Designing a Practical Data Filter Cache
to Improve Both Energy Efficiency and Performance

Alen Bardizbanyan, Chalmers University of Technology
Magnus Sjalander, Florida State University

David Whalley, Florida State University

Per Larsson-Edefors, Chalmers University of Technology

Conventional data filter caches (DFCs) improve processor energy efficiency, but degrade performance. Fur-
thermore, the single-cycle line transfer suggested in prior studies adversely affects level-one data cache (L1
DC) area and energy efficiency. We propose a practical DFC that is accessed early in the pipeline and
transfers a line over multiple cycles. Our DFC design improves performance and eliminates a substantial
fraction of L1 DC accesses for loads, L1 DC tag checks on stores, and data translation lookaside buffer
accesses for both loads and stores. Our evaluation shows that the proposed DFC can reduce the data access
energy by 41.6%.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Cache memories
General Terms: Energy efficiency, Performance Improvement, Data Cache Design
Additional Key Words and Phrases: Q

ACM Reference Format:

Alen Bardizbanyan, Magnus Sjidlander, David Whalley, Per Larsson-Edefors, 2014. Designing a Practical
Data Filter Cache to Improve Both Energy Efficiency and Performance. ACM Trans. Architec. Code Optim.
V, N, Article A (January YYYY), 25 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The performance demanded for computing continues to escalate as computer systems
become more pervasive. As a result, the electricity cost and the environmental im-
pact for computing infrastructure are increasing at an alarming rate. Energy effi-
ciency is of critical importance today for both embedded and general-purpose comput-
ing [Hennessy and Patterson 2011]. Clearly it is vital that mobile devices efficiently
run their increasingly complex applications as these devices are depending on power
supplies with limited capacity. For general-purpose processors, clock rates and per-
core performance are now constrained by thermal limitations. Energy-efficient solu-
tions may allow more of the processor power budget to be spent on performance im-

New Paper, Not an Extension of a Conference Paper

This work is supported by the National Science Foundation, under grant CNS-0964413 and grant CCR-
0915926, and by the Swedish Research Council, under grant 2009-4566.

Author’s addresses: Alen Bardizbanyan (corresponding author) and Per Larsson-Edefors, Computer Sci-
ence and Engineering Dept., Chalmers University of Technology, 412 96 Gothenburg, Sweden; email:
alenb@chalmers.se; Magnus Sjidlander and David Whalley, Computer Science Dept., Florida State Univer-
sity, Tallahassee, FL 32306-4530, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 1544-3566/YYYY/01-ARTA $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 A. Bardizbanyan et al.

provements [Huang et al. 2011]. Thus, the design solutions we pursue must be able to
reconcile high energy efficiency with high performance.

There have been recent studies showing that servicing data accesses through a level-
one data cache (L1 DC) and a data translation lookaside buffer (DTLB) account for
up to 25% of the total power of an embedded processor [Dally et al. 2008; Hameed
et al. 2010]. One technique for reducing processor energy dissipation is the use of
filter caches that are tiny caches that are accessed before the L1 caches [Kin et al.
1997; 2000]. Since a filter cache is a smaller structure than the L1 DC, there is less
capacitance to switch on an access. Thus, accessing a data filter cache (DFC) instead
of the L1 DC reduces energy usage. However, filter caches are generally considered
impractical by performance-driven processor manufacturers as they typically incur
an execution time penalty for each filter cache miss. Furthermore, prior filter cache
designs that propose to transfer an entire cache line between the L1 DC and the DFC
in a single cycle cause an increase in both the area of the L1 DC and the energy to
access it.

While several different techniques associated with the .1 DC have been proposed to
reduce either the data access energy dissipation or improve processor performance [In-
oue et al. 1999; Zhang et al. 2005; Powell et al. 2001; Nicolaescu et al. 2006; Austin
et al. 1995], we propose a practical DFC design that makes the processor both more
energy efficient and faster. Our paper makes the following contributions: First, we de-
scribe practical techniques for accessing a small DFC early in the pipeline that both
avoid the DFC miss penalty and can improve performance by eliminating load hazards
on DFC hits. Second, we recognize that filling a DFC line in a single cycle has a nega-
tive impact on L1 DC area and power, and we describe an approach for transferring a
cache line from the L1 DC to the DFC over multiple cycles without incurring any exe-
cution time overhead. Third, we demonstrate that our DFC design not only eliminates
many L1 DC and DTLB accesses when data is accessed from the DFC, but that it also
eliminates a substantial fraction of the L1 DC tag checks and DTLB accesses when
storing data to the L1 DC. Finally, we provide a more detailed DFC implementation
study as compared to prior filter cache research and show that using a standard-cell
DFC can be a practical approach to efficient DFCs.

The remainder of this paper is organized in the following manner: First, we review
a typical design of an L1 DC. Second, we describe our proposed DFC design and also
show that DTLB accesses can be eliminated on DFC load hits, discuss an approach for
accessing the DFC earlier in the pipeline, describe a technique for efficiently transfer-
ring an entire line between the L1 DC and the DFC over multiple cycles, and present
techniques for making the majority of stores to the L1 DC more efficient. Third, we
outline our evaluation framework and present the results of our DFC design. Finally,
we review related work on improving data access efficiency and summarize our future
work and conclusions for the paper.

2. BACKGROUND ON L1 DC DESIGN

Memory operations are commonly accomplished by first performing an address cal-
culation that consists of adding an offset to a base address (displacement addressing
mode). The calculated address is then used to access the L1 DC. The address calcula-
tion is often computed by an address generation unit (AGU) that is placed before the
L1 DC in the pipeline. This is illustrated for a segment of the pipeline in Figure 1,
where the address calculation is performed in the address generation (ADDR-GEN)
stage before the L1 DC access (.1 DC-ACCESS) stage.

The calculated address can be divided into three parts. The line offset is used to
identify the word/halfword/byte to be accessed within a cache line, the line index is

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:3

ADDR-GEN L1 DC-ACCESS
]] DTLB | | |
Base Address
A
>G —>

Offset U L1 Data

Cache
LA LA LA

Fig. 1. Segment of a pipeline where address generation is performed in the stage before the L1 DC access.

used to index into the tag and data arrays, and the tag is used to verify if the specified
memory item resides in the cache.

An L1 DC access starts with reading out the tag(s) (and data for loads in
performance-oriented cache designs). The line index is therefore on the critical path, as
it is used to index into the tag (and data) arrays. Furthermore, as most memories are
synchronous, it is not possible to modify the address before the memories are accessed
within a single pipeline stage. To avoid additional delays, the line index is therefore
commonly not translated from the virtual address space as the line index is part of the
page offset.

The entire tag or at least part of the tag is commonly translated to the physical
address space as virtually tagged caches cause synonyms and aliasing problems or are
required to be flushed on a context switch [Cekleov and Dubois 1997]. The virtual-
to-physical translation is performed by a data translation lookaside buffer (DTLB)
that translates a virtual page number (VPN) to a physical page number (PPN). The
DTLB access can be performed in parallel with the access to the tag array(s), which
significantly shortens the critical path. The translated tag is then compared with the
tag(s) read from the tag array(s) to determine if the specified memory item resides in
the cache.

Address: [Virtual Page Number (VPN)] _Line index _]Line offset]

VPN line index line offset line index line offset line index line offset line index line offset
1 1 1 1
l 1 1 1 1
1 1 1 1
Y 1 1 1 1
1 1 1 1
1 1 1 1
DTLB Tag | Tag : Tag : Tag |
Array-0 Data ' Array-1 Data ' Array-2 Data ' Array-3 Data '
Array-0 | | Array-1 | | Array-2 | | Array-3 | |
' ' ' '
1 1 1 1
Pryiscal Page pen TIYITYY | PPN TIVTTEY | PPN TIVTTTY | PPN T !
Number (PPN) 1 1 1 1
Way Select-0 Data-0 Way Select-1 Data-1 Way Select-2 Data-2 Way Select-3 Data-1

I Way Select Logic |

Data Out

Fig. 2. Overview of a virtually-indexed physically-tagged four-way set-associative data cache.

