VISTA: VPO Interactive System for Tuning
Applications

PRASAD KULKARNI, WANKANG ZHAO, STEPHEN HINES, DAVID WHALLEY, XIN YUAN,
ROBERT VAN ENGELEN and KYLE GALLIVAN

Computer Science Department, Florida State University

JASON HISER and JACK DAVIDSON

Computer Science Department, University of Virginia

BAOSHENG CAlI

Oracle Corporation

MARK BAILEY

Computer Science Department, Hamilton College

HWASHIN MOON and KYUNGHWAN CHO

Electrical Engineering Department, Korea Advanced Institute of Science & Technology
YUNHEUNG PAEK

School of Electrical Engineering, Seoul National University

Software designers face many challenges when developing applications for embedded systems. One
major challenge is meeting the conflicting constraints of speed, code size and power consumption.
Embedded application developers often resort to hand-coded assembly language to meet these
constraints since traditional optimizing compiler technology is usually of little help in addressing
this challenge. The results are software systems that are not portable, less robust and more costly
to develop and maintain. Another limitation is that compilers traditionally apply the optimiza-
tions to a program in a fixed order. However, it has long been known that a single ordering of
optimization phases will not produce the best code for every application. In fact, the smallest
unit of compilation in most compilers is typically a function and the programmer has no control
over the code improvement process other than setting flags to enable or disable certain optimiza-
tion phases. This paper describes a new code improvement paradigm implemented in a system
called VISTA that can help achieve the cost/performance trade-offs that embedded applications
demand. The VISTA system opens the code improvement process and gives the application pro-
grammer, when necessary, the ability to finely control it. VISTA also provides support for finding
effective sequences of optimization phases. This support includes the ability to interactively get
static and dynamic performance information, which can be used by the developer to steer the
code improvement process. This performance information is also internally used by VISTA for
automatically selecting the best optimization sequence from several attempted. One such feature
is the use of a genetic algorithm to search for the most efficient sequence based on specified fitness
criteria. We include a number of experimental results that evaluate the effectiveness of using a
genetic algorithm in VISTA to find effective optimization phase sequences.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User
Interfaces—graphical user interfaces; D.2.6 [Software Engineering]: Programming Environ-
ments—interactive environments; D.3.4 [Programming Languages]: Processors—compilers,

This research was supported in part by NSF grants CCR-0312493, CCR-9904943, ETIA-0072043,
CCR-0208892, ACI-0203956, MIC grant A1100-0501-0004, MOST grant M103BY010004-
05B2501-00411, MIC ITRC program IITA-2005-C1090-0502-0031, and KRF contract D00191.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY, Pages 1-44.

2 . Prasad Kulkarni et al.

optimization; D.4.7 [Operating Systems]|: Organization and Design—realtime systems and em-
bedded systems, interactive systems
General Terms: Performance, Measurement, Experimentation, Algorithms

Additional Key Words and Phrases: User-directed code improvement, interactive compilation,
phase ordering, genetic algorithms

1. INTRODUCTION

The problem of automatically generating acceptable code for embedded micropro-
cessors is often much more complicated than for general-purpose processors. First,
embedded applications are optimized for a number of conflicting constraints. In
addition to speed, other common constraints are code size and power consumption.
For many embedded applications, code size and power consumption are often more
critical than speed. Often, the conflicting constraints of speed, code size, and power
consumption are managed by the software designer writing and tuning assembly
code. Unfortunately, the resulting software is less portable, less robust (more prone
to errors), and more costly to develop and maintain.

Automatic compilation for embedded microprocessors is further complicated be-
cause embedded microprocessors often have specialized architectural features that
make code improvement and code generation difficult [Liao et al. 1999; Marwedel
and Goossens 1995]. While some progress has been made in developing compilers
and embedded software development tools, many embedded applications are still
coded in assembly language because current compiler technology cannot produce
code that meets the cost and performance goals for the application domain.

One issue that limits the effectiveness of traditional optimizing compilers is that
they apply the code improving transformations to a program in a fixed order. But
it is well-known that a single fixed sequence of optimization phases cannot produce
the best code for all applications on a given machine [Vegdahl 1982]. Whether
or not a particular optimization enables or disables opportunities for subsequent
optimizations is difficult to predict since it depends on the application being com-
piled, the previously applied optimizations and the target architecture [Whitfield

Preliminary versions of this paper appeared in the ACM SIGPLAN ’02 Conference on Languages,
Compilers, and Tools for Embedded Systems under the title “VISTA: A System for Interactive
Code Improvement” and in the ACM SIGPLAN 08 Conference on Languages, Compilers, and
Tools for Embedded Systems under the title “Finding Effective Optimization Phase Sequences”.

Authors’ addresses: P. Kulkarni, W. Zhao, S. Hines, D. Whalley, X. Yuan, R. Engelen,
and K. Gallivan, Computer Science Department, Florida State University, Tallahassee, FL
32306-4530; e-mail: {kulkarni,wankzhao,hines,whalley,xyuan,engelen,gallivan}@cs.fsu.edu; J.
Hiser and J. Davidson, Computer Science Department, University of Virginia, Charlottesville,
VA 22904; email: {hiser,jwd}@cs.virginia.edu; B. Cai, Oracle Corporation, 40P 955 Oracle
Parkway, Redwood City, CA 94065; email: baosheng.cai@oracle.com; M. Bailey, Computer
Science Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323; email: mbai-
ley@hamilton.edu; H. Moon, and K. Cho, Electrical Engineering Department, Korea Advanced
Institute of Science & Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea;
Y. Paek, School of Electrical Engineering, Seoul National University, Kwanak-gu, Seoul 151-744,
Korea; email: ypaek@snu.ac.kr

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 3

and Soffa 1997]. Current compiler technology also does not offer the user much
flexibility in tuning the application. The only control they often provide is in the
form of compilation flags which could be used to turn certain optimization phases
on and off.

In this paper we describe a new code improvement paradigm, implemented in a
system called VISTA, which allows the user to interactively tune the application
and steer the optimization process in an attempt to achieve the cost/performance
trade-offs (i.e., size, power, speed, cost, etc.) demanded for embedded applications.
VISTA includes many features which allow users to:

(1) view the low-level program representation in a graphical display throughout
the compilation process,

direct the order and scope of optimization phases,
manually specify code transformations,

)
)
4) browse through and undo previously applied transformations,
) automatically obtain performance information,

)

obtain other static analysis information on demand, and

These features, along with several other convenient facilities, make VISTA a very
robust compilation environment for tuning embedded applications.

This paper is organized as follows. In Section 2 we point the reader to related
work in the area of alternative compiler paradigms, compiler user interfaces and
aggressive compilation techniques. In Section 3 we outline the VISTA framework
and the information flow in VISTA. We describe in Section 4 the functionality of
VISTA along with the implementation. Later, in Section 5 we show the results of
a set of experiments that illustrate the effectiveness of using the genetic algorithm
for automatically finding effective optimization sequences. In Section 6 we provide
a case study which shows how manual and automatic tuning can be combined in
VISTA to achieve better overall performance. We devote Section 7 to discuss some
interesting implementation issues. In Section 8 we discuss directions for future
work. Finally in Section 9 we state our conclusions.

2. RELATED WORK

There exist systems that are used for simple visualization of the compilation process.
The UW Illustrated Compiler [Andrews et al. 1988], also known as icomp, has been
used in undergraduate compiler classes to illustrate the compilation process. The
zvpodb system [Boyd and Whalley 1993; 1995] has been used to illustrate low-level
code transformations in the VPO compiler system [Benitez and Davidson 1988].
xvpodb has also been used when teaching compiler classes and to help ease the
process of re-targeting the compiler to a new machine or diagnosing problems when
developing new code transformations.

Other researchers have developed systems that provide interactive compilation
support. These systems include the pat toolkit [Appelbe et al. 1989], the parafrase-
2 environment [Polychronopoulos et al. 1989], the e/sp system [Browne et al. 1990],
a visualization system developed at the University of Pittsburgh [Dow et al. 1992],
and SUIF explorer [Liao et al. 1999)]. These systems provide support by illustrating

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

4 . Prasad Kulkarni et al.

the possible dependencies that may prevent parallelizing transformations. A user
can inspect these dependencies and assist the compilation system by indicating
if a dependency can be removed. In contrast, VISTA does not specifically deal
with parallelizing transformations, but instead supports low-level transformations
and user-specified changes, which are needed for tuning embedded applications in
general.

A few low-level interactive compilation systems have also been developed. One
system, which is coincidentally also called VISTA (Visual Interface for Scheduling
Transformations and Analysis), allows a user to verify dependencies during instruc-
tion scheduling that may prevent the exploitation of instruction level parallelism in
a processor [Novack and Nicolau 1993]. Selective ordering of different optimization
phases does not appear to be an option in their system. The system that most
resembles our work is called VSSC (Visual Simple-SUIF Compiler) [Harvey and
Tyson 1996]. Tt allows optimization phases to be selected at various points during
the compilation process. It also allows optimizations to be undone, but unlike our
compiler only at the level of complete optimization phases as opposed to individual
transformations within each phase. Other features in our system, such as support-
ing user-specified changes and performance feedback information, do not appear to
be available in these systems.

There has been prior work that used aggressive compilation techniques to im-
prove performance. Superoptimizers have been developed that use an exhaustive
search for instruction selection [Massalin 1987] or to eliminate branches [Granlund
and Kenner 1992]. Iterative techniques using performance feedback information af-
ter each compilation have been applied to determine good optimization parameters
(e.g., blocking sizes) for specific programs or library routines [Kisuki et al. 2000;
Whaley et al. 2001; Knijnenburg et al. 2000]. A system using genetic algorithms to
better parallelize loop nests has been developed and evaluated [Nisbet 1998]. These
systems perform source-to-source transformations and are limited in the set of op-
timizations they apply. Selecting the best combination of optimizations by turning
on or off optimization flags, as opposed to varying the order of optimizations, has
been investigated [Chow and Wu 1999]. A low-level compilation system developed
at Rice University uses a genetic algorithm to reduce code size by finding efficient
optimization phase sequences [Cooper et al. 1999]. However, this system is batch
oriented instead of interactive and concentrates primarily on reducing code size and
not execution time, and is designed to use the same optimization phase order for
all of the functions within a file.

3. THE VISTA FRAMEWORK

In this section we summarize the VISTA framework. This includes an overview of
the information flow in VISTA along with a brief introduction of the optimization
engine and visualization environment used.

3.1 Dataflow in VISTA

Figure 1 illustrates the flow of information in VISTA, which consists of a com-
piler and a viewer. The programmer initially indicates a file to be compiled and
then specifies requests through the viewer, which include sequences of optimiza-
tion phases, user-defined transformations, queries, and performance measures. The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 5

EASE

performance
measurements Executable
new Insert
Instructions Measurement
Code
Source . Assembl .

) ——————={ Compiler] Y Linked
File File File
N~ .

Program Representation Info. Transformation Info.
Selections g — Requests

Saved

Viewer
State

Display

Fig. 1. Interactive Code Improvement Process

compiler performs the actions associated with the specified requests and sends the
program representation information back to the viewer. In response to a request to
obtain performance measures, the compiler in turn requests EASE to instrument the
assembly with additional instructions to get the dynamic instruction counts. When
executed, this instrumented code returns the performance measures. Similarly, it
is possible to obtain execution cycles via simulation. VISTA can also provide static
measures. While code-size can be easily obtained, we have also provided WCET
(Worst Case Execution Time) information by invoking a timing analyzer, instead of
invoking EASE [Zhao et al. 2004]. When the user chooses to terminate the session,
VISTA writes the sequence of transformations to a file so they can be reapplied at
a later time, enabling future updates to the program representation.

The viewer and the back-end compiler are implemented as separate processes in
VISTA. The communication between the compiler and the viewer takes place via
sockets. Separating the compiler and viewer as distinct processes provides addi-
tional flexibility. Thus, in theory, by modifying a compiler to send the appropriate
information to the viewer, it should be possible to connect any compiler as the
back-end for the viewer. It is also possible, for instance, to save the sequence of
change messages sent from the compiler to the viewer and use a simple simulator
instead of the compiler to facilitate demonstrations of the interface. Likewise, a set
of user commands can be read from a file by a simple simulator that replaces the
viewer, which can be used to support batch mode experimentation with different
phase orderings. We were also concerned that the amount of memory used by the
compiler and the viewer may be excessive for a single process. Separating the com-
piler and the viewer into separate processes allows users to access the interactive
code improvement system on a different machine from which the compiler executes.
By sending short messages and using low-overhead sockets for the actual commu-
nication, we have observed that communication is rarely the bottleneck, even when
the two processes are located hundreds of miles apart and communication is over
the Internet.

The VISTA system is designed to optimize code at a low-level in a compiler back-
end. The compiler front-end currently only supports the translation of the high-level

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

6 . Prasad Kulkarni et al.

language ‘C’ to intermediate code, which is recognized by VISTA. The compiler
back-end can in turn produce code for many different machines, like the SPARC,
ARM, x86, Java etc. If we are able to translate a different high-level language, such
as C++ or Java, to our intermediate language that can be input to our back-end,
VPO, then we can tune such applications as well. However, applications in many
object oriented languages have smaller functions and VISTA is currently designed
to tune a single function at a time. Thus other optimizations, such as inlining, may
be required to be performed at a higher level before a user can effectively tune such
applications with VISTA.

