
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCE

DAGDA

DECOUPLING ADDRESS GENERATION FROM LOADS AND STORES

By

MICHAEL STOKES

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of
Masters in Computer Science

2018

Copyright c© 2018 Michael Stokes. All Rights Reserved.

Michael Stokes defended this thesis on May 4, 2018.
The members of the supervisory committee were:

David B. Whalley

Professor Directing Thesis

Xiuwen Liu

Committee Member

Gary Tyson

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the thesis has been approved in accordance with university requirements.

ii

TABLE OF CONTENTS

List of Tables . iv

List of Figures . v

Abstract . vi

1 Introduction 1

2 Background 3

3 Decoupling the Address Generation and Memory Access Operations 5

4 Memoizing L1 DC and DTLB Ways 9

5 Coalescing ALU Operations with Memory Data Accesses 13

6 Evaluation Framework 15

7 Results 17

8 Related Work 21

9 Future Work 24

10 Conclusions 25

Biographical Sketch . 26

Bibliography . 27

iii

LIST OF TABLES

1.1 Last Instruction to Compute a Data Address . 2

3.1 DAGDA Inst Pipeline Stages . 6

3.2 DAGDA Stages Used by Instructions . 6

3.3 DAGDA Instruction Pipeline Example . 7

6.1 Benchmarks Used . 15

6.2 Processor Configuration . 15

6.3 Energy for L1 DC and DTLB Components . 16

iv

LIST OF FIGURES

1.1 Memory Access Micro Operations . 2

2.1 Conventional L1 DC Pipeline Load Access . 3

2.2 Address Fields . 4

4.1 Memoization Examples . 9

4.2 Address Generation Information . 10

4.3 Detecting Address Changes . 10

4.4 Accessing Nearby Addresses . 11

5.1 Encoding Loads and Stores with an ALU Operation 14

5.2 Scheduling pam Instructions . 14

6.1 Load L1 DC Single and Multiple Way Data Array Accesses 16

7.1 L1 DC Tag Checks and DTLB Access Ratio . 18

7.2 Data Access Energy Usage Ratio . 18

7.3 Instructions Executed Ratio . 19

7.4 Estimated Performance Ratio . 19

v

ABSTRACT

Level-one data cache (L1 DC) accesses impact energy usage as they frequently occur and use

significantly more energy than register file accesses. A memory access instruction consists of an

address generation operation calculating the location where the data item resides in memory and

the data access operation that loads/stores a value from/to that location. We propose to decouple

these two operations into separate machine instructions to reduce energy usage. By associating

the data translation lookaside buffer (DTLB) access and level-one data cache (L1 DC) tag check

with an address generation instruction, only a single data array in a set-associative L1 DC needs

to be accessed during a load instruction when the result of the tag check is known at that point.

In addition, many DTLB accesses and L1 DC tag checks are avoided by memoizing the DTLB way

and L1 DC way with the register that holds the memory address to be dereferenced. Finally, we

are able to often coalesce an ALU operation with a load or store data access using our technique

to reduce the number of instructions executed.

vi

CHAPTER 1

INTRODUCTION

Contemporary architectures designed using RISC principles attempt to implement each instruction

using a single µop. However, memory operations involve many hidden hardware µops. These µops

not only form dependence chains, but also use a significant amount of energy.

Figure 1.1(a) shows code containing a load and a store along with the µops that implement

these instructions. The load µops are: #1 Add the base register value and the offset to obtain the

virtual address (va); #2 Access the data translation lookaside buffer (DTLB) using the va to get

the physical address (pa); #3 Perform the tag check to identify the way where the data resides in

a set-associative cache; and #4 use the pa index and the way to access the cache data and update

the register. The store uses identical µops #1, #2, and #3, but #5 assigns the data to the cache

line. Given that the load and store access the same location, the first three µops for the store are

clearly redundant, which can be eliminated if the store instruction can use the results of prior µops.

Unfortunately, these µops are not visible to the compiler with conventional ISAs and it would be

expensive to implement each µop as an ISA instruction in terms of code size, fetch bandwidth, and

energy.

Eliminating redundant µops can be accomplished without exposing each µop as an explicit

instruction to the compiler. In our example, µop (1) va=r4+0; can be combined with the two

instructions that update r4. Coupling µops (2) and (3) into these instructions effectively creates

a prepare to access memory (pam) instruction, yielding the code shown in Figure 1.1(b) that

eliminates the redundant virtual address calculation, DTLB access, and L1 DC tag check in the

loop. Note that the pam in the figure is simply an annotation. An instruction whose destination

result can be used as the address input of a memory operation can be annotated, including integer

load instructions used for pointer chasing. Hence, µop results, such as pa, and way are effectively

coupled with the result register (r4) of the pam instruction by the micro-architecture and essentially

extend the live-ranges of these values to other instructions.

