calculate bounds on the number of loop iterations. In this papeaddress detecting and exploiting branch con-

straints that constrairxecution paths rather than the number of iterations that a loopxeante.

3. Automatic Detection of Branch Constraints

A branch constraint causes the outcome of a conditional branch to Wa kmaler certain conditionsThe
authors implemented techniques that commonly detect these condifioese techniques include detectinfpef
based constraints by analyzing the effect that an assignmenatialle’ will hare an a lranch and detecting that the
outcome of one branch has a logical correlation with the outcome of another branch. In fagk weetia similar
type of analysis to detect branches that couldvoelad by duplicating code [7]. In addition, we detect iteration-
based constraints by using value range analysis to determine the fretna branch will dll through or be
taken. Thiswas accomplished by determining the iterations in which each patmay be &ecuted. Thisvaue
range analysis is similar to analysis used for compiler optimizations for obtaining predictions on the percentage of
time that a branch will be taken or fall-through [8falue range analysis was also used to help determine the mini-

mum and maximum number of iterations for loops in a program [5, 9].

3.1. Detectingeffect-Based Constraints

Analysis is performed in the compiler to determine if the outcome of a conditional branchnis &haiy
given point in the control flav. Frst, the compiler calculates the set of registers and variables upon which a condi-

tional branch (and its associated comparison instruction) depends. This set is calculated by expantiatstbe ef

the comparison instruction associated with the conditional braRohinstance, consider the SPARC instructions
represented as RTLs (Register Transfer Lists) and the associated expanded companisdn,Bigare 1. A com-

parison is expanded by searching baafdg for assignments to registers in the comparison until all registers are
replaced or the beginning of a block is encountered with multiple predecessmg-invariant registers in the
expression arexpanded from the preheader of the loop in whicly tie assignedalues. Ngt, the compiler deter

mines the set of effects associated with assignmentgjigiaes and variables by instructions for each basic block.
Each conditional branch is examined to see if it could be affected by the block. Thus, the compiler can determine
that a basic block updating the globatiableg could affect the result of the branch in FigureUpdates to the o

istersr[1] (%gD) orr[8] (%00 would hare ro efect.

A state is associated with each conditional branch, which candna of three alues:unknown fall-through
or jump. The authors determine if a branch becomes known by substitutingltie assigned for the variable or
register and eduating the expanded comparison in the compilére compiler issues a direati o the timing ana-
lyzer for each branch placed in anknown fall-through or jumpstate by an effect in the block. Thus, this analysis
requiresO(B* C) complexity, whereB is the number of basic blocks a@ds the number of conditional branches in
the function. Note that all of the branch constraint analysis presented in this paper was performed within a function

(intra-procedural analysis, not inter-procedural analysis).

Consider the source code in Figure 2(a). The corresponding conwahih is generated by the compiler is
shavn in Figure 2(b), constraints are shown in Figure 2(c), and paths ava gd-igure 2(d).Pahs will be dis-
cussed in Section 4. While the contromil&igure 2(b) is represented at the source codd,léhe analysis is per

formed by the compiler at the machine instructiorell@fter compiler optimizations are applied to provide more

Instructions in a Basic Block

r{1]=H1[_g]; /* sethi %hi(_g),%g1 */
r[8]=Rr[1]1+LO _g]]; /*Id [%g1+%lo(_g)], %00 */
| C=r [8] ?25; /* cmp %00,5 */
PC=I C<0, L20; /* bl L20 */

Expanded Comparison
I1C=r[8]?5; => IC=R[r[1]1+LO _g]]1?5; => IC=R[H[_g]+L] _g]]?5;

Figure 1: Example of Expanding a Comparison

sumodd = sumeven = 0;

odd = quit = 0; sumodd=0; 1
for (i = 0; lquit && sumeven=0;
i < 1 000;i++) odd=0; {43}
if (a[i] == 0) quit=0; {8F}
quit =1; i=0; {2U,93}
else if (odd) {
sumodd += ali]; -
odd = 0; a[l]!:O 2
} {23} {2F}
else { , quit=1; {83} 3
sumeven += afi];
odd =1;
} odd==0 4
(a) Source Code 43} {4F}
sumodd+=ali], 5
(1) blk 1 makes blk 2 unknown odd=0; {4J}
(2) blk 1 makes blk 4 jump
(3) blk 1 makes blk 8 fall thru -
(4) blk 1 makes blk 9 jump sumeven+=a[i]; 6
(5) blk 3 makes blk 8 jump odd=1; {4F}
(6) blk 5 makes blk 4 jump
(7) blk 6 makes blk 4 fall thru i++ {2U,9U} 7

(8) blk 7 makes blks 2,9 unknown
(c) Explicit Constraints

s {83} {8F}
(2)8-9 <1000 9
(3)8-9-2-3.7 F} {93}
(4)8-9-2-4.5.7
(5)8-9-2-4.6.7 10

(d) Paths in Loop (b) Control Flow

Figure 2: Example lllustrating Effects of Assignments on Branches

accurate timing predictions. Note that some branches in Figure 2()raditions that are xersed from the code
in Figure 2(a) to depict the branch conditions that asiated at the machine instructiowdée Only when the con-
dition associated with a branch in a blockvsleated to be true will the jum@) occur. If the condition is not true,
then control will fall £) into the next sequential block-he control flev also shows the effect-based constraints,
which are enclosed in curly braces and associated with basic blocks or comtréldiwitions. Figure2(c)
describes the explicit branch constraints that are automatically detected by the compiler and passed to a timing ana-
lyzer. The initialization ofi in block 1 {=0;) puts the branch in block 2a[i]'=0) in an unknownstate 2U) and

the branch in block 9i€1000) in a jump state 9J). In addition, the assignments tmld in blocks 1 and 5
(odd=0;) and in block 6 6dd=1;) cause the branch in block 4dd==0) to jump (4J) and fall through (4F),
respectiely. Likewise, the assignment fuit in blocks 1 Quit=0;) and 3 Quit=1;) cause the branch in
block 8 @Quit!'=0) to fall through(8F) and jump (8J), respectiely. Finally, the increment of in block 7 {(++;)

sets the states of the branches in bloclkgiP£0) and 9 (<1000) to unknown(2U,9U) since thg both depend

on the value of .

Figure 2(b) also shows implicit branch constraints. When a branch haanaogicome, then it will hae the
same outcome again unless the variables or registers being comparddcéed.afThusa fall-through €) or jump
(J) transition from a branch will implicitly cause that same branch to bdal-through or jump state, respectély.
These implicit constraints are not explicitly passed to a timing analyzer since a timing analyzer can create them

when it is performing analysis on paths.

There are also situations where one conditional branch may be logically correlated with another conditional
branch. Inother words, the direction taken by one conditional branch may indicate the direcgarbialnother
conditional branch. The source code in Figure 3(a) and corresponding comtrol fligure 3(b) depict such a situ-
ation. Ifblock 2 @[i]>=0) falls into block 3, then the value afi] is negaive ad block 5 &[i]<=0) must
jump to block 7 %J). Thisis described by branch constraint 3 in Figure 3(c). Note that if blociR40)
jumps to block 4, there is no guarantee that bloc{if<€0) will fall through to block 6 since thealue ofa[i]
could hae been zero. The compilevauates each pair of branches in a function to determine if there is a logical

correlation between one branch and anotfigws, this analysis requir@(Cz) complexity, whereC is the number

sumneg = sumall = O; sumneg=0; 1
sumpos = 0; sumall=0;
for (i :_O; i < 1000; sumpos=0;
) i=0; {2U,73}
if (afi] < 0)
sumneg += a[i];
sumall += a[i]; afi]>=0 2
if (a[i] > 0) {23} {2F.53}
sumpos += ali]; —
} sumneg+=al[i; 3
(a) Source Code
sumall+=a[i; 4
(1) blk 1 makes blk 2 unknown
(2) blk 1 makes blk 7 jump afil<=0 5
(3) blk 2 fall thru makes blk 5 jump
(4) blk 5 fall thru makes blk 2 jump 5% {5F.2J}

(5) block 7 makes blocks 2,5,7 unknown sumpos+=ali]; 6

(c) Explicit Constraints

i++ {2U,5U,7U} 7

(1) 2-4-5.7 i<1000
(2) 2-3-4-5-7 {7F} {73
e ao e 8
(4) 2-3-4.5.6-7
(d) Paths in Loop (b) Control Flow

Figure 3: Example lllustrating a Logical Correlation between Branches

of conditional branches. Note that a branch vgagb logically correlated with itself and these self correlations are

implicit constraints. The example of the paths shown in Figure 3(d) will be described in Section 4.