3.2 VISTA’s Optimization Engine

VISTA'’s optimization engine is based on VPO, the Very Portable Optimizer [Ben-
itez and Davidson 1988; 1994]. VPO has several properties that make it an ideal
starting point for realizing the VISTA compilation framework. First, VPO per-
forms all code improvements on a single intermediate representation called RTLs
(register transfer lists). An RTL is a machine- and language-independent rep-
resentation of a machine-specific operation. The comprehensive use of RTLs in
VPO has several important consequences. Because there is a single representation,
VPO offers the possibility of applying analyses and code transformations repeat-
edly and in an arbitrary order. In addition, the use of RTLs allows VPO to be
largely machine-independent, yet efficiently handle machine-specific aspects such
as register allocation, instruction scheduling, memory latencies, multiple condition
code registers, etc. VPO, in effect, improves object code. Machine-specific code
improvement is important for embedded systems because it is a viable approach
for realizing compilers that produce code that effectively balances target-specific
constraints such as code size, power consumption, and execution speed.

A second important property of VPO is that it is easily retargeted to a new
machine. Retargetability is key for compilers targeting embedded microprocessors
where chip manufacturers provide many different variants of the same base archi-
tecture and some chips have application-specific designs.

A third property of VPO is that it is easily extended to handle new architectural
features. Extensibility is also important for compilers targeting embedded chips
where cost, performance, and power consumption considerations often mandate
development of specialized features centered around a core architecture.

A fourth and final property of VPO is that its analysis phases (e.g., dataflow
analysis, control-flow analysis, etc.) are designed so that information is easily ex-
tracted and updated. This property makes writing new code improvement phases
easier and it allows the information collected by the analyzers to be obtained for
display.

3.3 EASE

The EASE (Environment for Architectural Study and Experimentation) [David-
son and Whalley 1991] environment is used in VISTA to collect static and dynamic
performance measures to evaluate the improvements made in reducing the code size
and the number of instructions executed. EASE collects these measures by instru-
menting the assembly code generated by the compiler by additional instructions,
which increment a counter each time a basic block is executed. These counts are

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 7

multiplied by the number of instructions in each basic block to determine the total
number of instructions executed.

Such performance feedback is important as it gives the user a better perspective
as to whether the sequence of optimizations applied is giving the expected benefits
or if the user should roll back the changes and try some different sequence. The
measures also indicate the portions of the code which are more frequently executed,
so the user could focus his/her attention on improving that portion of the program.
It also helps VISTA automatically determine the best sequence of optimizations for
a function.

4. FUNCTIONALITY OF VISTA

The VISTA framework supports the following features. First, it allows a user to
view a low-level graphical representation of the function being compiled, which
is much more convenient than extracting this information from a source-level de-
bugger. Second, a user can select the order and scope of optimization phases.
Selecting the order of optimization phases may allow a user to find a sequence of
phases that is more effective for a specific function than the default optimization
phase order. Limiting the scope of the optimization phases allows a user to allocate
resources, such as registers, for the critical regions of the code. Third, a user can
manually specify transformations. This feature is useful when exploiting special-
ized architectural features that cannot be exploited automatically by the compiler.
Fourth, a user can undo previously applied transformations or optimization phases.
This feature eases experimentation with alternative phase orderings or user-defined
transformations. Fifth, VISTA supports the ability to get program performance
measures at any time during the code improvement process. Such feedback would
be very useful to a user interactively tuning the code. Sixth, VISTA provides the
ability to find effective optimization sequences automatically. Finally, the user can
query the compiler for other static information, like dominator or live register in-
formation, which may aid the user in better tuning the application. In this section,
we describe the functionality of VISTA and provide details on how these features
were actually implemented.

4.1 Viewing the Low-Level Representation

Figure 2 shows a snapshot of the VISTA viewer that supports interactive code
improvement. The program representation appears in the right window of the
viewer and is shown as basic blocks in a control flow graph. Within the basic
blocks are machine instructions. The programmer may view these instructions as
either RTLs or assembly code. In addition, VISTA provides options to display
additional information about the program that a programmer may find useful.
The left window varies depending on the mode selected by the user. Figure
2 shows the default display mode. The top left of the viewer screen shows the
name of the current function and the number of the transformation currently being
displayed. A transformation consists of a sequence of changes that preserve the
semantics of the program. The viewer can display a transformation in either the
before or after state. In the before state, the transformation has not yet been ap-
plied. However, the instructions that are to be modified or deleted are highlighted.
In the after state, the transformation has been applied. At this point, the instruc-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

8 . Prasad Kulkarni et al.

% Userinterface -5 X
Function main Trans Number 706 - - =
State Before Total 1067 = o
‘rans| i Number Code Size Speed I ‘_ i
Tnat Selection 331 50.51 55.40 rl8]=R[r[21]+8]; L]
Register hssigoment 22 53.62 55.49 ST=mumber ; 0
Register Allocation 303 53.62 55.4% | T[20]=c[8]; i
Inst Selection {60} 305 43,26 1159 i 1c=r[20]71; i
Commen Subexpr Elim 106 4067 1345 | PC=1C<0,L39;
)
0
| r[8]=r[20];
r[4]=HI[9998] ;
;r[9]=r[9] +LD[4849] ;
 IC=rlE] 7rldl;
| PC=IC'0,L37;
-10 | 139
| EC=L36; |
Select Phases Specify Trans | RTLS i 11 | 137
I« %=] = | = | ==] =1 | Opton | Bt x[8]=HI [L41] ¢ 4
. T ‘ 3 | [8]=r[8]+LD[L41]; L
Stalt writing in seq ‘ execute from file r[16)=c[18]; =
Messaqe:| No Message H Help |

Fig. 2. Main User Interface Window in VISTA

tions that have been modified or inserted are highlighted. This highlighting allows
a user to quickly and easily understand the effects of each transformation. Figures
2 and 3 show the before and after states during a transformation in instruction
selection. Before and after states are used in other graphical compilation viewers
[Boyd and Whalley 1993; 1995]

The bottom left window contains the viewer control panel. The ‘>’, ‘>>’, and
‘> | buttons allow a user to advance through the transformations that were per-
formed. The ‘>’ button allows a user to display the next transformation. A user
can display an entire transformation (before and after states) with two clicks of
this button. The ‘>>" button allows a user to advance to the next optimization
phase. A phase is a sequence of transformations applying the same type of trans-
formation. The ‘> |’ button allows the user to advance beyond all transformations
and phases. The ‘| <’, ‘<<’, and ‘<’ buttons allow the user to back through the
transformations with corresponding functionality. These buttons provide the abil-
ity to navigate through the changes made to the program by the compiler. These
navigation facilities are also useful if the user needs to undo some transformations
or phases as described in Section 4.5. To enable the viewing of previous transforma-
tions, the viewer maintains a linked list of all messages sent to it by the compiler.
Browsing through the transformations in the viewer only involves traversal of this
linked list. Thus, after the compiler performs the transformations and sends the
information to the viewer, viewing the transformations in the viewer is done locally
with no messages exchanged between the compiler and the viewer.

Also shown in the left window is the history of code improvement phases that the
compiler has performed, which includes phases that have been applied in the viewer

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

% Userinterface -5 X
Function main Trans Number 706 [1 =
State After Total 1067
trans il Number Code Size Speed 8 | .L33
Inet Selection 131 5051 55.40 T[8]=RIx[21]+8]; Ll
Register Assignment 22 53.62 55.4% | ST=number; %‘
Register Allocation 103 5362 55.4% | r[20]=cl8]; o
Inst Selection {50] 308 43.26 1359 Te=r[20]71; (i
Commen Subepr Elim 106 4067 31,49 ;PC=IC<O,L39;
J/ ol
91
T [5]=HI[9993] ;
| T[9]=r[9]+LO[%554]
To=r[20]7008] ¢
| pC=1C10,L37;
10 | 139 |
| pr=L.36; |
11 | L37
i RTLs I e
Select Phases Specify Trans =0 8] =HT [L41] ;
[[« =]]+ opton | Eat | r[8]=r[8]+LO[L4l] ;
o — H T r[l6]=r[18]; |
Start writing in q execyte from file L [17]=r[16] {2: =
Messaqe:| No Message H Help |

Fig. 3. After State in the Main User Interface Window in VISTA

and the phases yet to be applied by the viewer. We have found that displaying the
list of code improvement phases in this manner provides a user some context to the
current state of the program.

When viewing a program, the user may also change the way the program is
displayed and may query the compiler for additional information. As mentioned
earlier, the program representation may be in RTLs or assembly. Displaying the
representation in RTLs may be preferred by compiler writers, while assembly may
be preferred by embedded systems application developers who are familiar with the
assembly language for a particular machine. When control flow is of more interest
than the specific machine instructions, the user can choose to display only the
basic block structure without the machine instructions. This makes it possible to
display more basic blocks on the screen and gives the user a higher-level view of the
function. Figure 4 shows the RTL, assembly and control-flow only representation
of a function in VISTA.

We implemented the viewer using Java to enhance its portability. We used Java 2,
which includes the Java Swing toolkit that is used to create graphical user interfaces.
The aspects of the interface that limit its speed are the displaying of information and
the communication with the compiler. Thus, we have found that the performance
of the interface was satisfyingly fast, despite having not been implemented in a
traditionally compiled language.

4.2 Selecting the Order and Scope of Optimization Phases

Generally, a programmer has little control over the order in which a typical com-
piler applies code improvement phases. Usually the programmer may only turn

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

10 . Prasad Kulkarni et al.

1131=0; i 340, %05
‘i[u]:r[s], 3:’; :«:o,qu I T I_
PO=L86; | oz, 2 18§
2 | Lss- Az | L8
| To=r (8] 748; | (oo %00,48
| pe=10<0, 190, | (b1 130 Jal =
3|] = I4 | Lo
| To=r[61257; I [cmp 800,57 ‘ [
PC=TI610,188; | |1 (b1e 188 | |
I J o ‘ |
4 | L90 — 4 | Loo
< (2210, (mov g0, %10
PC=L.84; | | bz,2 L84 |
5 | 188] 5 | L8s I7I
c[10]=10%x [12] ;v [01=UP [10%*x [1[4] Esmul %05, 10, %02
i E (2dd %c2, %00, %01 \L
(B 1 | sub %ol 48, %05 IK 181
6 | L86 (6 | L86
1 | =]
_ 1K 2 + 244 %03,1,%03
| ne I I
(a) RTLs Displayed (b) Assembly Displayed (¢) Control-flow Only Displayed

Fig. 4. Three Different Program Representations in VISTA

a compiler code improvement phase on or off for the entire compilation of a file.
For some functions, one phase ordering may produce the most suitable code, while
a different phase ordering may be best for other functions. VISTA provides the
programmer with the flexibility to specify what code improvements to apply to a
program region and the order in which to apply them. A knowledgeable embedded
systems application developer can use this capability for critical program regions
to experiment with different orderings in an attempt to find the most effective
sequence.

We also find it useful to conditionally invoke an optimization phase based on
whether a previous optimization phase caused any changes to the program repre-
sentation. The application of one optimization phase often provides opportunities
for another optimization phase. Such a feature allows a sequence of optimiza-
tion phases to be applied until no further improvements are found. Likewise, an
optimization phase that is unlikely to result in code-improving transformations un-
less a prior phase has changed the program representation can be invoked only if
changes occurred, which may save compilation time. VISTA supports such condi-
tional compilation by providing four structured control statements (if-changes-then,
if-changes-then-else, do-while-changes, while-changes-do). These structured state-
ments can also be nested.

Consider the interaction between register allocation and instruction selection op-
timization phases. Register allocation replaces load and store instructions with
register-to-register move instructions, which provides opportunities for instruction
selection. Instruction selection combines instructions together and reduces register
pressure, which may allow additional opportunities for register allocation. Figure 5
illustrates how to exploit the interaction between these two phases with a simple
example. The user has selected two constructs, which are a do-while-changes state-
ment and a if-changes-then statement. For each iteration, the compiler performs
register allocation. Instruction selection is only performed if register allocation al-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 11

l(;lini.rn.izat.iu.n i’hajs_:;g;ellecti'on
Branch Chaining Him Empty Blocks
Useless Jump Him Dead Code Him
Reverse Branches Basic Bk Reordering

Merge Basic Blocks Inst Selection

Fix Control Flow

Globial Ingt Select

Minimize Loop Jumps’ Dead Variable Him

Register Allocation Common Subexpr Him
Code Motion Loop Strength Reduct
Recurrences Induction Var Hin |

- 1 Mocdsaces [Kis: Bt Euie

Read Transformations From File

Optimization Phase Sequence
Inst Selection =
Register Assignment
do
Register Allocation
if changes then
Inst Selection

end if then
while changes
Code Motion

~|
Loops || Undo Last Change || Done || Cancel |
start writing in || seqlixt || execute from file |

Message: | Flease select some optimization phases 1o be applie

Fig. 5. Interactively Selecting Optimization Phases

locates one or more live ranges of a variable to a register. These phases will be
iteratively applied until no additional live ranges are allocated to registers.

In order to communicate to VPO the sequence of optimizations phases to apply,
the viewer translates the structured statements into a low-level sequence of requests.
This sequence is interpreted by VPO and each resulting change to the program
representation is sent to the viewer. This process continues until a stop operation
has been encountered. The operations to be performed by the selection shown in
Figure 5 are as follows:

(1) Perform instruction selection

(2) Perform register assignment

(3) Enter loop

(4) Perform register allocation

(5) If no changes in last phase goto 7

(6) Perform instruction selection

(7) If changes during loop iteration then goto 4
(8) Exit loop

(9) Perform loop-invariant code motion

(10) Stop

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

12 . Prasad Kulkarni et al.

