
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCE

TECHNIQUES TO REDUCE DATA CACHE ACCESS ENERGY USAGE AND LOAD DELAY

HAZARDS

By

MICHAEL STOKES

A Dissertation submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

2019

Copyright © 2019 Michael Stokes. All Rights Reserved.

Michael Stokes defended this dissertation on August 1, 2019.
The members of the supervisory committee were:

David B. Whalley

Professor Directing Thesis

Linda DeBrunner

University Representative

Xin Yuan

Committee Member

Gary Tyson

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii

TABLE OF CONTENTS

Abstract . v

1 Introduction 1

2 Background 3
2.1 The Memory Hierarchy . 3
2.2 Anatomy of Memory Access Operations . 4
2.3 Virtually Indexed, Physically Tagged Caches . 5
2.4 Level-Zero Data Caches . 6
2.5 Impact of L1 DC Misses on Processor Performance 7

2.5.1 Sub-blocking . 7

3 Improving Energy Efficiency by Memoizing Data Access Information 8
3.1 Introduction . 8
3.2 Memoizing L1 DC and DTLB Information . 10
3.3 Detecting DCAS Re-Use . 12
3.4 The DCAS Refresh Buffer . 13
3.5 Evaluation Framework . 16
3.6 Results . 18
3.7 Related Work . 20
3.8 Conclusions . 24

4 An Energy Efficient Design for Utilizing a Level-Zero Data Cache 25
4.1 Introduction . 25
4.2 Proposed L0 DC Design . 26
4.3 Utilizing an L0 DC to Improve Performance . 28

4.3.1 Making Base Register Values Available Earlier in the Pipeline 28
4.3.2 Using Base Register Values in Loads and Stores 29
4.3.3 Integrating L0 DC Accesses into the Instruction Pipeline 31
4.3.4 Filling L0 DC Lines . 33
4.3.5 Utilizing a Virtually Tagged L0 DC . 34

4.4 Evaluation Environment . 35
4.5 Results . 37
4.6 Related Work . 43
4.7 Conclusions . 47

5 Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data
Filter Cache 48
5.1 Introduction . 48
5.2 Evaluation Environment . 49
5.3 Lazily Filling Data Words into a DFC Line . 50
5.4 Decreasing the DFC Miss Rate by Line Sharing and Data Packing 55

iii

5.5 Eliminating the DFC Miss Penalty by Only Accessing DFC Data on Guaranteed Hits 62
5.6 Related Work . 65
5.7 Conclusions . 68

6 Decreasing the Miss Rate and the Miss Penalty of a L1 DC 69
6.1 Introduction . 69
6.2 Sharing Words between Multiple L2 Sublines . 71
6.3 Compressing and Decompressing L1 DC Data . 73
6.4 L1 DC Metaline Fill Policy . 78
6.5 L1 DC Metaline Replacement Policy for Set-Associative Organizations 79
6.6 Evaluation Environment . 82
6.7 Results . 83
6.8 Related Work . 92
6.9 Future Work . 95
6.10 Conclusions . 96

7 Conclusions 97

Bibliography . 100

Biographical Sketch . 103

iv

ABSTRACT

Level-one data cache (L1 DC) accesses impact energy usage as they frequently occur and use signif-

icantly more energy than register file accesses. Modern processors use virtually-indexed, physically-

tagged caches to reduce the L1 DC access time at the expense of increasing the energy to access it.

It has been estimated that 28% of embedded processor energy is due to data supply [6]. In addi-

tion, level-one data caches have a significant impact on performance as a hit in the level-one data

cache avoids accessing higher levels of the memory hierarchy, which typically have longer access

times. Modern processors employ strategies such as critical-word first as well as lockup-free caches

to limit the penalty of an L1 DC miss. However, as the issue-width of a processor is increased,

the number of cycles that can be overlapped with a L1 DC line fill is decreased. This dissertation

provides techniques that reduce both the energy usage of level-one data caches as well as improves

the performance of processors by reducing the number of stalls due to loads and stores.