The «act conditions when it is known that one branch is logically correlated with another brarecbeba
described in previous work [7] and are depicted in Tablenlgeneral, a conditional branch can only be correlated
with another branch when one argument of each comparison is identical and the other argument of each comparison
is a constant or the samevériant value. Bble 1 depicts the dédrent cases when the result of one branch is corre-
lated with another branch. Column 1 shows a known result from one branch. This result is determined by not only
the operands of the comparison and the branch relational opéxdatatso by whether or not the branch wastak

The second column in Table 1 depicts the condition associated with the correlated branch. The third and fifth

columns of Table 1 define the requirements for the correlated branch to jump or fall through vedgpecti

Table 1: Logically Correlated Branch Requirements

known correlated jump fall through
. example . &le
result branch requirement requirement
v=cl v=c2 cl=c2 v=10 - v=10 cl#c2 v=10 - =(v = 15)
since 10 =10 since 15
V#Cc2 cl#c2 v=10 - v#15 cl=c2 v=10 - =(v#10)
since 10« 15 sincel0 =10
vrel2 c2 clrel2 c2 v=10-v<20 =(cl rel2 c2) v=10 - =(v > 20)
since 10 < 20 since =(10 > 20)
v#cl v=C2 N/A N/A cl=c2 v£ 10 - (v = 10)
since 10 =10
V#Cc2 cl=c2 v£Z10 - v#10 N/A N/A
since 10 =10
vrellcl|| vrel2c2 || addeq(rell) = addeq(rel2) =>v1 - v>10 || opp(nhoeq(rell), noeq(rel2)) 10 - —(v<10)
&& since’'>'="2’ & & since opp(>', '<)
c1* addeq(rell) c2* && 11> 10+1 -(cl*addeq(rel2) c2*) && -(106<10-1)
v=c2 N/A N/A ¢l noeq(rell) c2 220 - (v =10)
since 20 > 10
V#Cc2 clnoeq(rell) c2 w20 - v#10 N/A N/A
since 20 > 10
where
(1) visavariable
(2) cisaconstant
(3) relis'<,’<, > or’2
(4) opp(rellrel2) returns true when (x rell y) && (x rel2 y) canveeboth be true (e.g. X >y && X <)
(5) noeq(relyeturns the relational operator withoutyasguality (e.g. noeqg’) and noeq(’>’') both return '>’)
(6) addeq(relyeturns the relational operator with an equality (e.g. add8g(hd addeq(’>") both returre’)
(7) c*is aconstant that is adjusted by 1 in the appropriate direction if addeq(rel) != rel

3.2. Detectinglteration-Based Constraints

A basic induction variable is a variable ogister that is incremented or decremented by a constant value on
each iteration of a loop. Some branches compare a basic induatiable to a constant. In these situations, the
compiler can determine the ranges of iterations in which such a branch will fall through orfomgach of these

branches, the compiler dees the information shown in Table 2.

If the branch meets all of the requirements abl€ 2, then the compiler next calculates on which iteration the
branch will change direction, which is determined using Equatiofalile 3 depicts the various cases in which the
branch condition will akays or n&er be stisfied, and also othe compiler determines the appropriate value to use
for adjustin Equation 1. Once the compiler has determined gieevofl, it produces directies for a timing ana-
lyzer indicating ranges of iterations for each of the tutgoing edges from the block containing the branthe
relop and the direction of the increment (i.e. the sigheforerafter) are used to determine which edge is taken on

the firstl-1 iterations.

_ Uimit - (initial + before + adjust! 5

|
0 before+ after 0

@)

Table 2: Information Calculated for Each Iteration Branch

Term Explanation Requirement
variable The control ariable on which the branch depends, The control variable must be a basic induction
which is the variable or register being compared to variable, which is an integemviablev whose only
a onstant in the block containing the branch. assignments within the loop are of the form =
v * c wherec is an integer constant [10].
limit The \alue being compared to thariable in the The limit must be an integer constant.
block containing the branch.
relop The relational operator used to compare \the-
ableand thdimit.
initial The value of th@ariablewhen the loop is entered.| The initial value must be an integer constant.
before The amount by which theariable is changed be- The amount by which the control variable is incre-
fore reaching the branch in each iteration. mented or decremented must be angetecon-
stant and these constant changes must occur on
each complete iteration of the loop.
after The amount by which theariableis changed after The amount by which the control variable is incre-
reaching the branch in each iteration. mented or decremented must be angetecon-
stant and these constant changes must occur on
each complete iteration of the loop.
adjust An adjustment value ofl, O, or 1, which com-
pensates for the difference between relational op-
erators (e.g. < and).

Table 3: Hav to Determine When a Branch Changes Direction

Operator Condition Test Result adjust
<= first< limit & incr>0 | is false on théth iteration 0
<= first<limit & incr<0 | dways true
<= first>limit & incr=0 | dways false
<= first>limit & incr <0 | is true on thdth iteration 1

< first<limit & incr >0 | is false on théth iteration -1
< first<limit & incr< 0 | dways true

< first= limit & incr=0 | dways false

< first>limit & incr <0 | is true on thdth iteration 0
> first<limit & incr >0 | is true on thdth iteration 0
> first<limit & incr<0 | dways false

> first>limit & incr=0 | dways true

> first> limit & incr< 0 | is true on thdth iteration 1
>= first<limit & incr >0 | is true on thdth iteration -1
>= first<limit & incr<0 | dways false

>= first2 limit & incr=0 | dways true

>= first= limit & incr< 0 | is false on théth iteration 0

Wherefirst = initial + before incr = before+ after,
| is defined in Equation 1, amaljustis used in Equation 1.

Consider the source code and corresponding contilshown in Figures 4(a) and 4(b)Vhilei can range
from 0..999 as each path in the loop is entered, the number of corresponding iterations in the loop will range from
1..1000. Thusthe compiler associates ranges of iterations with transitions from blocks that compare basic induction
variables to constants by using EquationFor instance, block 3€=249) will only fall through to block 4 when
the loop is performing the last 750 iteratiof25(..1000]. Constraint$-8 in Figure 4(c) depict the range of itera-
tions when warious transitions in the loop can bedak Animplicit iteration-based constraint is that the header of
the loop (block 2 in Figure 4(b)) can beceuted in gery loop iteration [1..1000]for Figure 4). Sometimes a basic
induction variable is compared to non-constant losariant values, as shown in block &€m) of Figure 4(b).
The value ofmis not known, but it is weriant with respect to the loop. When the comparison of such a branch is an
equality test (== or !=), then the transition that occurs when thevédues are equal can ®jdace at most once for
each &ecution of the loop since the basic induction variable changes by a constant value on each iteoation.
straint 3 in Figure 4(c) shows that the compiler determines that block 2 will jump to block 6 at mo&Jonices,
The paths shen in Figure 4(d) will be described in Section 4. The detection of iteration-based constraints requires
O(C) complexity, whereC is the number of conditional branches, since each branch must be inspectedtiatece.
that this detection of iteration-based constraintedgiace after the compiler has performed induction variable anal-

ysis.

summid = sumall = 0;

for (i=0; i < 1000; summid=0; 1
i++
i (i AT sumall=0;
249<i && i<750) i=0; {3J,4F,7J}
summid += a[i];
sumall += ali]; - -
‘ i==m 2

(a) Source Code {2J once}

(1) blk 1 makes blks 3,7 jump

(2) blk 1 makes blk 4 fall thru

(3) blk 2 will jump at most once
(4) blk 3 jump makes blk 4 fall thru

{3F}
{3F4J}

o [751..1000] {4F} [1..750]
(5) blk 3 fallthru in iters [251..1000]
(6) blk 3 jump in iters [1..250] summid+=alll; 5

(7) blk 4 fallthru in iters [1..750]
(8) blk 4 jump in iters [751..1000]
(9) blk 4 jump makes blk 3 fall thru
(20) blk 7 makes blks 2,3,4,7 unknown

(c) Explicit Constraints i++ {3U,4U,7U}7
i<1000

@67 — g @
@231 —

(4) 2->3-4-5.6-7
(d) Paths in Loop

(b) Control Flow

Figure 4: Example lllustrating Ranges of Iterations Associated with Branch Outcomes

4. Exploiting Branch Constraints in a Timing Analyzer

The analysis techniques described in the previous section to identify branch constraints could be used by a
variety of timing analyzers, which include those that use aménténear programming (ILP) sadv While an ILP
approach can be simple, g#at, and quite powerful, there are avfdisadvantages. & instance, an ILP approach
works best when each basic block can be associated with a single time, whichthitotime to be expressed as a
constraint associated with that block. Caching and pipelining change the context in which a block cxeddtbd e
and can often affect its associategarition time. While approachesveabeen suggested for addressing caching
behaior [1], it is still unclear har pipelining can be ééctively modeled across multiple blocks. More importantly
the time required for the analysis does not scale well with an ILP approach since thousands of constraints may ha
to be solved forwen relatvely small programs. Some programs that required onlyveséeonds of timing analysis
using more traditional approaches [11, 12] required minutes using an ILP approach [1]. In fact, ILP methods can be
used to sole mary compiler optimization problems, but are infrequently used in production compilers due to scala-
bility problems. Finally, when a timing requirement is violated, a user would tikk know where the time is being

spent in the code associated with the constraints. The timing analysis approach described in this paper not only

-10-

produces WCET and BCET predictions for an entire program, but ale® je WCET and BCET for each func-
tion, loop and path in the program [13h contrast, an ILP approach only calculates a single WCET and BCET pre-
diction for the entire program. Thus, the authors decided it woulddsthwhile to irvestigate hev branch con-

straints could be exploited by a non-ILP based timing analyzer.

Figure 5 depicts theverall organization of the non-ILP timing analysis\w@onment that was modified to
exploit branch constraint information. An optimizing compiler [143smused to produce controlviland branch
constraint information as a side effect of the compilation of a Tileis information includes the number of itera-
tions associated with loops in the progrﬁ{ﬁ} A static instruction cache simulator uses the contreV floforma-
tion to construct a control-flo graph of the program that consists of the call graph and the controbfleach
function. Theprogram control-flav graph is then analyzed and a caching categorization for each instruction in the
program is produced [15]A separate categorization isvgh for each loop teel in which the instruction is con-
tained. Theseateyorizations are described in Table 4. Data caching categorization and anagsmtwused in
this study Next, a timing analyzer uses the controlfland constraint information, caching categorizations, and

machine dependent information (e.g. pipeline characteristics) as input édimidg predictions [16, 11, 17].