% Loops -] X
Mezting Header Execution other
Level Blocks Frequency Blocks
2 23 0.0 24
2 20 97 .7 21
1 1% 9T 2 IR 25 [23] Ex [20]
1 1z 0.0 13
] all blocks
R -

Fig. 6. Loop Report Indicating Member Basic Blocks

As shown in the upper window of Figure 5, the user is prevented from selecting
some of the phases at particular points in the compilation. This is due to com-
piler restrictions on the order in which it can perform phases. Although we have
tried to keep these restrictions to a minimum, some restrictions are unavoidable.
For instance, the compiler does not allow the register allocation phase (allocating
variables to hardware registers) to be selected until the register assignment phase
(assigning pseudo registers to hardware registers) has been completed. Also, the
user may only request that the compiler perform register assignment once.

In addition to specifying the order of the code improvement phases, a user can
also restrict the scope in which a phase is applied to a region of code. This feature
allows the allocation of resources, such as registers, based on what the user considers
to be the critical portions of the program. The user can restrict the region to a
set of basic blocks by either clicking on blocks in the right window or clicking on
loops in a loop report similar to the one shown in Figure 6. The viewer marks the
basic blocks in which the scope is to be restricted and sends this information to the
compiler. Thus, before applying any optimization phase, the compiler first checks
if the basic block is in scope. If not, then the block is skipped. This is safe to do
for optimizations local to a block. When applying loop optimizations, if the header
block is not included in the scope, then the loop is skipped. A few phases cannot
have their scope restricted due to the method in which they are implemented in
the compiler or how they interact with other phases (e.g., filling delay slots). Note
that by default the scope in which a phase is applied is the entire function.

VPO also required several other modifications to support interactive code im-
provement. The original batch compiler had to be modified to listen to user requests
and perform corresponding actions as well as to send messages to the viewer. Each
optimization phase in a compiler needs certain data and control-flow information
about the function to do its work. For interactive compilation, we had to identify
the analysis each phase needs and the analysis that each optimization phase inval-
idates. We also had to identify which phases were required during the compilation
(e.g., fix entry/exit), which code improvement phases could only be performed once
(e.g., fill delay slots), and the restrictions on the order in which code improvement
phases could be applied.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA . 13

s |

10 | Li0

r[1lz]=255;

Blo[3]+r[4] 1=r[12];

r[l2]=1:

r[0]=g Move a RTL

r[11=E Insert RTL after specified RTL.
T[21=1 pelete specified RTL

BLr [01 modify specified RTL

FERLA List registers live before RTL

Fig. 7. Manually specifying a transformation on the ARM.

4.3 User-Specified Code Transformations

Despite advances in code generation for embedded systems, knowledgeable assembly
programmers can always improve code generated by current compiler technology.
This is likely to be the case because the programmer has access to information the
compiler does not. In addition, many embedded architectures have special features
(e.g., zero overhead loop buffers, modulo address arithmetic, etc.) not commonly
available on general-purpose processors. Automatically exploiting these features
is difficult due to the high rate at which these architectures are introduced and
the time required for a highly optimizing compiler to be produced. Yet generat-
ing an application entirely in assembly code is not an attractive alternative due
to the longer development time, higher likelihood of errors, and loss of portability.
It is desirable to have a system that not only supports traditional compiler code
improvement phases but also supports the ability to manually specify transforma-
tions.

Figure 7 shows how VISTA supports the application of user-specified code trans-
formations. When the user clicks on an instruction, the viewer displays the list
of possible user-specified changes for that instruction. As the user selects each
change, the change is sent to the compiler. Transformations to basic blocks (insert,
delete, label) are also possible. In response to each user-specified transformation,
the compiler first verifies the syntax of that particular transformation. A number
of semantic checks are also performed. For instance, if the target of a branch is
modified, then the compiler checks to ensure that the target label in the branch
is actually a label of a basic block. This ensures that the transformations do not
violate some basic semantic constraints of the language. This is easy and fast to
do, but at the same time it does not guaranty that all the semantics of the program
are preserved. After performing this check if the transformation is valid, then the
compiler sends the appropriate change messages to the viewer so it can update the
presented program representation.

Each change associated with a user-specified transformation must be reflected in
the program representation in the compiler. If an instruction is inserted or modified,
the RTL or assembly instruction specified must be converted to the encoded RTL
representation used in the compiler. We developed two translators for this purpose.
The first translator converts a human-generated RTL into an encoded RTL. The
second translator transforms an assembly instruction into an encoded RTL. After

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

14 . Prasad Kulkarni et al.

obtaining the encoded RTL, we use the machine description in the compiler to
check if the instruction specified was legal for the machine. Before performing the
change, the compiler checks if the change requested is valid. This check includes
validating the syntax of the instruction as well some semantics checks mentioned
previously. The compiler only performs the change if it does not detect the change
to be invalid.

The user can also query the compiler for information that may be helpful when
specifying a transformation. For example, a user may wish to know which registers
are live at a particular point in the control flow. The query is sent to the compiler,
the compiler obtains the requested information (calculating it only if necessary)
and sends it back to viewer. Thus, the compiler can be used to help ensure that
the changes associated with user-specified transformations are properly made and
to guide the user in generating valid and more efficient code.

Providing user-specified transformations has an additional benefit. After the
user has identified and performed a transformation, the optimization engine can be
called upon to further improve the code. Such user-specified transformations may
reveal additional opportunities for the optimization engine that were not available
without user knowledge. In this way, the optimizer and user can, jointly, generate
better code than either the user or the optimizer could have generated separately.
In Section 6 we provide a case study which illustrates how user knowledge about
the application and the machine can be used along with automatic program tuning
to generate better overall code with less effort.

4.4 Automatic Pattern Recognition and Replacement

The ability to perform hand-specified transformations in VISTA is important as it
allows a knowledgeable user to make changes which could not be directly exploited
by any pre-defined compiler optimization. This feature is even more useful at the
current time, where compiler writers are finding it increasingly difficult to keep pace
with the rapidly evolving microprocessor industry. Similar program inefficiencies
can occur multiple times in the same function. It would be extremely tiring for the
user to find each occurrence of a particular type of program fragment, and replace
it with more efficient code at every place. What is needed here is a tool which will
find all occurrences of some code fragment and replace it with the desired efficient
code as specified by the user. VISTA provides exactly this functionality, which is in
essence an interactively pattern driven peephole optimizer [Davidson and Whalley
1989].

We have included in VISTA a pattern-based peephole optimizer. The user can
specify the search pattern as multiple strings of the form:

<search pattern>:<deads>:<list of registers>

The <search pattern> must be of the form [x=y;]+, which matches the form of
an RTL in VISTA. ‘2’ and ‘y’ are in turn sequences of characters and arguments.
The characters in the pattern must match the characters in an RTL exactly for the
search to be successful. The arguments can match any sequence of characters in the
RTL until the following character in the search pattern matches some literal in the
RTL being compared. Each argument number in the search pattern is associated
with the RTL characters it matches, and can be used later to substitute the same

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA . 15

% Userinterface -
Function main Trans Number 0 T [351=RIr[34]];
o — L - e,
Changes in transformation -PG:ICJO,LEO; '
% | Pattern Searching - ® . |
Search and replace instructions satisfying a particular pattern. \l]
String format: <match pattern> : <deads> : <list of registers>
eg. $0=31+$2;:$1: $0,51 51
'$0, $1 ara registers, $2 can match any pattern. | PC=L32; —
Search and replace patterns can span multiple lines
$0=41;::80 4 | L30 -—
$2=43+80; r[32]=r[30] +.p0.1_argv;
Search Pattern: T [33]=R[r[32]];
| T[34]=4;
| [25]=x[33]+x [34];
$0=11; :TET]ZE[EFS]];
e =r i
Replace Pattern: $2_$3+$1; Tl Sl Inmeetlt;
L : | r(32]=r[32]14L0 [number] ;
| ST=r [22] ;
| r[24]=r[20]+.10.4 1;
Matched instruction pattern Matched replace pattern R[r[34]]1=x([33];
ri341=4; r[341=4; r(32]=r[301+.10.4 1;
T [351=r[331+x[34]; r[35]=r[33]1+44; T[33]=R[r[32]];
| r[34]=r[30]1+.10.3_m;
| R[r[34]]=r[33];
| r[22]=r[30]1+.10.3 _m;
| r[33]=R[cl32]]; —
raa1a s
Find || Replace H Replace all || DK ‘ ansformation ‘ ‘ Help |

Fig. 8. Valid pattern during pattern based search

characters in the replacement pattern. In the <deads> field, we can specify the
registers which must be dead in this RTL. The <list of registers> specifies
which arguments must be registers. The last two fields in the search pattern are
optional.

The replacement pattern is similarly constituted and must use the same argu-
ments as the search pattern or other constant characters. The pattern matching
arguments in the searched RTL are used to construct the replacement RTL. The
viewer scans every instruction in the function and attempts to match it with the
search pattern. The matched sequence of instructions is highlighted in the viewer.
Each argument in the search pattern in associated with an appropriate sequence
of characters. The viewer then constructs the replacement RTLs by replacing all
the arguments in the replacement pattern with their associated character sequence.
These replacement instructions are then sent to the compiler to verify their syntax
and semantics. If correct, the matched and replacement instructions are shown in
the dialog boxes in the viewer and user has the option of making the change. This
process is illustrated in Figure 8. In cases where the syntax or semantics are de-
tected as invalid by the compiler, an appropriate message is displayed in the dialog
box and the user is not allowed to make any change (Figure 9).

Finally, we also provide an option to replace all matched sequences automati-
cally. Here the viewer finds each instruction sequence matching the search pattern,
constructs the replacement instructions, verifies their syntax and semantics, and
then if valid, automatically makes the replacement. The dialog box indicates the
number of successfully replaced patterns in the function, as illustrated in Figure 10.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

16 . Prasad Kulkarni et al.

% Userinterface

Function ‘mam Trans Number |0
State Total 0

Changes in tr
[

c[33]=R[r[34]];
r[35]=r[13]+.1 3;
r[36]=RIx[35]];

% Pattern Searching

r[38]=r(33] +x (371 ;

String format: <match pattern®> : <deads> : <list of
eg. $0=$1+%2;:51: 50,81

$0, $1 are registars, $2 can match any pattern.
Search and replace patterns ¢can span multiple lines

Search and replace instructions satisfying a particular pattern.

Blr[28])=r[22];
c32l=r[13]+.1 5;
r[331=R[r[32]];
c[35]=r[13]+.1 5;
r[34]=r[33] +1;
RIr[35])=r[34]

registers>

G0=F1;::%0
$2=§3+50;
Search Pattern: \J/
46 | L25 A
c[32]=r[13] +.1 5;
F0=851; r[33]=R[r[32]] ;
$2=53+41; r[24]=432;
Replace Pattern: c[0]=r[33] ?r[34];
PC=c [0] <0, L2&;
Matched instruction pattern Matched replace pattern \J/
r[371=r[36]*r[38]; r[371=r[3al*r[38]; 49 |
r[39]1=r[33]+r[37]; r[3%]=r[33]+r[36]*r([38]; PC=L27;

Invalid RTL syntax

Replace all ‘|

48 | L26
PC=L24;

1¥] s

OK ‘

ransformation H Help ‘

Fig. 9.

Invalid pattern during pattern based search

% Userinterface

Function

|mam
|

Changes in transformation
1

L]
L]

Trans Number

State Total

34 | L59
T [32]=r[30]+.10.1 i;
T [23]=RI[r[32]];

. Deleted RTL 206 in black 10

% Pattern Searching - M X

2. Deleted RTL 207 in black 10

3. Inserted RTL 1148 in bleck 10
4. Imserted RTL 1149 in bleck 10
5. Deleted RTL 433 in black 20

&. Deleted RTL 434 in black 20

7. Ingerted RTL 1150 in Bleck 20
8. Inserted RTL 1151 in block 20
9. Deleted RTL 477 in black &

10. Deleted RTL 478 in black &
11. Inzerted RTL 1152 in black &
12. Inzerted RTL 1153 in Black &
13. Deleted RTL 652 in block 25
14. Deleted RTL 653 in blaock 2%
15. Inserted RTL 1154 in black 2%
16. Inserted RTL 1155 in black 2%
17. Deleted RTL $42 in black 30
18. Deleted RTL $43 in black 30
1%. Ingerted RTL 1156 in black 30
20. Inzerted RTL 1157 in black 30
21. Deleted RTL 928 in block 20
2. Delsted RTL #8% in block 20
23. Inzerted RTL 1158 in block 30
24. Inzerted RTL 115% in black 30
25. Deleted RTL 934 in block 20
26. Deleted RTL 935 in block 30 =

Query H Undo Last Change H Dane H Cancel || Pattern

start writing i

execute from file |

Apply Batch Comp

Message: | The RTL has been inserted

Search and replace instructions satisfying a particular pattern.
String format: <match pattern> : <deads> : <list of registars>
ag. $0=$1+%2;:%1: 30,81

$0, $1 are registers, $2 can match any pattern.

Saarch and replace patterns can span multiple linas

BO0=$1;::80
P2=43+50;
Search Pattern:

$0=91;
$2=33+41;
Replace Pattern:

Watched instruction pattern
No Matching RTLs found

Matched replace pattern

cesefully replaced.

3 out of 16 instances sug

Fig. 10.

Replace all valid patterns during pattern based search

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 17

4.4.1 Prototyping New Code Improvements. The ability to manually specify
low-level code transformations has another important, more general, application
of user-specified transformations. Unlike high-level code transformations, it is dif-
ficult to prototype the effectiveness of low-level code transformations.

