Fast and Efficient Sear ches for Effective Optimization
Phase Sequences

PRASAD A. KULKARNI, STEPHEN R. HINES, and DAVID B. WHALLEY
Florida State University

JASON D. HISER and JACK W. DAVIDSON

University of Virginia

DOUGLAS L. JONES

University of lllinois at Urbana-Champaign

It has long been kmen that a fixed ordering of optimization phases will not produce the best codexfpr e
application. Oneapproach for addressing this phase ordering problem is to uselatiomary algorithm

to search for a specific sequence of phases for each module or function. While such seagcheenha
shawvn to produce more efficient code, the approach can be extremelpestause the application is com-
piled and possibly»ecuted to galuate each sequenesedfectiveness. Consequentlgvolutionary or itera-

tive compilation schemes kia keen promoted for compilation systems targeting embedded applications
where meeting strict constraints oreeution time, code size, and power consumption is paramount and
longer compilation times may be tolerated in the final stage v@dlafgnent when an application is com-
piled one last time and embedded in a produstfortunately even for small embedded applications, the
search process can takmary hours or @en days making the approach less attraetd devdopers. Inthis
paper we describe twoomplementary general approaches for aghip faster searches forfettive qoti-
mization sequences when using a genetic algorithhe first approach reduces the search timevoida

ing unnecessaryxecutions of the application when possiblResults indicate search time reductions of
62% on aerage, often reducing searches from hours to minutée second approach modifies the search
so fewer generations are required to ashibe same results. Measurementsvskinis approach decreases
the arerage number of required generations by 59¥hese impreements hge the potential for making
evdutionary compilation a viable choice for tuning embedded applications.

Cateyories and Subject Descriptors: D.3RFggramming Language$ Processors compilers, optimiza-
tion; D.4.7 Dperating System$ Organization and Desigh real-time systems and embedded systems.
General Terms: Measurement, Performance, Experimentation, Algorithms

Additional Key Wbrds and Phrases: phase ordering, intaraaimpilation, genetic algorithms

1. INTRODUCTION

The phase ordering problem has long been known to béauldiflilemma for compiler designersggtiahl
1982; Whitfield and Séd 1997]. Onesequence of optimization phases is highly wlliko be the most
effective quence foraery application (or een for each function within a single application) on aegi

A preliminary version of this researchaw described in th&CM SSGPLAN '04 Conference on Bgramming Languge
Design and Implementatiamder the title "Fast Searches for EffeetOptimization Phase Sequences."

Authors’ addresses:. Rulkarni, S. Hines, and D. WhajleComputer Science Department, Florida Statevehsity,
Tallahassee, FL 32306-4530; e-mail: {kulkarni,hines,whad@cs.fsu.edu; phone: (850) 644-3506; J. Hiser and J.
Davidson, Computer Science Department,udrsity of Virginia, Charlottesville, X 22904; e-mail: {hisejwd}@vir-
ginia.edu; phone: (434) 982-2209; D. Jones, Electrical and Computer Engineering DepartnverdityJaf lllinois at
Urbana-Champaign, Urbana, IL 61801; e-mail: dl-jones@uiuc.edu; phone: (217) 244-6823

machine. Whetheor not a particular optimization enables or disables opportunities for subsequent opti-
mizations is difficult to predict since it depends on the application being compiled, the previously applied
phases, and the target architecture [Whitfield anth887].

One approach to deal with this problem is to search fectfe gotimization phase sequences using
genetic algorithms [CoopeSBchielke end Subramanian 1999; Kulkarni, Zhao et. al. 2003]. When the fit-
ness criteria for such searchesgadlwe dynamic measures (e.g., cycle counts or power consumption), thou-
sands of directx@cutions of an application may be required. The search time can be significant, often
needing hours or days when findindeefive £quences for a single application, making it less atweafdr
developers.

There are application areas where long compilation times are accefabkxample, long compi-
lation times may be tolerated in application where the problem size is directly related xectteor time
to sohe the problem. In fact, the size of macomputational chemistry and high-energy physics problems
is limited by the elapsed time to reach a solution (typicallywedieys or a week). Long compilation times
may be acceptable if the resulting code allows larger problem instances to be solved in the same amount of
time.

Evolutionary systems la dso been proposed for compilation systemgdting embedded systems
where meeting strict constraints axeeution time, code size, and power consumption is paramatigre
long compilation times are acceptable because in the final stageslopdeent an application is compiled
and embedded in a product where millions of units may be shigpe@mbedded systems, the problem is
further exacerbated because the softwaxeldpment environment is often different from thegetr erwi-
ronment. Obtainingperformance measures on cross-platformeldg@ment environments often requires
simulation which can be orders of magnitude slower thanenatieution. Exen when it is possible to use
the target machine to gather performance data dir¢lslyembedded processor may be significanthyesto
(slower clock rate, less memgrgtc.) thanavailable general-purpose processolde have found that
searching for an &ctive qotimization sequence can easily require hours or degrs when using direct
execution on a general-purpose procesdesr example, using a ceentional genetic algorithm to search
for effective gptimization sequences for tlygegapplication on an Ultra $¥RC 11l processor requiredver
20 hours to complete. Thus, findindesftive ssquences to tune an embedded application may result in an
intolerably long search time.

In this paper we describe approaches for athie faster searches for fe€tive qtimization
sequences using a genetic algorithvile performed our experiments using the VISTVPO Interactve
System for Tuning Applications) framwerk [Zhao et. al. 2002].VISTA allows a user to interact with a
compiler backend to tune applicatiorBor example, VISR can obtain and present performance informa-
tion which can be used by an applicationellgper to mak phase ordering decisions [Kulkarni, Zhao et. al.
2003]. W wse this performance information towlithe genetic algorithm searches foieefive qtimiza-
tion sequences.

The remainder of the paper is structured as Vlo First,we review other aggresse cmpilation
techniques for tuning applications. Second, wee gn overview of the VISTA frameavork in which our
experiments are performedThird, we describe andvauate methods for reducing thereshead of the
searches for &ctive squences. durth, we discuss andvauate techniques for finding fettive
sequences in fewer generations. Finailg autline future work and present the conclusions of the paper.

2. RELATED WORK

Several groups hee worked on the problem of attempting to find the best sequence of compiler optimiza-
tion phases and/or optimization parameters in an attempt to rexkmaien time, code size, and/orvper
consumption. Specificatiord code-improving transformations\ebeen automatically analyzed to deter
mine if one type of transformation can enable or disable another [Whitfield aiad1$®7]. Thisinforma-

tion can provide insight into moto secify an efiective gotimization phase ordering for a a@ntional

-2-

optimizing compiler While it was found that manpairs of optimization phases may not enable or disable
another there are still man instances where one phase can affect the optimization opportunities for
another In such cases, the determination of the order dependent phases cannot be automated and resolving
the order requies detailed knowledge of the compildiis work difers from ours in that we search for
effective gtimization sequences when compiling specific functions rather than one general optimization
sequence to be used when compiling jprogram.

There has been someokk on using iteratie compilation to tune compilation heuristic& neural
network has been used to tune static branch predictions [Calder et. al. 2988her system used genetic
algorithms to devie improved compiler heuristics for hyperblock formation, register allocation, and data
prefetching [Stephenson et. al. 2003]. While these searches are used to tune compiler heuristics instead of
individual applications, compiler tuning searches can still be quite time consuming.

There has been much researcrestigating searches for optimization sequences to ingtiee code
for individual applications. When the search space is velgtsmall, then rhaustve gproaches can be
used. Suchechniques hae keen deeloped to search for optimal instruction sequences [Massalin 1987] or
to eliminate branches [Granlund and Kenner 19%2jwever, these approaches can only be usedeiy v
limited contexts.

When the search space is too large toxtmestvely searched, techniques are needed to intelligently
probe or prune the space and/or tovite fast galuation of a specific sequence. Rather than changing the
order of optimization phases, there has beerkwlone on attempting to find the best set of optimizations
to turn on or df using optimization flags to a ceentional compiler Usersupplied information, profile
information, and static heuristics \eabeen used to recommend optimization flag options [Granston and
Holler 2001]. Searches for the best combination of optimization flags using fractional factorial design ha
also been ivestigated [Chav and WU 1999]. Incontrast, our system supports changing the order of the
optimization phases rather than just determining whether or not an optimization should be applied.

Many researchers ke dcevdoped automatic searches for finding efficient optimization sequences
where the order and/or the parameters of the optimization phasedden \aried. Somehave mncen-
trated more on optimization parameters rather than the order of optimization phagstse techniques
using actual xecution times after each compilationvieabeen applied to determine good optimization
parameters, such as tile sizes and loop unroll factors, for specific programs or library routines [Kisuki et. al.
2000; Whalg et. al. 2001]. These researchersdased grid and line search based algorithms to attempt to
find a combination of parameters that produces the most efficient code.

Other researchers ¥ dso varied hav optimizations are applied andveinstead used static estima-
tions of performance to reduce the search tifBae method searches through the different ways to apply
loop fision, fusion, interchange, and outer loop unrolling in an attempt to optimize loop nebtst]Vall.
1996]. Thismethod does not actually generate codejistead uses an estimate based on the original loop
nest and the potential benefit for a transformation. Thus, their approach is limited since the estimator only
works on the set of optimizations being consider@tie search space is pruned in differemys: The
decisions rgarding haw to goply some optimizations, such as outer loop unrollegdrs, are made inde-
pendently from other optimizations since it was felt thatatild not be affected by loinner loops wuld
be optimized. The number of loops to be varied when tuning other optimizations, such as tile size and loop
interchange, are also limited@ther methods for integrating different optimization phases were also studied
[Irigoin and Triolet 1988; Gao et. al. 1992].