v

CHAPTER 1

INTRODUCTION

Level-one data cache (L1 DC) accesses impact energy usage as they frequently occur and use signif-

icantly more energy than register file accesses. Level-one data caches are typically set-associative

and virtually-indexed, physically-tagged (VIPT). Making a cache set-associative reduces its miss

rate while making it VIPT reduces its access time at the expense of increasing the energy required

to access it. As the number of transistors placed onto a chip increases according to Moore’s Law,

the energy expended by simultaneously switching these transistors also increases. As a result, the

overall temperature of the chip increases. The processor’s clock rate must be constrained to avoid

damaging the chip, reducing the chip’s power density at the expense of performance, a phenomenon

known as the power wall. It has been estimated that 28% of embedded processor energy is due to

data supply [6]. Thus, reducing data access energy on such processors is a reasonable goal.

In addition, level-one data caches have a significant impact on performance as a hit in the level-

one data cache avoids accessing higher levels of the memory hierarchy, which typically have longer

access times. Even so, hits in the level-one data cache can still cause load-delay hazards when a

subsequent instruction demands a value before it can be loaded from the data cache. This problem

is exacerbated as modern processors increase the number of cycles required to access the level-one

data cache. Modern processors employ strategies such as critical-word first as well as lockup-free

caches to limit the penalty of an L1 DC miss. However, as the issue-width of a processor is

increased, the number of cycles that can be overlapped with a L1 DC line fill is decreased.

This dissertation provides techniques that reduce both the energy usage of level-one data caches

as well as improves the performance of processors by reducing the number of stalls due to loads

and stores. Chapter 3 introduces a non-speculative technique that allows a processor to directly

access a set-associative data cache, allowing the processor to 1) avoid accessing the ways of a set

that don’t hold the data, 2) avoid the DTLB, and 3) avoid the L1 DC tag array. Chapter 4

proposes a technique that not only removes the performance penalty associated with level-zero

data caches, but uses level-zero data caches to improve performance by reducing the number of

1

load-delay hazards. In Chapter 5, detailed findings are introduced showing that word-filled level-

zero data caches are able to save more energy than line-filled level-zero data caches. Chapter 5

then provides two methods, line sharing and data packing, that increase the hit rate of level-zero

data caches by significantly increasing the amount of data that can be stored. Chapter 5 goes

on to provide a method of utilizing a word-filled, line sharing and data packing level-zero data

cache without the performance penalty typically associated with level-zero data caches. Chapter 6

extends the methods shown in Chapter 5 to the level-one data cache. A thorough analysis of line

sharing and data packing’s effect on various level-one data cache designs is conducted, varying the

size, associativity, and the sub-block size, data packing methods, as well as the amount of L2 DC

(sub)lines that share an L1 DC line.

2

CHAPTER 2

BACKGROUND

To understand the following dissertation, it’s important to know the purpose and functionality of

the level-one data cache (L1 DC).

2.1 The Memory Hierarchy

Figure 2.1: The Processor-Memory Performance Gap

Since 1980, processor speeds have increased year-over-year by roughly 60% while DRAM speeds

have only increased at a rate of only 7%, a problem known as the processor-memory gap. Processors

take advantage of both temporal locality, where data that is referenced is likely to be referenced

again in the near future, as well as spatial locality, where data in proximity to referenced data will

likely be referenced as well. To address the processor-memory performance gap, multiple levels of

cache are now used. Level-one (L1) caches in the memory hierarchy are large enough to provide

reasonable hit rates, but also small enough to provide fast access times. Level-two (L2) and level-

three (L3) caches provide slower access times, but reduce the number of references that need to

access main memory. These multiple levels of cache now all reside on the same chip as the processor

and are built using SRAM technology. In addition to this, CMOS scaling trends result in faster

transistors with with relatively longer wire delays. Because of these reasons, level-one data cache

3

sizes have largely remained the same and are now pipelined to keep up with reduced clock cycle

times.

Upon a cache miss, a (sub)line is fetched from higher levels of the memory hierarchy and placed

into the cache. Where a cache line can be placed is determined by its associativity. In a fully

associative cache, a (sub)line can be placed in any cache line of a cache. In an n-way set associative

cache, a cache is split into sets with n cache lines per set and a (sub)line can be placed inside any

one of the n ways of a set. A direct mapped cache is a special case of a set-associative cache where

n is equal to one. By restricting the cache lines where a (sub)line can be placed, both the time and

the energy to access the cache decrease at the expense of also decreasing the hit rate.