There are two factors that make prototyping low-level code transformations dif-
ficult. First, many low-level code improvements exploit architectural features that
are not visible in a high-level representation. For example, machine-dependent
code improvements, such as allocating a variable to a register, do not have equiv-
alent source code transformations. In such cases, the source code cannot be hand-
modified to measure the effectiveness of the transformation. Second, low-level code
transformations are often only fully effective when performed after other, specific
transformations have been applied. For example, branch chaining may reveal ad-
ditional opportunities for unreachable code elimination. For such cases, it may be
possible to perform the transformation in source code, but it is not possible to
prototype its effectiveness accurately at the source level since opportunities will be
missed.

One prototyping strategy is to generate low-level code, write it to a file, manually
perform the code improvement, read the low-level code back in, and perform any
additional code improvements. This process can only work if the code improver
accepts the same representation it generates. Although VPO uses a single low-
level representation, the RTLs it accepts use pseudo registers while the RTLs it
generates use hardware registers. Often, there are other phase order limitations
that prevent the use of this strategy. By opening the code improvement process
to user-specified changes, VISTA provides a general solution to prototyping and
measuring the effectiveness of new low-level code transformations.

4.5 Undoing Transformations

An important design issue for an interactive code improvement system is the man-
ner in which support is provided to an embedded systems application developer to
experiment with different orderings of phases and user-specified transformations in
an attempt to improve the generated code. In order to support such experimenta-
tion, VISTA provides the ability for the user to reverse previously made decisions
regarding phases and transformations that have been specified.

This reversing of transformations is accomplished using the (‘| <, ‘<<’, ‘<)
buttons as shown in Figures 2 and 3. These buttons allow a user to view the
transformations that were previously applied. The ‘<’ button allows a user to
display the previous transformation. The ‘<<’ button allows a user to back up to
the previous code improvement phase. Likewise, the ‘| <’ button allows the user
to view the state of the program before any transformations have been applied.
The ability to back up and view previously applied transformations is very useful
for understanding how code was generated or to grasp the effects of individual
transformations.

As mentioned in Section 4.1, the viewer maintains a linked list of all messages
sent to it by the compiler. This list is distinct from a similar history of all previous
program changes maintained by the compiler. At the end of one compilation ses-
sion, the compiler dumps this list to a file. The next time the compiler is invoked
for the same program, the compiler first reads from this file and applies all the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

18 . Prasad Kulkarni et al.

transformations performed during past compilation sessions. A separate transfor-
mation file has to be maintained for each source file, containing only the changes
made to all the functions in that file.

Before the user can invoke a code improvement phase or user-specified transfor-
mation while viewing a prior state of the program, the subsequent transformations
must be removed. Thus, the user has the ability to permanently undo previously
applied phases and transformations. When the compiler receives a request to undo
previous transformations, it dumps the transformation list it maintains to a file.
The current function with all its data structures are discarded and re-initialized.
A fresh instance of the function is then read from the input file. This function
has no optimizations applied to it at this time. The compiler then reads the saved
transformation file and re-applies the previous changes, but only up to the point
where the user had indicated that the transformations be discarded. The remaining
changes are thus automatically removed.

The other approach tried was to keep enough state information regarding each
change so that it could be rolled back. For instance, if a change reflects a modi-
fication to an instruction, then the compiler and viewer must save the old version
of the instruction before modification so that its effect can be reversed if requested
by the user. This approach was found to be difficult to maintain as it required
complicated data structures and an unacceptably large amount of space to store
the information needed to reverse each change. This made the code difficult to un-
derstand and less robust. As we already maintained a list of all program changes,
we felt it un-necessary to maintain another list of all things to undo to reverse each
change. In an interactive compilation environment, where the majority of the time
spent is in-between the user clicking buttons, the additional effort in reading the
un-optimized function back in was found to be worth the reduced complexity in
the compiler.

The ability to undo previously applied transformations is used extensively by
VISTA when measuring program performance. In addition, it is sometimes easier
to perform a portion of a transformation before completely determining whether
the transformation is legal or worthwhile. Being able to revoke changes to the
program will facilitate the development of such transformations.

4.6 Visualizing Performance

An important requirement of interactive code improvement is the ability to mea-
sure and visualize the performance of the program being improved. It is only by
examining the performance of the program that the user can understand the ef-
fectiveness of their user-specified code improvements and their choices in phase
ordering. VISTA provides the mechanisms necessary to easily gather and view this
information. VISTA supports obtaining both static and dynamic measurements.
The static measure we used in our experiments is a count of the instructions in the
function (i.e. the code size). For the dynamic measure, we most often use a crude
approximation of the number of CPU cycles by counting the number of instructions
executed since this measure can be obtained with little overhead. We measure the
dynamic instruction count by instrumenting the assembly code with instructions
to increment counters using the EASE system [Davidson and Whalley 1991]. We
have also used VISTA to get other performance measures like WCET [Zhao et al.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA . 19

% Userlnterface = 0%
Funttion main Trans Number 1218 \l/ =
State Towl (1218) | freq: 0.011% |
transf i Numher Cade Size Speed PCL3Z; l— o
Inat Selection 1 50.51 55.40 Sl /
Reglster Assignment 22 53.82 £5.49 =
Regizter Allscaticn 03 5362 5549 = /
Elin Erpty Blecks 1 53.62 55.49 5| L3 | fre: 0.0% e
Inst Selection 305 43.26 13,59 r[B]=R[r[21]+4];
Commen Subexpr Elim 106 a0 .67 13,49 ST=rumber ;
Code Motien 11 43,52 13,54 [19)=r[8];
Dead Variable Elim 40 42.22 1182 Io=r[alel;
Merge Basic Blocks 5 42,22 11,52 :PC:IC<0 Lac
Cemmen Subexpr Elim 2 9.7 27.98 I e
Regizter Allscaticn 10 9.7 27.98
Inst Selection (80) 60 1937 27.98 J/
6 | | freq: 0.0%
| IC=r[8]712; |
BC=IO0,L33;
J/ =l
Seledt Phases ‘ Specify Trans | RTLs i l7 | L35 | freg; 0.0%
|2 | =2 | = il [] Dption Exit PC=L36; |
e [wm __ 1
start writing in ‘ seqladt H execute from file o
Message:| No Message H Help |

Fig. 11. Getting Performance Measures in VISTA

2004] and software simulation cycles [Burger and Austin 1997].
VISTA provides the user two options to determine program performance:

(1) The first option indicates the current program performance, at the point
when this option is selected. The compiler instruments, links and executes the
program only once and sends the dynamic performance counts to the viewer. The
viewer displays the relative frequency of execution of each basic block in the block’s
header, as seen in the right portion of Figure 11. This information indicates the
frequently executed parts of the code, so that the user can concentrate resources
on optimizing the critical portions of the code.

(2) The second option displays the relative static and dynamic improvements
made after each optimizing phase. When this option is selected, the compiler
executes the program once and gets the baseline measures. After each phase, the
program is again executed and static and dynamic counts obtained are compared
with the baseline measures. The relative improvements made by each phase are
displayed in the viewer, which are shown in the left portion of Figure 11. This
information allows a user to quickly gauge the progress that has been made in
improving the function. It is also very useful when it is important for the function
to reach a particular performance goal.

To get the dynamic instruction counts, the compiler must link and execute the
program. The commands to accomplish this can be specified by the user in a file.
If this file is not present, then the user is prompted for this information before
getting the measurements for the first time. The window that is opened to collect
this information is shown in Figure 12. The Actual Output File is compared with

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

20 . Prasad Kulkarni et al.

M|

£
'?'J'r?‘ng

EEIES

Link Command:
Desired Qutpur Fila;

Wetual Qutput File:
Exacute Command:

Max, Execution Time:

)

|gcc -0 fft.exe fftmisc.o fourierf.o main.o math2 .o ease.lib.a -Im |

[fft.out

[trp.aut

[fft.exe 4 4096 > tmp.out

[15

Fig. 12. Test Configuration Window

Compiler (VPO)

Send Static and Dynamic Frequency Measures

Viewer

\
|
|
|
:
i For Current Function
|
|
|
|
|
|
|

Request for
.

EASE

I
Measurements

Save Current
Program State

|
Instrumen
\

Apply Required
Transformations

Fig. 13.

Code ,

Generate
Instrumented
Assembly

Last
Function

No

Read Next
Function

Restore Previous
Program State

Read Program
Frequency Counts

Link and Execute
Assembly File

The Measurement Process

the Desired Output File to verify that correct output is produced. If the executable
produced by the compiler goes into an infinite loop, then the execution is terminated
after Max. Execution Time.

Figure 13 shows the steps the compiler performs to obtain the performance
counts. At the start of the measurement process, the compiler needs to store

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 21

some information needed to get back to the original state. This includes saving the
assembly for the previous functions and global variables to a file, and the trans-
formations applied to the current function thus far. A pointer to the start of the
current function in the input file is also stored. There are some required transforma-
tions that must always be performed before the assembly code for a function can be
generated. These are register assignment (assigning pseudo registers to hardware
registers) and fiz entry-ezit (fixing the entry and exit of the function to manage
the run-time stack). Before generating assembly for measurements, VISTA checks
if these phases have been applied and if not performs them.

The instrumentation of code by EASE is done as the next stage. The EASE en-
vironment instruments the code with additional instructions, including increments
to counters associated with each basic block. The instrumented assembly is output
to a file. After code for the function is generated, all the data structures holding
the state of this function are cleared and re-initialized. VISTA then reads in the re-
maining functions in the file, applies the required transformations and instruments
each with EASE code to produce the final assembly file.

This instrumented assembly file is linked and executed. Upon execution, an
information file that contains the number of instructions and the frequency of ex-
ecution of each basic block in the function is generated. These counts are sent to
the viewer for display. At this point the compiler is holding the last function in
the input file with EASE instrumentation applied to it. To get back to the point
when measurements were initiated, the pointer to the start of the current function
in the input file is used to re-read the function. The compiler then reapplies the
sequence of previously applied transformations to this function to reproduce the
program representation at the point where measurements were taken.

VISTA compiles functions within a file one at a time and each file is compiled
separately. In order to reduce compilation overhead, the position in the assembly
file at the beginning of the function is saved and the assembly is regenerated at
that point. Thus, obtaining new measurements requires producing instrumented
assembly for only the remaining functions in the file and assembling only the current
file. VISTA also saves the position in the intermediate code file that is input to
VPO and the position in the transformation file to further reduce I/0.

4.7 Performance Driven Selection of Optimization Sequences

In addition to allowing a user to specify an optimization sequence, it is desirable
for the compiler to automatically compare two or more sequences and determine
which is most beneficial. VISTA provides two structured constructs that support
automatic selection of optimization sequences. The first construct is the select-
best-from statement and is illustrated in Figure 14. This statement evaluates two
or more specified sequences of optimization phases and selects the sequence that
best improves performance according to the selected criteria. For each sequence the
compiler applies the specified optimization phases, determines the program perfor-
mance (instruments the code for obtaining performance measurements, produces
the assembly, executes the program, and obtains the measurements), and reapplies
the transformations to reestablish the program representation at the point where
the select-best-from statement was specified. After the best sequence is found, the
compiler reapplies that sequence.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

22 . Prasad Kulkarni et al.

& S
Optimization Phase Selection

Reverse Branches Basic Bk Reordering

Merge Basic Bocks Inst Sels

Fix Contral Alow

ad Vari

Mi Loop Jumps

Register Allocation Common Subexpr Him
Code Motion Loop Strength Reduct
Recurrences Inghiction Var Bim

Strength Reduction Fix Entry Exit \

Read Transfor mations From File
Optimization Phase Sequence
select best from -
Inst Selection
Branch Chaining
Register Allocation
or
Register Allocation
Code Motion
Loop Strength Reduct
Induction Var Elim
end select =

Loops || Undo Last Change || Done ‘| Cancel

start writing in |

seqlix H execute from file

Message: | Please select some optimization phases to be

Fig. 14. Selecting the Best Sequence from a Specified Set

The other construct, the select-best-combination statement, is depicted in Fig-
ure 15. This statement accepts a set of m distinct optimization phases and attempts
to discover the best sequence for applying these phases. Figure 16 shows the differ-
ent options that VISTA provides the user to control the search. The user specifies
the sequence length, n, which is the total number of phases applied in each se-
quence. An ezhaustive search attempts all possible m™ sequences, which may be
appropriate when the total number of possible sequences can be evaluated in a
reasonable period of time. The biased sampling search applies a genetic algorithm
in an attempt to find the most effective sequence within a limited amount of time.
This type of search is appropriate when the search space is too large to evaluate
all possible sequences. For this search the number of different sequences in the
population and the number of generations must be specified, which limits the total
number of sequences evaluated. These terms are described in more detail later
in the paper. The permutation search attempts to evaluate all permutations of a
specified length. Unlike the other two searches, a permutation by definition cannot
have any of its optimization phases repeated. Thus, the sequence length, n, must
be less than or equal to the number of distinct phases, m. The total number of
sequences attempted will be m!/(m —n)!. A permutation search may be an appro-
priate option when the user is sure that each phase should be attempted at most
once. VISTA also allows the user to choose weight factors for instructions executed
and code size, where the relative improvement of each is used to determine the
overall improvement. When using the select-best-from statement, the user is also
prompted to select a weight factor.