Figure 2 shows a four-way set-associative cache where the size of each way is equal
to the page size, which results in the tag being the same size as the VPN. The cache is
virtually indexed and physically tagged (VIPT) as discussed above. To limit the impact

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 A. Bardizbanyan et al.

of load hazards, the tag and data arrays are accessed in parallel on load operations.
The correct data is then selected by the way-select logic, based on the way select (hit)
signal from the tag comparisons. In contrast, store operations are performed across
multiple cycles as the tag comparisons need to be completed before the store to the
correct data array can be performed. Load operations are therefore performed in less
time than store operations at the cost of accessing all the data arrays in parallel.

3. APRACTICAL DFC DESIGN

In this section we describe our proposed design for an energy-efficient DFC that also
provides a performance improvement. Some principles of the DFC in this work have
been previously presented [Bardizbanyan et al. 2013], however, that preliminary study
targets a very limited number of DFC configurations, does not address other issues
related to the practical DFC implementation, and does not provide any energy evalu-
ation.

Our DFC design employs a write-through policy, utilizes virtual tags, accesses the
DFC early in the pipeline, supports efficient filling of DFC lines, and allows for more
efficient stores to the L1 DC. Figure 3 shows the components of a DFC line in our
design. The filled bit (F) indicates if the line has been filled. The page protection bits
(PP) are copied from the DTLB upon allocating the DFC line. We also identify, for each
DFC line, the L1 DC way in which the corresponding L.1 DC line is stored.

L1
V|F Tag PP | DC Data
Way

V = Valid Bit F = Filled Bit PP = Page Protection Bits

Fig. 3. Information associated with a DFC line.

3.1. Employing a DFC Write-Through Policy

We propose a DFC that uses a write-through policy, which ensures that the L1 DC is
always consistent with the DFC and has the latest up-to-date data. Using this policy
simplifies the use of a DFC since if the DFC cannot be accessed, then the L1 DC can
instead service the request. The use of a write-through policy requires that the L1 DC
is accessed for every store instruction. However, stores are less frequent than loads,
so if we can optimize the loads the overall design may be improved. Furthermore, a
DFC can be used to more efficiently perform the majority of the writes to the L1 DC,
as described in Section 3.5.

There are also disadvantages of using a DFC write-back policy. A DFC write-back
policy would cause a DFC miss penalty when a dirty line is replaced since it would
take several cycles to write back the dirty line before the desired line in the L1 DC can
be accessed. The DFC is being read during these write-back cycles, which will allocate
the DFC read port. Thus, many subsequent memory accesses cannot access the DFC
even if the value to be read that caused the DFC write back is not immediately needed.
A DFC write-back policy would also complicate DFC line evictions due to L1 DC line
evictions. Likewise, multiprocessor cache coherency would be more complicated. Thus,
the use of a DFC write-through policy for a DFC that can only read or write a single
word each cycle results in a much simpler DFC design.

3.2. Utilizing a Virtually Tagged DFC

Our proposed DFC is accessed using complete virtual addresses, which implies storing
virtual tags in the DFC. There are two main advantages of using virtual tags for a

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:5

DFC. First, the data access energy is reduced as DTLB lookups are not required for
DFC accesses. Second, the DTLB is removed from the critical path when accessing
the DFC, which is useful for accessing the DFC in parallel with the memory address
generation, as described in Section 3.3.

Using virtual caches leads to some potential problems, all of which are cheaper to
address in a small DFC, as opposed to a much larger L1 DC:

o)

(2)

3)

4)

Multiple different virtual addresses can map to the same physical address. These
duplicate addresses, referred to as synonyms, can cause problems after stores as
the processor needs to avoid having different values associated with the same loca-
tion. This problem does not appear on direct-mapped caches. The reason is that two
synonym cache lines will always evict each other in a direct-mapped cache due to
the lines having the same line index. Since we also will evaluate fully-associative
DFCs we propose a method in order to handle the synonym problem for these
DFCs, in which the problem cannot be inherently avoided. Our fully-associative
DFC design uniquely identifies for each DFC line the L1 DC line that contains
the same memory block of data. The L1 DC way associated with each DFC line is
explicitly retained, as shown in Figure 3. Note that the L1 DC index need not be
explicitly stored as it is equivalent to the least significant bits (LSBs) of the DFC
tag since the L1 DC is VIPT. Furthermore, all DFC lines also reside in the L1 DC.
Thus, when a DFC line is replaced, the L1 DC index and way for the other DFC
lines are compared to the replacement line’s L1 DC index and way and a synonym
DFC line is invalidated if it exists. Note that this check is only required on DFC
line replacements and the small number of DFC lines limits the overhead of using
such an approach.

A single virtual address may map to multiple physical locations in different vir-
tual address spaces, which are referred to as homonyms. This homonym problem
can be resolved by simply invalidating all the cache lines in the DFC on context
switches, which is possible since we employ a write-through policy for the DFC
that always keeps the L1 DC up to date with the latest data. Hence, the invalida-
tion can happen in a single cycle. The overhead of invalidating the cache lines in
the DFC is negligible since the DFC is small, context switches are infrequent, and
it is highly likely that all cache lines in the DFC would be evicted anyway before
switching back to the same application. To handle interrupts, the DFC can simply
be disabled and service all accesses from the L1 DC. Though the DFC is disabled
it needs to be kept up to date with writes, which can be done using the same infor-
mation for detecting synonyms as described above. On a write, the index and way
are checked for all the cache lines in the DFC and if a match is found, then the
data in the DFC is updated.

The DTLB contains information regarding page protection. This protection infor-
mation from the DTLB can be copied to the DFC when a DFC line is replaced. The
overhead of storing this information is insignificant due to the small number of
DFC lines.

To support multiprocessor cache coherency, the DFC is strictly inclusive with re-
spect to the L1 DC. When an L1 DC cache line is evicted due to the replacement on
a cache miss or due to a cache coherency request, the index and way of the cache
line are checked against those stored in the DFC. If a match is found, the cache
line in the DFC is also evicted. No modifications are required of existing cache
coherency protocols, which makes the DFC compatible with any multiprocessor
configuration.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 A. Bardizbanyan et al.

3.3. Accessing the DFC Early in the Pipeline

If the DFC can be accessed earlier in the pipeline than the LL1 DC, then a DFC can
be used with no performance penalty. Assume that a DFC can be accessed in the ad-
dress generation stage. If there is a DFC miss, then the DFC miss penalty is avoided
since the L1 DC can still be accessed in the pipeline stage after performing the ad-
dress generation if a write-through policy is utilized between the DFC and L1 DC. If
there is a DFC hit, then performance is potentially improved by avoiding load hazards
normally associated with L1 DC hits. The performance penalty of a DFC can also be
avoided if only the tags of the DFC are accessed early, since the miss will be detected
earlier [Duong et al. 2012]. But in order to improve the execution time, the data also
needs to be accessed early.

In order to do the tag comparison in the DFC, the line index and the tag values of the
memory address are needed. For a conventional address calculation scheme (see Fig-
ure 4 for a MIPS-like address calculation), where an offset is added to a base address,
it has been shown that for most of the address calculations the line index and the tag
portion of the base address do not change since most of the address offsets are nar-
rower than or the same size as the line offset [Austin et al. 1995]. Thus, since carries
are not frequently generated from the line offset to the line index during the address
calculation addition, the line index and the remaining most significant bits (MSBs)
often remain unaffected. This property of the address generation can be exploited by
speculatively comparing tags earlier in the pipeline.

31 16 15 0

Sign Extension Immediate

31 0
Basé Address

32-bits # 32-bits
ADD

31 v 0
Tag Line Index | Line Offset

Fig. 4. Address calculation for MIPS-like instruction set.

We propose to speculatively access the DFC in the address generation stage when
the value of the offset does not exceed what can be represented in the line offset of the
address. We perform speculative accesses only for load operations, since load misses
are more likely to stall the pipeline due to data dependencies. If a processor configura-
tion cannot hide the latencies related to stores, then speculation can also be used for
the store operations.