2.2 Anatomy of Memory Access Operations

Contemporary architectures designed using RISC principles attempt to implement each instruc-

tion using a single µop. However, memory operations involve many hidden hardware µops. These

µops not only form dependence chains, but also use a significant amount of energy.

 2. pa=dtlb_access(va);

 3. way=tag_check(pa);

 4. r3=load_access(pa,way);

 1. va=r4+0;
r3=M[r4];

r4=sp+72;

L1:

PC=r4!=r8,L1;

r3=r3+r5;

r4=r4+4;

Conventional Micro Operations

Figure 2.2: Micro-Ops Associated with Load Instructions

Figure 2.2(a) shows code containing a load and a store along with the µops that implement

these instructions. The load µops are: #1 Add the base register value and the offset to obtain the

virtual address (va); #2 Access the data translation lookaside buffer (DTLB) using the va to get

the physical address (pa); #3 Perform the tag check to identify the way where the data resides in

a set-associative cache; and #4 use the pa index and the way to access the cache data and update

the register. Unfortunately, these µops are not visible to the compiler with conventional ISAs and

it would be expensive to implement each µop as an ISA instruction in terms of code size, fetch

bandwidth, and energy.

4

2.3 Virtually Indexed, Physically Tagged Caches

Several hardware techniques shorten this dependence chain and mitigate the delay, but do so

at the expense of significantly more energy usage and/or imposed constraints, such as a limited

page size. For example, virtually-indexed, physically-tagged (VIPT) caches exploit the fact that

the cache index remains invariant during translation with appropriately sized pages, allowing µops

(2), (3), and (4) shown in Figure 2.2(a) to proceed in parallel by simultaneously accessing all ways

of data in the L1 DC set at the expense of significant energy usage. This approach leaves the

dependence between the first and the remaining three µops into successive pipeline stages such

that the execution unit performs the virtual address computation (i.e., µop #1) and the memory

access stage performs all the remaining operations, leading to the infamous

Figure 2.3 depicts how a classical in-order pipeline performs a load from an n-way set-associative

L1 DC. The virtual memory address is generated by adding a displacement to a base address

obtained from the register file in an address generation (ADDR-GEN) stage. The displacement is

a sign-extended immediate and the base address is obtained from the register file. In the SRAM-

ACCESS stage the DTLB, the L1 DC tags, and the L1 DC data are all accessed in parallel to

minimize load hazard stalls and the tag value of the physical address is compared to the tag value

of the physical page number from the DTLB.1 This organization is energy inefficient as all data

arrays are accessed, but the value can reside in at most one way within a cache set.

G
A

U

ADDR−GEN SRAM−ACCESS

...

...

Base Address

Displacement

DATA: n−1

DATA: 0

TAG: n−1

TAG: 0

DTLB

...

...

=

=

Figure 2.3: Conventional L1 DC Pipeline Load Access

1The register level after the ADDR-GEN stage is embedded in the DTLB, TAG, and DATA blocks.

5

Figure 6.1 shows the address fields used to access the DTLB and the L1 DC. The virtual page

number is used to access the DTLB, which produces the corresponding physical page number. The

virtual and physical page offsets remain the same. The L1 DC block number uniquely identifies

the L1 DC line being accessed. The L1 DC offset indicates the first byte of the data to be accessed

in the L1 DC line. The set index is used to access the L1 DC set. The tag contains the remaining

bits that are used to verify if the line resides in the L1 DC.2

DTLB

virtual page number page offset

virtual address

tag

L1 DC block number

set index

physical page number page offset

physical address

offset
L1 DC

Figure 2.4: Address Fields

2.4 Level-Zero Data Caches

A level-zero data cache (L0 DC), also known as a data filter cache (DFC), has been shown to

be effective at reducing data access energy [14,15]. An L0 DC is a smaller, typically direct-mapped

cache that is accessed before the L1 DC. A reference that hits in the L0 DC does not need to access

the L1 DC while a reference that misses in the L0 DC accesses the L1 DC in the following cycle.