Performing these searches is often time-consuming. Thus, VISTA provides a
window showing the current status of the search. Figure 17 shows a snapshot of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA . 23

(Optimization Phase Selection

Branch Chaining Him Empty Bocks
Useless Jump Him Dead Code Him
Reverse Branches Basic Bk Reordering
Merge Basic Blocks Inst Selection

Fix Control Alow

sal Inst Select Register Assignment

Minimize Loop Jumps Dead Variable Him
Register Allocation Common Subexpr Him
Code Motion Loop Strength Reduct

Recurrences nélliction Var Bin

Read Transformations From File
(Optimization Phase Sequence

select best combination e
(b) - Branch Chaining

(k) - Register Allocation
(s) - Inst Selection

(n) - Code Motion

(c) - Common Subexpr Elim
end select¢2000y

Loops || Undo Last Change || Done “ Cancel

start writing in

seqlixt H execute from file

Message: ‘ Flease select some optimization phases to

Fig. 15. Selecting the Best Sequence From a Set of Optimization Phases

% Sel....Comb Query - X
Mo. of Phases: |5 Search Option:
Sequence Length: |7 () Exhaustive Search
®) Bigsed Sampling Search
Weight Factors:) Permutation Search
Spertd 3 el ! Population Size: 20

Number of Generations: [190 |

ok cancel | | help |

Fig. 16. Selecting Options to Search the Space of Possible Sequences

the status of the search that was selected in Figures 15 and 16. The percentage of
sequences completed along with the best sequence and its effect on performance is
given. The user can terminate the search at any point and accept the best sequence
found so far.

4.8 Presenting Static Program Information

The viewer in VISTA also can display a variety of static program analysis infor-
mation to the user. Such information can prove to be very useful to a programmer
interactively tuning the program. Clicking on a basic block in VISTA provides

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

24 Prasad Kulkarni et al.
% | Sel....Comb Result
Percent Complete:
| 19%

Combinations Completed:

valic: 387 Invalict: [0 Total: 387/2000
Best Sequence: shksncs Seq. Num.: 21
Current Sequence: sCkshch Improvement: 44.0
Relative Improvements:
Code Size: 45? Speed: 22? Cryarall; 342

Stop

Fig. 17. Window Showing the Status of Searching for an Effective Sequence

[Block INFORMATION

[% | RTL INFORMATION

Elock Index: 3 RTL Id: 255

Num of Insts: 4 RTL Type: 16385
SUCCS: 1011 RTL WALUE: IC=r[2077r[2];
PREDS 8 Dead Register r[9]

NS r[8] Assembly: cmp %14,%01
oUTS r(14]

DOMS 135688

(a) Clicking on a basic-block

(b) Clicking on a RTL

Fig. 18. Getting static program information in VISTA

information such as the live registers coming into the block and the live registers
going out of the basic block, the dominators of that block and the successors and
predecessors of that block. Clicking on block 9 in Figure 3 displays the information
shown in Figure 18(a). Clicking on a RTL displays the assembly representation of
the RTL and the dead registers at that point. Figure 18(b) shows the information
displayed on clicking the highlighted RTL in Figure 3. As mentioned earlier, VISTA
also has the ability to show the registers live at any point in the function.

In addition to such static information, double-clicking on a basic block or RTL
in the viewer, opens up another window showing the ‘C’ source code with the
source lines corresponding to that block or RTL highlighted. This is illustrated in
Figure 19. VISTA also has the reverse ability, in the sense that clicking on any line in
this source-code window highlights the corresponding RTLs generated for those lines
in the main VISTA user interface window. This functionality is accomplished by
maintaining source line information in the intermediate code generated by the front-
end. Note that, this information is not always accurate, as certain optimizations,
like code motion move instructions and basic blocks around. In spite of this, such
information along with the various static analysis results prove to be very handy
when optimizing and debugging any program.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA . 25

% Userinterface - [%
Function ‘DS(I’ Trans Number 301 \L 1=
— | Eyovmm—|
¥ calc =T 8 | | freq: 0.111% I
transfor n=nmi0+c-0; - | PC=L99;
Inat Sel = | &
egiat ¢
i ; returnng;
Inet: Ber I:g | L100 | freq: 0.0% [
ELImER | strgstr, ny : l
char *sir; \L
{
int i; 10 | L98 | freq: 7.009% e
char *s; | r[10]=x[11] ;
: 11]=r[10] -1;
fjn“'" =r [10] 20;
whilati=-) | PC=ICIO,LET;
if"s++ =="09 o
-1 = d
I =n+l;
while(i-— (11 | L9 | freq: 0.667%
i 1= B[r[12]+1]1=0;
break; | T[B]=HT[L44] ;
SLLS A0 r[8]=r[8]+LO(L44) ;
printf"&syn”, str); | c[91=r[1];
) i
Select char mon(] ={
0, L
= 31, 28, 31, 30, \L
31, 30,31 31,
i 20,31, 20, 31, N1z | o1 | freq: 0.111% H |
[

Fig. 19. Clicking on a basic block highlights corresponding source code lines

Table I. MiBench Benchmarks Used in the Experiments

| Category | Program | Description
auto/industrial | bitcount test bit manipulation abilities of a processor
network dijkstra calculates shortest path between nodes using
Dijkstra’s Algorithm
telecomm fft performs a fast fourier transform on an array of data
consumer jpeg image compression and decompression
security sha secure hash algorithm
office stringsearch | searches for given words and phrases

5. EXPERIMENTAL RESULTS

This section describes the results of a set of experiments to illustrate the effective-
ness of using VISTA’s biased sampling search, which uses a genetic algorithm to find
effective sequences of optimization phases. We used a set of MiBench programs,
which are C benchmarks targeting specific areas of the embedded market [Guthaus
et al. 2001]. We used one benchmark from each of the six categories of applications.
Descriptions of the programs we used are given in Table I.

We perform the following experiments on the ARM architecture.” Our exper-
iments have many similarities to the Rice study, which used a genetic algorithm
to reduce code size [Cooper et al. 1999]. We believe the Rice study was the first
to demonstrate that genetic algorithms could be effective for finding efficient opti-
mization phase sequences. However, there are several significant differences between
their study and our experiments, and we will contrast some of the differences in
this section.

1

IThis is in contrast to a similar set of experiments performed on the general-purpose SPARC
processor in a conference version of the paper [Kulkarni et al. 2003].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

26 . Prasad Kulkarni et al.

The Rice experiments used a genetic algorithm to find effective sequences con-
sisting of twelve phases from ten candidate optimizations. They compared these
sequences to the performance obtained from a fixed sequence of twelve optimization
phases. In contrast, VPO does not utilize a fixed sequence of phases. Instead, VPO
repeatedly applies phases until no more improvements can be obtained. Figure 20
shows the algorithm used to determine the order in which optimization phases are
applied to VPO. This algorithm has evolved over the years and the primary goal
has always been to reduce execution time. The smallest unit of compilation in the
Rice work was a file, which may contain many individual functions. In this study,
we perform our searches for effective optimization sequences on a per function basis.

A complication when assessing VISTA’s ability to find effective optimization
sequences as compared to the batch VPO compiler is that the register assignment
(assigning pseudo registers to hardware registers) and fized entry exit (fixing the
entry and exit of the function to manage the run-time stack) phases are required,
which means that they must be applied once and only once. Many of the other
phases shown in Figure 20 must be applied after register assignment and before
fix entry exit. Thus, we first set up the compiler to perform register assignment
on demand, i.e. before the first phase which needs it. We then apply the genetic
algorithm to find the best sequence of improving phases among fifteen candidate
phases attempted by the batch compiler before fix entry exit. These fifteen phases,
along with a short description of each phase, are listed in Table II.

Another complication was the number of optimization phases to apply since it
may be beneficial to perform a specific optimization phase multiple times. When
applying the genetic algorithm, one must specify the number of optimization phases
(genes) in each sequence (chromosome). It was not clear how to determine an
appropriate uniform limit since the number of attempted optimization phases by
the batch compiler could vary with each function. Therefore, we first determine
the number of successfully applied optimization phases (those which affected one
or more instructions in the compiled function) during batch compilation. We then
multiply the number of successful phases by 1.25 to get the number of optimization
phases in each sequence for that function. This sequence length is a reasonable
limit for each function and still gives an opportunity to successfully apply more
optimization phases than the batch compiler is able to accomplish. Note that this
number was much less that the total phases attempted by the batch compiler for
each function in all of the experiments.

5.1 Batch Compilation Measures

Table III shows batch compilation information for each function in each of the
benchmark programs. The first column identifies the program and the number
of static instructions that is produced for the application after batch compilation.
The second column lists the functions in the corresponding benchmark program.
In four of the benchmarks, some functions were not executed even though we used
the input data that was supplied with the benchmark. Since such functions did
not affect the dynamic measures, we have designated such functions together as
unezecuted funcs. The third and fourth columns show the percentage of the program
that each function represents for the dynamic and static instruction count after

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 27

branch chaining
remove useless basic blocks
remove useless jumps
remove unreachable code
reverse jumps
remove jumps by block reordering
merge basic blocks
instruction selection
fix control flow
evaluation order determination
global instruction selection
register assignment
instruction selection
minimize loop jumps
if(changes in last phase)
merge basic blocks
do
do
do
dead assignment elimination
while changes
register allocation
if(changes in last two phases)
instruction selection
while changes
do
common subexpression elimination
dead assignment elimination
loop transformations
remove useless jumps
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reordering
remove useless jumps
if(changes in last 7 phases)
minimize loop jumps
if(changes in last phase)
merge basic blocks
dead assignment elimination
strength reduction
instruction selection
while changes
while changes
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reordering
fix entry exit
instruction scheduling
fill delay slots
if(changes in last phase)
remove useless jumps
remove branch chains

Fig. 20. VPO’s Order of Optimizations Applied in the batch mode

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

28 . Prasad Kulkarni et al.

Table II. Candidate Optimization Phases in the Genetic Algorithm along with their Designations

| Optimization Phase ‘ Gene | Description |
branch chaining b Replaces a branch or jump target with the target
of the last jump in the jump chain
eliminate empty block e Removes empty blocks from the control flow graph
useless jump u Remove useless transfers of control like a jump to
elimination the next block in the control flow
dead code elimination d Remove block unreachable from the top block
reverse branches r Reverses a conditional branch when it branches
over a jump to eliminate the jump
block reordering i Removes a jump by reordering basic blocks when the
target of the jump has only a single predecessor
merge basic blocks m Merges two consecutive basic blocks when the

predecessor has no transfer of control and the
successor has only one predecessor

instruction selection S Combine instructions together when the combined
effect is a legal instruction

evaluation order o Reorder instructions within a basic block to calc.

determination expressions that require the most registers first

minimize loop jumps j Remove an unconditional jump at the end of a loop

or one that jumps into a loop, by replicating a
portion of the loop

dead assignment h Removes assignments where the assignment value is
elimination never used
register allocation k Replaces references to a variable within a
specific live range with a register
common subexpression c Eliminates fully redundant calculations
elimination
loop transformations 1 Performs loop-invariant code motion, recurrence

elimination, loop strength reduction, and induction
variable elimination on each loop ordered by loop
nesting level. Each of these transformations can
also be individually selected by the user.

strength reduction q Replaces an expensive instruction with one or more
cheaper ones

applying the optimization sequence. Although the batch compiler applies the same
sequence of optimizations in the same order, many optimizations may not produce
any modifications in the program. Also, iteration causes some transformations to
be repeatedly applied. Thus the sequence and number of optimizations successfully
applied often differs between functions. The fifth column shows the sequence and
number of optimization phases successfully applied by the batch compiler before
fix entry exit. One can see that the sequences of successful optimization phases can
vary greatly between functions in the same application. The final column shows
the total number of optimization phases attempted. The number applied can vary
greatly depending upon the size and loop structure of the function. The number of
attempted phases is also always significantly larger than the number of successfully
applied phases.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA 29
Table III. Batch Optimization Measurements
program . % of % of | applied sequence attempted
and size function dyna. | stat. | and length phases
bitcount | AR_btbl_bitcount 3.22 3.86 | emsoskschs (10) 153
(496) BW_btbl_bitcount | 3.05 3.66 | emsoshsks (9) 82
bit_count 13.29 | 3.25 | beurmsohsksc (12) 152
bit_shifter 37.41 | 3.86 | bedrimsheksc (12) 169
bitcount 8.47 | 10.16 | emsosksc (8) 81
main 13.05 | 19.51 | bedrimsosjmhskshcls (19) 177
ntbl_bitent 14.40 | 3.66 | ermssksc (8) 150
ntbl_bitcount 7.12 8.54 | emsoskskskscsc (14) 183
unexecuted funcs 0.00 | 43.49 | (10.3) 149.8
average (10.83) 146.94
dijkstra | dequeue 0.85 10.40 | bemsoksch (9) 148
(327) dijkstra 83.15 | 44.04 | beudrimsojmsbkschls (19) 193
enqueue 15.81 | 12.84 | beudrimsoksc (12) 152
main 0.06 | 22.94 | bedrimsojmskshcls (17) 174
print_path 0.01 8.26 | ermsosksc (9) 81
qcount 0.12 1.53 | emsks (5) 76
average (11.83) 137.33
fft CheckPointer 0.00 2.34 | bemsks (6) 76
(728) IsPowerOfTwo 0.00 2.61 | bermsohks (9) 79
NumberOfBits... 0.00 3.98 | beurmsokslc (11) 154
ReverseBits 14.13 2.61 | bedimsojmhsksclrlrlr (20) 173
fit_float 55.88 | 38.87 | beudrimsojmhskskschllhrsc 301
Irlrksclrlrlrs (39)
main 29.98 | 39.56 | bedrimsogsjmhskschlhgscsc (25) 189
unexecuted funcs 0.00 | 10.03 | (10) 151.00
average (17.14) 160.42
jpeg finish_input_ppm 0.01 0.04 | emsh (4) 66
(5171) get_raw_row 48.35 | 0.48 | eurmsohksc (10) 150
jinit_read_ppm 0.10 0.35 | emsoksc (7) 148
main 43.41 | 3.96 | beudrimsojmhshksclsc (20) 158
parse_switches 0.51 11.26 | beudrimsojmhsbekschsc (21) 192
pbm_getc 5.12 0.81 | beurmsohkschc (13) 151
read_pbm_integer 1.41 1.26 | beudrimsoeksc (13) 167
select_file_type 0.27 2.07 | beudrimsoekschc (15) 157
start_input_ppm 0.79 5.96 beudrimsosjmsekschlrlrlrsc (26) 196
write_stdout 0.03 0.12 | emsks (5) 79
unexecuted funcs 0.00 | 73.69 | (14.04) 148.36
average (13.94) 148.04
sha main 0.00 | 13.71 | bedrimsksclsc (13) 153
(372) sha_final 0.00 | 10.75 | ermsohsksc (10) 129
sha_init 0.00 5.11 | bedsojmhshsksclrlrlrs (21) 152
sha_print 0.00 3.76 | emshsksc (8) 80
sha_stream 0.00 | 11.02 | bedimsjmkslsc (13) 151
sha_transform 99.51 | 44.62 | bedimsojmshskshcllhsclhscscse (29) 258
sha_update 0.49 | 11.02 | bedrimsojmhsksclc (17) 181
average (15.86) 159.87
string- init_search 92.32 | 6.18 | bedimsojmskshc (14) 101
search main 3.02 | 14.08 | bedrimsogjmksclschsc (20) 179
(760) strsearch 4.66 7.37 | bedrimsoseksclsc (16) 173
unexecuted funcs 0.00 | 71.44 | (16.29) 169.14
average (16.40) 163.70
average (13.87) 151.69

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

30 . Prasad Kulkarni et al.