Another method, called Optimization-Space Exploration, also uses static performance estimators to
reduced search time [Triantafyllis et. al. 2003his approach is very general since code for criticgt se
ments are actually generated and a static performance estimation is applisday set of optimizations
could be used in this approach. In order to prune the search spackmited the number of configura-
tions of optimization-parameter value pairs to those that are likely to contribute to performance

improvements. Thecompiler also prunes other remaining configurations based on the success of the con-
figurations it has already tried’he optimizations under consideration include coalescing multiple adjacent
loads and stores, loop unrolling, softve pipelining, and if-carersion. Besidethe differences in the
search and optimizations used, these systems also concentrate on cgitreaitseof code, where our sys-

tem attempts to tune entire functions.

The prior work that is most related to the VIES3ystem for finding d&ctive gotimization sequences
is the lav-level compilation system deloped at Rice Uwersity, which also searches for efficient opti-
mization phase sequences using a genetic algorithm to reduce code size and dynamic instruction count
[Cooper Schielke end Subramanian 1999; Coop8ubramanian and Torczon 2002]. The Rice system uses
a gmilar genetic algorithm as in VISV for finding phase sequences and aotfwas the inspiration for
much of our work in this papefThey also attempted to characterize the space that such anvaedapti-
piler must search [Almagor et. al. 2004flowever, the Rice system is strictly batch oriented instead of
interactve and applies the same optimization phase order for all of the functions within a file.

Some aspects of the approaches described in our paper may be useful for obtaining faster searches in
mary of these systemsOur work on aoiding redundant sequences of optimization phases essentially
guarantees when performance will be identical to a sequence that has been seen previously in the search.
We kelieve aur approach could be used when performing searches that attempt to determine compilation
heuristics [Stephensoet. al. 2003] or déctive quences of optimization phases [Coggehielke and
Subramanian 1999; Coop@&ubramanian and Torczon 2002; Almagor et. al. 200hile the static esti-
mators used in other search techniques [Wolf et. al. 1996; Triantafyllis et. al. 2003wailsdde more
efficient in terms of search time, obtaining more accurate performance information via dé®dton or
simulation may be desirable when tuning high performance kernels or embedded applications where longer
compilation times are more likely to be toleratedur techniques for producing similar results imvée
generations are designed to work in the context of a search algorithm that randomly probes a subset of the
search space in order to remember or predict when a particular phase will novbe Huotse techniques
may be applicable to the Rice approach [CopoBehielke and Subramanian 1999; Coop&ubramanian
and Torczon 2002; Almagor et. al. 2004], but may be less useful when applying a search technique that
enumerates the different parameters and explicitly prumgsus portions of the space [Kisuki et. al. 2000;
Whaley et. al. 2001; Triantafyllis et. al. 2003].

3. THE EXPERIMENTAL FRAMEWORK

This section provides a briefverview of the framevork used for the xperiments reported in this paper

This includes a description of VI&T the candidate optimization phases, and the test programs Ased.
transformation is a sequence of changes to the program representation, where the semantic behavior is pre-
sened. Aphase is a sequence of transformations caused by a single type of optimization. An optimization
phase sequence is a sequence of optimization phases applied by the corhjslgaper describes tech-

niques for achieving faster searches for effectptimization sequences.

VISTA is a low-level interactve cmpilation system A more detailed description of VI&E archi-
tecture can be found in prior publications [Zhao et. al. 20Q@katni, Zhao et. al. 2003]. Figure 1 illus-
trates the flov of information in VISTA, which consists of a compiler and amde The programmer ini-
tially indicates a file to be compiled and then specifies requests through ther, widich include
sequences of optimization phases, manually specified transformations, and queziesmpiler performs
the specified actions and sends program representation information back tavétre Kech time an opti-
mization sequence is selected for the function being tuned, the compiler instruments the code, produces
assembly code, links andeeutes the program, and gets performance measures fromethgien. When
the user chooses to terminate the session, A\8iites the sequence of transformations to a file sp the
can be reapplied at a later time, enabling future updates to the program representation.

Measure Executable
EASE Request Fil
ile
Performance
New Instruction Measures
Source . Assembly
. | Compiler——=)
File File

Program Representation Info. Transformation Info.

Selections Requests

) Saved
User . Viewer
Display State

Figure 1: Interactive Code Improvement Process

The interactreness of VISA is an important aspect of the ronment. Auser can vie the pro-
gram representation after each phase or transformation along with performance feedbmofietdhg
improvement during the tuning process. In addition, a user can manually specify transformations, which is
particularly useful when there are architectural features that the compiler capfat. eNotethat tradi-
tional compiler optimization phases can be appligmh efter manually specifying transformations.

The compiler used in VISV is based on VPO (Very Portable Optimizer), which is a compiler back
end that performs all of its optimizations on a single-level representation called RTLs (register transfer
lists) [Benitez and Davidson 1988; Benitez and Davidson 1994]. Because VPO uses a single representa-
tion, it can apply most analyses and optimization phases repeatedly and in an arbitraryrosdferature
facilitates finding more effeate s£quences of optimization phases.

Figure 2 shows a snapshot of the viewer with the history of a sequence of optimization phases dis-
played. Notethat not only is the number of transformations associated with each optimization phase dis-
played, but also the impvements in instructionsxecuted and code size are sho Likewise, we could
interface with a simulator to obtain imu@nents in cycle count and power consumption. This information
allows a user to quickly gauge the progress that has been made in improving the fuReddrequeng
of each basic block relag © the function is also sk in each block header line, which allows a user to
identify the critical regions of a function.

% Userinterface =

' a
Function pstr Trans Number 1215 5 | freq: 0.206% L33
State Total 315 [10]=r[12]+1;
1ransformations Code Size Speed PC=LSE;
Inzt Selection 93 53 .3y 5E5.42
Register hasignment 8 53.3% E5_42
Common Subexpr Elim 78 44 AR 44 88
Dead Variable Elim 14 40.77 40.45 9 7 | L97 | freq: 8.112%
Register Allocation 35 4077 a9 53 c[F]=c[11]+-1;
Inat Selection {871 &7 3300 35.52 r[1l]=r[&];
r[8]1=I(BlC[5]] {24] }24;
IC=r[&] 732;
PC=IC:0,L1040;
8 | | freq: 0.103% I
PC=LSS;
| |
Select Phases Specify Trans | RTLs o
— ! — —
= [=] ~ | L oeon | I 9 | Lil00 | freq: 0.0%- i
start writing in seqlixt || execute from file . P
Message:| Mo Message || Help ‘

Figure 2: Main Window of VISTA Showing History of Optimization Phases

VISTA allows a user to specify a set of distinct optimization phases amdtteacompiler attempt to
find the best sequence for applying these phases foemfginction. Figure3 shows the different options
that VISTA provides the user to control the search. The user specifiesetheence lengttwhich is the
total number of phases applied in each sequence. Our experiments usiede¢bdesampling seel, which
applies a genetic algorithm in an attempt to find the mdsttefe quence within a limited amount of
time since in maycases the search space is too largevéhuate all possible sequences [Holland 1988].
population is the set of solutions (sequences) that are under considefdtgonumber of generations indi-
cates hav mary sets of populations are to beakiated. Thepopulation size and the number of generations
must be specified, which limits the total number of sequenahsated. Theseerms are described in more
detail later in the papeNVISTA also allons the user to choose dynamic and static weight factors, where the
relative improvement of each is used to determine therall fitness.

Sel....Comb Query

Mo, of Phases: 5 Search Option:
Sequence Length: [7 | 12 Exhaustive Search
i@ Biased Sampling Search
Weight Factors: () Permutation Search
Speed 30 Code Size |50 Papulation Size: 20|
I {7]
- = 50 45 & i Mumber of Generations: |100

ok | cancel | | help |

Figure 3: Slecting Options to Search for Possible Sequences

Performing these searches is time consuming, typically requiring tens of minutes for a single func-
tion, and hours or days for an entire applicatieenevhen using directx@cution. ThusVISTA provides a
window showing the current search statusigure 4 shows a snapshot of the status of the search selected in
Figure 3. The percentage of sequences completed, the best sequence, and its effect on performance are
given. Theuser can terminate the search at point and accept the best sequence found so far.

Sel....Comb Result

Percent Complete:
[14%

Combinations Completed:

Walid: 284 Irvalich; O Total: 28472000
Best Sequence: stiksntic Seq. Num.: 153
Current Segquence: Innsnchs Improvement 455

Relative Improvements:

Code Size: 344_9_ Speed: 227 | Overall: 33.8

| Stop |

Figure 4: Window Showing the Search Status

Table 1 shows each of the candidate code-iwipg phases that we used in the experiments when
compiling each functionln addition, register assignment, which is a compulsory phase that assigns pseudo
registers to hardware registers, must be performé&TA implicitly performs rgister assignment before

the first code-improving phase in a sequence that requirégtér applying the last code-improving phase
in a sequence, we perform another compulsory phase which inserts instructions at the exityofittee
function to manage the aedtion record on the run-time stackinally, we dso perform additional code-
improving phases afterwards, such as filling delay slots.

Optimization Phase | Gene | Description

branch chaining b Replaces a branch or jump target with the target of the last jump in a chain.
common subexpression c Performs global analysis to eliminate fully redundant calculations, which also
elimination includes global constant and gggropagation.
(r:%rgg/e wnreachable d Remawes basic blocks that cannot be reached from the function entry block.
remove wseless blocks e Remes enpty blocks from the control-fle graph.
dead assignment h Uses global analysis to rewn® assignments when the assigned value igeme
elimination used.