An L0 DC is energy efficient since a large fraction of the memory references can be serviced from

the L0 DC that is much smaller than a level-one data cache (L1 DC), resulting in less energy usage

for each L0 DC reference as compared to an L1 DC reference. However, a conventional L0 DC has

disadvantages that has discouraged its adoption in contemporary processors. First, an L0 DC can

cause a performance penalty as it has to be accessed before the L1 DC in order to reduce energy

usage; upon an L0 DC miss, the L1 DC is accessed a cycle later than it normally would, potentially

causing load-delay hazards that would not occur had an L0 DC not been used. This increase in

2We depict the physical page number and the tag fields being the same size, but the physical page number could
be smaller for a virtually-indexed, physically-tagged (VIPT) cache. To simplify the description, we assume these two
fields are the same size.

6

execution time will mitigate some of the energy benefit of using an L0 DC. Second, a single cycle

L0 line fill as proposed in many prior studies [7,9,10,14,15,27] has been shown to be unrealistic as

it can adversely affect L1 DC area and energy efficiency [3].

2.5 Impact of L1 DC Misses on Processor Performance

L1 DC misses decrease performance as the data must be fetched from higher levels of the memory

hierarchy. Higher levels of the memory hierarchy typically take many more cycles to access than the

L1 DC. In addition, caches in embedded processors are typically blocking, meaning that memory

operations are stalled while an L1 DC line is being filled. One technique mitigates this delay by

servicing a load that missed in the L1 DC as quickly as possible by fetching the requested data

first. This allows the load to complete faster than if it waited for the entire L1 DC line to be

filled. While the remainder of the L1 DC line is being filled, the processor can continue issuing new

instructions. However, if a memory-accessing instruction is issued before the L1 DC line is filled,

then the pipeline must stall before the line fill is completed. This decreases the latency of an L1

DC miss penalty as well as overlaps the L1 DC line fill with non-memory access operations.

2.5.1 Sub-blocking

One technique embedded processors use to decrease the miss penalty of L1 DCs as well as the

energy they consume is to decrease the number of words fetched during an L1 DC line fill. L1

DC lines are split into sub-blocks and line fills occur at the granularity of sub-blocks: when an L1

DC miss occurs, only the sub-block containing the requested word is filled. This means that some

sub-blocks of an L1 DC will remain empty as they will not be referenced before the line is evicted.

Sub-blocking increases the miss rate as filling an entire L1 DC line captures more spatial locality

but decreases the number of words needlessly fetched from higher levels of the memory hierarchy.

In addition, it takes fewer cycles to fill a sub-block as fewer words need to be fetched from higher

levels of the memory hierarchy.

7

CHAPTER 3

IMPROVING ENERGY EFFICIENCY BY

MEMOIZING DATA ACCESS INFORMATION

Level-one data cache (L1 DC) and data translation lookaside buffer (DTLB) accesses impact energy

usage as they frequently occur and each L1 DC and DTLB access uses significantly more energy than

a register file access. Often, multiple memory operations will reference the same cache line using

the same register, such as when iterating through an array. A technique is proposed in this chapter

to memoize L1 DC access information, such as the L1 DC data array way and the DTLB way, by

associating this information with the register used to access it. When a load or store calculates

the effective address by adding the base register with the displacement value, the processor detects

whether the effective address shares the cache line memoized with the base register. If so, the L1

DC tag array access and the DTLB access to determine the L1 DC way are avoided and instead

the memoized information is used. In addition, only a single data array way in a set-associative

L1 DC needs to be accessed during a load instruction when the L1 DC way has been memoized.

This nonspeculative memoization approach provides existing executables a significant reduction in

data access energy usage compared to a conventional cache and provides even greater energy usage

reduction after way prediction is applied when memoized information is unavailable.

3.1 Introduction

Level-one data cache and data translation lookaside buffer accesses frequently occur and each

of these accesses use significantly more power than a register file access. It has been estimated that

28% of embedded processor energy is due to data supply [6]. Thus, reducing data access energy on

such processors is a reasonable goal.