Given a rograms control-flow information and instruction caching categorizations along with the processor’

instruction set information, the timing analyzer thendsrbest-case and worst-case estimates for each path, loop

< Control Flow Timing | User Timin
Source andConstraint 9 } . .g
Files Information Analyzer | Interface Predictions

Cache Static Instruction Machine User
) . Caching Dependen Timing
Configuration Categorizations | Information Requests

Figure 5: Overvie/ of Process to Obtain Timing Predictions

L1f the number of iterations cannot be determined by compile-time analysis, then the user is prompted for the minimum and alaximum v
ues of the variables on which the loop dependkewise, the user can specify this information as assertions within the source codeSpe&i}.
fying minimum and maximum values o&wables is much safer than specifying the number of loop iterations since the uservisy®babre
of the code generation strategies or optimizations performed by the compiler that may affect the number of ilexattedsrea loop.

-11-

Table 4: Definitions of Instruction Categories for Worst-Case Analysis

Caching Catgory Definition
always miss The instruction is not guaranteed to be in cache when it is referenced.
always hit The instruction is guaranteed to be in cache when it is referenced.
first miss The instruction is not guaranteed to be in cache on its first reference each time the loop is

executed, but is guaranteed to be in cache on subsequent references.

first hit The instruction is guaranteed to be in cache on its first reference each time the yegp is e
ecuted, but is not guaranteed to be in cache on subsequent references.

and function within the progranilo gatically estimate the caching behavior of a program as accurately as possible,
functions are distinguished by function instances. An instance depends on the calling sequence, that is, it depends
on the immediate call site within its caller as well as the cal®il site, etc. The instandeof a function corre-

sponds to théth occurrence of the function within a depth-firsvéraal of the call graph [16]A timing analysis

tree is constructed, where each node of the tree corresponds to a loop or function in the function instance graph.
Each node is considered a natural Iadpnode that represents a function instance is treated as a loop that will iter

ate exactly once when enterethe timing analyzer determines the set of possible paths for each node. The loops in
the timing analysis tree are processed in a bottom-up matmether words, the WCET and BCET for a loop are

not calculated until the times for all of its immediate child loops arevknorhismeans that the timing analyzer
determines xecution time for programs by first analyzing the innermost loops and functions, and proceeding to
higher level loops and functions until it reachesain() . After processing thenain function, a graphical user

interface is imoked that allows the user to request predictions for specified portions of the program [18].

The remainder of this section will describe the details @f tiee timing analyzer makes use of the branch
constraints to compute the WCET and BCET predictions for a particular loop or funistiparticular constraints
on paths are generated from the branch constraks.example, effect-based branch constraints can be used to

determine if a gien path is infeasible, or that one path cannot felebme other path on a subsequent iteration of

2 A natural loop is a loop with a single entry block. While the static simulator can process unnatural loops, the timing analyzer is restricted
to only analyzing natural loops since it would be difficult for both the timing analyzer and user to determine the set of possible blocks associated
with a single iteration in an unnatural loobikewise, the timing analyzer is also restricted to direct calls and nonnezyregrams. ltis often
difficult to automatically determine the set of functions that could vmkéd with an indirect call. While cycles can be detected in a call graph
and could be viewed as a loop, it would bdidift for a timing analyzer or a user to determine the number of iterations through syath.altc
should be noted that unnatural loops and indirect calls occur quite infrequently in typical C applications.

-12-

the loop. Further constraints arise from analyzing which paths>eaute on the first iterationFor each pathp,
iteration-based constraints are used to determine the range of iterations irpwiagheecute. Oncehe path con-
straints hge keen calculated, tiyeare used in the worst-case and best-case loop analysis algorithms. The purpose of
using these path constraints is to tighten tkeewion time predictions.For instance, if the timing analyzer can
determine that the longest (shortest) path is infeasible or canaalyte for a proper subset of the logfierations,

then the WCET (BCET) bound will be tighter.

4.1. AnalyzingBranch Constraints to Create Path Constraints

The timing analyzer uses the branch constraints to calculate a minimum and maximum number of iterations
associated with each path during theosition of a loop. Table 5 depicts wrst-case information associated with
each loop path described in Figures 2(d), 3(d), and 4f@le 6 shows the analogous best-case path iteration infor
mation for each loop path described in Figure 2(d). The second and third example loops are not shown in Table 6
because their best case iteration information is identical to their worst case information from Table 5. The first loop
example from Figure 2 does Ve@a dfferent number of iterations for worst case and best case, and this results in a
different set of possible iterations and number of maximum iterations for each path. The total number of loop itera-
tions is automatically calculated using techniques described Wiopsework [5]. A loop pathis a sequence of
blocks in a loop connected by controlvfidransitions. Eaclpath starts with the loop headdgxit paths are termi-
nated by a block with a transition out of the lodpontinuepaths are terminated by a block with a transition to the
loop header The next two columns indicate the range of possible and unique iterations associated with each path.
Passible iteationsindicate in which iterations the specified path can possibly leatdknique iteationsindicate in
which iterations only the specified path could beetakThepossible and unique iterations are used to constrain the
maximum and minimum number of iterations in which a path can be taken, which are shown in theofinal tw
columns. Ifthe timing analyzer determines that a pptimay be taken on at most one iteration, tpea called a
oncepath. Thepresence of a once path in a loop causes the unique range and the minimum number of iterations
corresponding to each of the other paths to be reduced byFanénstance, for the loop in Figure 4, path 1 is a
once path.Consequentlythe unique range and minimum iteration information for paths 2-4 are updated to reflect

the possibility that path 1 mayesute one time.

-13-

Table 5: Worst-Case Path Information for Figures 2(d), 3(d), and 4(d)

Example Total Loop | Pah | Exit | Continue Possible Unique Minimum | Maximum
P Iterations ID | Pah Path Iterations Iterations Iterations| Iterations
. 1 Y N [1001..1001] 0 0 1
Loop in 2 Y N [1001..1001] 0 0 1
1,001 3 N Y [1000..1000] O 0 1
Figure 2 4 N Y [2..1000] g 0 500
5 N Y [1..1000] [1..1] 1 500
. 1 Y Y [1..1000] O 0 1,000
L IR, 2 | v Y [1..1000] 0 0 1000
Fiqure 3 ’ 3 Y Y [1..1000] O 0 1,000
9 4 N/A N/A N/A N/A N/A N/A
. 1 Y Y [1..1000] 0 0 1
Loop in 1000 2 N Y [1..250] [1..250]-1 249 250
Fiqure 4 : 3 Y Y [751..1000] | [751..1000]-1 249 250
9 4 N Y [251..750] [251..750]-1 499 500

Table 6: Best-Case Path Information for Figure 2(d)

Loop Total | Path | Rth | Possible| Unique Min | Max
Iters | Type ID Iterations| lters Iters | lters
Loop it 1 [2..2] O 0 1
in exit 2 [2..2] O 0 1
Figure 2 cont 3 [1..1] O 0 1
2 cont 4 N/A O 0 0
cont 5 [1..1] O 0 1

Figure 6 gves a high-level description of the algorithm used to calculate the informatigengin the last four
columns of Table 5The algorithm is ayanized into elgen geps. Exceptor the construction of the REM_SELF
table in step 3, the complexity of the algorithn®($32), whereP is the number of paths in the Iof’)ﬂn practice, the
construction of the REACH_SELF table was not time consuming since we found that most paths in a loop could
either immediately follev themseles or could only exit the loop. The following section provideangples to illus-

trate hov this information is calculated.

4.2. UsingEffect-Based Constraints

Effect-based constraints are either associated with a block or a transition between Btodexh path in a
loop the timing analyzer tvarses the basic blocks and transitions between blocks in the order in which the path

would be &ecuted. Wheran efect-based constraint is encountered, it is added to a list of constraints for that path.

3 If the number of paths within a loop@eds a reasonable limit, then the contrakfie partitioned to reduce the timing analysis com-
plexity [19].

-14-

struct path {
struct range_node range; I*
struct range_node unigrange; I*
boolean once; /*
int nonuniqiters; I*
int miniters; I*
int maxiters; I*
int set; I*
h
boolean CAN_FOLLOWI[numpaths][numpaths]; /*
int REACH_SELF[numpaths]; I*

/* 1. disrggard infeasible pathst/
FOR each path P in the loop DO
Propagate effect-based constraints in P.

iterations when path can be taken

iterations when only this path can be taken

path can be taken at most once for each laepution
number of iterations when otheveslapping paths can be taken at most once#
minimum times path can be taken for a logpogition
maximum times path can be taken for a lopgcation

set of paths in loop withverlapping ranges with this path

can one path follw another
number of iterations before a path can falitself

/* 6.
FOR each path P in the loop DO
Propagate iteration-based constraints in P.

| F any transition in P is not feasible THEN P->range = P->range n
Disregard P from the analysis. iteration range at end of P.
. . I F P->range = 0O THEN
I* 2. calculate CAN_FOLL®V table using effect-based constrairits ; .
FOR each path P in the loop DO Disregard P from the analysis.
IF P is a c ontinue path THEN I*7. constrain iterations of each path that cannot reach itgelf

FOR each path Q in the loop DO
Propagate effect-based constraints
at end of P through Q.
I F any infeasible transition in Q
CAN_FOLLOWI[P][Q] = FALSE.
ELSE
CAN_FOLLOWIP][Q] = TRUE.

THEN

ELSE
FOR each path Q in the loop
CAN_FOLLOWIP][Q] = FALSE.

/* 3. calculate REACH_SELF table using CAN_FOLWGable */
FOR each path P in the loop DO
| F CANFOLLOWI[P][P] THEN
REACH_SELF[P] = 1.
ELSI F P is n ota continue path
REACH_SELF[P] = 0.
ELSE
Recursively inspect the CAN_FOLLOW table
to determine the shortest number of paths
to be traversed before P can be reached.
Zero represents P cannot reach itself.