Figure 5 shows how a filter cache can be speculatively accessed in the same pipeline
stage that the memory address is generated. The figure shows conceptually how a suc-
cessful speculative access can be verified by comparing the base tag and index with the
computed tag and index of the memory address. In reality, it is enough to verify that
during the address calculation there is no carry out from the line offset. This assures
that the tag and index of the base address has not changed, as shown in Figure 6.
Our timing evaluation, see Section 5.2, shows that it is possible to access the DFC in a
single cycle.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A7

] Offset []
>é Memory Address

Base Address | | Line Tag &

Offset |Index

—\ Success

Tag & Index Data Data
Filter Cache
LA LA
Fig. 5. Speculative data filter cache access.
31 16 15 54 0
all zeros (positive) or all ones (negative) Offset
31 1211 54 0
: Speculative
Speculative Tag (VPN) Line Index
27-bits 4 27-bits 5-bits 4 5-bits
TV VvV
AGU ABD /e Carry out \ ABD /
31 Y 1211 ' 54 Y o
Tag (VPN) Line Index [Line Offset

Speculation Failed

Fig. 6. Technique for detecting if the tag and index are not modified. The AGU is for illustrative purposes
shown as two separate adders.

We found that a speculative DFC access was attempted for 83.4% of the load op-
erations and that the speculation success rate (no carry out) for theses accesses was
89% for our benchmark suite. Thus, 74.2% of all loads achieve a successful speculative
access to the DFC. When a successful speculative DFC access does not occur, either
because the offset was too large or because speculation was not successful (carry out),
then there are two remaining alternatives: (1) The L1 DC is directly accessed in the
following stage to avoid any additional delays. (2) The DFC is accessed again in the
following stage, which can provide energy benefits when there is a DFC hit and a one-
cycle miss penalty when there is a DFC miss. Thus, these two alternatives present
us with a tradeoff between improving energy efficiency and degrading performance.
Note, however, that both alternatives give better performance than the conventional
approach of always accessing the DFC in the L1 DC access stage.

3.4. Supporting Efficient Filling of DFC Lines

Since a DFC requires reading an entire line from the L1 DC when a DFC line is re-
placed, a relevant issue is how to read the entire line in an efficient manner. Prior
filter cache studies have either explicitly stated or implied that a filter cache line can
be filled in a single cycle [Kin et al. 1997; 2000; Tang et al. 2001; Hines et al. 2007;
Hines et al. 2009; Duong et al. 2012]. Such an approach is not a viable implementation
solution when integrating a filter cache with an L1 cache. First, reading an entire line

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A8 A. Bardizbanyan et al.

in a single cycle would require a redesign of the L1 DC, which in turn could require a
redesign of the whole memory hierarchy. Reading a larger bitwidth from the relatively
small SRAM blocks that are used in L1 caches can have a significant area overhead.
Since L1 caches occupy a significant portion of a processor core, increasing the area of
these structures is very undesirable. In addition to the area problem, reading wider
bitwidths increases the wire count and creates congestion, which deteriorates the lay-
out efficiency. Second, L1 caches need to be fast structures to improve processor per-
formance and a larger cache area due to wide data ports can have a negative impact
on the L1 cache access time. Third, a fast set-associative L1 cache, in which a large
number of bits are read in one cycle, will have significant energy access overhead. The
L1 DC should still be optimized with respect to the access of individual data items due
to the relatively high DFC miss rate and the use of a DFC write-through policy.

Table I shows the area and energy overhead of using two 65-nm SRAM blocks that
provide wider access bitwidths than the reference case of a single 32b word. The en-
ergy dissipation is given for one line fetch operation (assuming a 32B line size) that is
normalized to the SRAM block 1024x32b, in which a single word can be read in each
cycle. Assuming a 16kB L1 DC that is four-way set associative, four tag accesses are
required before the line can be fetched. Completing the line fill then takes 1, 2 and 8
cycle(s) for the 128x256b, 256x128b, and 1024x32b SRAM memory, respectively.

Table I. Normalized Area and Energy Overheads for Wide Access
4kB SRAM Blocks

SRAM Block Area | Read Energy | Total Line
[rows x columns] per Access | Fetch Energy
128 x 256b 1.91 4.15 1.43

256 x 128b 1.30 2.87 1.26

1024 x 32b 1.00 1.00 1.00

The column count clearly has a stronger influence on overall area and energy than
the row count has. This is due to the replication of double bitlines, bitline conditioning
circuits, multiplexing, etc., which is more resource demanding than adding rows that
entails expanding the address decoder and adding single wordlines. Thus, for the same
SRAM block size, area and energy per access are lower for a tall and narrow memory,
than for a short and wide one. Thus, an L1 DC in which a single 32b word can be read
in a cycle is preferred for both area and energy efficiency. For example, the trial layout
of an ARM Cortex-A5 processor has L1 DC SRAM blocks in which only a single word
can be read in one cycle [Halfhill 2009]. Since a significant fraction of the data memory
references still access the L1 DC even when a DFC is present, the DFC implementation
needs to adapt to the L1 DC configuration, not the other way around.

One of the main focuses in this research is to design a data filter cache that does not
require any modifications to the L1 data cache, which is designed for area and energy
efficiency. A DFC based on standard cells will have at least one read and one write
port since latches or flip-flops are used. During line fill operations, we use a critical-
word-first fill strategy that starts from the word that causes the miss [Hennessy and
Patterson 2011]. This strategy is appropriate, since the word that is missed in the
DFC will be first accessed from the L1 DC and the fetched word will be forwarded to
the pipeline and written to the DFC. During the line fill operation, the DFC read port
is not occupied, hence load operations that hit in the filter cache can still be serviced.
Bits are associated with the fill operation, indicating which words in the DFC line have
been filled, in case this line is referenced by a load instruction before the fill operation
has completed. Subsequent load operations that miss in the filter cache during the line

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:9

fill operation are diverted to the L1 DC and no DFC allocation is permitted, since a
DFC line fill operation is already being performed. In addition, when a load is diverted
to the L1 DC, the line fill operation is stopped for that cycle in order to service the
current load operation. This approach allows the DFC to be filled without affecting
the area and energy efficiency of the L1 DC and without causing any execution time
penalty. Note that our DFC design uses a write-through policy, which ensures that the
L1 DC always has up-to-date data and avoids the execution time penalty associated
with writing back a dirty line over multiple cycles.

3.5. Making L1 DC Writes More Efficient

All store instructions cause writes to be attempted to both the DFC and the L1 DC,
since a write-through policy is used in our design. The DFC is strictly inclusive, so
all of the DFC lines are also resident in the L1 DC. For each DFC line, we also store
information indicating the L1 DC way where the DFC line resides. Thus, on DFC store
hits, there is no need to either perform an L1 DC tag check or to access the DTLB
since the L1 DC is virtually indexed. Only the write operation to the data memory
is performed on the L1 DC. A similar technique is used to save energy in level-two
caches, in which the L1 DC is write-through [Dai and Wang 2013]. However, using this
technique for an L1 DC requires much more space since an LL1 DC contains many more
lines than a DFC. In addition, a store to the L1 DC is accomplished in one less cycle
when the store is a DFC hit, since an L1 DC tag check is not performed. Performing
an L1 DC store in one cycle can eliminate a structural hazard when an L1 DC load
immediately follows the store. Thus, our design significantly reduces the cost of using
a DFC write-through policy.

A write-allocate policy means that a line is allocated and fetched on a store miss.
A no-write-allocate policy indicates that a line is not allocated in the cache on a store
miss, and the store is done to the next level in the memory hierarchy. Typically no-
write-allocate is used with write-through as the value is going to be written to the
next level of the memory hierarchy anyway and the miss rate can be reduced by not
allocating a line that may never be read. When using a DFC, there is a tradeoff between
using a no-write-allocate and a write-allocate policy. A no-write-allocate DFC policy
reduces the line fetch operations from the L1 DC due to store misses not causing any
allocation, but the L1 DC store energy increases due to each store miss requires a
DTLB access and L1 DC tag checks to be performed. Using write-allocate with write-
through will increase the ratio of DFC store hits, which can reduce the L1 DC store
energy as previously explained in this section. A detailed evaluation is presented in
the results section.