1

 2. pa=dtlb_access(va);

 3. way=tag_check(pa);

 4. r3=load_access(pa,way);

 1. va=r4+0;

r3=M[r4];

r4=sp+72;

r3=r3+r5;

M[r4]=r3;

r4=r4+4;

PC=r4!=r8,L1;

 2. pa=dtlb_access(va);

 3. way=tag_check(pa);

 1. va=r4+0;

 5. store_access(r3,pa,way);

L1:

 4. r3=load_access(pa,way);

 1. va=sp+72;

 2. pa=dtlb_access(va);

 3. way=tag_check(pa);

 3. way=tag_check(pa);

 5. store_access(r3,pa,way);

 6. va=r4+4;

 2. pa=dtlb_access(va);

r4=sp+72;

r3=M[r4];

r4=r4+4;

PC=r4!=r8,L1;

M[r4]=r3;

r3=r3+r5;

[pam]

[pam]

L1:

(a) Conventional Micro Operations

(b) Decoupled Micro Operations

Figure 1.1: Memory Access Micro Operations

Table 1.1: Last Instruction to Compute a Data Address
Size Type Operation MIPS Inst Effect Source Operands

Scalar
Local (1) integer immediate add rd = rs + immed stack pointer and offset
Global (2) bitwise immediate OR rd = rs | immed high | low portions of global address
Pointer (3) integer load rt = M[rs] pointer variable address

Composite
Array Element (4) integer register add rd = rs + rt array base address and element offset
Structure Field (1) integer immediate add rd = rs + immed struct base address and field offset

Pointer Arithmetic (5) integer register sub rd = rs - rt pointer - var offset

In this paper we propose the Decoupled Address Generation and Data Access (DAGDA1) tech-

nique to separate the micro-operations associated with memory accesses and distribute them to

other instructions. This separation facilitates energy optimizations, some of which rely on simple

memoization techniques that are implemented by using the destination register number of pam

annotated instructions as an index into simple small tables maintained by the micro-architecture.

1A simple, but very powerful Celtic God.

2

CHAPTER 2

BACKGROUND

In this paper we describe our proposed techniques in the context of an in-order pipeline where the

benefits are more obvious. In-order pipelines are commonly used in many embedded processors, are

the only option for extreme low-power systems, and are growing in importance as computation is

facing more stringent power and energy requirements. However, our proposed techniques are also

applicable in out-of-order (OoO) processors.

Figure 2.1 depicts how a classical in-order pipeline performs a load from an n-way set-associative

L1 DC. The virtual memory address is generated by adding a displacement to a base address

obtained from the register file in an address generation (ADDR-GEN) stage. In the SRAM-ACCESS

stage the DTLB, the L1 DC tags, and the L1 DC data are all accessed in parallel to minimize load

hazard stalls and the tag value of the physical address is compared to the tag value of the physical

page number from the DTLB.1 This organization is energy inefficient as all data arrays are accessed,

but the value can reside in at most one way within a cache set.

G
A

U

ADDR−GEN SRAM−ACCESS

...

...

Base Address

Displacement

DATA: n−1

DATA: 0

TAG: n−1

TAG: 0

DTLB

...

...

=

=

Figure 2.1: Conventional L1 DC Pipeline Load Access

Figure 2.2 shows the address fields used to access the DTLB and the L1 DC. The virtual page

number is used to access the DTLB, which produces the corresponding physical page number. The

virtual and physical page offsets remain the same. The L1 DC block number uniquely identifies

the L1 DC line being accessed. The L1 DC offset indicates the first byte of the data to be accessed

1The register level after the ADDR-GEN stage is embedded in the DTLB, TAG, and DATA blocks.

3

in the L1 DC line. The set index is used to access the L1 DC set. The tag contains the remaining

bits that are used to verify if the line resides in the L1 DC.2

tag

L1 DC block number

set index

physical page number page offset

virtual page number page offset

DTLB

physical address

virtual address

offset
L1 DC

Figure 2.2: Address Fields

2We depict the physical page number and the tag fields being the same size, but the physical page number could
be smaller for a virtually-indexed, physically-tagged (VIPT) cache. To simplify the description, we assume these two
fields are the same size.

4

CHAPTER 3

DECOUPLING THE ADDRESS GENERATION

AND MEMORY ACCESS OPERATIONS

The SRAM-ACCESS pipeline stage as depicted in Figure 2.1 is inefficient with respect to energy

usage since all L1 DC data arrays must be accessed for loads as the data access occurs in parallel

with the L1 DC tag check. It is possible to extend the instruction pipeline to have a separate

stage for accessing the DTLB and L1 DC tag arrays so only a single L1 DC data array needs to

be accessed. We found that across the MiBench benchmarks [6] the execution time increases by

8% on average for an in-order processor whose L1 DC access is increased from two stages to three

stages to facilitate sequential tag and data accesses [2]. The change is impractical since the reduced

energy usage for the L1 DC accesses would be largely offset by the increased energy required for

longer execution times of applications.

As shown in Figure 2.1, an in-order instruction pipeline includes separate pipeline stages for gen-

erating the memory address (ADDR-GEN) and accessing the data cache (SRAM-ACCESS) within

a load instruction. An address generation step is included in an instruction pipeline since most

processors support a displacement addressing mode for a memory operation, where the effective ad-

dress is the sum of a base register value and a sign-extended immediate offset (i.e., M[rs+immed]).

We propose that the DTLB access and L1 DC tag check be decoupled from the L1 DC data access

by associating these operations with different instructions. The possible last instructions in the

computation of the addresses of variables in a C/C++ application for almost all cases are shown in

Table 1.1. Thus, these five instructions can either be annotated or separate opcodes can be used to

indicate that the integer destination register can be subsequently used to dereference a data value.