DO

THEN

I* 4. processnceconstraints*/
FOR each path P in the loop DO
I F a once constraint was found on
a t ransitionin P THEN
P->once = TRUE.
ELSE
P->once = FALSE.
P->nonunigiters = 0.
FOR each block B in P DO
IF B’s other outgoing transition has a
once constraint THEN
P->nonunigiters += 1.

/* 5. initialize possible iteration path information, whéte

represents the total loop iteratioris

FOR each path P in the loop DO
P->range = 0.
I F P is a ¢ ontinue path THEN
P->range = P->range O [1.max(N-1,1)].
I F P is an e xit path THEN
P->range = P->range O [N.. NJ.

Construct a DAG D representing the execution
order of paths P where REACH_SELF[P] == 0.
FOR each non-leaf path P in D, where P is not
processed until all paths it can reach
are processed DO
S = firstimmediate successor of P.
P->range.low = S->range.low - 1.
P->range.high = S->range.high - 1.
FOR each remaining path S that is an
immediate successor of P in D
I F S->range.low - 1 < P->range.low
P->range.low = S->range.low - 1.
| F S->range.high - 1 > P->range.high
P->range.high = S->range.high - 1.

THEN

THEN

/* 8. calculate unique iterations for each path
FOR each path P in the loop DO
P->unigrange = P->range
FOR each path Q, where Q #z P DO
P->unigrange = P->unigrange - Q->range.

/*9. assign minimum number of iterations for each p&th
FOR each path P in the loop DO
P->miniter =
number of iterations in P->unigrange.
P->miniter -= P->nonunigiters.

/* 10. assign maximum number of iterations for each p4th
FOR each path P in the loop DO
| F REACH_SELF[P] = 0 OR P>once THEN
P->maxiter = 1.
ELSE
P->maxiter =
number of iterations in P->range.
| F REACH_SELF[P]>1 THEN
P->maxiter =
ceil(P->maxiter/REACH_SELF[P]).

/*11. assign each path to a set of patiis
s = 0.
FOR each path P in the loop DO
I F P->range n with existing set i
P->set=1i;
ELSE
P->set = ++s;

THEN

Figure 6: Algorithm for Calculating Path Iteration Information in Table 5

-15-

constrain possible iterations using iteration-based constraints

If another effect-based constraint is later encountered for that same branch, then the current constraint is nullified.

Effect-based constraints can be used to detect infeasible pathse 7 depicts the constraints being propa-
gated through path 4 in Figure 3(d). The transition from block 2 to block 3 causes the branch in block 5 to be placed
in ajumpstate §J). Thebranch in block 5 is encountered with this constrabd) &till in effect and the transition
from block 5 to block 6 in path 4 is deemeddlle Whensuch an infeasible path is encountered, the timing ana-

lyzer disrg@ards the path from the analysis to yaet ary additional analysis time to be spent on it.

{2F,53} {2F,53} {2F53} .

{2F,5J} {2F,5J} {2F,5J} invalid

Figure 7: Path 4 in Figure 3(d) Is Not Feasible

The maximum number of iterations for a path can sometimes be constrained by information associated with
effect-based constraints. Consider paths 1 and 2 in Figure 2(d), whiekitgvaths because thend with a transi-
tion to block 10 that is outside the loop. Branch constraint 5 in Figure 2(c) indicates that when bjoitk13 ()
in Figure 2(b) is recuted, block 8 quit'=0) will jump to block 10. When the timing analyzer detects that an
effect-based constraint can reach the end of the path without nullification, the timing analyzer propagates the con-
straint through all the paths of the loop to see if it can reach the branch identified in the corlsgamet8 illus-
trates that the constraint causing the branch in blockj@p (8J) reaches the end of path 3 and that paths 2, 3, 4,
and 5 cannot follr path 3 since therequire a fall through from block 8 to block &igure 9 shows that the con-
straints for branch 4 reaching the end of paths 4 and 5 from Figure 2 contains the opposite outcome of branch 4 in

their respectie paths. Thiscauses these paths not to be taken on the next loop iteration.

{8F} {8F,9J} {2F,83,93} {83}
{8F} {8F,9J} {2F,8F,9J} {2F,83,93}

path 3: B n
8y alid
:> paths 2,3,4,5:

Figure 8: Paths 2, 3, 4, and 5 Cannot RelRath 3 in Figure 2(d)

-16-

path 4: {8F} {8F,9J} {2J,8F,9J} {2J,43,8F,93} {4J,8F}
{8F} {8F9J} {2J,8F9J} {2J,4F8F9J} {2J,4J,8F9J}

(8] =l9)—2]

path 5: {8F} {8F.9J} {2J,8F,93} {2J,4F,8F,9J} {4F.8F}
{8F} {8F9J} {2J,8F9J} {2J,4),8F9J} {2J,4F8F9J}

(8] =l9)—=2] 6]

Figure 9: Paths 4 and 5 Cannot Immediately Fotloe Same Path in Figure 2(d)

A CAN_FOLLOW matrix is constructed by the timing analyzer that indicates for each path the set of other
paths that can ¢glly follow it on the next iteration. If the constraint from one path can reach its associated branch
in other paths without being nullified, then such paths the¢ fransitions that do not satisfy the constraint are
marked as illgd in the matrix. No paths are alled to follov a path that only gits. Table 7 depicts the matrix for

which paths can gly follow each path that are shown in Figure 2(d).

Table 7: Paths That Can Immediately Fuallthe Loop Paths in Figure 2

Current || Rths That Can Immediately Follow
Pah in
Loop 1 2 3 4 5
1 N N N N N
2 N N N N N
3 Y N N N N
4 N Y Y N Y
5 N Y Y Y N

After the matrix is completed, it is examined to see if restrictions on the number of iterations associated with
each path can be applied. In general, the timing analyzer examines the matrix for each path to determiest the fe
number of other paths required to bevéraed before the current path can keceted agin. If the algorithm indi-
cates that a path cannot reach itself, then the path will be assigned a maximum of one ifathatoh, 2, and 3 of
Figure 2(d) are all assigned a maximum number of one iteration becaysanhet reach themselves afteeeut-
ing. If a path cannot directly foll itself, but caneentually be reached again, then it cannaicate on eery itera-
tion of the loop. If the algorithm indicates that the numbeéf paths required to bexecuted before aontinuepath
can reach itself is greater than one, then it is assigned a maximum number of iteratidvissframm in Equation 2,
whereR is the possible number of iterations for the palaths 4 and 5 of Figure 2(d) can onlyeeute again on the

second iteration after it laskecuted. Thuspaths 4 and 5 are assignel(999/2) ancteil(1,000/2), respeatély, or

-17-

500 maximum iterations.

R
_Ro 2
M=k @

4.3. UsingEffect-Based Constraints On Entering a Loop
The previous section discussedihioranch constraints are used to create path constraints within aBap.

there are further constraints that arise when the loop is enteredfétatdien paths can initiallykecute. Thesteps

taken by the timing analyzer related to these initial constraints are as follows.

usedata-flav analysis to determine the initial constraints
determinehe first iteration on which each path in the loop catete
updatehe range of possible iterations for the paths

A w DD

updatehe minimum and maximum number of iterations of the loop
These steps are described in this section.

The timing analyzer performs dataxfl@nalysis [10] to calculatans andoutsfor each block in a function.
The algorithm for accomplishing this uses a standard datatflohnique, and is gén in Fgure 10. The inner

FOR-loop in Figure 10 combines the effects from each predecessor block one at @h@mimplementation uses

FOR each function in the program DO
DO

change = FALSE
FOR each block in the function DO
in.j = NULL
in.f = NULL
in.u = NULL
| F the block has at least one predecessor (pred) THEN
in.j = pred.out.j
in.f = pred.out.f
FOR each other predecessor block (pred) DO
in.j n= pred.out.j
inf n= pred.out.f
in.u="7(in,j O in.f)

Initialize this.f, this.u and this.j based on the branch
constraints contained in this block.

out.j = this.j O (in.j - this.f - this.u)

out.f = this.f O (in.f - this.j - this.u)

out.u = this.u O (in.u - this.j - this.f)

| F any in or out bit vector changed THEN
change = TRUE

WHI LE change

Figure 10: Calculating Ins and Outs

-18-

six bit vectors for each block: in.jump, in.fallthru, in.unknown, out.jump, out.fallthru and out.wnkndhejump,
fallthru and unknan bit vectors indicate which branches are made to jump, fall through or becomenankno
respectiely, based on this blockFor determining the ins and outs of a block, exactly one of the three corresponding
bit vectors must be set, since a branch must be in either a jump, fall through or unknowBasthtblock also con-
tains bit vectors indicating if it causes a branch to jump, fall through or becomewmkttonever, the current
block may hse ro &fect on the branch in question, so it is possible that the=bibrs representing the effect from

the current block may all be zero.

The data-flav equations 3 through 8 determine the ins and outs. Equations 3 andv4hsticthe current
block’s ins for the jump @ll through) branches are simply the intersection of the jump (fall through) bit vectors of
the predecessors’ outEquation 5 states that the ins for the unknown branches are the complement of the union of
the ins for the jump and fall through branch&sr example, if one predecessor out says that a certain branch will
fall through, but another predecessor out says the same branch will jump, then the in of the current blook will sho

that that branch is unknown due to the conflict between the predecessors.