. . Remaes a ump by reordering basic blocks when the target of the jump has
block reordering ' only a single predecessor.
minimize loop jumps j Remeas a ump associated with a loop by duplicating a portion of the loop|.
register allocation k | Uses graph coloring to greedily replace references to a variable within a

specific lve range with a register.

Performs loop-imariant code motion, recurrence elimination, loop strength
loop transformations | | reduction, and inductionaviable elimination on each loop ordered by nesting
level. Eachof these optimizations can also be individually selected by the|user

Merges tw consecutie basic blocksa andb whena is only followved byb and

merge basic blocks mi s only preceded bs.

evduation order s - . . Nl
determination 0 Reorders RTLs within a single basic block in an attempt to use fewer registers.
strength reduction g | Replaces anxpensve instruction with one or more cheaper ondé3x this

version of the compilerthis means changing a multiply by a constant into a
series of shifts, adds, and subtracts.

Eliminates an unconditional jump byveesing a conditional branch when|it

reverse branches " | branches ver the jump.
Combines pairs or triples of instructions together where the instructions are
. . . linked by set use dependencies. After combining tieetsfof the instructions,
instruction selection S | it also performs constant folding and checks if the resultifecefs a lgd
instruction before committing to the transformation.
remove useless jumps u Remes jumps and branches whose target is the following positional block.

Table 1: Candidate Optimization Phases in the Genetic Algorithm Experiments

We wsed a subset of thmibenchbenchmarks, which are C applications targeting specific areas of the
embedded market [Guthaus et. al. 2000k wsed one benchmark from each of the sixgates of appli-
cations. Whermxecuting each of the benchmarks, we used the sample input data that wdsdgwath the
benchmark. @ble 2 contains descriptions of these programs.

We first perform experiments on an Ultra SPARC Il processor so that the results could be obtained
in a reasonable time. Thus, the experimental results reportadliate the dectiveness of the methods
described in the next twsections were obtained for the ARC. After ensuring that the techniques were
sound, we obtained results for the Intel StrongARM SA-110 procesbah has a clock rate that is more
than 5 times slower than the Ultra SPARC .

Our genetic algorithm search for obtaining the baseline measurements was accomplished in the fol-
lowing manner Past studies using genetic algorithms to generate better codgdréormed searches on
entire applications [Nisbet 1998; Coopé&chielke and Subramanian 1999; Stephenson et. al. 2008].

Catgory Program Description
auto/industrial | bitcount test bit manipulation abilities
network dijkstra calculates shortest path between nodes using Dijgstggrithm
telecomm fit performsfast fourier transform
consumer ire image compression & decompression
security sha secure hash algorithm
office stringsearch| searches for words in phrases

Table 2: MiBench Benchmarks Used in the Experiments

contrast, we perform a search on each function (a total of 106 functions in our test suite), which requires
longer compilations but results in bettefeall improvements [Kulkarni, Zhao et. al. 2003]. In fact, most

of the techniques we argatuating would be much lessfettive if we searched for a single sequence to be
applied on an entire applicatiomVe %t the sequence (chromosome) length to be 1.25 times the number of
active phases that were applied for the function by the batch compWerfelt this length was a reasonable

limit that gives VISTA an cpportunity to apply more ae# phases than what the batch compiler could
accomplish. Notehat this length is much less than the number of phases attempted during the batch com-
pilation. Thesequence lengths used in these experimeariged/ between 3 and 50 with awesage of

14.15. W =t the population size (fixed number of sequences or chromosomes) to 20 and each of these ini-
tial sequences is randomly initialized with candidate optimization ph&8egerformed 100 generations

when searching for the best sequence for each funcidnrt the sequences in the population bijt-a

ness valuealculated using 50% weight on speed and 50% weight on code size. Theaspeedd used

was the number of instructionsxecuted since this as a measure that could be consistently obtained,
allowed us to obtain baseline measurements within a reasonable period of time, and it has been used in sim-
ilar studies [CoopeiSchielke and Subramanian 1999; Kulkarni, Zhao et. al. 2008¢ culd obtain a more
accurate measure of speed by using a cycle-accurate simutideeve, the main point of our>geri-

ments was towaluate the dectiveness of techniques for obtainingsfer searches, which can be applied

with ary type of fitness wluation criteria. At each generation (time step) we rammdhe worst sequence

and three others from the lower (poorer performing) half of the population chosen at raaddmof the

removed sequences are replaced by randomly selecting a pair of the remaining sequences from the upper
half of the population and performing a crosso(mating) operation to create a pair ofansequences.

The crosswer operation combines theveer half of one sequence with the upper half of the other sequence
and vice versa to create dwnew fquences. Fifteefir5%) sequences are then candidates for being
changed (mutated) by considering each optimization phase (gene) in the sequence. Mutation of each phase
in a sequence occurs with a probability of 10% and 5% for the lower and upper halves of the population,
respectiely. When an optimization phase is mutated, it is randomly replaced with another phase. The four
sequences subjected to crossocand the best performing sequence are not mutafeadally, if we find

identical sequences in the same population, then we replace the redundant sequences with ones that are ran-
domly generated.

Table 3 shavs more detailed information about the functions in each of the benchmarks. ®ie une
ecuted functions are grouped together as one entry in the four benchmarks where not all of the functions
were &ecuted. Associatedith each function are the number of basic blocks and instructions befere per
forming ary compiler optimizations.The sequence length is the number of optimization phases that are
attempted for each sequence during the genetic algorithmearet the sequence length to be 1.25 times
the number of acte phases that were applied for the function by the batch compilee final two
columns she the percentage of the remaining instructions in code size and dynamic instruction counts
obtained by the batch compiler as compared to unoptimized code.

. Basic Sequence Remaining Instructions
Benchmark Function Blocks Insts Length Static Dynamic
bitcount AR_btbl_bitcount 2 8 12 23.5% 23.5%
BW_btbl_bitcount 2 40 8 45.0% 45.0%
bit_count 7 45 12 26.7% 18.6%
bit_shifter 8 46 9 36.2% 30.9%
bitcount 2 101 9 41.6% 41.6%
main 15 208 24 43.9% 24.4%
ntbl_bitcnt 4 47 14 34.7% 35.4%
ntbl_bitcount 2 98 9 40.8% 40.8%
unexecuted funcs 4.5 58.1 12.3 38.5%
aveaage 5.2 80.9 12.1 36.8% 32.5%
dijkstra dequeue 4 73 10 45.3% 45.3%
dijkstra 19 284 27 47.3% 39.0%
enqueue 10 112 14 35.6% 31.3%
main 14 158 50 47.3% 25.8%
print_path 4 56 13 46.7% 47.2%
gecount 2 5 4 ®5.7% 66.7%
avaage 8.8 114.7 19.7 48.2% 42.6%
fft CheckPointer 4 28 10 58.1% 72.7%
IsPowerOfivo 6 31 9 51.5% 40.7%
NumberOfBitsNeeded 8 51 19 52.7% 30.3%
ReverseBits 6 49 13 32.0% 26.9%
fft_float 31 661 30 40.0% 28.7%
main 33 663 28 40.8% 38.0%
unexecuted funcs 6 160 13 41.4%
avaage 13.4 234.7 17.4 45.8% 39.6%
jpeg finish_input_ppm 1 1 3 100.0% 100.0%
get_raw_rev 4 64 12 37.3% 36.2%
jinit_read_ppm 2 43 10 40.9% 40.9%
main 25 417 22 44.5% 37.7%
parse_switches 132 | 1275 20 41.5% 40.9%
pbm_getc 13 144 13 27.8% 26.9%
read_pbm_intger 17 141 15 40.2% 38.0%
select_file_type 24 244 15 41.3% 42.0%
start_input_ppm 49 884 27 32.3% 31.5%
write_stdout 2 10 8 40.0% 40.0%
unexecuted funcs 11.9 193.3 15.2 35.7%
aveaage 255 310.5 14.6 43.8% 43.4%
sha main 10 107 15 43.6% 39.6%
sha_final 5 126 13 30.3% 27.5%
sha_init 2 47 7 39.6% 39.6%
sha_print 2 42 10 32.6% 32.6%
sha_stream 5 70 14 54.7% 27.0%
sha_transform 20 504 30 32.5% 28.0%
sha_update 7 124 18 31.8% 32.5%
aveaage 7.3 145.7 15.3 37.9% 32.4%
stringsearch| init_search 10 87 24 53.3% 26.6%
main 18 233 24 43.4% 30.5%
strsearch 13 126 22 41.4% 38.3%
unexecuted funcs 14 161 25 46.1%
aveaage 13.8 151.8 23.8 46.0% 31.8%
aveage 12.3| 173.0 17.1 43.1% 37.0%

Table 3: Function Information for the MiBench Benchmarks Used in the Experiments

Figures 5, 6, and 7 stwdhe percentage impvement that we obtained for the SPARC when optimiz-
ing for speed onlysize only and 50% for eachattor respectiely. Performance results for the ARM, a
widely used embedded processae presented later in this papéfhe baseline measures were obtained

-9-

using the batch VPO compilawrhich iteratvely applies optimization phases until no more inyaraents

can be obtained. This baseline is much more aggeedsan alvays using a fixed length sequence of
phases [Kulkarni, Zhao et. al. 2003]. Thexage benefits shn in the figure are slightly impwed from
previously published results since the searches imlude additional optimization phases that were not
previously exploited by the genetic algorithm [Kulkarni, Zhao et. al. 2003]. Note that the contribution of
this paper is that the search for these benefits is more efficient, rather than the actual benefits obtained.

bit count
dijkstra

fft

sha
stringsearch

average

0 5 10 15
percentage improvement compared to the batch compiler

Figure 5: $eed Only Improvements for the SPARC

bit count

dijkstra

fit

ipeg

sha

stringsearch

average

]!