We also evaluated the impact that iteratively applying optimization phases had
on dynamic and static instruction counts. We obtained this measurement by com-
paring the results of the default batch compilation to results obtained without
iteration, which uses the algorithm in Figure 20 with all the do-while’s iterated
only once. On average, we found that iteratively applying optimization phases re-
duced dynamic instruction count by 9.51% over results obtained without iteration.
The impact on static counts was much less, with iteration only improving results
by 0.54%. This was expected, since the compiler has been originally tuned for
execution time alone. In fact, we were initially unsure if any additional dynamic
improvements could be obtained using a genetic algorithm given that iteration may
mitigate many phase ordering problems.

5.2 Genetic Algorithm Optimization Measures

There are a number of parameters in a genetic algorithm that can be varied to
affect the performance of the generated code. The best algorithm for a particular
application only comes from experience and continuous fine tuning based on em-
pirical results. In our experiments for this paper, we have used a very basic genetic
algorithm loosely based on the one used by Cooper et al. [Cooper et al. 1999] in
their study to effectively reduce the code size for embedded applications. They
demonstrated that this algorithm gives much improved performance as compared
to random probing. In the future we plan to experiment with different parameters
of the genetic algorithm and study their effects on program performance. The pop-
ulation size (fixed number of sequences or chromosomes) is set to twenty and each
of these initial sequences is randomly initialized. Since some phase orderings are
not valid in the compiler checks are made to only generate legal optimization phase
sequences. The sequences in the population are sorted by fitness values (using
the dynamic and static counts according to the weight factors). At each gener-
ation (time step) we remove the worst sequence and three others from the lower
(poorer performing) half of the population chosen at random. Each of the removed
sequences are replaced by randomly selecting a pair of sequences from the upper
half of the population and then performing a crossover operation on that pair to
generate two new sequences. The crossover operation combines the lower half of
one sequence with the upper half of the other sequence and vice versa to create the
new pair of sequences. Fifteen chromosomes are then subjected to mutation (the
best performing sequence and the newly generated four sequences are not mutated).
During mutation, each gene (optimization phase) is replaced with a randomly cho-
sen one with a low probability. For this study mutation occurs with a probability
of 5% for a chromosome in the upper half of the population and a probability of
10% in the lower half. All changes made by crossover and mutation were checked
for validity of the resulting sequences. This was done for a set of 100 generations.
Note that many of these parameters can be varied interactively by the user during
compilation as shown in Figure 16.

Table IV shows the results that were obtained for each function by applying the
genetic algorithm. For these experiments, we obtained the results for three different
criteria. For each function, the genetic algorithm was used to perform a search for
the best sequence of optimization phases based on static instruction count only,
dynamic instruction count only, and 50% of each factor. As in Table III, unezecuted

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 31

Table IV. Effect on Dynamic Instruction Counts and Space Using the Three Fitness Criteria

optimize for dy. cnt.

optimize for space

optimizing for both

program | functions % dyna. % stat. | % dyna. | % stat. | % dyna. % stat.
improv. improv. improv. | improv. improv. improv.

bitcount | AR_btbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00
BW _btbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00

bit_count -1.40 -11.11 -1.40 | -11.11 -1.40 -11.11

bit_shifter 0.40 7.14 0.40 7.14 0.40 7.14

bitcount 0.00 0.00 0.00 0.00 0.00 0.00

main 0.001 3.33 0.001 3.33 0.001 3.33

ntbl_bitcnt 14.68 14.29 14.68 14.27 14.70 14.27
ntbl_bitcount 0.00 0.00 0.00 0.00 0.00 0.00
unexecuted funcs N/A N/A N/A 1.60 N/A 0.54

total 2.72 2.00 2.72 1.81 2.72 1.81

dijkstra dequeue 0.00 3.85 0.00 3.85 0.00 3.85
dijkstra 4.20 6.73 -0.01 6.73 4.20 6.73

enqueue 0.00 0.00 0.00 0.00 0.00 0.00

main 49.89 5.09 38.53 10.17 49.88 5.09

print_path 5.12 5.56 5.12 5.56 5.12 5.56

qcount 0.00 0.00 0.00 0.00 0.00 0.00

total 3.70 4.84 0.22 6.05 3.70 4.84

fft CheckPointer 33.33 7.69 16.67 7.69 33.33 7.69
IsPowerOfT'wo 12.5 8.33 0.00 8.33 0.00 0.00
NumberOfBits... -23.92 0.00 -26.09 5.00 0.00 0.00
ReverseBits -1.27 7.69 -1.27 7.69 -1.27 7.69

fft_float 11.17 2.29 2.45 3.27 10.71 4.90

main 3.63 5.10 -4.03 5.10 3.63 5.10
unexecuted funcs N/A N/A N/A 2.86 N/A 0.00

total 8.26 3.80 0.51 4.33 7.96 4.62

jpeg finish_input_ppm 0.00 0.00 0.00 0.00 0.00 0.00
get_raw_row 0.00 0.00 0.00 0.00 0.00 0.00
jinit_read_ppm 15.39 15.39 15.36 15.36 15.39 15.39

main 5.58 -11.00 -0.05 1.50 0.12 6.50
parse_switches 6.29 1.78 0.70 0.79 -0.70 0.59

pbm_getc 0.00 0.00 0.00 0.00 0.00 0.00
read_pbm_integer 5.00 -2.00 0.00 0.00 0.00 0.00
select_file_type 0.00 0.00 0.00 -1.61 0.00 0.00
start_input_ppm 2.68 3.57 2.70 3.57 2.70 3.57
write_stdout 0.00 0.00 0.00 0.00 0.00 0.0
unexecuted funcs N/A N/A N/A 5.02 N/A 5.48

total 3.18 0.27 0.05 4.20 0.11 4.70

sha main 9.68 4.65 9.68 4.65 9.68 4.65
sha_final 4.17 5.13 4.17 5.13 4.17 5.13

sha_init 0.00 0.00 0.00 0.00 0.00 0.00

sha_print 8.33 8.33 8.33 8.33 8.33 8.33
sha_stream 0.61 8.83 -31.22 26.47 8.57 32.35
sha_transform 0.70 10.18 -2.42 13.92 0.35 12.66
sha_update 0.06 8.82 0.00 5.71 0.00 5.71
byte_reverse 1.75 -41.67 0.52 10.42 0.52 10.42

total 0.90 1.30 -1.83 11.20 0.38 11.20

string init_search 0.15 12.9 0.15 12.90 0.15 12.90
search main 0.002 6.15 -3.21 9.23 -3.21 9.23
strsearch 3.80 5.00 -0.62 5.00 -0.62 5.00
unexecuted funcs N/A N/A N/A 8.38 N/A 8.82

total 0.29 7.35 0.05 9.85 0.05 9.85

average 3.18 3.26 0.29 6.24 2.49 6.17

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

32 . Prasad Kulkarni et al.

funcs indicate those functions in the benchmark that were never executed using the
benchmark’s input data. We also indicate that the effect on the dynamic instruction
count was not applicable (N/A) for these functions. The last six columns show
the effect on static and dynamic instruction counts, as compared to the batch
compilation measures for each of the three fitness criteria. The results that were
expected to improve according to the fitness criteria used are shown in boldface. The
results indicate that in spite of the inherent randomness of the genetic algorithm, the
improvements obtained do tend to lean more toward the particular fitness criteria
being tuned. For most functions the genetic algorithm was able to find sequences
that either achieved the same result or improved the result as compared to the
batch compilation results.

Figures 21 and 22 show the overall effect of using the genetic algorithm for each
test program on the dynamic and static results, respectively. The results show that
the genetic algorithm was more effective at reducing the static instruction count
than dynamic instruction count, which is not surprising since the batch compiler was
developed with the primary goal of improving the execution time of the generated
code and not reducing code size. However, respectable dynamic improvements
were still obtained despite having a baseline with a batch compiler that iteratively
applies optimization phases until no more improvements could be made. Note that
many batch compilers do not iteratively apply optimization phases and the use of a
genetic algorithm to select optimization phase sequences will have greater benefits
as compared to such non-iterative batch compilations. The results when optimizing
for both dynamic instruction counts and space showed that we were able to achieve
close to the same dynamic benefits when optimizing for dynamic instruction counts
and close to the same static benefits when optimizing for space. A user can set
the fitness criteria for a function to best improve the overall result. For instance,
small functions with high dynamic instruction counts can be optimized for speed,
functions with low dynamic instruction counts can be optimized primarily for space
(since these measurements are typically much faster as we do not need to execute
the code), and large functions with high dynamic counts can be optimized for
both space and speed. The optimization phase sequences selected by the genetic
algorithm for each function are shown in Table V. The sequences shown are the
ones that produced the best results for the specified fitness criteria. Similar to the
results in Table III, these sequences represent the optimization phases successfully
applied as opposed to all optimization phases attempted.

From these results it appears that strength reduction was rarely applied since we
used dynamic instruction counts instead of taking the latencies of more expensive
instructions, like integer multiplies, into account. It appears that certain optimiza-
tion phases enable other specific phases. For instance, instruction selection (s) often
follows register allocation (k) since instructions can often be combined after mem-
ory references are replaced by registers. Likewise, dead assignment elimination (h)
often follows common subexpression elimination (c) since a sequence of assignments
often become useless when the use of its result is replaced with a different register.

The results in Table V also show that functions within the same program produce
the best results with different optimization sequences. The functions with fewer
instructions typically had not only fewer successfully applied optimization phases

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA . 33

O optimizing for 50% dynamic
m optimizing for 100% dynarric

% improvement

N > s o ®
S-S &£ e
¢ g 5
& & & &

Fig. 21. Overall Effect on Dynamic Instruction Count

| optirmizing for 50% static
B optimizing for 100% static

% improvement

Fig. 22. Overall Effect on Static Instruction Count

but also less variance in the sequences selected between the different fitness criteria.
Note that many sequences may produce the same result for a given function and
the one shown is just the first sequence found that produces the best result.
Finding the best sequence using the genetic algorithm for 100 generations with
a population size of twenty required a few hours for each function on an ARM.
The compilation time was less when optimizing for size only since we would only
get dynamic instruction counts when the static instruction count was less than
or equal to the count found so far for the best sequence. In this case we would
use the dynamic instruction count as a secondary fitness value to break ties. In
general, we found that for most functions the search time was dominated not by the
compiler, but instead by assembling, linking, and executing the program. If we use
size without obtaining a dynamic instruction count, then we typically obtain results
for each function in far less time. However, for some of the bigger functions, with
long sequence lengths, compilation time is also significant on the ARM. We have

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

34 Prasad Kulkarni et al.
Table V. Optimization Phase Sequences Selected Using the Three Fitness Criteria
| program | functions | optimizing for dy. cnt. | optimizing for space | optimizing for both

bitcount | AR_btbl_bitcount skes sksech chsksmd
BW_btbl_bitcount | skes skes dskms
bit_count crhdesikscmsr mshkurcdks humsrkhces
bit_shifter bsekhdsricb erskrshcb skcrbsdhr
bitcount sdokms sodksm sdoks
main dsokhrslrsmkcs srohskescmlecr soeksmcslhrsksr
ntbl_bitcent crhsks csckrehs srchks
ntbl_bitcount smkcse dmsks smkcse

dijkstra dequeue soerkscb sdksmer smkrsce
dijkstra skerslbemucr rskiebsdcre sikscrbdjce
enqueue esbdimks idskebsd mbsudmiksmc
main idskelrsblmed sksecbidemr skmdrlrslc
print_path ersmkes csksmecerc skcres
qcount smkc smkc chsm

fft CheckPointer scrkedh skrms rcskhe
IsPowerOfT'wo sboerhks seckimh bcrskhm
NumberOfBits... sbchekrumcl ibisrdklcs iskbmrsljd
ReverseBits dskmeciebhsd skehrsrmc ecrskchsmr
fit_float brdsuckschclrslhlscks eshkmrlslhursclrshks | durshbcedkhksclrshlhsc
main bskdlerihkms sekhrlbrmsch dskbhdlmrirsh

jpeg finish_input_ppm ech ech ech
get_raw_row shekci shkurcm esuhkce
jinit_read_ppm cskdsc mskes skcsm
main bdljmiskesbehr mesobhldksrcu sbodrmkshlcur
parse_switches ishskmbdscrejs rshsurbksdcsre srhskusdrcbmsd
pbm_getc dsokricbhe sokeurech soucrkmcdeh
read_pbm_integer ecbsksdchmrir smbkcrsedi soucrkeshr
select_file_type dsrkscimhbr sdkscriheb bsrkdmschi
start_input_ppm useokrbdrsircem rsikcedbsrdr rsikmcsedrrbm
write_stdout cdmh cdmh smkc

sha main dsrbelrmkes ibmrskdscs ibrskldcs
sha_final dskhicrs sdkmcicsrh skhmcrecs
sha_init sksmce esksc msksec
sha_print schdkmc smeckch sdckhe
sha_stream rslrkjs dsrksr clchesksbdu
sha_transform seoblkcmdjclhslsmbic somrlkcdlhslersc recmgsklcshlesr
sha_update sdiorkcbhdcmjs sokecmrhcs sobkcrsirdemh

string- init_search sebkdsmcim birsksdcm esbksdmcie

search main slkrsdlcmh rmeslsksrc dmsbdklsrumc
strsearch bsksedurc skbserimced dbedskrisce

developed techniques to avoid evaluating redundant sequences to further speed up
the genetic algorithm [Kulkarni et al. 2004]. In the future we plan to enhance these
techniques to further reduce the search time.