The actual data access to perform the load or store will now use only a register indirect addressing

mode (i.e., M[rs]).

Decoupling address generation and data access into separate instructions does not significantly

increase the instructions executed for the following reasons. (1) Load and store instructions in

our compiler used a zero displacement 46% of the time for the MiBench benchmark suite. Many

5

memory references sequentially access array elements and the displacement becomes zero after

performing the loop strength reduction optimization, where the array base address is assigned to a

register before the loop and an integer addition is used to calculate the next array element address

in the loop. (2) Sometimes the address generation calculation is redundant. In fact, a memory

address using a non-zero displacement is often loop invariant, such as referencing a local variable

that uses the stack pointer register, and can be hoisted out of loops. (3) We will later show in

Section 5 that we can encode an ALU operation with load and store operations that use a simple

indirect register addressing mode.

Table 3.1 shows the DAGDA pipeline stages for a traditionally pipelined in-order processor

extended with decoupled address generation and data accesses. The first five are conventional

stages found in a traditional pipeline. The AG stage includes generating an address through an

integer addition or bitwise OR operation. The TC and DA stages in the table comprise other

actions that are typically associated with a single conventional data cache access (MEM) pipeline

stage. The TC stage accesses the DTLB to obtain the physical page number and accesses the L1

DC tag arrays to check if the desired line is resident in the L1 DC. Both the DTLB and L1 DC tag

accesses occur in parallel. The DA stage accesses a single L1 DC data array to either load or store

a value.

Table 3.1: DAGDA Inst Pipeline Stages
Stage Explanation Stage Explanation

1. IF inst fetch 6. AG address generation
2. ID inst decode

7. TC
DTLB access and

3. RF register fetch L1 DC tag check
4. EX execute

8. DA
L1 DC data access to

5. WB write back load/store a value

Table 3.2 shows DAGDA pipeline stages applied for various instructions. Unlike a conventional

pipeline, the data access (DA) stage is performed before the execution (EX) stage. Stages shown

Table 3.2: DAGDA Stages Used by Instructions
Instruction Pipeline Stages

ALU inst IF ID RF DA EX WB
pam ALU inst IF ID RF AG TC WB
load inst IF ID RF DA EX WB
pam load inst IF ID RF DA TC WB
store inst IF ID RF DA EX WB

6

Table 3.3: DAGDA Instruction Pipeline Example
Instruction 1 2 3 4 5 6 7 8 9 10

1. pam add IF ID RF AG TC WB
2. other IF ID RF DA EX WB
3. pam load IF ID RF DA TC WB
4. other IF ID RF DA EX WB
5. load IF ID RF DA EX WB

in italics font indicate that information is passed through the stage, but no action is taken. For

instance, a conventional ALU instruction does not perform a data access. A pam ALU instruction

performs a DTLB access and L1 DC tag check (TC stage) and updates the register file (WB stage)

after the address is calculated (AG stage). The TC stage is performed immediately following the

AG stage allowing the DTLB access and L1 DC tag check to be peformed in the following cycle.

We use a distinct adder for the AG stage so that the address can be performed a cycle earlier

to decrease stalls with a dependent load or store instruction. This same adder can also be used

for branch target address calculations. The EX stage is not used for the address generation for

load and store instructions since the address has already been generated by a pam instruction and

memory references are only performed with a register indirect addressing mode. We will describe in

Section 5 how to exploit the EX stage associated with a load or store to perform an ALU operation

in addition to a memory access. The TC stage is not used for regular loads and stores as the DTLB

access and L1 DC tag check are previously performed in a pam instruction. A pam load instruction

will perform the TC stage after the address has been loaded from the L1 DC (DA stage). The

write back (WB) stage is not used for a store instruction.

Table 3.3 depicts a sequence of instructions in a DAGDA in-order instruction pipeline. The

AG, DA, and TC stages used in the example are depicted in boldface in the pipeline diagram.

Instruction 1 calculates an address during the AG stage and performs a DTLB access and a tag

check in the TC stage to determine the L1 DC way of the set where the desired data line resides.

Instruction 3 loads an address value from the L1 DC. The DA is performed in cycle 6 and the L1

DC way can be forwarded from instruction 1, which is available at the end of cycle 5. Instruction

3 also performs the TC stage in cycle 7 since it is a pam load. Instruction 5 uses the loaded value

to dereference memory in cycle 8. Note in this pipeline one instruction is required to be executed

between the point that an address calculation is performed (instruction 1) or a pointer address is

loaded from memory (instruction 3) and the point that the address is dereferenced (instructions 3

7

and 5). Scheduling at least one independent instructions between a pam instruction and the point

of a load is often easier than the conventional problem of scheduling an independent instruction

between a load and the use of a loaded value since effective address calculations typically do not

have many dependences with other instructions. We show in the next section that in many cases

the L1 DC way will be known after the AG stage of a pam instruction allowing the TC stage and

potential hazards between pam and data access (load and store) instructions to be avoided. In the

infrequent case when the L1 DC way is unknown after the AG stage and the pam instruction can

only be scheduled immediately before the data access instruction, there are two options: (1) the

pipeline could either stall the data access instruction for a cycle to allow the TC stage of the pam

instruction to complete before the DA stage of the data access instruction or (2) all L1 DC data

arrays could be accessed in parallel in the DA stage of the data access instruction with the L1 DC

tag check in the TC stage of the pam instruction.