B.in.j = - pr:eds(B)p' out. j 3)
B.in. f = - p?ediB)p. out. f @
B.in.u=(B.in.j] B.in. f) (5)
B.out. j=B.j [](B.in.j-B. f-B.u) (6)
B.out. f =B. f [] (B.in. f =B.j - B.u) (7)
B.outu=B.u[] (B.in.u-B.j-B.f) (8)

Calculating the outs using Equations 6-8 is also straigh#ii@w If the current block has no effect on a
branch, then the out bit vectors will be assigned the value of the ins. Otherwise, the effect of this blaekridi#l o

the ins to determine the outs of this blodkor example, consider a situation where the block in question makes a

-19-

particular branch in blockjump, while the d&ct of the ins is to makthat jump fall through. In other words, the
value of bit positionB.ji is 1, and the bit positiorB.in.ji, B.fi and B.uI equal 0, so that according to Equation 6 the
value ofB.out.l' is set to 1. In this case, since this block has tetgfit overrides the ins, so the value of the out bit

vectors will represent that the branch will jump. Note that a block caa #anost one effect on aggn branch.

After the ins and outs ofvery block are calculated, the timing analyzer uses the outs of the preheaders to see
which paths canxecute on the first iterationThe algorithm in Figure 11 sefson_first to true (false) if it
determines patp can (cannot)xecute on the first iteration. The cases in whicbn_first is false correspond
to situations where a branch in the path contradicts the information from the preheaddf ayisth is found not
able to &ecute on the first iteration as a result of this algorithm, then in some cases it may be assigned fewer maxi-
mum iterations, and a more accurate timing bound can be obtained. The prehmadensstraints are propatgd

through each pathAny path that does not opp¢he preheaders’ constraints canrxeaeite on the first iterationfor

Initialize pre.j and pre.f to be the intersection of the
respective bit vectors of all the header’s immediate
predecessors that are not in the loop.

Initialize pre.u to be the complement of the union
of pre.j and pre.f.

FOR each path (p) in the loop DO
I F we already know the path cannot execute on
first iteration THEN
CONTINUE

p.on_first = TRUE
FOR each block (b) in path p DO
| F there is no branch in this block THEN
CONTINUE
| F all three bit vectors at bit b are zero THEN
CONTINUE

/* if the preheader says this branch must jutp
pre.j[b] THEN
I F this is not the last block in path THEN
I F number of next block in path==b + 1
p.on_first = FALSE
ELSE
| F a branch transition is part of a
different path in the loop THEN
p.on_first = FALSE

[* if the preheader says this branch must fall throdgh
ELSI F pre.f[b] THEN
| F this is not last block in path THEN
I F number of next block in path'=b + 1
p.on_first = FALSE
ELSE
I F a f all-through transition is part of a
different path in the loop THEN
p.on_first = FALSE

Figure 11: Which Paths Can Execute on First Iteration

-20-

example, consider the loop in Figure Zhe application of the algorithm in Figure 11 to the paths of this loop is
depicted in Figure 12This figure shows the propagation of the preheader constraints to determine which paths can
execute on the first iteration. The solid an® indicate transitions that occur between blocks inside the loop, while
dashed arrows indicate transitions to or from a block outside the Blogk 1 is the preheader of the loop, and
block 10 is the block to which the loogits. Thevalue ofodd is initialized to 0 in block 1, which is in the outs of

the preheader of the loop, so the associated branch constridd}.isThus, on the first iteration of the loop, the
branch in block 4 must be k. Rath 4 contains a transition from block 4 to block 5, which is a fall through situa-
tion, contradicting the preheader constraifibe timing analyzer detects that path 4 canretwe on the first itera-

tion.

The algorithm in Figure 11 also detects if a loop exit transition in a path causes it to be ineligibteite en

the first iteration. Consider exit paths 1 and 2 from the loop in Figufeah. 1 consists only of block 8, so this

path 1:

{43,8F,93} {4J,8F,93}
{43,8F,93} invalid

path 2:

{43,8F 93} {4J,8F9J} {4J,8F9J}
{43,8F9J} {4J,8F9J} invalid

path 3:

{43,8F93} {4J,8F9J} {4J,8F9J} {4J8F9J} {2F,4J,8,9} {43,83}
{43,8F93} {4J,8F9J} {4J8F9J} {2F4J,8F9J} {2F4J,8J,9J}

(1} =8] 9]

path 4:
{43,8F9J} {4J,8F9J} {4J,8F9J} {4J,8F9J} {23,43,8F,93}
{43,8F 93} {4J,8F9J} {4J,8F9J} {2J,4J,8F9J} invalid
[1f---~8] 9
path 5:
{4J,8F,93} {4J,8F9J} {4J,8F9J} {4J,8F9J} {2J3,4J,8F,9J3} {2J,4F,8F,9J} {4F,8F}

{43,8F93} {4J,8F9J} {4J,8F9J} {2J,4),8F9J} {2J,4],8F9J} {2J,4F.8F9J}

(1} =8] 9] 4] 6]

Figure 12: Propagating Preheader Constraints for Figure 2

-21-

block is considered the last block in the pafihe timing analyzer determines the successor block to block 8 that is
located outside the loop, which is block 10. Tk &ansition from block 8 to block 10 is a jump virver the pre-
header constraint is for the branch in block 8 to fall through&Bemnstraint shown for path 1 in Figure 12)his
contradiction means that path 1 canndacete on the first iterationPah 2 has a similar situation. Its last block is
block 9, and its successor that is located outside the loop is blockol&it the loop by taking path 2 implies that
the branch in block 9 must fall throughytlihe preheader constraint says that it must jump93eenstraint shan

for path 2 in Figure 12). So the timing analyzer concludes that path 2 caenoteson the first iteration as well.

For those paths that cannoteeute on the first iteration, the next step is to determine on which iteration it can first
be talen. Table 8 shows a Path Distance matrix for the example loop in Figure 2 thatvesl demin the Can &llow
matrix given in Table 7. The table entries containirgndicate that it is impossible for one path to reach the other
path. For paths that cannoiecute on the first iteration, the timing analyzer determines on which iteration it can
execute as follavs. LetP be the set of paths that caxreeute on the first iteration, and Btbe the set of paths that
cannot. Br each patly in Q, the timing analyzer finds the shortest number of iterations to igelom ary path in

P. This shortest distance plus 1 represents the first iteration on whiclhy path eecute. Continuingwith the
example from Figure 2, path 4 belongs to the@efath 5 is a path iR, and according to dble 8 the path distance
from path 5 to path 4 is one iteration. So the timing analyzer concludes that path 4 caeditst en the second
iteration, and the range of possible iterations becomes [2..1000] in worst case and [2..2] for bésbwass, in

the best case, path 4 is not an exit pathjts range of possible iterations is [2..2], namely the last iteration. This is

a montradiction since anpath that canxecute on the last iteration must be an exit path. Thus, path 4 is an infeasible

Table 8: Path Distance Matrix for Figure 2

Current | How Many lIterations to Reach Path
Path in
Loop 1 2 3 4 5
1 00 00 00 00 00
2 00 00 00 00 00
3 1 00 00 co 00
4 2 1 1 2 1
5 2 1 1 1 2

-22-

path in best case, and its maximum iterations is set to 0 as shown in Table 6.

Similarly, the timing analyzer determined that exit paths 1 and 2 couldkeatte on the first iterationHow-
eva, the path distances from path 3 to path 1 and from path 5 to path 2 are both one iteration as indelale®.in T
Since both path 3 and path 5 caearite on the first iteration, paths 1 and 2 can fiket@e on the second iteration
of the loop. For best case analysis, their ranges of possible iterations are adjusted to [2..2] as shown in Table 6.
Their worst-case possible iterations are not updated singehtiek already been determined to be [1001..1001] in

Table 5.

The timing analyzer enforces a rule that i &xit path can gecute on the first iteration, then it must allall
ext paths to be chosen for the first iteration. The reason for this rule is that in best case, the BCET is assumed to
occur for the minimum number of iterations. Consider a loop having three paths, where paths A and C are exit paths
and path B is a nonxi path. Pah A can exit on the first iteration, but path C can only exit afteciging path B.
If path A is significantly longer than paths B and C, then it is possible thatdbatien of paths B and C (twitera-
tions) may be shorter than theeeution of path A (one iteration). The authors bedidhat requiring the best-case
loop analysis algorithm to repeatedly examine a loop for varying numbers of iterations woulglpénefficient.
Specifying the minimum number of iterations before starting loop analysis makes the algorithm much simpler and
only slightly more conseative in this highly unlikely scenario. In the ab® <enario, the timing analyzer will
male the conserative assumption that path C cameeute on the first iteration, and that the minimum number of

iterations is still one.

If it turns out that no exit path cameeute on the first iteration, then the timing analyzer updates the number
of iterations of the loop based on when the exit paths xamu. Inthe example from Figure 2, botkiepaths can
only execute on the second iteration, so the timing analyzer sets the minimum number of iterationsrtdhdugh
the compiler had previously determined, before this path analysis was performed, that the minimum number of itera-

tions would hae keen 1 [5].

-23-

4.4. Usinglteration-Based Constraints

The maximum number of iterations can sometimes be constrained by analyzing iteration-based constraints.
Tables 3 and 4 also shwothe range of possible iterations that is associated with each path. The header block is
assigned a range that spans all iterations of the loop. This range is propagated through each path. When a transition
is encountered that has an iteration-based constraint, the range in the constraint is intersected with the range in the
current block in the path. Figure 13 illustratesvhiteration-based constraints are propagated through path 4 in Fig-
ure 4(d). The transition from block 3<€249) to block 4 results in the range [1..1000] being intersected with
[251..1000], which is the range specified in constraint 5 of Figure 4(c). The transition from bioek’80() to
block 5 results in the current range of [251..1000] being intersected with [1..7B0%, path 4 can only possibly

execute in iterations [251..750].