0 5 10 15
percentage improvement compared to the batch compiler

Figure 6: 9ze Only Improvements for the SPARC

bit count

dijkstra

fft

T

jpeg_l:l [Size
sha B Speed
stringsearchi
average%tyi|
0 5 10 15

percentage improvement compared to the batch compiler

Figure 7: 9ze and Speed Impovements for the SPARC

-10-

4. REDUCING THE SEARCH OVERHEAD

Performing a search for anfe€tive gotimization phase sequence can be quifeersve, perhaps requiring
hours or days for an entire applicatioree when using directx@cution instead of simulation tosa@uate
performance. Onelvious benefit for speeding up these searches is that the technique is migrelibe
used. Anothebenefit is that the search can be made more agggessch as increasing the number of
generations, in an attempt to produce a better tuned applicatienfollowing subsections describe meth-
ods to reduce the searchethead and the results of applying these methods.

4.1 Methods for Reducing the Search Overhead

VISTA performs the follving tasks to obtain dynamic performance measurements for a single sequence.
(1) The compiler applies the optimization phases in the order specified by the sequence. (2) The generated
code for the function is instrumented if required to obtain performance measurements and the assembly
code for that function and the remaining assembly code for the functions in the current source file are writ-
ten to a file. (3) The newly generated assembly file is assem@dp@he object files comprising the entire
program are linked together into axeeutable by a command supplied in a configuration file. ¢&gbtain
performance measurements, the progranxésiged using a command in a configuration file, which may
involve drect execution or simulation. (6) The output of theeeution is compared to the desired output to
provide assurance that thewmaequence did not cause the generated code to becwslid.inTasks 2-6

often dominate the search time, which is probably due to these tasks requiring I1/O and task 1 being per
formed in memory.

The following subsections describe methods to reduce the seartiead by inferring the outcome
of a sequenceFigure 8 illustrates the order in which the different methods are attempted. Each optimiza-
tion phase sequence generated by the genetic algorithm isdheckp to four methods. The methods are
ordered according to cost. Each method handles a superset of the sequences handled by the methods
applied before it, but the later methods are mogeersive. The first method checks if the attempted
sequence has been previously encountered for the fundfiso, then the compilation by applying these
phases iswwided. Thesecond, third, and fourth methods are usedvtidathe e/aluation of the function,
which comprise tasks 2-6 described earlier.

previous measure
. found found
candidate
phases) Check Check
—— 1 Genetic next apply .
) Attempted Active
Algorithm sequence phases
best Sequences Sequences
sequence
calculate unmapped checksu
new measure
Execute Check for calculate Check for
xecu u
o generate Equivalent Identical
Application executable . mapped .
Function checksum |__Function
#found ‘found

Figure 8: Methods for Reducing Search Overhead

Litis possible that a meoptimization sequence can cause the generated code to produce incorrect output. In the rare case
when this happens, we assign a poor fitness value to the sequence so that it will not be selected by the genetic algorithm.

-11-

4.1.1 Finding Redundant Attempted Sequences

Sometimes the same optimization phase sequence is reattempted during the Geasddter Figure 9,

where each optimization phase in a sequence is represented by.aTlettesame sequence can be reat-
tempted due to mutation not occurring oty afithe phases in the sequence (e.g. sequemeraining the

same in Figure 6)Likewise, a crossger operation or mutation changing some individual phases can pro-
duce a previously attempted sequence (e.g. seqlkancgates to be the same as sequégrmfore muta-

tion in Figure 6).A hash table of attempted sequences along with the performance result for each sequence
is maintained. If a sequence is found to bevipiesly attempted, then theatuation of the sequence is not
performed and the previous result is usd@this technique of using a hash table to capture prior attempted
solutions has been previously used to reduce search time [C&ghéelke and Subramanian 1999;
Stephenson et. al. 2003; Kulkarni, Zhao et. al. 2003].

before mutation after mutation
seq’ seq’
sea sea

Figure 9: Example of Redundant Attempted Sequences

We realized that different sequences with the same attempted phases may generate the same code
since some optimization phases are independent in that the order in whiahetperformed cannot fafct
the final code that is being generaté&dr instance, consider applying branch chaining before and adger re
ister allocation. Branch chaining does not change tieerdinge of ay variable that is a candidate fogis-
ter allocation. Likewise, register allocation does nofeat branch chaining since it does not affect condi-
tional branches or unconditional jumps. Both branch chaining and register allocation will neither inhibit
nor enable the other phas€herefore, we identified for each optimization phase whether or not it is inde-
pendent with each of the other phasBather than directly using the attempted sequence in the hash, we
instead first sort the phases within the sequence so thabtvgecutiely applied phases that are indepen-
dent are alays performed in the same ordeie then use the sorted sequence of phases when accessing
the hash tableUsing the sorted sequence will allanore redundant sequences to be detected so more
compilations can bevaided. Thex entries in Table 4 indicate which optimizations are independent of one
another in the VPO compileFor instance, branch chaininl) (s independent of register allocatidg).(

We wsed our experience and insight in deriving the information in this table indicating which opti-
mization phases are independent of one anoWerinserted sanity checks when running oxpeziments
to ensure that this information was correde were surprised that our initial reasoningsoften incorrect
and corrected the independence informatidinis process is described in more detail in the Section 7,
which appears later in the paper.

4.1.2 Finding Redundant Actve Ssquences

Borrowing from biological terminologyan activeoptimization phase (gene) is one that applies transforma-
tions, while adormantoptimization phase (gene) is one that has fecef Anoptimization phase is dor
mant when the enabling conditions for the optimization to be applied are not satisfigther words, a
dormant phase does not apply dransformations. A®ne would expect, only a subset of the attempted
phases in a sequence will typically beatilt is common that a dormant phase may be mutated to another
dormant phase, but it auld not affect the compilation. Figure 10 illustratesvhdifferent attempted
sequences can map to the samevactquence, where the bold boxes representveagtiases and the

-12-

Optimization Phase| Gene| bl c | d| e| h| i|j |k]|l |m|o|qg]| T r|s|u
branch chaining b X X X | x X | X X
comm subexpr elim c X X X X
remv unreach code d X X X X | X X | X
remv useless blocks e X X X | X X | X | X X
dead asg elim h X X | x| X X X X
block reordering i X X | X X | X X | X X

min loop jumps i X | X | X X X | X X
register allocation k X X X X X X
loop trans I X X X X X
merge basic blocks| m X | X X X

evd order determ 0 X X | X X | X X X X X
strength reduction q X X | X | x| x| x X X | X X
reverse branches r X X X | X | x| X
instruction selection| s X X | X X | X X | X | X
remv useless jumps u X | X X X | X X | x X | x

X indicates if the two phases ae independent
Table 4: Independent Optimization Phases

nonbold bors represent dormant phaséssecond hash table is used to record sequences where only the
active phases are represented. As when accessing the attempted hash table, we also sort the phases in the
active quence so that twconsecutie independent phases areays applied in the same order.

attempted: seqi: [d|b[e]d[c]r] seqj [d]k[e]b[c]r]
active: seq i ﬂﬂ seq j: mﬂ

Figure 10: Example of a Redundant Actve Sequence

4.1.3 Detecting Identical Code

Sometimes identical code can be generated from differeneagtiiuences. Oftedifferent optimization
phases can be applied and camehthe same ééct. Considerthe two different ways that the pair of
instructions in Figure 11 can be mged togetherInstruction selection symbolically merges the instructions

original code segment original code segment
r[2] =1, r[2] =1,
ri3]=ri4]+r[2]; ri3]=r(4]+r[2];
after instruction selection after constant propagation
ri3]=r[4]+1; r(2]=1;
r[3]=r[4]+1,

after dead assignment elimination
ri3]=r[4] +1;

Figure 11: Different Optimizations Having the Same Effect

and checks to see if the resulting instruction gelleThe same effect in this case can be produced by con-
stant propagation (actually part of common subexpression elimination in VPQyddlloy dead assign-
ment elimination.

We dso found that while some optimization phases are not independent, the order in whiate the
applied often do not affect the generated cdel@.instance, branch chaining causes a transfer of control to
go directly to the end of a chain of unconditional jumps. It is possible that one of those unconditional
jumps in the chain can become unreachable code after performing branch chéloimger, this is
unlikely to happen.

VISTA has to efficiently detect when different aetiequences generate identical code to be able to
lower the searchwerhead. Asearch may result in thousands of unique function instances, which may be
too large to store in memory and be vexpensve o access on disk. Theely realization in addressing this
issue was that while VISUneeds to detect when function instances are identical, it can tolerate occasion-
ally treating diferent instances as being identical since the sequences within a population are sorted and the
best sequence found by the genetic algorithm must be complethiyated. ThusVISTA calculates a
CRC (cyclic redundaryccode) checksum on the bytes of the RTLs and keeps a hash table of these check-
sums. CRCsare commonly used to check the validity of data transmitted @ network and hae an
adwantage wer cornventional checksums in that the order of the bytes of data diees tife result [Peterson
and Brown 1961]. If the checksum has been generated forvebysefunction instance, then the pesfor
mance results of that instance are usat. haveverified that it is rare that the same checksum is generated
for different function instances and weveeobsened that the best fitness value founaisvaffected in our
experiments.