5.3 Simulation Results

In the previous section we presented dynamic instruction counts as an indicator
of the run-time execution speed of the application. In an ideal world, where each
instruction takes the same number of cycles to execute, operating system policies
like context switches, processor and machine characteristics like pipelines and mem-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 35

ory hierarchies, and the delay caused by I/O do not have any noticeable effect on
program execution time, this would indeed be true. But, on most machines these
features have a significant impact on the execution time of any application. In fact,
for an application dominated by I/O, or for an application dominated by system
calls and calls to other functions, reducing only the number of dynamic instructions
in the current function only may have no noticeable effect on execution time. When
combined with pipeline, memory hierarchy, and OS effects, this might even result
in an actual increase in the execution time for some program executions.

As a result many people do not consider dynamic instruction counts to provide
a reasonable indication of program performance. However, getting accurate and
reproducible execution times is non-trivial in the presence of OS and complicated
architectural features. To offset such effects many users perform multiple runs
of the application, and show the average execution time along with the standard
deviation. This method provides reasonably reproducible measures for compute-
intensive kernels. But such a method also has a tendency to break down for appli-
cations doing 1/0. Also, the small performance improvements we generally observe
can be easily dwarfed by the variations in the execution times due to such external
factors. While such individual variations for each function may be fairly small,
their cumulative effect may be more substantial. Finally, the development envi-
ronment is often different from the target environment for embedded applications
and actual executions may not be possible. Such considerations lead us to use a
simulator to get cycle counts for the function being optimized since these measures
are repeatable. Improvement in simulation cycle counts, while taking pipeline and
memory hierarchy effects into consideration, can serve as a reasonable estimation
of execution time improvement [Burger and Austin 1997].

As part of our experiments we used the SimpleScalar toolset [Burger and Austin
1997], which is widely used and acknowledged. The cycle accurate version of the
ARM simulator computes cycle counts for the entire application. This would in-
clude the cycle counts of all procedure calls and system calls made from the function
being optimized. Since that part of the code was not impacted by the current op-
timization sequence, including cycle counts for those functions was inappropriate.
So, we modified the simulator to disregard cycle counts when it leaves the current
function, and again start the counts on re-entering the current function. However,
the simulation of these other functions still includes the effect on various stores,
like branch prediction buffers and caches. Thus, we believe that other simulator
idiosyncrasies like branch mispredictions and cache misses have been reasonably ad-
dressed during this modification. Obviously, simulation takes orders of magnitude
more time than direct execution (for the benchmark fft, over several executions,
we observed that simulation takes at least 5000 times as much time as direct ex-
ecution). Also, we wanted to show that the improvements using cycle counts are
fairly consistent with those using dynamic instruction counts. So, we have only
evaluated the performance for one benchmark, fft. We chose fft as it had shown
the best overall dynamic improvement (when optimizing for only dynamic instruc-
tion counts), and because this benchmark has a good mix of both small and large
functions. Each function in this benchmark is only processed for 50 generations,
as opposed to the 100 generations used for the above experiments. This was done

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

36 . Prasad Kulkarni et al.

Table VI. Effect of Iterative Compilation on Dynamic Cycle Counts

functions batch iterative % iterative

total cycles | total cycles | improvement
CheckPointer 15 11 26.67
IsPoverOfTwo 76 43 43.42
NumberOfBits... 78 74 5.13
ReverseBits 147523 147496 0.02
fit _float 1444030 1234553 14.51
main 537587 421972 21.51
total 2129309 1804149 15.27

as we had observed during our prior experiments that most functions reach their
best sequence in the first 50 generations itself. All other experiment parameters
have been maintained the same. The simulation environment was configured for an
inorder ARM processor with issue, decode, and commit widths of 4, 16kB L1 data
cache, 16kb L1 instruction cache, and 256kB shared L2 cache. Table VI shows the
improvements in cycle counts given by the sequence found by the genetic algorithm
over the batch compiler measures.

The results in Table VI show that the improvements in dynamic cycle counts are
correlated to the improvements in dynamic instruction counts shown in Table IV.
The functions which actually degraded in Table IV show only marginal improve-
ments in Table VI. Overall, for the function studied, the improvements in actual
cycle counts are almost twice the improvements in dynamic instruction counts, as
compared to the batch compiler measures. The results may vary for other func-
tions. Note that these results only show the suitability of iterative compilation to
improve cycle counts, and in no way suggests that our approach is more benefi-
cial to cycle counts than to dynamic instruction counts. Also, in most cases, the
actual sequences giving the best performance in Table VI are different than the se-
quences achieving best performance for corresponding functions in Table IV. The
use of simulation versus dynamic instruction counts is effectively a tradeoff between
accuracy and search time.

6. COMBINING INTERACTIVE AND AUTOMATIC COMPILATION

A major advantage of interactive compilation is that the user can utilize his/her
knowledge about the application and machine domains to produce better code
than that produced automatically by the compiler. Automatic compilation is still
important as it greatly eases the task of performing manual changes later. In
this section we illustrate the ability of VISTA to combine the benefits of both
interactive and automatic tuning on some section of code by providing a case study
that involves tuning a critical function extracted from a software that controls a
compact disc player (see Figure 23).

For this particular function, the application programmer applies his knowledge
of the problem domain and uses 8-bit data variables when possible to reduce the
memory footprint of the application. For example, the programmer knows that the
loop induction variables will not exceed 8 bits and declares the induction variables
to be 8-bit chars. If the optimizer determines it is best to leave these variables on

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 37

1 char uskb[1000];
2 void function() {
3 char cnt, i, data;
4 if (uskb[0]) {
5 for(cnt=uskb[0]; cnt > 1; cnt--) {
6 data=uskb[cnt];
7 for(i =1; i <= 21; i++) {
8 if(data == sk[i]) {
9 sk[i] = Oxff;
10 sk[0]--;
11 break;
12 }
13 }
14 }
15 for(cnt = 1 ; cnt <= 21; cnt++)
16 uskb[cnt] = Oxff;
17 uskb[0] = 0;
18 }
19 }
Fig. 23. C Source

Table VII. Summary of case study.

‘ Compilation Method | Code Size | Instructions in Critical Loop
batch compiler 45 5
batch plus hand edits 42 4
VISTA’s GA 42 5
GA plus hand edits 39 4
interactive GA and hand edits 39 4

the stack, memory is conserved. However, if the compiler promotes these variables
to 32-bit registers, it must preserve the program semantics, which do not allow the
value to become larger than 8 bits. Consequently, the compiler inserts truncation
instructions (and reg, reg, #255) when a register holding an 8-bit value is mod-
ified. In the example, the three increments of the three induction variables incur
this truncation overhead. Omne might claim that the compiler could remove the
extra operations, and this is partially true. However, the truncation operation for
the induction variable cnt at line 5 cannot be removed since the loop bounds are
unknown at compile time.

To illustrate the effectiveness of VISTA’s compilation techniques, the sample
program was compiled using five different approaches (see Table VII). First, the
program was compiled using the batch compiler. The batch compiler generated 45
instructions for the function and five instructions for the critical loop (line 15). If
the resulting code does not meet the specified size and performance constraints,
one option the programmer has is to hand edit the output of the batch compiler.
Removing the truncation instructions manually, the programmer can save 3 in-
structions for the function, and one in the critical loop (see row two of Table VII).

Using VISTA’s genetic algorithm to apply all optimizations (200 generations,
50% size and 50% dynamic instruction counts) yields better code than the batch

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

38 . Prasad Kulkarni et al.

1 .L17: cmp r2, #21 # compare r2 with 21
2 strleb ri2,[r5,r2] # store least significant byte in ri2 if (r2 <= 21)
3 addle r2,r2,#1 # increment r2 if (r2 <= 21)
4 ble .L17 # loop back to .L17 if (r2 <= 21)
Fig. 24. Loop produced by GA plus hand edits
1 .L17: and r2,r2,#255 # only keep the least significant byte
2 cmp r2, #21 # compare r2 with 21
3 strleb ri12,[r6,r2] # store least significant byte in ri12 if (r2 <= 21)
4 addle r2,r2,#1 # increment r2 if (r2 <= 21)
5 ble .L17 # loop back to .L17 if (r2 <= 21)

Fig. 25. Loop produced from the batch compiler

compiler, 42 instructions overall with 5 instructions in the critical loop. However,
applying the same hand edits that were applied to batch compiler’s output yields
a function with 39 instructions and 4 instructions in the critical loop. This result
is a significant savings over the initial batch version.

It may be possible to do even better. By examining the sequence of optimizations
VISTA’s genetic algorithm applies and their effect on the resulting code, the appli-
cation programmer can determine that register allocation introduces the truncation
related inefficiencies in the program. By discarding optimizations after register al-
location, applying the hand edits, and re-running the GA, VISTA may be able to
produce even better assembly than doing a final edit of the output of the genetic
algorithm. In this particular case study, no further improvements are gained, but
it is easy to believe that other functions being tuned may see further improvement.
Table VII summarizes the results of the case study. Figures 24 and 25 show the
best and worst assembly for our critical loop (line 15 in the source) obtained in
Table VII.

One might claim that hand edits would be unnecessary if the programmer had
declared the induction variables to be type int. Although true for our example,
modifying the source program is not always possible. In a more complex function,
induction variables cannot always be assigned to a register for the entire execution
of the function. If an induction variable needs to reside on the stack for a portion
of the program, either hand edits are necessary or the compiler will waste stack
memory.

7. IMPLEMENTATION ISSUES

In this section we discuss the implementation of certain features in VISTA.

7.1 Correct Button Status in the Viewer

In the VISTA user interface the only buttons active at any point during the com-
pilation process are those that can be legally selected by the user. The rest of the
buttons are grayed out. As the user selects optimization phases to be applied the
sets of selectable and disabled buttons should change. For example, selecting regis-
ter assignment enables many other optimizations dependent on register assignment
like register allocation and code motion. Clicking fill delay slots grays out most

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 39

other optimizations which are not legal after this phase. The control statements
like the if, while, select best from and select best combination constructs complicate
the act of determining which buttons are active during and after applying each con-
struct. This problem is further complicated by the feature of undoing previously
applied transformations, supported in VISTA, since this requires storing detailed
button status information at many different points with the ability of getting back
to a previous button state when changes are undone. The interaction of all these
factors made the task of determining the correct button status a non-trivial task
requiring meticulous and careful handling.

7.2 Proper Handling of Interactive Compilation

The original VPO compiler was batch-oriented and had a fixed order in which op-
timizations and the various static program analysis required for each optimization
were done. To modify the compiler for interactive compilation, we carefully isolated
the analysis required for each optimization. At places, the analysis required was
done as part of the optimization itself. In such cases, we modularized the code to
separate the analysis part from the actual optimization part. Also, it was impracti-
cal to do all the required analysis before each optimization phase, as some of those
might have been performed for some previous phase and would still be legal at the
current compilation point. So, we also identified the analysis invalidated by each
optimization phase. Only the static program analysis not previously performed, or
invalidated by some previous optimization must be applied before each optimization
phase.

In VISTA, there are two separate program states maintained, one at the compiler
and another at the viewer. It is important that the two remain consistent at every
point during the compilation session. The user only views the program order and
information in the viewer. If this information does not reflect the correct status in
the compiler, then the user would be misled and the whole point of interactively
tuning the program would be lost. Thus, we made sure that each change made
in the compiler is also sent to the viewer. We also implemented a sanity check,
that compares the two program states for consistency and informs the user of
inconsistencies.

7.3 Maintaining the Transformation List

When transformations are undone, the current program state in the compiler is
discarded and a fresh program state with no optimizations is re-read. Transforma-
tions are then applied to this program state from a transformation list, which is a
linked list of all the changes previously applied. The changes are only applied up
to a certain point so that all the changes not applied are lost or undone. Note that,
the original changes to the program are made by calling the actual optimization
routines, while after undoing, the changes are re-applied by reading from a list.
Also, at the end of the current compilation session, the transformation list is saved
to a file, which is read back in and reapplied at the start of the next session.