8

CHAPTER 4

MEMOIZING L1 DC AND DTLB WAYS

The L1 DC way must be stored in a structure since the pam instruction and the corresponding

data access instruction may be separated by many instructions, which would prevent forwarding

the L1 DC way in the instruction pipeline. In fact, a DTLB access and L1 DC tag check will often

be unnecessary since the same line may be accessed again. Figure 4.1(a) shows code for loading

from and storing to the same variable. While the load needs a corresponding pam instruction, the

store can use the same L1 DC way as the value of r6 has not been changed. Figure 4.1(b) shows

an example of accessing sequential array locations. The pam instruction (r20=r20+4;) need not

perform a DTLB access or L1 DC tag check when the L1 DC block number field of the L1 DC

address (see Figure 2.2) is not updated.

r6=...;[pam]

M[r6]=...;

...

...=M[r6];

...

(a) Redundant Address

r2=M[r20];

PC=r20!=r21,L3;

r20=r20+4;[pam]

...

(b) Strided Accesses

r20=...;[pam]

L3:

Figure 4.1: Memoization Examples

A simple and efficient approach to avoid redundant DTLB accesses and L1 DC tag checks is

to associate information with the destination register number of a pam instruction and to detect

when updates to this register do not invalidate this information. Consider the address generation

structure (AGS) in Figure 4.2(a) that contains fields associated with each integer register used as

an indirect address register in load and store instructions. The AGS structure could also be utilized

for an OoO processor by associating the AGS entry information with each physical register. The

DWV bit indicates if the DTLB way field is valid. The DTLB way field holds the DTLB way in

which the associated physical page number resides. If the DWV bit is not set, then the rest of the

AGS entry is considered invalid. The LWV bit indicates if the L1 DC way field is valid. The L1

DC way field holds the L1 DC way in which the associated cache line resides. By only allowing an

9

indirect addressing mode, the L1 DC set index field (see Figure 2.2) of the register value indicates

the L1 DC set and need not be stored in the AGS. The PP field contains page protection bits from

the DTLB entry since the AGS structure allows DTLB references to be avoided. The AGS entry

needs to be accessed during the RF stage to allow a data access (DA) for a load in the following

cycle. Figure 4.2(b), which deals with the coherence issue of L1 DC evictions, will be described

later in this section.

...

n−1

0

wayLWVDWV
L1 DCDTLB

way PP

...

31

0

(a) Address Generation (b) Address Generation
Structure (AGS) Valid Information (AGV)

Figure 4.2: Address Generation Information

An address is often updated and still resides in the same cache line and more frequently in the

same page. Figure 4.3 shows how to easily detect if the cache line to be accessed will change during

a pam integer immediate addition (rd = rs + immed). First, the magnitude of the immediate has

to be less than the line offset size. Second, the carry out values are inspected during the addition.

If the set index field is updated, then the L1 DC way may no longer be accurate and the L1 DC

tag arrays and a single way in the DTLB have to be accessed in the TC stage. If the virtual page

number (VPN) field is updated, then the DTLB way may have also changed and all the ways in the

DTLB have to be accessed. A pam integer add with registers can be handled in a similar manner

as the magnitude of the register source values can be checked during the integer addition.

Figure 4.3: Detecting Address Changes

10

Conventional compiler optimizations, such as common subexpression elimination and loop-

invariant code motion, are used to reduce the number of pam address generation calculations

and the associated L1 DC tag checks and DTLB accesses. However, we also perform another

optimization to avoid more L1 DC tag checks and DTLB accesses. Consider Figure 4.4(a) where

two nearby addresses are dereferenced. Figure 4.4(b) shows that the second pam instruction can

be expressed using the destination register of the first pam instruction. If the addition of -8 is still

within the same line as the r17 source value, then the L1 DC tag check and DTLB access can be

avoided. Even if the two addresses do not reside in the same line, the associative DTLB access can

be avoided if the addresses reside in the same page.

r2=sp+80; [pam]
...

r2=M[r2];
...

r2=sp+72; [pam]
...

r2=M[r2];

(a) Original Insts

r17=sp+80; [pam]
...

r2=M[r17];
...

r17=r17+−8; [pam]
...

r2=M[r17];

(b) Updated Insts

Figure 4.4: Accessing Nearby Addresses

Figure 4.2(b) depicts the AGV structure that is used as one possible method to invalidate AGS

entries when an L1 DC line is evicted or invalidated. Each entry in the structure contains a bit

vector, where each bit represents an integer register. An entry is indexed by the L1 DC way,

where n is the associativity level for the L1 DC. Each time an AGS entry shown in Figure 4.2(a)

is associated with a line, the bit corresponding to the register number used in the indexed entry of

the AGV structure is set. Each time the LWV bit (see Figure 4.2(a)) is cleared due to a non-pam

instruction updating an integer register, the bit corresponding to that register is also cleared in

every AGV entry. The AGV structure is read when an L1 DC line is replaced or invalidated and the

corresponding bits set in the entry accessed by the L1 DC way of that line are used to determine

which AGS entries will have their LWV bit cleared. Thus, this structure contains an inverse

mapping between one L1 DC way and the AGS entries. Additional AGV entries in Figure 4.2(b)

could be added by using the low-order bits of the set index field of the address shown in Figure 2.2

along with the L1 DC way to distinguish between different AGV entries. DTLB entries are less

11

frequently replaced. All the DWV bits in the AGS structure and the values in the AGV structure

are cleared upon a DTLB eviction.