[1..1000] [1..1000] [251..1000] [251..750] [251..750] [251..750]
[1..1000] [251..1000] . [251..750] [251..750

Figure 13: Iteration-Based Constraints Propagated Through Path 4 in Figure 4

If a path can only bexecuted in a gien range of iterations, then the maximum iterations in which that path
can &ecute cannot be greater than the number of iterations in the rangath with no possible iterations is infea-
sible and is remeaed from the list of paths by the timing analyzédote that the range of a path that orteis
always the last iteration of the loop, which is the case for paths 1 and 2 of Figurd_ik@)ise, if path A cannot
reach itself and can only be immediately followed by a different path B, which has a range [Bmin..Bmax], then path
A's range cannot span more than [Bmin-1..BmaxHdr instance, Table 7 stws that path 3 of Figure 2(d)vedys
leads to path 1, which has an iteration range of [1001..1001]. Thus, matims3ible range of iterations is

[1001-1..1001-1] or [1000..1000] for WCET analysis.

The minimum number of iterations of a path is calculated by simply subtracting the possible range of itera-
tions of all other paths in the loop from the possible range of iterations for the current path. This determines the
unique set of iterations for the current path, which is the minimum number of times that the path hasdotbe. e
There is one exception to this rule. Consider path 1 in Figure 4(d). Its maximum number of iterations is one due to
constraint 32J oncg in Figure 4(c), which is described in Section 3\®e b not reduce the range of unique itera-

tions of the other paths, but do indicate that one iteration in these paths may not be unique.

-24-

4.5. Usingthe Path Constraints in Loop Analysis

The authors decided to use the minimum and maximum iterations associated with each loop path to obtain
tighter loop predictions without restricting the order in which these pathvauaied. Theravere sgeral reasons
for using this approach. First, the approach supports paths thakearneeat most onceubin ary iteration. ©r
example, consider path 1 of the loop in FigureThis situation may occur frequently in numerical applications.
Special conditions are often checkfor the diagonal elements of a matrix (diagonal systems). Second, the approach
deals with paths that @ dependencies on other paths, such as paths 4 and 5 in Figkireafly, the timing ana-
lyzer often calculates arvarage WCET and BCET for a loop using aerage number of iterations when the num-
ber of iterations can vary depending on th&ue of a outer loop counter variable [5, 9]. Using this approacivsllo
the calculation of a safesrage WCET (BCET) since the longest (shortest) paths are selected first in thewvespecti

loop analysis algorithms.

In addition, the timing analyzer determines sets of paths, where the range of iterations of the paths in one set
do not werlap with other sets. Each path is assigned to a single set of gdtagiming analyzer uses the maxi-
mum number of iterations that can beauted by a set of paths, which is the number of iterations in theerasege.
Table 9 depicts an example with 4 paths and 2 deéeh set of paths can onlyeeute a maximum of 50 iterations.
Consider only using the maximum iterations of each path , as opposed to checking if the set to which a path belongs
has exhausted its number of iteratiofisvo paths from a single set could be selected and a signifivargstima-
tion may occur when the paths in one set requireymaore cycles than the paths in the other set. This approach
has limitations. Consider if a fifth path existed in this example which caetdie in ay iteration of the loop All

of the loop paths would be assigned to a single set, which could result in a atweséming prediction. The tw

Table 9: Example lllustrating Use of Path Sets

Possible Min Max
Path Iterations | Iters | lters Set
1 [1..50] 0 50 1
2 [1..50] 0 50 1
3 [51..100] 0 50 2
4 [51..100] 0 50 2

-25-

subsections that fole describe the worst-case and best-case loop analysis algorithms thay émepfmath con-

straint information.

Figure 14 shows o the WCET loop analysis algorithm uses the path constraint informatietiN be the
maximum number of iterations aitbe the number of paths in a loophe DO-WHILE loop in step 3 will process
at most the minimum dfl or 2P total iterations since the first misses and first hits in each path can miss or hit at

most once, respeutly.

*1. calculate required and non-required path information
req_iters = 0.
FOR P = each path in the loop DO

P->req_iters = P->min_iters.
P->nonreq_iters = P->max_iters - P->min_iters.
req_iters += P->min_iters.

nonreq_iters = N - r eq_iters.

[* 2. process all iterations of the loof)
iters_handled = 0.

pipeline_info = NULL.

VWHI LE iters_handled < N DO

/* 3. process iters while longest path has a first miss or first/hit
DO

I F req_iters < N - i ters_handled THEN
Find longest path P where
P->req_iters+P->nonreq_iters > 0 &&
P->set.maxiters > 0.
ELSE
Find longest path P where
P->req_iters > 0 &&
P->set.maxiters > 0.
Concatenate pipeline_info with the current
worst-case union of executable paths.
iters_handled += 1.
I F P->req_iters >0 THEN
P->req_iters -= 1.
req_iters -= 1.
ELSE
P->nonreq_iters -= 1.
nonreg_iters -= 1.
P->set.maxiters -= 1.
WHI LE encountered a first miss or first hit

AND iters_handled < N
[* 4, Efficiently process iterations for the current longest p#th
| F iters_handled < N THEN

nonreq_iters_to_do =
min(nonreq_iters, P->nonreq_iters,
P->set.maxiters - P->req_iters).
iters_to_do = P->req_iters + nonreq_iters_to_do.
req_iters -= P->req_lters.
nonreq_iters -= nonreq_iters_to_do.
P->set.maxiters -= iters_to_do.
P->req_iters = 0.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info iters_to_do
times with current worst-case union.
iters_handled += iters_to_do.

Figure 14: WCET Loop Analysis Algorithm

-26-

The algorithm selects the longest path on each iteration of the loop from the set of paths that can still possibly
execute. Inorder to demonstrate the correctness of the algorithm, one musttsiiono other path for agin itera-
tion of the loop will produce a longeronst-case time than that path selected by the algorithm. Descriptions of ho
the caching categorizations and pipeline information is used in the loop analysis and correctness arguments about
selecting the longest path using thesegmizations and information & keen gven in previous work [16, 11].
Thus, it remains to be shown that each time a path is selected, it is really chosen from the set of paths that can still
possibly &ecute given that the minimum and maximum number of iterations for each pashsafely (but perhaps
conservatiely) estimated. A path’s rumber of required iterations is its minimum iterations to be perfornidu:
non-required iterations of a path is thefeliénce between its maximum and minimum number of iteratidrnzath
is initially chosen in the IF-THEN-ELSE construct at thgibaing of the DO-WHILE loop in step 3 of Figure 14.
If the iterations remaining is greater than the required iterations left to be processed (sum of eachnpaiirn
iterations not yet processed), then the path selected is chosen frgratlarthat has aniterations that can be per
formed. Otherwisethe iterations remaining must be equal to the required loop iterations remaining and the path
must be selected only from paths thatéhgequired iterations left to be performed. Step 4 of the algorittim ef
ciently uses repeated instances of a path that has no first misses or first hits and thus will remain the longest path
since its worst-case behavior cannot chanfeis code processes the remaining required iterations of the path and
the minimum of the remaining non-required iterations of the path or of the entire loop. Therefore, the set of paths
that can still possiblyxecute is accurate since azgh path’s required iterations arevadys processed before its non-
required iterations and the number of non-required iterations to be processed for a pathadomeed to exceed

the number of non-required iterations remaining in the loop.

Figure 15 depicts the best-case loop analysis algorithm, which is for the most part analogoustst-tbase
algorithm described in the previous subsectids a preliminary step, the algorithm computes the number of
required and non-required iterations for each path,asdene in worst case. The rest of the algorithm consists of
two phases. Thérst phase finds the shortest p&tfor the first iteration.For the first iteration onlythe timing ana-
lyzer treats all first misses as misses and all first hits as hits when analyzing the cache behavior of all the paths’
instructions. Thenajor issue for selecting the shortest paik determining which paths are eligible to be selected.

If the loop has at least one non-required iteration, Bheray be chosen from gwmof the continue pathsHowever, if

-27-

/* 1. calculate required and non-required path informatfén
req_iters = 0.
FOR P = each path in the loop DO

P->req_iters = P->min_iters.

P->nonreq_iters = P->max_iters - P->min_iters.

reqg_iters += P->min_iters.

nonreq_iters = N - r eq_iters.
pipeline_info = NULL.
[*2. process the first iteration of the loop

first_miss_treatment = miss.
first_hit_treatment = hit.
I F req_iters <N THEN
Find shortest path P among the paths in which

P->req_iters + P->nonreq_iters > 0 && P->set.maxiters
ELSE
Find shortest path P among the paths in which
P->req_iters >0 && P->set.maxiters > 0.

Concatenate pipeline_info with the current
best-case union of executable paths.
iters_handled = 1.
| F P->req_iters >0 THEN
P->req_iters -= 1.
req_iters -= 1.
ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.
P->set.maxiters -= 1.

/* 3. process the remaining iteratiorts
VW LE iters_handled < N DO
first_miss_treatment = hit.
first_hit_treatment = miss.
| F req_iters <N THEN
Find shortest path P among the paths in which

P->req_iters + P->nonreq_iters > 0 && P->set.maxiters
ELSE
Find shortest path P among the paths in which
P->req_iters >0 && P->set.maxiters > 0.

nonreq_iters_to_do = min (nonreq_iters, P->nonreq_iters,
P->set.maxiters - P->req_iters).
iters_to_do = P->req_iters + nonreq_iters_to_do.
req_iters -= P->req_iters.
nonreq_iters -= nonreq_iters_to_do.
P->req_iters = 0.
P->set.max _iters -= iters_to_do.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info with the current
best-case union of executable paths.
iters_handled += iters_to_do.