3.6. Supporting Multiprocessor and Multithreaded Systems

The DFC is easily integrated into existing multiprocessor systems and does not require
any modifications of existing cache coherency protocols. The DFC has a write-through
policy that ensures that the data in the DFC and L1 DC are always consistent. The
L1 DC is also strictly inclusive of the cache lines in the DFC. Whenever a cache line is
evicted from the L1 DC due to a L1 DC miss or a cache coherency request, the way and
index of the evicted line are compared to those stored in the DFC. If a match is found
that line is evicted from the DFC by clearing the valid bit (the V field in Figure 3).

In a fully-associative DFC the least significant bits of the tag represent the index
of the virtually tagged L1 DC and the conventional tag comparison logic can be used
to detect matching indexes by simply ignoring the comparison of the most significant
bits. The L1 DC way is stored with each DFC cache line when a new cache line is
written to the DFC (the L1 DC Way field in Figure 3). A new line is only written to
the DFC when a DFC miss has occurred. When a miss occurs a conventional access to

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 A. Bardizbanyan et al.

the L1 DC is performed. The hit signals from the L1 tag comparison indicate in which
L1 DC way the data resides and this L1 DC way information is stored in the DFC.
Thus, the only modification needed in the L1 DC is to be able to read the hit signals.
As L1 DC cache lines are rarely evicted, this additional check in the DFC imposes an
insignificant overhead.

For multithreaded processors that periodically switch between a set of threads, a
DFC per thread can be employed as each DFC has a relatively small area footprint.
This not only avoids any issues regarding the use of virtually-tagged DFCs, but also
reduces contention as each thread has its own private DFC. Multithreaded processors
tend to require a highly associative L1 DC to avoid contention between the threads,
which makes each L1 DC access more costly in terms of energy. The DFC eliminates
a large portion of the L1 DC accesses. It might therefore be beneficial to increase the
associativity to reduce contention even further, as long as timing requirements can
be met. A more detailed analysis of the benefits of using DFCs in a multithreaded
environment is outside the scope of this work.

4. EVALUATION FRAMEWORK

In this section, we present the tools, the benchmarks, and the methods used for the
evaluation.

4.1. Benchmarks

We use 20 different benchmarks (see Table II) from six different categories in the
MiBench benchmark suite [Guthaus et al. 2001]. All the benchmarks are compiled
with VPO using the large dataset option [Benitez and Davidson 1988].

Table IIl. MiBench benchmarks
‘ Category ‘ Applications ‘

Automotive | Basicmath, Bitcount, Qsort, Susan
Consumer | JPEG, Lame, TIFF

Network Dijkstra, Patricia

Office Ispell, Rsynth, Stringsearch
Security Blowfish, Rijndael, SHA, PGP
Telecomm ADPCM, CRC32, FFT, GSM

4.2. Simulator

We use the SimpleScalar simulator with the PISA instruction set to model a five-stage
in-order processor [Austin et al. 2002]. The processor configuration is presented in
Table III. In order to calculate the energy values, we backannotate energy values ob-
tained from layout; for details see the next section.

4.3. Layout and Energy Values

Figure 7 shows the layout of two different five-stage in-order processors with 16kB
four-way associative L1 instruction and data caches. Figure 7(a) shows a processor
that uses a 128B DFC, while the DFC in Figure 7(b) is 256B. The SRAM blocks and
the standard cells are laid out in a way similar to the trial layout of the Cortex-A5
processor [Halfhill 2009]. As described in Section 3.4, we use 32b wide SRAM blocks
to reduce L1 DC area and energy. The DFCs are implemented using standard-cell flip-
flops, which is the reason that they take up a relatively larger area per stored bit than
the L1 caches that store the data in area-efficient SRAMs.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:11

Table IlI. Processor Configuration

Load Latency 1 cycles

BPB, BTB Bimodal, 128 entries
Branch Penalty 2 cycles
Integer & FP ALUs, 1
MUL/DIV

Fetch, Decode, 1

Issue Width

128B-512B (FA,DM)

DFC
32B line, 1 cycle hit
L1DC & L1 IC 16kB, 4-way asso?, 32B line,
1 cycle hit
1.2 Unified 64kB, 8-way assoc,. 32B line,
12 cycle hit
DTLB & ITLB 16-entry fully assoc, 1 cycle hit
Memory Latency 120 cycles

(a) Processor layout with a 128B DFC. (b) Processor layout with a 256B DFC.

Fig. 7. Processor layout in which the DFC is highlighted in white to show its impact in terms of area.

It is difficult to evaluate innovative implementations using approximative energy
estimators, like Wattch and CACTI, so we use layout implementations to ensure that
the energy values are accurate for the different processor components. All energy val-
ues are derived from RC-based netlists that are extracted from placed and routed lay-
outs such as the ones in Figure 7. All components except the DTLB are integrated
and verified inside the processor layout. While the DTLB is implemented separately
to facilitate overall verification of overall processor function, the DTLB is placed and
routed as a component embedded in its proper context, e.g., as a component driving
tag comparators.

The processor designs are synthesized in Synopsys Design Compiler using a com-
mercial 65-nm low-power (LP) CMOS process technology with standard cells and
SRAM blocks. The layout work is done in Cadence Encounter. The placed and routed
layout implementations meet a 400-MHz clock rate, assuming the worst-case process
corner, a supply voltage of 1.1 V, and 125°C. The layouts are functionally verified us-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 A. Bardizbanyan et al.

ing small benchmarks from the EEMBC benchmark suite [Embedded Microprocessor
Benchmark Consortium 2013]. Synopsys PrimeTime PX Power Analysis is used to ob-
tain power and energy values from the RC-extracted netlists. These power and energy
values are collected assuming the nominal process corner, 1.2 V, and 25°C.

The L1 DC consists of four 1024x32b SRAM blocks for data and three 128x32b SRAM
blocks for tags. Three 32b SRAM blocks are sufficient for storing the tags, since four
tags, with 21 bits each, including valid bit, can be concatenated. The DTLB is a 16-
entry fully-associative structure built from standard cells. It is a very common config-
uration to have a first-level fully-associative DTLB with few entries and a second-level
DTLB with less associativity and more entries. Since the bulk of the accesses are cap-
tured by the fully-associative structure, we only evaluate the first-level DTLB.

The total energy is calculated by taking, for all processor components, each compo-
nent’s energy per operation (obtained from layout) and multiplying this with the total
number of operations for this component (obtained from SimpleScalar). Before pre-
senting the energy per operation, we first describe the events that take place in our
DFC-enabled processor.

Table IV. Components Accessed for Each DFC Event

DFC L1DC
DFC Event Read Tags | Read Data | Write | Write | DTLB | Read Tag | Read Data | Write | Read
All Ways | All Ways Tag | Data All Ways | All Ways | Data | Data
Spec. Failure X X
Hit X X
Load o r s (No FilD X X X X X
Miss (Fill) X X X 8X X X X 7X
Spec. Failure X
Store Hit X X X
Miss (No Fill) X X X X
Miss (Fill) X X 8X X X X 8X

Table IV shows the various DFC events and the components of the DFC, DTLB, and
L1 DC that are accessed for each of these events. DTLB and L1 DC misses happen
much less frequently and are not depicted in this table. Furthermore, the inclusion of
a DFC does not change the total number of DTLB or LL1 DC misses and are therefore
not accounted for in our evaluation.

DFC Speculation Failure implies that an access to the DFC was attempted but
that the tag and/or index was modified during the address calculation. For loads, all
tags and data for all ways within a set are accessed, while for stores, only the tags for
all ways within a set are accessed.

DFC Hit implies that the speculative access to the DFC was successful and that the
cache line resides in the DFC. For loads, all tags and data for all ways within a set are
accessed, while for stores, only the tags for all ways within a set are accessed. As the
DFC implements a write-through policy, the store also causes the data to be written to
the L1 DC. The DFC stores the way of the associated L1 DC line so no DTLB access or
tag checks are required to write the data to the L1 DC.

DFC Miss (No fill) implies that the sought data does not reside in the DFC and
that a no-write-allocate policy is implemented or that another cache line is currently
being filled, which prevents a second cache line to be filled on a DFC load miss. For
loads, a conventional access is attempted that accesses all tags and data for all ways
within a set. The L1 DC is then accessed and for performance reasons all tags and data
for all ways within a set of the L1 DC are accessed. This ensures that the sought data
word is provided with as few stall cycles as possible. For stores, a conventional access

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:13

is attempted that accesses all tags for all ways within a set. The data is then written
to the L1 DC, which requires a DTLB access, all tags for all ways within a set of the
L1 DC to be read, and the data to be written to a single way of the L.L1 DC.