12

CHAPTER 5

COALESCING ALU OPERATIONS WITH

MEMORY DATA ACCESSES

We perform an ALU operation when possible in the instruction that encodes a DAGDA load or store

data access to both decrease code size and improve performance. Supporting direct ALU memory

operands is problematic for a 32-bit instruction set when nonzero displacements are allowed. We do

not have these problems with DAGDA. Consider Figure 5.1(a) that shows the MIPS I format that is

conventionally used to encode immediate instructions that include load and store data accesses. The

16-bit immediate field is no longer used in DAGDA load and store operations since a displacement

addressing is not allowed. Thus, 16 bits are available to encode another operation. These ALU

operations performed with loads and stores can be implemented without requiring an extra ALU

in the processor. For a load operation, a funct field and either a register or a short immediate

can be encoded in the available 16 bits and an ALU operation can be performed on the loaded

value since the DA pipeline stage occurs a cycle before the EX pipeline stage is performed (see

Table 3.2). Figure 5.1(b) shows how the MIPS R instruction format can be used to encode a load

and a dependent operation that uses the loaded value. Figure 5.1(c) shows how a short immediate

can be encoded where a dependent operation can follow a load. The figure also shows it is possible

to update the register being dereferenced in a load or a store, which means a postincrement of this

register could be performed in parallel with the memory operation. Note that a postincrement for

a load requires that either a second write port would be needed for the integer register file or a

buffer would have to be utilized to store one of the write operations until the integer register write

port is free.

We schedule the pam instruction so that it can immediately follow the memory access when

possible. Consider the loop in Figure 5.2(a) where the pam instruction is in the loop header at L2.

Figure 5.2(b) shows the revised loop where the pam instruction is moved to both the preheader

and the predecessor block within the loop. Because the pam instruction can immediately follow

the memory reference that references the same register, the compiler is able to coalesce the pam

13

opcode rs rt immediate

16556

ex: rt=M[rs+immed]; # load

(a) Original MIPS I Format Used for Loads and Stores

opcode rs rt rd funct

6 55 5 6

ex: rd=M[rs]+rt; # load+addreg

(b) MIPS R Format Used with Loads

rs rt funct

65 5 10

immediate

6

opcode

ex: rt=M[rs]+immed;

ex: rt=M[rs]; rs=rs+immed; # load+postincr

load+addimmed

ex: M[rs]=rt; rs=rs+immed; # store+postincr

(c) New Short Immediate Format Used with Loads and Stores

Figure 5.1: Encoding Loads and Stores
with an ALU Operation

instruction with the store instruction. Note the distance in instructions from the pam instruction to

the memory reference that dereferences the pam register is increased. Scheduling pam instructions

earlier has multiple advantages. (1) The number of instructions executed is decreased when the

pam instruction can be coalesced with a memory reference. (2) The L1 DC tag check is more likely

to be completed before the data access in the memory reference occurs. (3) If the L1 DC tag check

does not find a matching tag, then the access to the next level of the memory hierarchy can be

initiated earlier, which can reduce the effective L1 DC miss penalty.

 PC=L2;

L1: ...

 ...

 M[r7]=r3;

 ...

L2: ...

(a) Original Loop

 PC=r7!=r8,L1;

 r7=r7+4; [pam]

 PC=r7!=r8,L1;

 PC=L2;

L1: ...

 ...

 ...

 r7=r7+4; [pam]

L2: ...

 M[r7]=r3; r7=r7+4; [pam]

(b) After Transformation

Figure 5.2: Scheduling pam Instructions

14

CHAPTER 6

EVALUATION FRAMEWORK

In this section we describe the experimental environment. We use 17 benchmarks shown in Table 6.1

from the MiBench benchmark suite [6], which is a representative set of embedded applications. All

benchmarks are simulated using the large dataset option.

Table 6.1: Benchmarks Used
Category Benchmarks
automotive bitcount, qsort, susan
consumer jpeg, tiff
network dijkstra, patricia
office ispell, stringsearch
security blowfish, rijndael, pgp, sha
telecom adpcm, CRC32, FFT, GSM

We used the VPO compiler [5] to annotate pam instructions and to perform the optimizations

described in the paper. We generated code for a modified version of the MIPS instruction set that

supports the ability to annotate pam instructions shown in Table 1.1. We used the ADL simulator

[11] to execute both a baseline MIPS ISA and the ISA that supports both pam annotations and

loads and stores that can be coalesced with ALU operations. We modified the ADL simulator to

estimate the performance of a single issue in-order pipeline as described in the paper. Table 6.2

shows other processor configuration details that we utilized in our simulations.

Table 6.2: Processor Configuration
page size 8KB

L1 DC
32KB size, 4 way associative,
1 cycle hit, 10 cycle miss penalty

DTLB 32 entries, fully associative

We used CACTI to estimate L1 DC and DTLB energy usage assuming 22-nm CMOS process

technology with low standby power (LSTP). Table 6.3 shows the energy required for accessing

various components of the L1 DC and DTLB. We estimated the energy usage for a one-way L1 DC

data array read to be one fourth of the energy required to simultaneously read four L1 DC data

arrays.