Figure 15: BCET Loop Analysis Algorithm

-28-

> 0.

the loop has no non-required iterations, tifemay only be selected from those continue paths that eguired

The WHILE-DOloop in step 3 of Figure 15 represents the second phase of the best-case algorithm, which pro-
cesses all the remaining iterations of the loop after the fitste that the timing analyzer treats a function as a loop
with a single iteration, so its best case analysis will only perform the first phase of this algdnthm. second

phase, all first misses are treated as hits and all first hits are treated as misslesr words, the instruction cache

behaior is assumed not to change during the tastl iterations. Theeason for the difference in Wahe worst-

case and best-case loop analysis algorithms geained is due to the classification of first hits in BC&fiich can

only hit on the first iteration of a loop [17]. The method of selecting the shortesPstine same as in the first

phase. Onc® is selected, it is necessary to calculate the number of iterations to account fBy whtth is done

in the same manner as in the worst-case loop analysis. The timing analyzer Wwilfansal of its required itera-

tions, plus the minimum d®'s non-required iteration®’s set's maximum iterations remaining and the remaining
non-required iterations of the loop. Since the method of selecting the shortest path for the best-case algorithm is
analogous to selecting the longest path in the worst-case algorithm, the correctness argument for begldcase w

also follav analogously from the worst-case explanatioregisbove.

5. Results

The authors selected programs where ttee@ion paths were constrained by dependencies on datasvto
evduate the dectiveness of detecting and exploiting branch constraints. The programs used to assess the timing
analyzer dkctiveness are depicted in Table 10he SumoddeverSumnegpqsnd Summidallprograms correspond
to the examples illustrated in Figures 2, 3, and 4, resgBctiThe Desprogram contains a loop in which the irde
variable is being compared to constantsjirgd rise to iteration-based constraint8he Expint program performs
more computation when a loop variable is equal to a loggriant value on a single loop iteratio.he Frenel pro-

gram takes different paths on the odd ameheteps in the eduation of the seriesThe Gaujacprograms gecutes

Table 10: Test Programs That Are Constrained by Dependencies on Data Values

Name Descriptiomr Emphasis
Des Encryptand decrypts 64 bits
Expint Computesin exponential integral.
Frenel Computesoncomple& Fresnel integrals.
Gaujac Computethe abscissas and weights of a 10 point Gauss-Jacobi quadrature formula.
LU PerformsLU Decomposition on a 100x100 matrix
Sprsin Conmerts a 20x20 integer matrix into row-inxisl gparse storage mode.
Summidall Sumshe middle half and all elements of a 1,000 integer vector.
Summinmax | Sumthe minimum and maximum of the corresponding elements@Lf®00 integer vectors.
Sumngpos Sumshe ngdive, positive, and all elements of a 1,000 integer vector.
Sumoddeen | Sums the odd andven dements of a 1,000 integer vector.

-29-

different paths depending upon the specified iteration of a ldbp.LU program contains some nested loops in
which the the body of the inner loop may or may not be entered based on a condition in the ouiEnd&ysin
program does not perform a computation for a single column (the diagonal element) ofveatta roatrix. The
Summinmayprogram determines the minimum and maximum of each corresponding pair of elemewtsenttws
and these twtests are logically correlated. The first six programsahl& 10 can be found Mumerical Recipes in

CI[20, 21].

The results of wuating these programs are shown in Table Edr. each program a direct-mapped instruc-
tion cache configuration containing 8 lines of 16 bytes was titedas assumed that cache hits required guoiec
cache misses required ten cycles, and all data cache references were assumed to be hits. This is the same cache con-
figuration that was used in previous timing analysis studies [16, 1T He Observed Cyclesepresent theycles
required for an xecution with worst-case input dataThe number of cycles was measured by enhancing a tradi-
tional cache simulator [22] to perform pipeline simulation [2Bhe Estimated Cycleander the headingd/ithout
Branch Constraint Analysisand With Branch Constraint Analysisindicate the number ofycles estimated by the
timing analyzer without and with using branch constraints, resehcti The Estimated Ratids the Estimated
Cyclesdivided by theObserved CyclesNote that an estimated ratio of 1.0 represents a perfect predidtws, the
estimated ratio of 1.014 in theowst-case analysis iver 156 times more accurate than 3.192 (2.192 / 0.014), which
was dbtained when the branch constraint analysis was not uskdwise, the estimated ratio of 0.969 in the best-

case analysis isver 8 times more accurate.

The results she that exploiting branch constraint information in a timing analyzer can significantly tighten
the WCET and BCET predictionsThe programs-renel and Sumoddevermxecute alternating paths in a loop
depending upon a flagasiable. Oneof the alternating paths has a slightly longer WCET than the other path in both
of these programsThe timing analyzer was able to determine that the longer path of each program could only be
executed for one half of the iterations, which reduced ¥erastimations. Inhe case oSumoddeveimn best case,

the compiler originally determined that the loop had a minimum number of iterations wf thektiming analyzer

A large cache would not be interesting because the test programs would fit into cache and all of the misses would be compulsory misses.
A small cache shows that the timing analyzer can predict less-trivial cachingdreHakewise, having a line size greater than the size of a sin-
gle instruction tests the ability of the timing analyzer to detect hits due to exploiting spatial locality.

5 We nodified the desired relat eror of theExpintand Gaujacprograms so thewould not comerge early, which allowed us to obtain
an accurate maximum iterations for a loop and worst-case input data @bskeved Cycleim Table 11.

-30-

Table 11: WCET and BCET Prediction Results of the Test Programs

WCET Timing Prediction Results
Without Branch With Branch
Name Observed Constraint Analysis Constraint Analysis
Cycles Estimated Esti_m. Estim. Esti_m.
Cycles Ratio Cycles Ratio
Des 149,706 172,509 1.152 167,165| 1.117
Expint 58,217| 1,293,290 22.215 58,289 | 1.001
Frenel 47,749 48,887 1.029 47,783 | 1.001
Gaujac 786,786 790,116 1.004 787,134 | 1.000
LU 23,055,832 | 23,572,337 1.022 23,444,562| 1.017
Sprsin 28,339 28,664 1.011 28,404 | 1.002
Summidall 15,340 18,090 1.179 15,341 | 1.000
Summinmax 16,080 17,080 1.062 16,080 | 1.000
Sumngpos 11,067 13,068 1.181 11,068 | 1.000
Sumoddeen 15,093 16,112 1.068§ 15,102 1.001
Average 2,418,421 2,597,715 3.192 2,459,093 1.014
BCET Timing Prediction Results
Without Branch With Branch
Name Observed Constraint Analysis Constraint Analysis
Cycles Estimated Esti_m. Estim. Esti_m.
Cycles Ratio Cycles Ratio
Des 65,615 22,247 0.339 57,920 | 0.883
Expint 125 118 0.944 118 | 0.944
Frenel 181 172 0.950 172 | 0.950
Gaujac 45,270 44,566 0.984 45,127 | 0.997
LU 12,883,939 637,365 0.049| 11,847,472 0.920
Sprsin 17,436 17,379 0.997 17,379 | 0.997
Summidall 15,340 8,072 0.526 15,312 | 0.998
Summinmax 13,080 13,062 0.999 13,062 | 0.999
Sumngpos 9,067 9,049 0.998 9,049 | 0.998
Sumoddeen A 63 0.670 94| 1.000
Average 1,305,015 75,209 0.746 1,200,571 0.969

was ale to predict that the loop was required to iterate twice, using the methods described in the previous section.
The result of this analysisag an exact BCET predictiohU also showed a dramatic tightening in its BCET predic-

tion. Therewere three nested loops in which the timing analyzer was ableptoiteiteration-based constraints.

The previous version of the timing analyzer assumed that the inner loop in these three nestswagsiltheal
avaded along the best-case path of their respedirrounding loops. But in fact these loop&eute on all but one
iteration of the surrounding loopsThe Summinmaxand Sumnegpoprograms hee logically correlated branches

and the timing analyzer was able to detect for each program that the longestagathfeasible due to this

-31-

correlation. Thecompiler detected iteration-based constraints forDkeg Gaujac and Summidallprograms that
indicated that certain paths could only becwted in specific iterations. There was little WCE/restimation in

the previous version of the timing analyzer @aujacsince these iteration-based constraints were associated with
paths that were not in the most deeply nested loop of the prodtamever, Summidalk iteration-based constraints
were for the most frequentlyxecuted portion of that program and a significamérestimation of WCET as
avaded. Inbest case, the timing analyzeasvable to determine that the looghortest path irSsummidalicould
execute at most once, and its second shortest path cretdte for at most 250 of the 1,000 iteratioris/en the
longest path was required treeute for at least 499 iteration§.hese iteration-based constraints significantly tight-
enedSummidals BCET prediction. Similarly, Descontained an inner nested loop withefipaths, and an iteration-
based constraint required the longest path taxbeuged on 12 of its 16 iterationg&inally, the compiler detected an
iteration-based constraint Bprsinand Expintthat was associated with an equality test between a kxigbole and

a value that was wariant for that loop. This means that the loop could onlyeeute a path associated with the
equality transition from the block containing the test for a single iteration of the kmpBprsinthis path required a
smaller WCET than when the loop variable was not equal to the lgegaint value. Thusthe oserestimation by

the previous version of the analyzer was quite small amddwdecrease when applied to arrays with larger dimen-
sions. Havever, the opposite situation occurs Expint which has a higher WCET associated with the path where
the loop variable is equal to the loopdriant value. Thusgxploiting this branch constraint significantly reduces

the WCET weerestimation ofexpint

Several factors contribted to the remaining WCETverestimations and BCET underestimations. First, the
Desprogram in particular had geral arrays in which the elements are hard-coded in the dgiaesg, and these
array element values affect various comparisofisese branch constraints were not detected in the comder
ond, as mentioned in previousork [17], in worst case analysis some instructions coasieely categorized as
misses actually hit in cache due to the order in which paths wecated because of dependencies on dalizes.
Similarly, in best case analysis some instructions were coatesly classified as hitsven though thg actually
miss in cache.Third, there were some minor limitations to the timing analysis that result in catigenredic-
tions. For instance, the prograilJ had non-rectangular loop nests where the number of iterations is rounded to an

integer since the timing analyzer is designed to deal with an integral number of iterations [B\s8)]. the

-32-

underestimation ihU was partially due to the fact that an iteration-based constraint was not generated by the com-
piler for a condition containing a comglexpression that needed to bbgpanded. Finallythere were slightly con-
servatve predictions that resulted from instruction caching categorizations that change betweendsagnie their

interaction with the pipeline analysis, affecting both WCET and BCET [11].