DFC Miss (Fill) implies that the sought data does not reside in the DFC and that
a write-allocate policy is implemented. In addition to the events performed for a DFC
miss with no fill, the cache line is read from the LL1 DC and written to the DFC. For
loads, the first data word is provided by the parallel access to the tags and data that
is performed to reduce the amount of stall cycles. The remaining seven data words of
the cache line are then read sequentially from a single way of the L1 DC. For stores,
the conventional store of the data to the LL1 DC is performed first and afterwards the
eight words of the cache line are read sequentially from a single way of the L1 DC. For
both loads and stores, the tag and eight data words of the cache line are written to the
DFC.

Table V. Energy for Different DFC Components

FA DM
128B 256B ‘ 512B 128B 256B 512B
Read Data & Tag - All Ways | 13.0 pd | 29.5pJ | 61.5 pd | 10.5 pJ | 22.4 pd | 48.0 pJ
Write Tag 0.7pd | 1.5pd | 40pJ | 0.7pd | 1.5pd | 4.0 pJ
Write Data 34pJ | 64pd | 18.0pJ | 3.4pd | 6.4pd | 18.0 pd

DFC Component

Table V shows the energy required for accessing the components of the DFC for the
various configurations. Currently the tag and data read energy of the DFC are not
separated. This leads to a pessimistic energy evaluation, since the total energy of data
and tag is used for some events, e.g., for store misses, instead of only tag energy.

Table VI. Energy for Different L1 DC Components
and the DTLB

Component Energy
Read Tags - All Ways 57.3 pd
Read Data - All Ways 112.7 pd
Write Data 33.9 pd
Read Data 28.2 pJ
DTLB (16 entries, fully associative) | 17.5 pd

Table VI shows the energy used for accessing the various components of the L1 DC
and the DTLB. Similar to the DFC, loads are more expensive than stores due to the
need to read all data on each load to minimize the access time. It should be noted
that the energy dissipation of separate components is shown. For example, in order to
calculate the energy of a regular load operation from the LL1 DC, the energy of reading
tags from all ways should be added to the energy of reading data from all ways. The
idle L1 DC energy is neglected, since the leakage power of the LP process technology
is insignificant. Since miss events for the L1 DC are not very frequent, we assume the
L1 DC miss energy is insignificant. In doing this simplification, we introduce an error
of around 4% on the total L1 DC energy.

The store energy in a fast set-associative cache is substantially smaller compared
to the load energy. The reason is that store operations only enable the data way in
which there is a tag match. Load operations on the other hand enable all data ways
and the correct word is selected using a final multiplexer driven by the tag hit sig-
nals, as depicted in Figure 2. This approach ensures the shortest delay. Due to data

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 A. Bardizbanyan et al.

dependencies between load operations and consecutive operations (load hazards), load
operations are typically performed as fast as possible.

5. RESULTS

In this section, we first evaluate the energy and performance benefits of the proposed
DFC for the in-order five-stage pipeline that we implemented in hardware and that
is described in Section 4.3. We then describe a more aggressive processor configura-
tion with a two-cycle load latency and use this configuration to evaluate timing and
performance improvements of the proposed technique.

5.1. Energy and Performance Evaluation

Figure 8 shows how successful a speculative access to the DFC is across the benchmark
suite. As shown, the speculation on average is successful 74.2% of the time. Speculation
is attempted but fails for 8.5% of the load accesses. For the remaining 16.6% of the
load accesses, the offset portion of the address is greater than or equal to the line size,
which causes speculation to not be attempted. These results show that speculatively
accessing the DFC is worthwhile as three fourths of the memory references for load
operations can obtain the appropriate address, allowing the DFC to be accessed in the
same cycle that the address is generated.

m Speculations Succeeded o Speculations Failed
1 —

0.9 +
0.8 +
o 077
=
L
T 0.6
]
»n
c
S 0.5+
=
<
>
o 04+
[0
)
0.3 1
0.2
0.1 +
0,
E K “E < (8] © = E = ()] (0] g o T E L © K C E (0]
oa:gag“—mgge_gggngeg~g
S £ § % 2 o g & & = g ©v = s 9 ©
g o S o = = - © £ 14 8 %) [}
< =
w
Benchmarks

Fig. 8. Statistics for speculative access to the DFC.

Figure 9 shows the L1 DC miss rates for MiBench applications. The average miss
rate is 0.6%. Figure 9 shows the unified L2 cache miss rates for MiBench applications.
This miss rate is calculated by the following formula:

L2 cache miss rate = (L2 misses/(L1 DC accesses + L1 IC accesses)) 1

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:15

On average the unified L2 cache miss rate is 0.1%. Figure 11 shows the average miss
rates for different DFC sizes, organizations, and write policies. In addition, average
store misses are shown for DFCs with the no-write-allocate policy. These miss rates are
under the assumption that the line-fetch operation takes one cycle. It is described in
Section 3.4 that the L1 DC will not be designed to be able to fetch an entire line unless
the processor can benefit from it. But the figure gives good insights to the DFC design.
As shown in Figure 11(a), fully-associative DFC configurations have better miss rates
compared to direct-mapped DFC configurations. The no-write-allocate policy reduces
the miss rate due to store operations not causing a line allocation, which reduces the
contention also in the DFC. The no-write-allocate policy is more effective on direct-
mapped DFC configurations, since there are more conflicts in a direct-mapped DFC.
But in the no-write-allocate policy there are many store operations which misses in
the DFC due to the line not being allocated on a store miss. The ratio of stores that are
missed in the DFC for the no-write-allocate policy is shown in Figure 11(b).

m L1 DC miss rate
2.4

L1 DC miss rate (%)
o

0.8

0.4

0,
c T £© O «© = D 00 ©®© o T JpPp £ @ £ < E o
§E§ 5825 5% 52 8E£c 835 8% 58§ =3
2 £ g £ F o o £ & = g - = s 9 ©
T & £ 3 = = - © s @ e @ [
B B

Benchmarks

Fig. 9. L1 DC miss rate.

Figure 12 shows how frequent various DFC events are for different DFC sizes, orga-
nizations, and write policies. The main differences between the write policies are that
the no-write-allocate policy has (1) no stores that cause line fills and (2) fewer store
hits. As the size of the DFC increases, the ratio of hits (both load and stores) increases.
As expected, the total misses for a fully-associative DFC is approximately the same as
that of a direct-mapped DFC twice that size. As a result, given the same DFC size, a
fully-associative DFC can be more efficient than a direct-mapped one.

Figure 13 shows how frequently the various memory hierarchy components are ac-
cessed. As shown, the DFC tags are accessed on every DFC event. The number of DFC
writes is large due to each word written to the DFC being separately counted. Note
that most of the DFC writes are overlapping with instructions that do not perform any
data accesses. The number of DTLB accesses is higher for the no-write-allocate policy,
since the number of DFC store misses is greater and each miss causes a DTLB access.
Figure 12 shows that these missed stores are significant. Figure 13 also shows that the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 A. Bardizbanyan et al.

m Unified L2 cache miss rate

0.5
£ 04
[0)
©
]
€ 0.3
(0]
<
]
© 0.2
[aV)
-
°
2
€ 0.1
S
0 T T T T T T - T
E £ € G & &8 £ £ T P 28 g £ T £ & § 5 E 9
g E 2 € ° 3 5 38§ 2 83838 5 6 5 ¢ 8
8 9 2 o = = 5 £ B o 3 ®
@3 B B © = - 2 E
© (=
= S
Benchmarks ®
Fig. 10. Unified L2 cache miss rate (L2 misses/(L1 DC accesses + L1 IC accesses)).
36 61
‘ [
33 1O R N
30 £ 57 -
o
27 - .
..)
.. <
24 \‘\ S 53 ‘
PR = ..
© el = R
< 18 4 i ~ < 49
a 15 4—Tteal BRLEN - = R
12 S g 45 e ~
< ELE - 2
6 2 4 e
3 ! *
0 J ! 37 T 1
128B 2568 5128 128B 256B 512B
Size Size

-—@ (direct mapped (write—allocate)
-®--® direct mapped (no-write—allocate)
—+—=* fully associative (write—allocate)
-A---4+ fully associative (no-write—allocate)

-0—=@- direct mapped (no-write—allocate)
-A---& fully associative (no—-write—allocate)
(b) Store operations missed in the DFC for

(a) Miss rates for DFC configurations no-write-allocate DFC configurations

Fig. 11. Miss rates and store misses for no-write-allocate DFC configurations assuming an ideal 1-cycle line
fetch operation.