15

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

L
1

 D
C

 D
a

ta
 A

rr
a

y
 R

e
a

d
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Multiple Way Single Way

Figure 6.1: Load L1 DC Single and Multiple Way Data Array Accesses

Table 6.3: Energy for L1 DC and DTLB Components
Component Energy

Read L1 DC Tags - All Ways 0.782 pJ
Read L1 DC Data - All Ways 8.236 pJ
Write L1 DC Data - One Way 1.645 pJ
Read L1 DC Data - One Way 2.059 pJ
Read DTLB - Fully Associative 0.823 pJ
Read DTLB - One Way 0.215 pJ
Write AGS - 1 Entry 0.320 pJ
Read AGS - 1 Entry 0.147 pJ
Write AGV - 1 Bit in All 4 Entries 0.240 pJ
Read AGV - 32 Bits in All 4 Entries 0.500 pJ

16

CHAPTER 7

RESULTS

Figure 6.1 shows the ratio of accessing all L1 DC data arrays to a single L1 DC data array for load

instructions. All data arrays are only accessed when the AGS entry is not marked as valid, which

could occur for two reasons. First, the compiler sometimes cannot identify the pam instruction,

which can occur when the last instruction that sets the register being dereferenced is passed as a

parameter or returned from a function. Second, the entry could be invalidated due to a L1 DC line

eviction. Figure 4.2(b) shows that for each way in the L1 DC there is a bit for each integer register

that is set when the AGS entry is associated with that L1 DC way. Whenever a line is replaced, all

AGS entries having that same way are invalidated. Only 1.3% of the loads on average performed

an associative data array access. These results show that the compiler is able to typically identify a

pam instruction and L1 DC evictions do not cause many associative data array accesses for loads.

Note that stores always access only a single L1 DC data array.

Figure 7.1 shows the ratio of L1 DC tag checks and fully associative DTLB accesses that are

performed in DAGDA compared to a conventional processor. Only 53.3% of the memory references

require an L1 DC tag check on average. Likewise, only 34.6% of the memory references require a

fully associative DTLB access on average. These results illustrate that our memoization techniques

are very effective at reducing the number of L1 DC tag checks and fully associative DTLB accesses.

Figure 7.2 shows the energy of accessing the DTLB, L1 DC, AGS, and AGV structures in

DAGDA versus a conventional DTLB and L1 DC. The left bar for each benchmark shows the

energy usage breakdown for the baseline, which always totals to 100%. The right bar for each

benchmark shows the energy usage breakdown for DAGDA relative to the baseline. Static energy

for all of the structures comprises less than 0.5% of the total energy on average for both the baseline

and DAGDA. The biggest energy usage reduction comes from L1 DC data array reads in DAGDA,

dropping from 73.6% to 19.0% on average. The L1 DC data array write energy usage is unchanged

since stores always access only a single L1 DC data array. The L1 DC tag array energy usage

dropped from 9.8% to 5.0% on average as about 47% of the L1 DC tag checks are eliminated due

17

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
nL

1
 D

C
 T

a
g

 A
rr

a
y
 a

n
d

 D
T

L
B

 A
c
c
e

s
s
e

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DTLB Fully Associative Accesses DTLB Single Way Accesses L1 DC Tag Checks

Figure 7.1: L1 DC Tag Checks and DTLB Access Ratio

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

.
m

e
a

n

T
o

ta
l
D

a
ta

 A
c
c
e

s
s
 E

n
e

rg
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Static Energy L1 DC Data Read L1 DC Data Write L1 DC Tag DTLB AGS+AGV

Figure 7.2: Data Access Energy Usage Ratio

to memoizing the L1 DC way in the AGS structure. Likewise, the DTLB energy usage dropped

from 10.3% to 2.7% on average as 47% of the DTLB accesses are completely eliminated and 19%

required accessing only a single DTLB way on average. The AGS and AGV structures required

4.7% additional energy usage on average as compared to the baseline. Overall, DAGDA provides

on average a 62.4% reduction in total data access energy usage!

Figure 7.3 shows the ratio of instructions executed in DAGDA versus the baseline. Some addi-

tional instructions were executed in 9 of the 17 benchmarks due to decoupling the address generation

and data access, which requires an additional calculation when the displacement of the data access

was not zero. However, this increase in instructions executed was offset by being able to coalesce

data access operations with ALU instructions. In addition, some of the additional instructions

18

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

In
s
tr

u
c
ti
o
n
s
 E

x
e
c
u
te

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 7.3: Instructions Executed Ratio

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

C
lo

c
k
 c

y
c
le

s
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Load stalls (baseline) Insts (baseline) PAM mem stalls (DAGDA) Insts (DAGDA)

Figure 7.4: Estimated Performance Ratio

were loop invariant and were hoisted out of loops. On average the number of instructions executed

decreased by over 1.4%.

Figure 7.4 shows the estimated cycles. The left bar for each benchmark shows the baseline

and always totals to 100%. The baseline includes stalls between loads and the first instruction

that references the loaded register, which only occurs when reference is immediately after the load.