Table 12 showsecution time in seconds required to a®RCET and BCET predictions for the test pro-
grams for the previous and current versions of the timing anaﬁﬁm times were obtained by calculating for each
program the zerage of the elapsed times of teregutions of the timing analyzer on an Ultré&C. Theoverall
decrease in elapsed time for the analysis was the resultdattors. Firstwe modified the timing analyzer to
avad redundant analysis of a path when its caching behavior has not changed. Secomd affpgaseh does not
analyze a path in a\gn iteration when the pathasg infeasible, its maximum iterations had been exhausted, or only

required iterations of other paths wexaikable.

Table 12: Analysis Overhead Results of the Test Programs

Seconds Required for Analysis

Name Pre/iou_s Currer!t Time
Analysis | Analysis .
. Ratio
Time Time

Des 2.155 1.422 0.660
Expint 0.374 0.293 0.783
Frenel 0.455 0.298 0.655
Gaujac 3.220 3.692 1.147
LU 1.357 1.253 0.923
Sprsin 0.132 0.129 0.977
Summidall 0.070 0.070 1.000
Summinmax 0.076 0.063 0.829
Sumngpos 0.058 0.048 0.828
Sumoddeen 0.055 0.060 1.091
Average 0.795 0.733 0.889

6. Future Work

There are seral additional aspects of using branch constraints in timing analysis that cavestegated.

Many branch constraints were not detected due to function calls separating effects and the brimotbds ahese

5 The response timeswgn in Table 12 are greater than thoseepiin our previous work [24]. In the previous work, we were only calcu-
lating a prograns WCET, while in this paper the timing analyzer is computing both the WCET and BCET of each program.

-33-

branch constraints could be detected using inter-procedural angBjsigarly, interprocedural analysis could also

detect more loop iteration constraints, in the case where one loop contains a call to a function and another loop is in
the called function [25]Further branch constraints could also be obtained from analyzing values assigned to global
variables and arraysln addition, the branch constraint analysis described in this paper could be used by a tool to

ignore infeasible paths during software testing.

7. Conclusions

This paper has describedvihbranch constraints were automatically detected by a compiler and exploited by a
timing analyzer We described techniques to efficiently detect effects that can cause the outcome of a branch to
become known and detect ranges of iterations associated with branch outvdenaesented algorithms that sho
how branch constraints were used to constrain the minimum and maximum iterations associated with each path in a
loop and hw these path constraints were used in WCET and BCET loop andiisaly, we siowed results from
a number of test programs whose worst-case and best-case paths were constrained by dependenciefues.data v
These results indicate that detection and exploitation of branch constraints can significantly tighten both the WCET
and BCET timing predictionsWhile branch constraints cannot be as fully exploited using a path constraint
approach as compared to a more general ILP or symbolic interpretation approach, the authors found that almost all
of the constraints from a variety of application programs could feet®fly used. Furthermore, the approaches
used for detection and exploitation of branch constraints were shown to be ficiémteind are fully automated,

requiring no interaction from the user.

8. Refelences

[1] Y. S. L, S. Malik, and A. Wolfe, “Efficient Microarchitecture Modeling and Path Analysis for Riea&T
Software,” Proceedings of the Sixteenth IEEE Real-Time Systems Sympqipura98-307 (December
1995).

[2] G. Ottosson and M. Sjodin, “Worst Case Executiamd Analysis for Modern Hardware Architectufes,
ACM SIGPLAN Workshop on Langga, @mpiler and Tools for Realdine Systemspp. 47-55 (June 1997).

[3] A. Ermedahl and J. Gustafsson, “Demg Annotations for Tight Calculation of Executioime,” Proceed-
ings of European Conference on Parallel Processiog 1298-1307 (August 1997).

[4] T. Lundqvist and PStenstrom, “Integrating Path andniing Analysis using Instruction-iel Simulation
Techniques,”ACM SGPLAN Workshop on Langges, Compilers, and Tools for Embedded Systepps
1-15 (June 1998).

[5] C. A. Healy M. Sodin, V. Rustagi, and D. B. Whale “Bounding Loop lIterations for Timing Analysis,
Proceedings of the IEEE Real-Time Technology and Applications Symp@giuh2-21 (June 1998).

-34-

[6]

[7]
(8]
9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]
(23]

[24]

[25]

C. A. Healy, R. van Engelen, and D. B. Whalie'A General Approach for Tight Timing Predictions of Non-
Rectangular LoopsWIP Proceedings of the IEEE Real-TingefAnolgy and Applications Symposiurpp.
11-14 (June 1999).

F. Mueller and D. B. Whallg “Avoiding Conditional Branches by Code ReplicatioRfoceedings of the
SIGPLAN '95 Conference ond&ramming Languge Design and Implementatiorpp. 56-66 (June 1995).

J. Pdterson, “Accurate Static Branch Prediction bglié Range Propation,” Proceedings of the SIGPLAN
'95 Conference on Bgramming Languge Design and Implementatiorpp. 67-78 (June 1995).

C. A. Healy M. Sadin, V. Rustagi, and D. B. Whale “Supporting Timing Analysis by Automatic Bound-
ing of Loop Iterations,Real-Time Systemgp. 121-148 (May 2000).

A. V. Aho, R. Sethi, and J. D. Ullma@Gpompiless Principles, Bdniques, and dols, Addison-Weslg, Read-
ing, MA (1986).
C.A. Healy, D. B. Whalley, and M. G. Harmon, “Integrating the Timing Analysis of Pipelining and Instruc-

tion Cachind, Proceedings of the Sixteenth IEEE Real-Time Systems Symp@piu@88-297 (December
1995).

Y. Hur, Y. H. Bae, S. S. Lim, S. K. Kim, B. D. Rhee, S. L. Min, CPsrk, H. Shin, and C. S. Kim, “@Vst
Case Timing Analysis of RISC Processors 1995: R3000/R3010 Case” Ruaheedings of the Sixteenth
IEEE Real-Time Systems Symposiym 308-321 (December 1995).

L. Ko, N. Al-Yagoubi, C. HealyE. Ratliff, R. Arnold, D. Whallg, and M. Harmon, “Timing Constraint
Specification and AnalysisSoftwae Practice & Experience pp. 77-98 (January 1999).

M. E. Benitez and J. WDavidson, ‘A Portable Global Optimizer and Liek” Proceedings of the SIGPLAN
'88 Symposium on Bgramming Languge Design and Implementatiorpp. 329-338 (June 1988).

F. Mueller, Static Cabe Simulation and Its ApplicationBhD Dissertation, Florida State Waisity, Talla-
hassee, FL (August 1994).

R. Arnold, F Mueller, D. Whalley, and M. Harmon, “Bounding Worst-Case Instruction Cache Perforniance,
Proceedings of the Fifteenth IEEE Real-Time Systems Sympagiuv2-181 (December 1994).

C. Healy R. Arnold, E Mueller, D. Whalley, and M. Harmon, “Bounding Pipeline and Instruction Cache
Performance,]lEEE Tansactions on Computeds(1) pp. 53-70 (January 1999).

L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whallg, and M. Harmon, “Supporting the Specification and Anal-
ysis of Timing Constraints,Proceedings of the IEEE Real-Timechinolgy and Applications Symposium
pp. 170-178 (June 1996).

NaghamM. Al-Yagoubi,Reducing Timing Analysis Complexity by Partitioning Control Fidasters Pro-
ject, Florida State Unersity, Tallahassee, FL (1997).

W. H. Press, S. A. &ukolsky, W. T. Vetterling, and B. FHannery,Numerical Recipes in C: The Art of Scien-
tific ComputingCambridge Uniersity Press, N& York, NY (1988).

W. H. Press, S. A. &ukolsky, W. T. Vetterling, and B. FFlannery,Numerical Recipes in C: The Art of Scien-
tific Computing Second EditionCambridge Uniersity Press, N& York, NY (1992).

J.W. Davidson and D. B. Whalle “A Design Environment for Addressing Architecture and Compiler inter
actions,”Microprocessaos and Microsystem&5(9) pp. 459-472 (Neember 1991).

C. A. Healy, Predicting Pipeline and Instruction CacherformanceMasters Thesis, Florida State Mer
sity, Tallahassee, FL (1995).

C. A. Healy and D. B. Whalle “Tighter Timing Predictions by Automatic Detection and Exploitation of
Value-Dependent Constrairit®2roceedings of the IEEE Real-Timechinolgy and Applications Symposium
pp. 79-88 (June 1999).

R. Bodik, R. Gupta, and M. Skaf “Interprocedural Conditional Branch EliminatibrRroceedings of the
SIGPLAN '97 Conference on dramming Languge Design and Implementationpp. 146-158 (June
1997).

-35-

-36-