L1 DC line read operations are fewer for the no-write-allocate policy as compared to
the write-allocate policy. This is expected since no store operations causes a line fetch
for the no-write-allocate policy. This is even more apparent for direct-mapped caches
because of their high miss rates. However, as the DFC size increases, the advantage
of the no-write-allocate policy becomes smaller. The advantage of the no-write-allocate
policy is smaller for the fully-associative DFC, because the miss rate is relatively lower.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:17

m DFC Load Miss (Line Fill) m DFC Store Miss (Line Fill) o DFC Load Hit
m DFC Load Miss (No Line Fill) = DFC Store Miss (No Line Fill) o DFC Store Hit
1

0.9 —

0.7 —
0.6 —
0.5 —
0.4 —
0.3 —1 |
0.2
0.1

Events

-
o
-

128B(FA) nWA
128B(FA) WA
256B(FA) nWA
256B(FA) WA
512B(FA) n\WA
512B(FA) WA
128B(DM) nWA
128B(DM) WA
256B(DM) nWA
256B(DM) WA
512B(DM) n\WA
512B(DM) WA

Size (Associativity)

Fig. 12. Frequency of various DFC events. Two write policies are evaluated: no-write-allocate (nWA) and
write-allocate (WA). The evaluated cache organizations are either fully associative (FA) or direct mapped
(DM), of sizes 128B (four-entry), 256B (eight-entry), or 512B (16-entry).

It should be noted that the speculation failure events are not included in Figure 12 and
Figure 13.

Figure 14 shows the data access (DFC, L1 DC, and DTLB) energy usage for each
configuration, where the baseline is an L1 DC and DTLB without a DFC. The break-
down is shown as the component list given in Section 4.3.A 256B fully-associative DFC
that uses the write-allocate policy can save 41.6% of the data access energy. This in-
cludes the overhead of speculation failures. The no-write-allocate policy saves more
energy for direct-mapped caches, as expected. However, since the miss rate is rela-
tively low for fully-associative DFCs, as the DFC size increases, the overhead caused
by the relatively higher number of store misses makes this approach less energy effi-
cient compared to the write-allocate policy. In addition, the DTLB energy dissipation
is higher in the no-write-allocate policy due to the high number of store misses. Note
that the best energy savings are for a DFC size of 256B for both direct-mapped and
fully-associative DFCs. In addition, the area overhead is becoming very significant for
the 512B DFCs, since the implementations are based on standard cells.

Figure 15 shows the same data access energy as Figure 14, but the breakdown is
in terms of L1 DC, DFC, and DTLB energy. As the DFC size increases, the energy
expenditure of the L1 DC and DTLB decreases due to a reduced DFC miss rate, but
the energy dissipation of DFC increases as the structure is becoming larger.

Figure 16 shows the processor performance resulting for the different DFC configu-
rations, as compared to a processor with no DFC. Conventional implies a conventional
DFC implementation in which the DFC is accessed in the same stage as the L1 DC
access. This causes a performance overhead due to frequent DFC misses. The specu-
lative access execution time is improved due to DFC hits accessing data earlier in the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 A. Bardizbanyan et al.

m DFC Read Tags - All Ways m DFC Write Data @ L1 DC Read Data - All Ways
m DFC Read Data - All Ways m DTLB o L1 Write Data
m DFC Write Tag m L1 DC Read Tags - All Ways 0O L1 DC Read Line
2.1 4
2 -
1.9
1.8 4
1.7
1.6
1.5
1.4
1.3
o 1.2
s 1.17
> 14
w 0.9
0.8
0.7
0.6
0.5+
0.4
0.3
0.2
0.1 4
0 ,
< < < < < < < < < < < < [$)
s £ £ 2 £ ¢ s £ § £ % ©% £
< < < s = =
= Log Iog § 2 5 & 2 3 7§ 2
& & 8 & N b Q q @ @ o 5
- N 0 — - Y)
DFC Configurations
Fig. 13. Frequency of accesses to various components in the memory hierarchy.
m DFC Load Miss (Line Fill) m DFC Store Miss (Line Fill) m DFC Load Hit O Speculation Falil
m DFC Load Miss (No Line Fill) = DFC Store Miss (No Line Filll © DFC Store Hit @ DTLB
0.9
0.8 S e
0.7 i
>
2
o 05
c
I
0.4
0.3
0.2
0.1
0 -

128B(FA) nWA
128B(FA) WA
256B(FA) n\WA
256B(FA) WA
512B(FA) n\WA
512B(FA) WA
128B(DM) nWA
128B(DM) WA
256B(DM) WA
512B(DM) n\WA
512B(DM) WA

256B(DM) nWA

DFC Configuration
Fig. 14. Data access energy for different DFC configurations with event breakdown.
pipeline. The performance benefit is thus affected by the hit rate for DFC loads. In-

creasing the size of the DFC, using a fully-associative DFC organization, and using a
write-allocate policy all provide better performance as each option increases the ratio

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:19

of DFC load hits. The 256B write-allocate DFC, which provides a 41.6% energy reduc-
tion, provides a 4.3% execution time improvement when the speculative access scheme
is used.

1 m L1 DC Energy m DFC Energy o DTLB Energy

0.9

0.8

0.7

0.5

Energy

0.4

0.3

0.2

0.1

128B(FA) nWA
128B(FA) WA
256B(FA) nWA
256B(FA) WA
512B(FA) nWA
512B(FA) WA
128B(DM) n\WA
128B(DM) WA
256B(DM) WA
512B(DM) nWA
512B(DM) WA

256B(DM) n\WA

DFC Configuration

Fig. 15. Data access energy for different DFC configurations with unit breakdown.

5.2. Timing and Extended Performance Evaluation

The processor configuration used for the performance evaluation in the previous sec-
tion is the same configuration as for the hardware implementation that is used for the
energy evaluation. In this section we evaluate timing and performance using a more
aggressive processor configuration that has a load latency of two cycles instead of only
a single cycle. A two-cycle load latency is common in contemporary state-of-the-art
in-order processors [Halfhill 2009; Williamson ; MIPS Technologies 2009].

Figure 17 illustrates a three-stage LL1 DC pipeline that has a two-cycle load latency.
In the address generation stage, the memory address is generated. In the second stage,
the DTLB and the SRAMs for tag and data are accessed. The tag match can happen
in this stage or in the third stage. Since the access times of the synchronous SRAMs
can be considerably lower than their cycle times, it might be possible to do the tag
comparison in this stage. During the third stage, the way selection is performed and
the data are formatted if it is a halfword or byte level operation. Finally, the data is
forwarded to the corresponding units in the pipeline.

Introducing a DFC into a three-stage L1 DC pipeline reduces the load latency by
one cycle. The DFC is accessed during the address generation stage, the same way as
shown in Figure 5. On a DFC hit, there is no need to access the SRAMs and DTLB of
the L1 DC. The SRAM access stage can therefore be bypassed and the data from the
DFC can be directly forwarded to the final stage of data formatting. It is possible for
some processor configurations during the address generation stage that both the DFC

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 A. Bardizbanyan et al.

m Conventional O Speculative Access

Execution Time

< < < < < < < < < < < <
= = = = = = = = = = = =
c —_ = —_ c —_ < — e — o —
< & < & < & s 3 s 2 s 3
“ 5 L & L 5 o 5 2 5 S &
Q. o« a 9 Q o M m © A
o s & N5 ® © S
DU e oo o w q - O ~
- N Lo — [\ [to)
DFC Configuration
Fig. 16. Normalized execution time for different DFC configurations.
. ADDR-GEN SRAM-ACCESS .2~~~ DATA-FORMATTING
Execution - - SN
Units DTLB}----- , y Y Way Format Forward
b - Select Data Data
Register Offset TAG-0 : S
f H o o)
File --4-- A 8 I o o
Other --1- >G TAG-N B
Forwarding Base Address | U
DATA-0
8 8 8 Writeback

A N -

Fig. 17. Three-stage L1 DC access

can be accessed and data formatting can occur as the DFC is much smaller and can
have a faster access time than an L1 DC. However, the results we present assume the
load latency is reduced by only one instead of two cycles.