The right bar for each benchmark shows the cycles using the DAGDA technique. Stalls between

a pam instruction and loads and stores that reference the pam instruction destination register are

depicted. Note that conventional load hazard stalls on L1 DC hits are not possible since the data

access (DA) stage is performed earlier in the pipeline. Only 5 of the benchmarks with DAGDA

increased the number of cycles executed. DAGDA provides on average about a 7.6% reduction in

estimated cycles. Note that the energy savings shown in Figure 7.2 does not include the energy

19

reduction from a faster execution time.

20

CHAPTER 8

RELATED WORK

Many techniques have been proposed to reduce energy usage in set-associative L1 DCs. Unlike our

DAGDA approach, way-prediction techniques have a relatively high performance penalty of several

percent [12, 7]. Nicolaescu et al. propose to save the way information of the last 16 cache accesses in

a table, and each memory access speculatively performs a fully associative tag search on this table.

If there is a match, then the way information is used to activate only the corresponding way [10].

In contrast, our AGS structure is much smaller and only a single AGS entry is accessed for each

memory reference. Way halting is another method for reducing the number of tag comparisons [16],

where partial tags are stored in a fully associative memory (the halt tag array) with as many ways

as there are sets in the cache. In parallel with decoding the word line address the partial tag is

searched in the halt tag array. Only for the set where a partial tag match is detected can the

word line be enabled by the word line decoder. This halts access to ways that cannot contain

the data as determined by the partial tag comparison. Way halting requires a specialized SRAM

implementation that might have a negative impact on the maximum operational frequency. An

approach has been recently developed that allows way halting to be speculatively applied, but this

technique only works when the displacement value in the memory reference is small and there is

no carry out into the set index field of the address [9]. Way halting could be combined with our

DAGDA approach to reduce energy usage even further.

There have also been some techniques proposed to avoid DTLB accesses. For example, oppor-

tunistic virtual caching is a technique to allow some blocks in the L1 caches to be cached with virtual

addresses by changing the operating system to indicate which pages can use virtual caching [4].

In contrast, DAGDA can avoid many DTLB accesses by detecting that the physical page has not

changed while requiring no operating system changes.

L1 DC tag checks for memory references are eliminated when the cache line to be accessed is

identified by the compiler using direct address registers (DARs) [15]. The compiler annotates a

memory reference that sets a DAR identifying the accessed L1 DC line and subsequent memory

21

references that are guaranteed to access the same line reference the same DAR to avoid the tag

check. Unlike DAGDA, several compiler transformations are required, such as loop unrolling and

alignment of variables on cache line boundaries, to make these guarantees, which can result in both

code and data size increases.

A tagless cache (TLC) design has been proposed that uses an extended TLB (ETLB) to avoid

tag checks [13]. While the TLC approach can reduce energy usage, the authors assume the ETLB

is accessed first to subsequently allow accessing a single L1 DC data array, which could either

increase the cycle time or require an additional cycle to access the L1 DC. The DAGDA approach

could be used in conjunction with the TLC approach as the DTLB is accessed during the pam

instruction and the L1 DC data array is accessed at least one cycle later. Unlike DAGDA, the TLC

approach does not avoid TLB accesses. Finally, the use of a TLC requires dealing with synonyms,

homonyms, and other problems associated with virtually addressed data accesses.

Other small structures have been proposed to reduce L1 DC energy usage. A line buffer can

hold the last line accessed in the L1 DC [14]. The buffer must be checked before accessing the

L1 DC, placing it on the critical path, which can degrade performance. A line buffer also has a

high miss rate, which may increase the L1 DC energy usage due to continuously fetching full lines

from the L1 DC memory. A small filter cache accessed before the L1 DC has been proposed to

reduce the power dissipation of data accesses [8]. However, filter caches reduce energy usage at the

expense of a significant performance penalty due to their high miss rate. This performance penalty

mitigates some of the energy benefits of using a filter cache and has likely discouraged its use.

Like our AGS Method, the Tag Check Elision (TCE) approach stores an L1 DC way with each

integer register [17]. Unlike TCE, DAGDA retains the DTLB way to avoid DTLB accesses when

a different line is accessed within the same page. TCE stores a bound with every register, which

in their evaluation was a 29-bit value. TCE also does not schedule memory operations using pam

instructions. In contrast, DAGDA requires no immediate value with AGS entries, which should

require less power to access. TCE requires two comparisons and an addition to verify that the

effective address of the memory reference is within the bounds of the cache line as well as an

extra addition and a bound read and write each time an integer register is incremented by a value.

DAGDA’s check for a carry out of an addition into the set index field and VPN fields is much

simpler. Unlike the TCE approach, DAGDA avoids accessing n-1 L1 DC data array accesses in an

22

n-way set associative L1 DC even when the L1 DC way is unknown before the L1 DC tag check

is performed by a pam instruction. Finally, TCE’s invalidation scheme requires much more space

than DAGDA’s invalidation method.

There have also been techniques proposed to avoid associative L1 DC data array accesses.

The speculative tag access (STA) approach speculatively performs an L1 DC tag check during the

address generation stage when the displacement is small [1]. This approach fails when the addition

of the displacement causes the index field of the effective address to change as compared to the same

field in the base register value. Early load data dependence detection (ELD3) has been proposed

to allow the L1 DC tag check and the L1 DC data access to be sequentially performed when it is

detected that the distance in instructions between the load and the first use of the loaded value

is great enough avoid a stall [2]. A similar approach was also applied at compile time by using

context-aware loads and stores [3]. DAGDA is able to avoid more associative L1 DC data array

accesses as well as avoiding L1 DC tag checks and DTLB accesses.