4.1.4 Detecting Equialent Code

Sometimes the code generated by different optimization sequenceguaralentin regad to speed and
size, but not identical. Consider awunction instances that ¥ the same sequence of instruction types,
but use different rgisters. Thissituation can occur since different optimization phases competedisr re
ters. For instance, consider the source code in Figure 12(a). Figures 12(b) and 12(djvehpossible
translations gien two dfferent orderings of optimization phases that consume registers.

sum = 0;
for (i =0; i < 1000; i++)
sum += a[i];
(a) Source Code
r[10]=0; r[11]=0; r[32]=0;
r{12]=Hi[a]; r{10]=Hi[a]; r(33]=H[a];
r[12]=r[12]+L] a] ; r[10]=r[10]+Ld a] ; r[33]=r[33]+Ld a] ;
r{1] =r[12]; r[1] =r[10]; r[34]=r[33];
r[9] =4000+r [12]; r[9] =4000+r[10]; r[35] =4000+r [33];
L3 L3 L3

r(81=Mr[1]]; r(8]=Mr[1]]; r[36]=Mr[34]];
r[10]=r[10]+r[8] ; r{11]=r[11]+r[8]; r[32]=r[32]+r[36];
r[1] =r[1] +4; r[1] =r[1] +4; r[34] =r[34] +4;
IC=r[1]?r[9]; I C=r[1] ?r[9]; | C=r[34] ?r[35];
PC=I C<0, L3; PC=I C<0, L3; PC=1 C<0, L3;
(b) Register Allocation (c) Code Motion before (d) After Mapping
before Code Motion egister Allocation Registers

Figure 12: Different Functions with Equivalent Code

-14-

To detect this situation, VISN identifies the lie ranges of all of the registers in the function and
maps each Ve range to a distinct pseudogister Equivalent function instances become identical after
mapping, which is illustrated for the example in Figure 12{dje CRC checksum for the mapped function
instance is computed and checked in a separate hash table of CRC checksums to see if the mapped function
had been previously generated.

On most machines there is a uniform access time for each register in the registék difdse, most
statically scheduled processors do not generate stalls due to anti (write after read) and output (write after
write) dependencedHowever, these dependences could inhibit future optimizatidrsis, comparing g
ister mapped functions toaid executions in the search should only be performed after all remaining opti-
mizations (e.g. filling delay slots) V& keen applied.Given that these assumptionsgeeding a uniform
register access time and no stalls due to anti or output dependences are true, if the current mapped function
is equvalent to a previous mapped instance of the function, then we can assume the égquvalent and
will produce the same result aftedeeution.

4.2 Experimental Results

We gplied the techniques in Section 4.1 to each of the benchmarks shown in T#gai2.we used a
population size of 20 and 100 generations when attempting to finfeativef gotimization sequence using

the genetic algorithm once for each function. Thus, 2000 optimization phase sequences are generated for
each function.

Figure 13 shows theverage number of sequences whogecations were wided for each bench-
mark using the four diérent methods described in Section 4. Each function is weighted equally since the
same number of sequences were applied for each function. vétagea bar is for thevarage of the per
centages for the six benchmarkBhese results do not include the functions in the benchmarks that were
not executed when using the sample input data since these functionswaler@ted on code size only and
did not require xecution of the application. As mentioned yiausly, each method in Section 4 is able to
find a superset of the sequences handled by methods applied befneaierage 38.2% of the sequences
were detected as redundantly attempted using the technique in Sectior88.6%. were caught as redun-
dant actvte quences using the technique in Section 4.1.2. 10.5% werevetisddo produce identical
code as generated by ayimis sequence using the technique in Section 4.1.3 and 2.5% were found to pro-
duce unique, but equdlent code using the technique in Section 4.TTAus, wer 87.7% of the recutions
were aoided. We dscovered that sorting the phases in a sequence, so that cowdgcuatpplied

bit count ‘ -

B ‘ ‘ ‘ ‘ ‘ ‘ ‘ | Detecting Equiva-
dijkstra ‘ lent Code

[| Detecting Identical

fft

Jpeg

sha

stringsearch

average

Code
(] Finding Redundant
Active Sequences
O Finding Redundant
Attempted Se-
quences

0 200 400 600 800 100012001400180018002000

of sequences with avoided executions

Figure 13: Number of Avoided Executions

-15-

independent phases are in the same phgereased the number ofaded eecutions by 1.15% We found

that sorting ves more successful when hashing thevacgequences than the attempted sequences since

there was a greater chance of having a redundant sequence due to the sequence lengths being shorter after
removing the dormant phas%s.

Figure 14 shows the relaé arch time required when applying the methods described in Section 4
to not applying these methodshese methods reduced the search time by 62%. vinage time required
to evaluate each of the six benchmarks imyaa from 6.31 hours to 2.86 hour§he reduction appears to
be affected not only by the percentage of t@deed executions, but also by the size of the functiofitie
larger functions tended to ¥xa fewer avoided executions and also had longer compilatioNghile the aer-
age search time was significantly reduced for these experiments using xboetion on a SPARC proces-
sor, the savings would only increase when using simulation sincextoat®ns of the application euld
comprise a larger portion of the search time.

bit count 3139 hours to 0{50 hours

dijkstra 2.54 hors to 0.62 hoyrs
fft 3159 hours to 1|87 hours
ipeg 24.14 hours to 12.33 hours
sha 1.86 houirs to 0.47 hours

stringsearch 2.35 hours to| 1.37 hours

average

0 0.2 0.4 0.6 0.8 1

ratio to search time without using methods in Section 4

Figure 14: Relative Total Search Time on the SPARC

By observing the search status, aswahin Figure 4, we found that search progressed more quickly
as the number of generations performed increasegure 15 shows theverage number of redundant
sequences, whergezution was not required, for each of the 100 generations in the searchesvefdgea
number of redundant sequences generally increases as more generations are peffusmEdegnomenon
is not surprising since there is a limited number of sequences that will produce different code. Thus, a user
can double the number of generations to be performed with only a small increase in seartikBmise,
we could check for imprement for the lash generations and used this as a termination condition for the
genetic algorithm.

20

15 W
12 l/f_'

Al
Jl

1] 20 40 =] a0 100

Generations

Avoided Executions:

Figure 15: Number of Redundant Executions &oided Per Generation

2 The results presented in Figure 13 are slightly different than the results presentedviaus wersion of this paper [Kkarni,
Hines et. al. 2004]. The reasons for these differences include changes to the ceonfiiigrof the independent phases within the at-
tempted and aaté quences before accessing the hash tables, and enhancements for detecting identicaslentl fegations.

-16-

We dso found that searches performed with shorter sequences had a higher percentage of redundant
executions that could bevaided. Notethat the sequence length is established by the batch compilation.
Smaller functions tended to Ve shorter sequence lengths due tevée opportunities for optimization
phases to be agd. Figure 16 shows three plots with sequence lengths ranging from 3-10, 11-20, and
21-50. Theshorter sequence lengths quickly become almost entirely redundantungerierations. A
sequence that has a shorter length is more likely to be redundant due to feveepastes affecting the
generated code. In addition, the likelihood of mutation is less when there are fewer phases in a sequence to
mutate. Incontrast, the longer sequences are werage much less redundant since longer sequence
lengths yield more possible aaiquences and more possiblays in which the final code can be gener
ated. Allthree plots shw that the search finds an increasing number of redundant sequences as the number
of generations increases.

—3-10
—11-20
—21-50

[}

Avoided Executions:

I

L o o e B 8 R N L e e
0 20 40 50 80 100
Generations

Figure 16: Number of Redundant Executions &oided Per Generation for Different Sequence Lengths

Figures 17, 18, and 19 display informatiogamling the number of times an optimization phass w
active. Figure 17 shows thevarage number of times that thefdifent optimization phases were aetfor
each sequenceOne should realize that an optimization phase may not bes acta £quence since the
genetic algorithm may simply not select that particular phase throughout the sequence. Also, this informa-
tion does not depict the number of transformations that were applied in eaechphese. Hwever, the
figure does illustrate that some optimization phases, such as instruction selection and comkpoassube
sion elimination, are much more likely to be waetihan other phases. In addition, some phases can be
accomplished by a combination of other phag&s.instance, common subexpression elimination and dead
assignment elimination can oftenvieathe same ééct as instruction selectionFinally, the success of
phases is also affected by the code generationgjrdter instance, the front end that we usesasts gen-
erated intermediate code where a label preceded the epilogue code at the end of a function in case there
were return statements in the source code from other locations in the furkdidranctions with no condi-
tional control flav, this return block was afays merged with the entry block. Thus, tineige kasic bloks
optimization phase was successful more frequently than if another code generation strategy was used.

Figure 18 shows he often an optimization phase will be agtigven that it was actually attempted.
It is interesting to note that while instruction selection was the phase that wastaetmost often, com-
mon subexpression elimination was @eta geater percentage of the time when @saselectedInstruc-
tion selection has a direct impact on both code size and speed. Sometimes common subexpression elimina-
tion does not reduce code size and may not be deemed as beneficial as instruction selection by the genetic
algorithm. Likewise, ealuation order determination could often be applied successfully when attempted,
but had little impact on performance. The phases that did not help performance eyetdikbe in
sequences that are in the lower half of the populafidrese sequences could be replaced by the a@sso
operation and had a higher mutation rate applied to them. Thus, phases having little impact on performance

-17-

branch chaining
common subexpression elimination
remove unreachable code
remove useless blocks
dead assignment elimination
block reordering
minimize loop jumps
register allocation
loop transformations
merge basic blocks
evaluation order determination
strength reduction
reverse branches
instruction selection
remove useless jumps

0 025 05 075 1 125 1.5 175 2

Figure 17: Average Times Each Phase Was Aate

were applied less ofterin addition, @aluation order determination could only be applied before assigning
pseudo registers to hardwaregisgers, which was implicitly performed before the first code-imimgg
phase in the sequence that requires it.

branch chaining

cemmon subexpression elimination
remove unreachable code
remove useless blocks

dead assignment elimination
block reordering

minimize loop jumps

register allocation

loop transformations

merge basic blocks

evaluation order determination
strength reduction

reverse branches

instruction selection

remove useless jumps

0% 25% 50% 75% 100%

Figure 18: Percentage That Each Phase Was Agg When Attempted

Figure 19 shows theverage number of times an optimization phases\actie in a £quence gen
that it was actie & least once. There areveeal optimization phases, such as branch chaining, that were
actve & most a single time. This sivg that perhaps these phases are typically not enabled by other
phases.