Timing Evaluation. We evaluate the timing for the eight-entry fully-associative
DFC. The reasons for this is (1) that the critical path is much longer compared to a
direct-mapped DFC and (2) that it was shown, in Figure 15, that the eight-entry fully-
associative DFC is the most energy-efficient DFC configuration. We assume a common
L1 DC configuration of 16kB size and four-way set associativity. This data cache uses
four multi-Vr 4kB SRAMs (1024wx32b-mux8), in which the cycle time is 1.2 ns, while
the access time is 0.85 ns. These timing values are the final timing values for a placed
and routed SRAM macro. This means that if the cycle time of the processor is limited
by the data SRAMs it will be 1.2 ns. The DFC is built using a multi-V; design flow,
whereas the SRAM cells and the flip-flops of the DFC are built using high-Vr transis-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:21

tors. The remaining logic is a mix of standard-V; and low-V; cells. The same output
load is used for the SRAMs in the L1 DC and the DFC. The timing path for access-
ing the eight-entry fully-associative DFC is 0.78 ns after synthesis. The timing will
degrade after the DFC has been placed and routed. Assume the delay increases to 1
ns after place and route, an increase of 28%, which is a reasonable assumption for an
advanced process technology. This delay is still much lower than the critical path of 1.2
ns for the L1 DC. Hence, it is possible to access the DFC in a single stage. The timing
path for the DFC might exceed the access time of the data SRAM but for the L1 DC,
the data which is output from the SRAM will need to go through a way-select multi-
plexer, whereas in DFC the data is directly ready. In addition, the maximum frequency
will be defined by the cycle time of the SRAM and not the access time.

Performance Evaluation. For the performance evaluation we not only increased the
load latency but also increased the branch penalty, from two cycles to seven cycles,
to represent a processor with a deeper pipeline. The more aggressive configuration is
presented in Table VII.

Table VII. Aggressive Processor Configuration

Load Latency 2 cycles

BPB, BTB Bimodal, 128 entries
Branch Penalty 7 cycles
Integer & FP ALUs, 1
MUL/DIV

Fetch, Decode, 1

Issue Width

128B-512B (FA, DM)

DF
© 32B line, 1 cycle hit

L1DC & L1IC 16kB, 4-way assoc., 32B line,
1 cycle hit

1.2 Unified 64kB, 8-way assoc,' 32B line,
12 cycle hit

DTLB & ITLB 16-entry fully assoc, 1 cycle hit

Memory Latency 120 cycles

Figure 18 shows the performance for both the processor configuration with one-cycle
load latency (Table III) and two-cycle load latency (Table VII). The absolute execution
time for the processor configuration with the longer two-cycle load latency is obviously
worse. Therefore, to illustrate the relative impact that a DFC has on execution time
for processors with different load latencies, the execution times have been normalized
to the respective processor configuration without a DFC. As shown, the performance
improvement for the proposed speculative DFC increases with a longer load latency,
which increases the potential for load hazards as more instructions that follow the
load might depend on the data being loaded. With a greater chance of load hazards,
the reduced latency due to the speculative DFC has a higher probability of reducing the
number of stall cycles. The performance of the conventional DFC, however, gets worse
with a longer load latency. This is due to the increased load latency of the conventional
DFC, which increases the probability of load hazards and thus the total number of
stall cycles.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 A. Bardizbanyan et al.

m Conventional (1 Cycle Load Latency) m Conventional (2 Cycle Load Latency)
@ Speculative Access (1 Cycle Load Latency) O Speculative Access (2 Cycle Load Latency)

1.05
1.04
1.03
1.02 -
1.01 +
1 .
0.99 -
0.98 -
0.97 H
0.96 - s
0.95 -
0.94
0.93 -
0.92
0.91 -
0.9 -

Execution Time

128B(FA) nWA
128B(FA) WA
256B(FA) n\WA
256B(FA) WA
512B(FA) nWA
512B(FA) WA
128B(DM) nWA
128B(DM) WA
256B(DM) nWA
256B(DM) WA
512B(DM) nWA
512B(DM) WA

DFC Configuration

Fig. 18. Normalized execution time for different DFC configurations.

6. RELATED WORK

A multiple line buffer approach has been proposed in order to reduce L1 cache energy
usage [Ghose and Kamble 1999], but without affecting the cycle time, which was a
drawback in the first line buffer study [Su and Despain 1995]. In the multiple line
buffer approach, a parallel check is performed using the tag and line index to verify if
the current access resides in the line buffers. When there is a hit in the line buffers,
the discharge of the bitlines are avoided, hence energy is saved. The placement of the
cache lines inside the line buffers is handled in a fully-associative manner in order to
keep the reuse of data as high as possible. One of the disadvantages of this approach is
that it requires a customized SRAM implementation in order to disable the discharge
signal when appropriate. In addition, the guarantee mechanism requires to have a line
buffer for each way of the cache for every entry (line index). Given a line index, there
is no significant locality between the lines that are residing on different ways. Hence,
many of the line buffers become wasteful.

The original filter cache proposal places both an instruction filter cache (IFC) and a
DFC between the CPU and the L1 cache [Kin et al. 1997; 2000]. This proposed organi-
zation can potentially reduce energy usage at the expense of an execution time penalty
of one cycle on each filter cache miss. It appears that their design also assumes a one
cycle fill of an entire filter cache line, which can negatively impact both the area of the
L1 cache and the power to access these caches. We believe this performance penalty
and negative impact on L1 DC area and power has prevented filter caches from being
adopted by processor manufacturers.

Duong et. al propose to use a fully-associative DFC in order to reduce the energy
dissipation of an L1 DC [Duong et al. 2012]. Their DFC tag comparison is performed
in the execute stage after the address generation, in order to prevent the DFC miss
penalty. They do not mention using virtual tags, but instead just state that the DFC
tag comparison is possible in the execute stage due to the small DFC size and the slow

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:23

clock rate of an embedded processor. Unlike our DFC design, their approach provides
no execution time benefit. It also appears their evaluation was performed assuming
that entire DFC cache lines can be filled or written back in a single cycle. In addition,
they assume that the L1 DC has separate read and write ports, which will significantly
increase the area of the L1 DC SRAMs. Unless there is an important benefit due to
the processor configuration, an L1 DC will typically have a single shared read/write
port for area efficiency. This issue will have an important impact on their proposed
writeback filter cache design.

Austin et al. propose to use fast address calculation to access the entire L1 DC ear-
lier in the pipeline, to reduce execution time by resolving the data dependencies ear-
lier [Austin et al. 1995]. While this technique improves performance, it increases the
L1 DC energy since the whole cache needs to be accessed again on speculation failures.

Nicolaescu et al. propose to use a 16-entry fully-associative table to store the way
information of the last accessed lines [Nicolaescu et al. 2006]. The table is accessed in
the stage before the data cache access, with a fast address calculation scheme based on
Alpha 21264. If there is a match in the table, only one data cache way is accessed. The
addition of the 16-entry fully-associative circuit, which has a complexity of a DTLB
structure, incurs a significant area and power overhead, which will cancel out some
of this technique’s energy benefits. This technique can only reduce the energy dissi-
pation of L1 DC, while the DFC proposed in this work improves the execution time
considerably in addition to reducing the overall data access energy.