We maintain a list of all previous transformations in VISTA, rather than just the
optimization phases applied, for three reasons. First, maintaining all the changes
in a separate list makes it possible to undo a part of some optimization. Second,
the implementation of optimization routines may be changed by compiler writers

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

40 . Prasad Kulkarni et al.

in between two sessions. As the changes are read from a file, before the next
session, the user is able to see the program in the same state as it was at the end
of the previous session, irrespective of whether the implementation of the actual
optimization routine has been changed. Third, this was needed to correctly re-apply
hand-specified transformations, since each hand-specified transform is an individual
customized change by the user, and so does not make the same change each time.
Thus we need the added granularity of saving each individual change, instead of only
saving the list of optimization phases. Saving all the changes in the transformation
list and reapplying them later to produce the same effect took much time and
careful design and implementation.

7.4 Batch Mode for Experiments

In an interactive environment, the user is expected to perform all tasks using key-
board and mouse clicks. While this is reasonable during normal compilation ses-
sions, it is impractical while debugging and conducting experiments. To simplify
and expedite the task of performing experiments, a batch execution mode is in-
cluded in VISTA. It is possible in the viewer to save all the button clicks to a file.
This file can be called, either from the command line or from the user-interface to
execute the same set of commands again. The format of the file is simple enough
to even write manually. The experiments involving genetic algorithms take a lot
of time and usually run overnight. The ability to use batch compilation gave the
authors the option to automate the entire process by writing scripts. This saved a
lot of time and unnecessary manual labor.

7.5 Interrupting/Restarting lterative Measurements

Program improvement using iterative compilation is a time-consuming process.
Many functions typically require several hours to evaluate all the sequences dur-
ing the genetic algorithm. In such a scenario, if the compiler breaks down or the
machine crashes in the middle of the algorithm, then valuable time is lost if we
need to restart the algorithm from the beginning. To save time, it would be nice
if one could resolve the problem, and then re-start the algorithm from the point it
had crashed. This feature is indispensable when obtaining simulator cycle counts
since the compilation time soars from hours to days. This feature is now built in to
VISTA. An important consideration was maintaining the states of the hashtables,
so that the same number of sequences would still be detected as redundant.

8. FUTURE WORK

There is much future work to be considered on the topic of selecting effective opti-
mization sequences. We currently use a very simple genetic algorithm to search for
effective sequences. Changing the genetic algorithm can give vastly different results.
The crossover and mutation operations can be changed. Presently, even with this
algorithm, we only obtained measurements for 100 generations and a optimization
sequence that is 1.25 times the length of successfully applied batch optimization
sequence. It would be interesting to see how performance improves as the number
of generations and the sequence length varies. In addition, the set of candidate
optimization phases could be extended. Finally, the set of benchmarks could be
increased.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA : 41

Finding effective optimization sequences using the genetic algorithm is a time
consuming process. This problem is even more severe on embedded processors,
because most of these systems only provide execution time measurements via sim-
ulation on a host processor. The overhead of simulating programs to obtain speed
performance information may be problematic when performing large searches using
a genetic algorithm, which would likely require thousands of simulations. Embedded
processors usually also have slower clock speeds than general-purpose processors.
We are currently exploring ways to reduce the search time by evolving approaches
to find more redundant sequences, which would not need execution or simulation.
Also worth researching are ways to find the best sequence earlier in the search
process, so that it would be possible to run the search for fewer generations.

All of the experiments in our study involved selecting optimization phase se-
quences for the entire functions. Since we also have the ability in VISTA to limit
the scope of an optimization phase to a set of basic blocks, it would be interesting to
perform genetic algorithm searches for different regions of code within a function.
For frequently executed regions we could attempt to improve speed and for infre-
quently executed regions we could attempt to improve space. Selecting sequences
for regions of code may result in the best measures when both speed and size are
considered. It would be even more interesting if we could automate the process of
limiting the scope based on program profile measurements.

In the future we also plan to work on reducing the time required for the simu-
lations. In addition to the cycle accurate simulator, the SimpleScalar toolset also
includes a fast functional simulator, which only measures the dynamic instruction
count. Since we only measure cycles in the current function, we could evaluate that
part of the application with the slow cycle simulator. The rest of the program can
be simulated using the fast functional simulator. We anticipate this would result in
only a small inaccuracy compared to using the cycle simulator for the entire simu-
lation. We are in the process of integrating the two simulators to allow switching
back and forth between the slow and the fast modes.

9. CONCLUSIONS

We have described a new code improvement paradigm that changes the role of low-
level code improvers. This new approach can help achieve the cost/performance
trade-offs that are needed for tuning embedded applications. By adding interaction
to the code improvement process, the user can gain an understanding of code im-
provement trade-offs by examining the low-level program representation, directing
the order of code improvement phases, applying user-specified code transformations,
and visualizing the impact on performance.

The ability to automatically provide feedback information after each successfully
applied optimization phase allows the user to gauge the progress when tuning an
application. The structured constructs allow the conditional or iterative application
of optimization phases and in essence provides an optimization phase programming
language. We have also provided constructs that automatically select optimization
phase sequences based on specified fitness criteria. A user can enter specific se-
quences and the compiler chooses the sequence that produces the best result. A
user can also specify a set of phases along with options for exploring the search space

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

42 . Prasad Kulkarni et al.

of possible sequences. The user is provided with feedback describing the progress
of the search and may abort the search and accept the best sequence found at that
point.

We have also performed a number of experiments to illustrate the effectiveness of
using a genetic algorithm to search for efficient sequences of optimization phases.
We found that significantly different sequences are often best for each function
even within the same program or module. However, we also found that certain
optimization phases appear to enable other specific phases. We showed that the
benefits can differ depending on the fitness criteria and that it is possible to use
fitness criteria that takes both speed and size into account. While we demonstrated
that iteratively applying optimization phases until no additional improvements are
found in a batch compilation can mitigate many phase ordering problems with
regard to dynamic instruction count, we found that dynamic improvements could
still be obtained from this aggressive baseline using a genetic algorithm to search
for effective optimization phase sequences.

An environment that allows a user to easily tune the sequence of optimization
phases for each function in an embedded application can be very beneficial. This
system can be used by embedded systems developers to tune application code, by
compiler writers to prototype, debug, and evaluate proposed code transformations,
and by instructors to illustrate code transformations.

ACKNOWLEDGMENTS

Clint Whaley and Bill Kreahling provided helpful suggestions that improved the
quality of the paper. We also appreciate the helpful comments given by Erik Gould-
ing, who reviewed an intermediate version of the paper.

REFERENCES

ANDREWS, K., HENRY, R., AND YAMAMOTO, W. 1988. Design and implementation of the UW
illustrated compiler. In ACM SIGPLAN Conference on Programming Language Design and
Implementation. 105—114.

APPELBE, B., SMITH, K., AND MCcDOWELL, C. 1989. Start/pat: a parallel- programming toolkit.
In IEEE Software. 4, vol. 6. 29-40.

BENITEZ, M. E. AND DAVIDSON, J. W. 1988. A portable global optimizer and linker. In Proceedings
of the SIGPLAN’88 conference on Programming Language Design and Implementation. ACM
Press, 329-338.

BENITEZ, M. E. AND DAVIDSON, J. W. 1994. The advantages of machine-dependent global op-
timization. In Proceedings of the 1994 International Conference on Programming Languages
and Architectures. 105—124.

Boyp, M. AND WHALLEY, D. 1993. Isolation and analysis of optimization errors. In ACM
SIGPLAN Conference on Programming Language Design and Implementation. 26-35.

BoyD, M. AND WHALLEY, D. 1995. Graphical visualization of compiler optimizations. Program-
ming Languages 3, 69-94.

BROWNE, J., SRIDHARAN, K., KiALL, J., DENTON, C., AND EVENTOFF, W. 1990. Parallel structur-
ing of real-time simulation programs. In COMPCON Spring ’90: Thirty-Fifth IEEE Computer
Society International Conference. 580—-584.

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version 2.0. SIGARCH Comput.
Archit. News 25, 3, 13-25.

CHow, K. AND Wu, Y. 1999. Feedback-directed selection and characterization of compiler opti-
mizations. In Workshop on Feedback-Directed Optimization.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

VISTA . 43

COOPER, K. D., SCHIELKE, P. J.; AND SUBRAMANIAN, D. 1999. Optimizing for reduced code space
using genetic algorithms. In Proceedings of the ACM SIGPLAN 1999 Workshop on Languages,
Compilers, and Tools for Embedded Systems. ACM Press, 1-9.

DavipsoNn, J. W. AND WHALLEY, D. B. 1989. Quick compilers using peephole optimization.
Software — Practice and Experience 19, 1, 79-97.

DAvIDSON, J. W. AND WHALLEY, D. B. 1991. A design environment for addressing architecture
and compiler interactions. Microprocessors and Microsystems 15, 9 (November), 459-472.

Dow, C.-R., CHANG, S.-K., AND SOFrA, M. L. 1992. A visualization system for parallelizing
programs. In Supercomputing. 194-203.

GRANLUND, T. AND KENNER, R. 1992. Eliminating branches using a superoptimizer and the GNU
C compiler. In Proceedings of the SIGPLAN 92 Conference on Programming Language Design
and Implementation. 341-352.

GuTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AusTIN, T. M., MUDGE, T., AND BROWN, R. B.
2001. MiBench: A free, commercially representative embedded benchmark suite. IEFE 4th
Annual Workshop on Workload Characterization.

HARrVEY, B. AND TvYSON, G. 1996. Graphical user interface for compiler optimizations with
Simple-SUIF. Technical Report UCR-CS-96-5, Department of Computer Science, University of
California Riverside, Riverside, CA.

Kisuki, T., KNIJNENBURG, P. M. W., AND O’BoyLgE, M. F. P. 2000. Combined selection of tile
sizes and unroll factors using iterative compilation. In IEEE PACT. 237-248.

KNIINENBURG, P., Kisuki, T., GALLIVAN, K., ; AND O’BoYLE, M. 2000. The effect of cache models
on iterative compilation for combined tiling and unrolling. In Proc. FDDO-3. 31-40.

KULKARNI, P., HINES, S., HISER, J., WHALLEY, D., DAVIDSON, J., AND JONES, D. 2004. Fast
searches for effective optimization phase sequences. In Proceedings of the ACM SIGPLAN 0/
Conference on Programming Language Design and Implementation.

KULKARNI, P., ZHao, W., MooN, H., CHO, K., WHALLEY, D., DAVIDSON, J., BAILEY, M., PAEK,
Y., AND GALLIVAN, K. 2003. Finding effective optimization phase sequences. In Proceedings
of the 2003 ACM SIGPLAN conference on Languages, Compilers, and Tools for Embedded
Systems. ACM Press, 12-23.

Liao, S.-W., DiwaN, A., RoBERT P. BoscH, J., GHuLoUM, A., AND Lam, M. S. 1999. SUIF
Explorer: an interactive and interprocedural parallelizer. In Proceedings of the seventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM Press, 37—48.

MARWEDEL, P. AND GOOSSENS, G. 1995. Code Generation for Embedded Processors. Kluwer
Academic Publishers, Boston.

MassAaLIN, H. 1987. Superoptimizer: a look at the smallest program. In Proceedings of the 2nd
International Conference on Architectural Support for Programming Languages and Operating
Systems. 122-126.

NISBET, A. 1998. Genetic algorithm optimized parallelization. In Workshop on Profile and
Feedback Directed Compilation.

NOVACK, S. AND NicOLAU, A. 1993. VISTA: The visual interface for scheduling transformations
and analysis. In Languages and Compilers for Parallel Computing. 449-460.

PorycHrRONOPOULOS, C., GIRKAR, M., HAGHIGHAT, M., LEE, C., LEUNG, B., AND SCHOUTEN, D.
1989. Parafrase-2: An environment for parallelizing, partitioning, and scheduling programs
on multiprocessors. In International Journal of High Speed Computing. 1, vol. 1. Pensylvania
State University Press, 39-48.

VEGDAHL, S. R. 1982. Phase coupling and constant generation in an optimizing microcode com-
piler. In Proceedings of the fifteenth annual Workshop on Microprogramming. 125-133.

WHALEY, R., PETITET, A., AND DONGARRA, J. 2001. Automated empirical optimization of soft-
ware and the ATLAS project. In Parallel Computing. 1-2, vol. 27. 3—-25.

WHITFIELD, D. L. AND SOFFA, M. L. 1997. An approach for exploring code improving trans-
formations. ACM Transactions on Programming Languages and Systems (TOPLAS) 19, 6,
1053-1084.

ZHAO, W., CA1, B., WHALLEY, D., BAILEY, M. W., VAN ENGELEN, R., YUuAN, X., HISER, J. D.,
DaAvIDSON, J. W., GALLIVAN, K., AND JONES, D. L. 2002. VISTA: a system for interactive code

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

44 . Prasad Kulkarni et al.

improvement. In Proceedings of the joint conference on Languages, Compilers and Tools for
Embedded Systems. ACM Press, 155-164.

ZuAao, W., KULKARNI, P., WHALLEY, D., HEALY, C., MUELLER, F., AND UH, G.-R. 2004. Tuning
the wcet of embedded applications. In 10th IEEE Real-Time and Embedded Technology and
Applications Symposium.

Received April 2004; revised May 2005; accepted February 2006

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