5. PRODUCING SIMILAR RESULTS IN FEWER GENERATIONS

Another approach that can be used to reduce the search time for firfdotyeetptimization sequences is

to produce the same results invé¥ generations of the genetic algorithm. If this approach is feasible, then
users can either specify fewer generations to be performed in their searcheg @anttstop the search
sooner once the desired resultsenbeen achieed.

5.1 Methods for Producing Similar Results in Fewer Generations

The folloving subsections describe the different techniques that we use to olfativeefequences of
optimization phases in fewer generatioddl of these techniques identify phases that are likely to beeacti
or dormant at a gen point in the compilation process.

-18-

branch chaining

common subexpression elimination
remove unreachable code
remove useless blocks

dead assignment elimination
block reordering

minimize loop jumps

register allocation

loop transformations

merge basic blocks

evaluation order determination
strength reduction

reverse branches

0 025 05 075 1 125 1.5 175 2

Figure 19: Number of Times Each Phase Was Aate Given It W as Active & L east Once

5.1.1 Using the Batch Sequence

The traditional obatchversion of our compiler alays attempts the same order of optimization phases for
each function.We dtain the sequence of aatiphases (those phases that were able to apply one or more
transformations) from the batch compilation of the functigve haveused the length of the aati batch
sequence to establish the length of the sequences attempted by the genetic algorithm in gpevieus e
ments [Kulkarni, Zhao et. al. 2003].

We propose to use the aeti batch sequence for the function as one of the sequences in the initial
population. Thepremise is that if we initialize a sequence in the population with optimization phases that
are likely to be actie, then this may all the genetic algorithm to cuerge faster on the best sequence it
can find. This approach is similar to including in the initial population the compiler wnitariually spec-
ified priority function when attempting to tune a compiler heuristic [Stephenson et. al. 2003].

5.1.2 Prohibiting Specific Phases

While mary different optimization phases can be specified as candidate phases for the genetic algorithm,
sometimes specific phases camende ative for a given function. Ifthe genetic algorithm only attempts
phases that e an opportunity to be acte, then the algorithm may cuerge on he best sequence it can

find in fewer attempts. There arevaeal situations when specific optimizations should not be attempted.
Loop optimization phases cannot beator a function that does not contain loogdagister allocation in

VPO cannot be aste for a function that does not containydncal variables or parameters. Branch opti-
mizations and unreachable code elimination cannot beeaftti a function that contains a single basic
block. Detectinghat a specific set of optimization phases caremee ative for a given function requires

simple analysis that only needs to be performed once at the beginning of the genetic algorithm.

5.1.3 Prohibiting Prior Dormant Phases

When compiling a function, we find certain optimization phases will be dormaant thiat a specific prefix

of actve phases has been performe@iven that the same prefix of phases is attempted again, there is no
benefit from attempting the same dormant phase in the same situation since it will remain dédomant.
avad repeating these dormant phases, \WS$&presents the agé phases as nodes in #B, where each
child corresponds to the next phase in arvacquence. & each node VISA calculates the CRC check-
sum for the bytes of the RTLs at that point after applying the associated optimization Atmaske in the

DAG has more than one parent when different prefixes produce identital R\e dso store at each node
the set of phases that were found to be dormant for that prefix oé ghises. Figur€0 shows an

-19-

example DAG where the bold portions represent eetirefixes and the nonbold boxes represent dormant
phases gien that prefix. The genetic algorithm finds that the preBbcb andbe produce identical code.
At that point the algorithm merges the prefixes so that boéh point to the samenode in the BG. For
instancea andf are dormant phases for the predixc. To prohibit applying a prior dormant phase, VIST
forces a phase to change during mutation until we find a phase that has either beeutldhe specified
prefix or has not yet been attempted.

Figure 20: A DAG Representing Active Prefixes

5.1.4 Prohibiting Unenabled Phases

Certain optimization phases when performed cannot becomve agdin until enabled.For instance, rgis-

ter allocation replaces references to variablessstinges with rgisters. Alive range is assigned to agre
ister when a rgister is a@ailable at that point in the coloring process. After the compiler applgistes
allocation, this optimization phase will notveaan opportunity to be actie ayan until the register pressure
has changed. Unreachable code elimination and a variety of branch optimizations wikctothaf rgis-

ter pressure and thus will not enable register allocatiégure 21 illustrates that a specific phase, the non-
bold box of the sequence on the right, will at times be unenabled and cannovée/fsgdn the premise

is that if the genetic algorithm concentrates on the phases tlemahapportunity to be acte, then it will

be able to apply more aeti phases in a sequence andwage to he best sequence it can find invés
attempts. Note¢hat determining which optimization phases can enable another phase requires careful con-
sideration by the compiler writer.

¢ enables k b and r do not enable |
LIklolck].] [.Ik[olr]k[.]
Figure 21: Enabling Previously Applied Phases

We implemented this technique by forcing a phase to mutate if the same phase has already been per
formed and there are no intervening phases that can enaldle iealized that a specific phase can become
unenabled after an attempted phase is found to heactlormant. Vi first follow the DAG of active fre-
fixes, which was described in the yimais subsection, to determine which phases are currently enabled.
For example, consider again Figure 20. Assume thatin be enabled bg, but cannot be enabled luy
Given the prefixbac, we know thatb cannot be aote a this point sinceb was dormant after the prefika
andc cannot reenable it. After reaching a leaf of thi@we track which phases cannot be enabled by just
examining the subsequently attempted phases.

5.2 Experimental Results

In this section we determined theeeage number of generations that wevalgated for each of the
functions before finding the best fitness value in the sédrtlebaselineresult is without using anof the

3 The results after applying the techniques in Section 5 also changed slightly from the results that were presentéouis a pre
version of this paper [Kulkarni, Hines et. al. 2004]. These differences were due to not only changes in the batrggerto using a
DAG instead of a tree, where a checksum is stored with each node, so that more redunedarefacs can be detected.

-20-

techniques described in Section 5The other results indicate the generation when the first sequersce w
found whose performance equaled the best sequence found in the baselineWeaddhnot include the

results for the functions when the best fithess value folaslnet as good as the best fitness value in the
baseline, which occurred on about 3% of the functions. Not including these results caused the baseline to
vary since the functions with different fithess values were no&ya the same when applying each of the
techniques. Abou®.4% of the functions had impred fitness values and about 2.8% of the functions had
worse fitness values whell of the techniques were applied. Orerage the best fitness values imem

by 0.04% (by 0.30% for only the differing functionsjhe maximum number of generations before finding

the best fitness value foryafunction was 98 out of a possible 100 when not applyiygoéthe four tech-

nigues. Thanaximum was 89 when all four techniques were used. The techniques occasionally caused the
best fithess value to be found latehich we belige is due to the inherent randomness of using a genetic
algorithm. Havever, dl of the techniques were beneficial oreage.

Figure 22 shows the effect of using the batch sequence in the initial population, which in gaseral w
quite beneficial. The last three barswshbe average effect when separating the benchmarks according to
the sequence length used in the search. Note that sequence length for each function is established by multi-
plying the actre ssquence of the batch compiler by 1.28e found that this techniqueasked well for the
smaller functions in the applications since &snoften the case that the batch compiler produced code that
was as @od as the code generated by the best sequence found in the $t@axeher, the smaller func-
tions tended to carerge on he best sequence in the search wefegenerations gmay since the sequence
lengths were typically shortern fact, it is likely that performing a search for affieefive gptimization
sequence is in general less beneficial for smaller functions since there is less interplay between phases.
Using the batch sequence for thegrfunctions often resulted in finding the best sequence in fewer gener
ations &en though the batch compiler typically did not produce code tlaat @ good as produced by the
best sequence found in the baseline results. Thus, simply initializing the population with one sequence
containing phases that are likely to beats quite beneficial.

bit countr
dijkstra
fft
ipeg % [Baseline
sha | [] Using the Batch
4 Sequence
stringsearch

average |

lengths 3-10 ——
lengths 11-20 |
lengths 21-50 | ‘ ‘ —)
0 10 20 30 40 50 60

number of generations

Figure 2: Number of Generations befoe Fnding
the Best Fitness Value When Using the Batch Sequence

The effect of prohibiting specific phases throughout the seaashiegs beneficial, as shown in Fig-
ure 23. Specific phases can only be safely prohibited when the function iehelsitnple and a specific
condition (such as no loops, nariables, or no unconditional jumps) can be detecBmleral applications,
such asstringseach, had no or very f& functions that met these criterilhe simpler functions also
tended to coverge faster to the best sequence found in the search since the sequence length established by
the length of the batch compilatioras/typically shorter Likewise, the simpler functions alsovealittle
impact on the size of the entire application andehitle impact on speed when there not frequently
executed.