There have also been some techniques proposed to avoid DTLB accesses. Block
buffering has been used to detect recent TLB translations by performing comparisons
with the virtual address as soon as it is generated [Lee et al. 2005; Chang and Lan
2007]. Opportunistic virtual caching is a technique to allow some blocks in the L1
caches to be cached with virtual addresses by changing the operating system to indi-
cate which pages can use virtual caching [Basu et al. 2012]. Our DFC design is more
effective at reducing data access energy usage as our approach not only avoids most
DTLB accesses, but also avoids most L1 DC accesses as well.

7. CONCLUSIONS AND FUTURE WORK

We have described how to design and implement data filter caches (DFCs) that are
practical in the sense that they not only improve processor energy efficiency, but they
also improve processor performance and comply well with rational cell-based imple-
mentation flows. Our evaluations show that, e.g., a 256B fully-associative DFC can
provide an overall 41.6% energy reduction for data accesses at the same time as the
execution time is improved by 4.3% using speculative DFC accesses.

As far as future work, several avenues of research can be explored: First, a different
write policy could be employed to further improve the energy efficiency as compared
to the write-allocate policy. On a store miss, the line can be allocated by only writ-
ing the tag. This way a store miss does not cause a line fetch. If a load happens for a
line which is only allocated and not filled, then the line is fetched from L1 DC. This
technique may improve initialization operations, in which cache lines are partly or en-
tirely written first. Second, many processors rely on multi-cycle data cache accesses.
These processors can benefit even more from our DFC design, since the average cycle
count needed for data cache accesses can be substantially reduced in both in-order and
out-of-order implementations. Third, our energy evaluations have been based on con-
stant clock rates. Thus, the reduction in execution time can offer further energy saving
opportunities at the processor level, but this depends on the processor configuration:
For low-power systems there are mainly opportunities to reduce energy in the clock
network, while for high-performance systems, leakage energy reductions are possible.
Since the energy reductions are very sensitive to the actual implementations, further

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 A. Bardizbanyan et al.

implementation work and evaluations are necessary to establish what energy savings
are possible.

REFERENCES

T. Austin, E. Larson, and D. Ernst. 2002. SimpleScalar: An Infrastructure for Computer System Modeling.
Computer 35, 2 (Feb. 2002), 59—67.

T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. 1995. Streamlining Data Cache Access with Fast Address
Calculation. In Proc. Int. Symp. on Computer Architecture. ACM, New York, NY, USA, 369-380.

A. Bardizbanyan, M. Sjdlander, D. Whalley, and P. Larsson-Edefors. 2013. Towards a Performance and
Energy-Efficient Data Filter Cache. In Workshop on Optimizations for DSPs and Embedded Systems.
ACM, New York, NY, USA, 21-28.

A. Basu, M. Hill, and M. Swift. 2012. Reducing Memory Reference Energy with Opportunistic Virtual
Caching. In Proc. Int. Symp. on Computer Architecture. ACM, New York, NY, USA, 297-308.

M. E. Benitez and J. W. Davidson. 1988. A Portable Global Optimizer and Linker. In ACM SIGPLAN Conf.
on Programming Language Design and Implementation. ACM, New York, NY, USA, 329-338.

M. Cekleov and M. Dubois. 1997. Virtual-Address Caches. Part 1: Problems and Solutions in Uniprocessors.
IEEE Micro 17, 5 (1997), 64-71.

Y. Chang and M. Lan. 2007. Two New Techniques Integrated for Energy-Efficient TLB Design. IEEE Trans.
Very Large Scale Integrated Systems 15, 1 (2007), 13-23.

dJ. Dai and L. Wang. 2013. An Energy-Efficient L2 Cache Architecture Using Way Tag Information Under
Write-Through Policy. IEEE Trans. Very Large Scale Integration (VLSI) Systems 21, 1 (2013), 102-112.

W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh, J. Park, and D. Sheffield. 2008.
Efficient Embedded Computing. IEEE Computer 41, 7 (July 2008), 27-32.

N. Duong, T. Kim, D. Zhao, and A. Veidenbaum. 2012. Revisiting Level-0 Caches in Embedded Processors.
In Proc. Int. Conf on Compilers, Architecture, and Synthesis for Embedded Systems. ACM, New York,
NY, USA, 171-180.

Embedded Microprocessor Benchmark Consortium. 2013. (2013). http://www.eembc.org

K. Ghose and M. Kamble. 1999. Reducing Power in Superscalar Processor Caches Using Subbanking, Multi-
ple Line Buffers and Bit-Line Segmentation. In Proc. Int. Symp. on Low Power Design. ACM, New York,
NY, USA, 70-75.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A
Free, Commercially Representative Embedded Benchmark Suite. In Proc. Int. Workshop on Workload
Characterization. IEEE Computer Society, Washington, DC, USA, 3-14.

T. R. Halfhill. 2009. ARM’s Midsize Multiprocessor. Technical Report. Microprocessor Report.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis, and M.
Horowitz. 2010. Understanding Sources of Inefficiency in General-Purpose Chips. In Proc. Int. Symp.
on Computer Architecture. ACM, New York, NY, USA, 37-47.

dJ. Hennessy and D. Patterson. 2011. Computer Architecture: A Quantitative Approach (5th ed.). Morgan
Kaufmann, San Francisco.

S. Hines, P. Gavin, Y. Peress, D. Whalley, and G. Tyson. 2009. Guaranteeing Instruction Fetch Behavior
with a Lookahead Instruction Fetch Engine (LIFE). In Proc. Conf. on Languages, Compilers, and Tools
for Embedded Systems. ACM, New York, NY, USA, 119-128.

S. Hines, D. Whalley, and G. Tyson. 2007. Guaranteeing Hits to Improve the Efficiency of a Small Instruction
Cache. In Proc. Int. Symp. on Microarchitecture. ACM, New York, NY, USA, 433-444.

W. Huang, K. Rajamani, M. R. Stan, and K. Skadron. 2011. Scaling with Design Constraints: Predicting the
Future of Big Chips. IEEE Micro 31, 4 (2011), 16-29.

K. Inoue, T. Ishihara, and K. Murakami. 1999. Way-Predicting Set-Associative Cache for High Performance
and Low Energy Consumption. In Proc. Int. Symp. on Low Power Electronics and Design. ACM, New
York, NY, USA, 273-275.

dJ. Kin, M. Gupta, and W. H. Mangione-Smith. 1997. The Filter Cache: An Energy Efficient Memory Struc-
ture. In Proc. Int. Symp. on Microarchitecture. IEEE Computer Society, Washington, DC, USA, 184-193.

dJ. Kin, M. Gupta, and W. H. Mangione-Smith. 2000. Filtering Memory References to Increase Energy Effi-
ciency. IEEE Trans. Computers 49, 1 (Jan. 2000), 1-15.

d. H. Lee, C. Weems, and S.-D. Kim. 2005. Selective Block Buffering TLB System for Embedded Processors.
IEE Proceedings - Computers and Digital Techniques 152, 4 (2005), 507-516.

MIPS Technologies 2009. MIPS® 1004K™ Coherent Processing System Datasheet. MIPS Technologies.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance A:25

D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero. 2006. Fast Speculative Address Generation and
Way Caching for Reducing L1 Data Cache Energy. In Proc. Int. Conf. on Computer Design. IEEE Com-
puter Society, Washington, DC, USA, 101-107.

M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy. 2001. Reducing Set-Associative Cache
Energy via Way-Prediction and Selective Direct-Mapping. In Proc. 34th Annual ACM /IEEE Int. Symp.
on Microarchitecture. ACM, New York, NY, USA, 54-65.

C. Su and A. Despain. 1995. Cache Design Tradeoffs for Power and Performance Optimization. In Proc. Int.
Symp. on Low Power Design. ACM, New York, NY, USA, 63-68.

W. Tang, R. Gupta, and A. Nicolau. 2001. Design of a Predictive Filter Cache for Energy Savings in High
Performance Processor Architectures. In Proc. Int. Conf. on Computer Design. IEEE Computer Society,
Washington, DC, USA, 68-73.

D. Williamson. ARM Cortex A8: A High Performance Processor for Low Power Applications. ARM.

C. Zhang, F. Vahid, J. Yang, and W. Najjar. 2005. A Way-Halting Cache for Low-Energy High-Performance
Systems. ACM Trans. Archit. Code Optim. 2, 1 (March 2005), 34-54.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