23

CHAPTER 9

FUTURE WORK

There are several configuration changes we can investigate using DAGDA. First, larger L1 DC

cache lines should lead to fewer L1 DC tag checks due to the L1 DC set index field being less

frequently updated each time a pam increment is executed. Likewise, a higher miss penalty for

larger L1 DC lines may be offset by pam instructions initiating the L1 DC line prefetch before

the load data access is performed. Second, a higher associative L1 DC with DAGDA should likely

decrease energy usage as the power to access a single L1 DC data array should be reduced. As

shown in Section 7, the common case in DAGDA is that only a single L1 DC data array is accessed

on loads. Third, the DAGDA approach could be evaluated in the context of an out-of-order (OoO)

processor. Reducing data access energy usage is still likely in an OoO processor since the DAGDA

approach should still result in fewer L1 DC data array accesses, fewer L1 DC tag checks, and fewer

DTLB accesses.

24

CHAPTER 10

CONCLUSIONS

DAGDA reduces energy usage for memory accesses by decoupling the address generation and the

data access into separate instructions. By associating the DTLB access and L1 DC tag check with

address generation instructions, we are able to typically access a single L1 DC data array for loads.

We are also able to avoid many DTLB accesses and L1 DC tag checks by associating the DTLB way

and L1 DC way with the register that holds the memory address to be dereferenced. Finally, we

show that performance is improved due to merging the address generation with another instruction

when the displacement is zero, applying conventional compiler optimizations to eliminate redundant

address generation instructions, coalescing ALU operations with loads and stores, and prefetching

L1 DC cache lines when a pam instruction detects an L1 DC miss.

25

BIOGRAPHICAL SKETCH

My name is Michael Stokes. I was born in Miami, Florida. I obtained my Associate in Arts from

Miami Dade College. I completed my undergraduate degree at Florida State University and am

now completing my Masters in Computer Science at Florida State University.

26

BIBLIOGRAPHY

[1] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. Speculative tag access
for reduced energy dissipation in set-associative l1 data caches. In Proceedings of the IEEE
International Conference on Computer Design (ICCD 2013), October 2013.

[2] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. Reducing set-associative
l1 data cache energy by early load data dependence detection (eld3). In IEEE/ACM Design
Automation and Test in Europe Conference, March 2014.

[3] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. Improving data ac-
cess efficiency by using context-aware loads and stores. In ACM Conference on Languages,
Compilers, and Tools for Embedded Systems, June 2015.

[4] A. Basu, M. Hill, and M. Swift. Reducing memory reference energy with opportunistic virtual
caching. In Proceedings of ACM/IEEE International Symposium on Computer Architecture,
pages 297–308, June 2012.

[5] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In Proceedings
of the SIGPLAN Symposium on Programming Language Design and Implementation, pages
329–338, June 1988.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In Proc. Int. Work-
shop on Workload Characterization, pages 3–14, December 2001.

[7] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. Way-predicting set-associative cache for
high performance and low energy consumption. In Proc. IEEE Int. Symp. on Low Power
Design (ISLPED), pages 273–275, August 1999.

[8] J. Kin, M. Gupta, and W.H. Mangione-Smith. The filter cache: An energy efficient memory
structure. In Proc. Int. Symp. on Microarchitecture, pages 184–193, December 1997.

[9] D. Moreau, A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. Practical way
halting by speculatively accessing halt tags. In Proceedings of the IEEE Design, Automation,
and Test in Europe (DATE 2016), March 2016.

[10] D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero. Fast speculative address generation
and way caching for reducing l1 data cache energy. In Proceedings of International Conference
on Computer Design, October 2007.

[11] Soner Önder and Rajiv Gupta. Automatic generation of microarchitecture simulators. In
IEEE International Conference on Computer Languages, pages 80–89, Chicago, May 1998.

27

[12] Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi, and Kaushik Roy. Re-
ducing set-associative cache energy via way-prediction and selective direct-mapping. In Proc.
ACM/IEEE Int. Symp. on Microarchitecture (MICRO), pages 54–65, December 2001.

[13] A. Sembrant, E. Hagersten, and D. Black-Shaffer. Tlc: A tag-less cache for reducing dynamic
first level cache energy. In Proc. 46th ACM/IEEE Int. Symp. on Microarchitecture (MICRO),
pages 351–356, December 2013.

[14] C. Su and A Despain. Cache design trade-offs for power and performance optimization: A
case study. In Proc. Int. Symp. on Low Power Design (ISLPED), pages 63–68, 1995.

[15] Emmett Witchel, Sam Larsen, C. Scott Ananian, and Krste Asanović. Direct addressed caches
for reduced power consumption. In Proc. 34th ACM/IEEE Int. Symp. on Microarchitecture
(MICRO), pages 124–133, December 2001.

[16] C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-halting cache for low-energy high-
performance systems. ACM Transactions on Architecture and Compiler Optimizations
(TACO), 2(1):34–54, March 2005.

[17] Zhong Zheng, Zhiying Wang, and Mikko Lipasti. Tag check elision. In International Symposium
on Low Power Electronics and Design, pages 351–356, New York, NY, USA, 2014. ACM.

28