-21-

bit counti .
dikstra %‘J
ft | \ ,
ipeg | [] Baseline

sha [T Prohibiting Specif-
ic Phases

stringsearch

average

lengths 3-10 g

lengths 11-20 |

lengths 21-50 | ? ‘, ‘ —

1b Zb Sb 4b 50 60
number of generations

(=]

Figure 23: Number of Generations befoe Finding the
Best Fitness Value When Prohibiting Specific Phases
Figure 24 shows he often each type of phase could be prohibit&averal transfer of control opti-

mization phases could be prohibited when the function had no such instrudfimisize loop jumps and
loop transformations could be prohibited when there were no loops in a funBiggister allocation could
be prohibited for only very simple functions that referenced no local variableguoments. Seeral opti-
mization phases were ve prohibited since these phases could either be commonly performed or the anal-
ysis to determine tlyecould not be applied was difficult to accomplish.

branch chaining

common subexpression elimination
remove unreachable code
remove useless jumps

dead assignment elimination
block reordering

minimize loop jumps

register allocation

loop transformations

merge basic blocks

evaluation order determination
strength reduction

reverse branches

instruction selection

remove useless blocks

0% 20% 40% 60% 80% 100%

Figure 24: Percentage of Functions Wher Each Phase Could be Prohibited

In contrast, prohibiting prior dormant and unenabled phases, which are depicted in Figures 25 and
26, had a more significant impact since these techniques could be applied to all funbfitiosit using
these tw techniques, it was often the case that yralrases were reattempted when thees wo opportu-
nity for them to be acte.

Applying all the techniques produced the begtrall results, as shwen in Figure 27. In fact, only
about 41% of the generations are@ge (from 21.38 generations to 8.85 generations) were required to find
the best sequence in the search as compared to the baselingeétea, applying all of the techniques did
not result in the sum of the benefits of the widlial techniques since some of the phases that were prohib-
ited would be caught by multiple techniques.

Consider Figure 28, which depicts the numbernwided executions. Theop bar shows the results
given in FHgure 13 from applying only Section 4 techniqué$ie bottom bar for each benchmark shows the
number of ®ecutions that arevaided when all of the techniques described in Section 5 are apied.

-22-

bit count
dijkstra
ft

ipeg
sha

stringsearch

[] Baseline
B Prohibiting Prior
Dormant Phases

average
lengths 3-10
lengths 11-20
lengths 21-50 p————— T T
0 10 20 30 40 50 60

number of generations

Figure 25: Number of Generations befoe Finding the Best
Fitness Value When Prohibiting Prior Dormant Phases

bit count
dijkstra
ft

ipeg
sha

stringsearch

[] Baseline
Il Prohibiting Un-
enabled Phases

average
lengths 3-10
lengths 11-20
lengths 21-50 p———————— T T
0 10 20 30 40 50 60

number of generations

Figure 26: Number of Generations befoe Finding the
Best Fitness Value When Prohibiting Unenabled Phases

bit count
dijkstra

ft —

ipeg
sha

stringsearch

[] Baseline
A

average
lengths 3-10
lengths 11-20
lengths 21-50 p———
0 10 20

30 40 50 60

number of generations

Figure 27: Number of Generations befoe Fnding
the Best Fitness Value When Applying All Techniques

actve £quences were considered redundant after applying the technique described in Section 5.1.3 since
we checked the checksums stored in tA&Dof active prefixes to determine if the aed ssquences pro-
duced identical codeThus, detecting sequences as identical also detects redundamtagptiences. One

-23-

can see that the number of redundantly attempted sequences decreaseagen &¢ found that may of

the smaller functions had more hash table hits for attempted sequences after applying the techniques in Sec-
tion 5 and the larger functions typically hagvér hits. We kelieve tis phenomenon is due to applying the
techniques to prohibit prior dormant and unenabled phabBes.the smaller functions with shorter
sequence lengths, the possible phases to attempt were often exhausted aweé gmaaetithat was used
before was often attemptedlikewise, the larger functions with longer sequence lengths and significantly
larger search spaces tended to not reattempt previously dormant phagdig, tot exhaust the possible
phases and had fewer hits in the hash table average number ofvaided executions decreases by about
1.4%, which means a greater number of functions with unique code were genelatesier, the decrease

in avoided eecutions is much less than theeemge decrease in generations required to reach the best
sequence found in the search, as shown in Figure 27.

bit count |
dijkstra [l Detecting Equivalent
1 Code
i [l Detecting Identical
T Code
)] [0 Finding Redundant
Ipeg | Active Sequences
1 [Finding Redundant
sha] Attempted Se-
quences
stringsearch |
average |

0 200 400 600 800 100012001400160018002000
of sequences with avoided executions; bottom bars show results when using Section 5 techniques

Figure 28: Number of Avoided Executions When Using Section 5 Techniques

Figure 29 shows the impact that applying all of the techniques in Section 5 had verdige perfor
mance of the code for each generation negath the best fitness value found in the sear8hsignificant
improvement is obtained by performing the batch sequence in the initial generafien.a fav genera-
tions, prohibiting prior dormant phases and prohibiting unenabled phases result in a greater benefit than
using the batch sequencBerforming all of the techniques resulted in the best result. This grapis sho
that the number of generations could be reduced with a neglible loss in performance of the generated code.

110

108 _\

106 \
— haseline
—all

104 \

102 _“

100+ T I T T T T T T T T T T T T T T T
0 10 20 30 40 a0 &0 70 a0 an 100

Figure 29: Average Benefit Relatve to the Best Fitness Value Per Generation

Figure 30 shows the relaé ime for finding the best fithesaae when all of the techniques in Sec-
tion 5 were applied. The actual times are shown in minutes since finding the best sequence is accomplished
in a fraction of the total generations performed in the seaxdte the baseline for finding the best fitness
value includes all of the methods described in Section 4dim ainnecessaryxecutions. Thebest fithess

-24-

value was found in 65.0% of the time ovesage as compared to the baseline.

bit count 5.76 min to 0.95 tin

dijkstra 18.43 min to 746 min

45.15 miy

67 min tq

1

)

283 min to 169.68 min

stringsearch 76 min td 28.32 min

average

0 0.2 0.4 0.6 0.8 1 1.2 14
ratio to time for finding the best sequence without using techniques in Section 5

Figure 3: Relative Search Time before Fnding the Best Fitness Value

6. APPLYING THE TECHNIQUES ON AN EMBEDDED PROCESSOR

After ensuring that the techniques wevdeped to impree the search time for &fctive £quences were
sound, we obtained results on the Intel StrongARM SA-110 proceBgures 31, 32, and 33 shdhe
percentage impr@ment when optimizing for speed on$ize only and 50% for each factprespectiely.

bit count
dijkstra
fft

Ipeg B Speed

sha

stringsearch

average

0 L, 10 15
percentage improvement compared to the batch compiler

Figure 3L: Speed Only Improvements for the ARM

bit count

dijkstra
fft
o] —

sha |

stringsearch |

average |

[

0 5 10 15
percentage improvement compared to the batch compiler

Figure 3: Size Only Improvements for the ARM

-25-

bit count
dijkstra 1
ft
Ipeg [Size
sha h] M Speed
stringsearch 7 ‘ |
average _—'—‘
6 5; 10 15

percentage improvement compared to the batch compiler

Figure 33: Size and Speed Impovements for the ARM

Figure 34 shows the relaéi ime for running the genetic algorithm on the ARM when all of the tech-
nigues in Section 4 were applied. The search time using the Section 4 techniques required 35.9% of the
time on &erage as compared to not applying these techniqiies.average time required to obtain results
for each of the benchmarks when optimizing for both speed and size on the ARM required 11.54 hours
instead of 26.68 hours.

bit count 19.31 hours tp 3.42 hours

dijkstra 11.69 hoyrs to 2.83 hours

fft 14.95 hours tp 5.79 hours

Ipeg

sha 51 hours to 4,56 hours

88,50 hours to 47.06 hours

stringsearch L1JI3 hours to 555 hours

average

0 0.2 0.4 08 0.8 1

ratio to search time without using methods in Section 4

Figure 34: Relative Total Search Time on the ARM

7. IMPLEMENT ATION ISSUES

During the process of thisvastigation, we encountered\sgal implementation issues that made tharkv
challenging. Firstthe VISTA framevork was designed so that a user could intevdgtimake slections

using a mouseWe stup a mode in VISA where selections could be specified in a file so thatxperie

ments could be performed in a batch mode. Second, producing codemiest génerates the correct out-

put for different optimization phase sequences ifalik. Even implementing a caentional compiler that

always generates code that produces correct output when applying one predefined sequence of optimization
phases is not an easy task. In contrast, generating codewhys abrrectly &ecutes for thousands of dif-

ferent optimization phase sequences isvarsestress test. Ensuring that all sequences inxperienents
produced valid code required trackingndomary errors that had not yet been disemed in the VISR

system. Thirddetermining which phases were independent (sédeT4), prohibiting specific phases (see
Section 5.1.2), and prohibiting unenabled phases (see Section 5.1.4) required analysis and judgement by the
compiler writer to determine when optimization phases could be enabled or disefdeidserted sanity

checks when running«periments without using these methods to ensure that our assertions concerning the
enabling of optimization phases were accurdter instance, we checked that the attempted angeacti
sequences forvery function produced the same code when applied directly or when applied after sorting

-26-

the independent phase¥/e found seeral cases where our reasoning was faulty after inspecting the situa-
tions unceered by these sanity checks and we were able to correct our enabling asséianis, we
sometimes found that dormant optimization phases did treexpected side effects by changing the analy-

sis information, which could enable or disable a subsequent optimization pHasee side effects can

affect the results of the methods described in Sections 4.1.2, 5.1.3, and \Wel.dso inserted sanity
checks to ensure that different dormant phases did not cause different effects on subsequentVphases.
detected when these situations occurred, properly set the information about what analysis is required and
invalidated by each optimization phase, anavrrarely encounter these problemBinally, these gperi-

ments were quite time-consuming, particularly when obtaining a baseline without using our techniques to
reduce the searchverhead. V¢ nodified the system to log information during the search, such as each
attempted sequence, the correspondingractquence, the checksum of the function produced by the
sequence, and the effect on speed and spaaeder to reduce the time required to isolate problems when
performing various sanity checks, we would process the log file rather than rerunning the entire search.

8. FUTUREWORK

There is much future research that can be accomplished widipgpfast searches forfettive gtimiza-

tion sequencesWe haveshowvn that detecting when a particular optimization phase will be dormant can
result in fewer generations to a@nge on he best sequence in the seardle kelieve it is possible to esti-
mate the likelihood that a particular optimization phase will beagven the actve phases that precede it

by empirically collecting this information. This information could be exploited by adjusting the mutation
operation to more likely mutate to phases thathaletter chance of being aeti with the goal of coverg-

ing to a better fitness value in fewer generations.

Another area of future work is to vary the characteristics of the setralould be interesting to see
the effect on a search as one changes aspects of genetic algorithm, such as the sequence length, population
size, number of generations, eltle may find that certain search characteristics may be better for one class
of functions, while other characteristics may be better for other functions. In addition, it would be interest-
ing to perform searchesviolving more compiler optimizations and benchmarks.

Finally, the use of a cluster of processors can reduce the searchQeniinly different sequences
within a population can bevaluated in parallel [Stephenson et. al. 200Bjkewise, functions within the
same application can b&auated independentlyEven with the use of a clustethe techniques we ha
presented in our paper would still be useful sincg wi# further enhance the search timin addition, not
evay developer has access to a cluster.

9. CONCLUSIONS

There are seeral contritutions that we hae presented in this papefFirst, we hae diown that there are
effective methods to reduce the searchertnead for finding déctive qptimization phase sequences by
avading expensve exeutions or simulations. Detecting when a phase waseaatidormant by instru-
menting the compiler was very useful since ynamguences can be detected as redundant by memoizing
the results of acte thase sequence$Ve dso discaoered that the same code is often generated bgrdift
sequences. ®/demonstrated that using efficient mechanisms, such as a CRC checksum, to check for iden-
tical or equvalent functions can also significantly reduce the number of requikemligons of an applica-

tion. Secondye hare srown that on werage the number of generations required to find the best sequence
can be reduced byer two thirds. Onesimple, but dective technique is to insert the aai £quence of
phases from the batch compilation as one of the sequences in the initial popWgidao found that we
could often use analysis and empirical data to determine when phases could notebeThese tech-
nigues result indster comergence to more &ctive quences, which can allcequally efective sarches

to be performed with fewer generations of the genetic algorithm.

-27-

An environment to tune the sequence of optimization phases for each function in an embedded appli-
cation can be very beneficiaHowever, the orerhead of performing searches fofestive quences using
a genetic algorithm can be quite significant and this problenxasexbated when performance measure-
ments for an application are obtained by simulation or on a slower embedded probtagodevdopers
are willing to wait for tasks to runvernight to imprawe a poduct, but are unwilling to wait longeiVe
have diown that the searchverhead can be significantly reduced, perhaps to a tolerakde by using
methods to eoid redundant xecutions and techniques to a@ge to he best sequence it can find iwé
generations.

ACKNOWLEDGEMENTS

Clark Coleman and the anonymousieaers provided manhelpful suggestions that impred the quality
of the paper In particular we thank Keith Cooper and Tim Haay for their insightful commentsThis
research w&s supported in part by National Science Foundation grants EIA-0072@130283956,
CCR-0208892, ACI-0305144, and CCR-0312493.

REFERENCES

Almagor, L., Cooper K., Grosul, A. and Hamey, T., “Finding Efective Compilation SequencésACM
SIGPLAN Conference on Langies, Compilers, anddbls for Embedded Systenygp. 231-239 (July
2004).

Benitez, M. E. and DBadson, J. W., A Portable Global Optimizer and Liek” Proceedings of the SIG-
PLAN ’'88 Symposium on &ramming Languge Design and Implementationpp. 329-338 (June
1988).

Benitez, M. E. and Davidson, J. W., “The Aaiwages of Machine-Dependent Global Optimizatiémo-
ceedings of the Conference ono§amming Languges and Systems A&hitectures pp. 105-124
(March 1994).

Calder B., Grunwald, D. and LindsayD., “Corpus-based Static Branch PredictioRroceedings of the
SIGPLAN '95 Confemce on Rygramming Languge Design and Implementationpp. 79-92 (June
1995).

Chow, K. and Wu, Y, “Feedback-Directed Selection and Characterization of Compiler Optimizations,
Wakshop on Feedback-Directed Optimizatigdovember 1999).

Cooper K., Schielke, Pand Subramanian, D., “Optimizing for Reduced Code Space Using Genetic Algo-
rithms,” ACM SGPLAN Workshop on Langges, Compilers, and Tools for Embedded Systepps
1-9 (May 1999).

CooperK., Subramanian, D. and Torczon, LAdaptive Qptimizing Compilers for the 21st Centyryjour-
nal of Supercomputing3(1) pp. 7-22 (2002).

Gao, G., Olsen, R., Sarkaf. and Thekkath, R., “Collecte Loop Fusion for Array ContractidnWakshop
on Languaes and Compiles for Parallel Computing pp. 281-295 (1992).

Granlund, T and Kenner R., “Eliminating Branches using a Superoptimizer and the GNU C Coripiler
Proceedings of the SIGPLAN '92 Conference argfamming Languge Design and Implementation
pp. 341-352 (June 1992).

Granston, E. and HolleA., “Automatic Recommendation of Compiler OptidnBroceedings of the 4th
Wakshop on Feedb&directed Optimization(December 2001).

Guthaus, M., Ringenbgy J., Ernst, D., Austin, T., Mudge, ad Brown, R., “MiBench: A Free, Commer
cially Representate Embedded Benchmark SuitdEEE Workshop on Workload Cleaterization
(December 2001).

Holland, J. Adaptation in Natural and Artificial Systenfgjdison-Weslg (1989).

Irigoin, F. and Triolet, R., “Supernodeartitioning,” Symposium on Principles of d@ramming Languges,
pp. 319-329 (1988).

Kisuki, T., Knijnenlurg, P and O’'Boyle, M., “Combined Selection of Tile Sizes and Unroll Factors Using
Iterative Compilation,” Proceedings of the 2000 International Conference arallel Architectures

-28-

and Compilation Techniquepp. 237-248 (October 2000).

Kulkarni, P., Hines, S., Hised., Whalley, D., Davidson, J. and Jones, D., “Fast Searches fiacEfe Qpti-
mization Phase SequenceBroceedings of the SIGPLAN '04 Corflece on Rsgramming Languge
Design and Implementatiorpp. 171-182 (June 2004).

Kulkarni, P., Zhao, W Moon, H., Cho, K., Whallg D., Davidson, J., Baile M., Paek, Yand Gallvan, K.,
“Finding Effective Optimization Phase Sequen¢eACM SIGPLAN Conference on Langges, Com-
pilers, and Tools for Embedded Systems. 12-23 (June 2003).

Massalin, H., “Superoptimizer - A Look at the Smallest Progrd®mceedings of the 2nd International
Confeence on Aghitectural Support for Pogramming Languges and Operating Systemspp.
122-126 (October1987).

Nisbet, A., “Genetic Algorithm Optimizedarallelization,” Warkshop on Profile and dedba& Directed
Compilation (1998).

Peterson, Wand Brown, D., “Cyclic Codes for Error DetectidrRroceedings of the IRE9 pp. 228-235
(January 1961).

Stephenson, M., Amarasinghe, S., Martin, M. and O’Rdilly “Meta Optimization: Improving Compiler
Heuristics with Machine LearnifgACM SGPLAN Conference on Bgramming Languge Design
and Implementatignpp. 77-90 (June 2003).

Triantafyllis, S., \achharajani, M., Vachharajani, N. and August, D., “Compiler Optimization Space-Explo-
ration,” ACM SGMICRO International Symposium on Code Generation and OptimizagMarch
2003).

Vegdahl, S., “Phase Coupling and Constant Generation in an Optimizing Microcode Cgnhpiéena-
tional Symposium on Microehitecture pp. 125-133 (1982).

Whaley, R, Petitet, A. and Dongarra, J., “Automated Empirical Optimization of Sofwnd the ALAS
Project,”Parallel Computing27(1) pp. 3-35 (2001).

Whitfield, D. and Sdh, M. L., “An Approach for Exploring Code-Improvingrdnsformations,”ACM
Transactions on Rigramming Languges and System$9(6) pp. 1053-1084 (N@mber 1997).

Wolf, M., Maydan, D. and Chen, D., “Combining Loop Transformations Considering Caches and Schedul-
ing,” Proceedings of the International Symposium on &&iathitecture pp. 274-286 (December
1996).

Zhao, W., Cai, B., Whalie D., Bailey, M., Engelen, R. van, Yuan, X., Hisér, Davidson, J., Gallan, K.
and Jones, D., “VISTA: A System for InteragtiCode Impraement,” ACM SGPLAN Conference on
Languayes, Compilers, and Tools for Embedded Systgmps155-164 (June 2002).

-29-