The tag arrays and data arrays of an L1 DC can be accessed in parallel for load instructions

to improve the latency of obtaining data from the L1 DC, which is sometimes referred to as a

conventional cache [19]. The tag arrays are often accessed before the data arrays of level-two (L2)

and level-three (L3) caches to reduce energy usage, which is sometimes referred to as a phased

8

DTLB

virtual page number page offset

virtual address

tag

L1 DC block number

set index

physical page number page offset

physical address

offset
L1 DC

Figure 3.1: Address Fields

cache [19]. The advantage of a phased cache is that at most a single data array need be accessed

as the result of the tag check will be known when the data in the cache is accessed. However, using

a phased L1 DC is often impractical since the reduced energy usage for the phased L1 DC data

accesses would be largely offset by the increased energy required for longer execution times.

This dissertation proposes the Data Cache Access Memoization (DCAM) technique to retain

data access information so that subsequent memory accesses dereferencing the same register can

often more efficiently access the L1 DC. These efficient L1 DC accesses are achieved by associating

the L1 DC way and DTLB way with the base register of a memory reference. When the processor

detects that a subsequent memory reference will reference the same L1 DC line, the processor can

use the memoized information to avoid the L1 DC tag check, avoid the DTLB access, and access

only a single data array in a set-associative L1 DC organization. When memoization information

cannot be utilized for the base register, the default L1 DC access mechanism (e.g. conventional [19]

or way prediction [11,22]) can be used.

The contributions of this dissertation are as follows. (1) We show that simple and efficient

memoization techniques that associate data access information with the base register being deref-

erenced can often be utilized without ISA changes to significantly reduce data access energy usage.

(2) We provide a simple method that allows the data access information to be restored even after

other instructions update the base register value. (3) We show that energy usage can be further

reduced when data access information is unavailable for the nonspeculative DCAM approach by

applying a speculative approach, such as way prediction.

9

3.2 Memoizing L1 DC and DTLB Information

The L1 DC way and DTLB way must be stored in a structure to allow reuse of data access

information. In fact, a DTLB access and L1 DC tag check will often be redundant since the same

line may be accessed again. Figure 3.2(a) shows code for loading from and storing to the same

variable. The store can use the same L1 DC way as the load instruction since the value of r6 has

not been changed. Figure 3.2(b) shows an example of accessing sequential array locations, where

an L1 DC line is likely to be repeatedly accessed.

(a) Redundant Accesses

r6=...;[pam]

M[r6]=...;

...

...=M[r6];

... r2=M[r20];

PC=r20!=r21,L3;

r20=r20+4;[pam]

...

(b) Strided Accesses

r20=...;[pam]

L3:

Figure 3.2: Memoization Examples

One issue that must be resolved is when the displacement in the load or store instruction is a

nonzero value. Figure 3.3 shows the average frequency of the number of bits needed to represent

displacement values (the most significant 16 bits are sign extended to be all 0’s or 1’s) for load and

store operations in the MiBench benchmark suite, where the range for n bits is −2n−1..2n−1−1 and

does not comprise the values in the previous range. A zero displacement occurs 46% of the time

and large offsets comprise a small fraction of the displacements. Note that negative displacements

occur less than 2% of the time.

One problem is that the address associated with the base register value may not be associated

with the same L1 DC line as the effective address that is computed by adding the base register

and the displacement value. For a load or store instruction to be able to use or memoize cache

access information, the magnitude of the displacement must be smaller than the L1 DC line size.

However, the effective address of a load or store instruction with such a displacement may still

fall outside of the cache line associated with the base register. If the displacement is positive and

is smaller than the cache line size, then the effective address must point to either the current or

next sequential cache line. Thus, the processor tracks both the current and the next sequential L1

DC line associated with the address in the base register, which allows dealing with small positive

displacements that cross to the next sequential line in memory.

10

Bits Used in Displacement

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
e
m

o
ry

 R
e
fe

re
n
c
e
s

0

0.1

0.2

0.3

0.4

0.5

Figure 3.3: Displacement Size Frequency

The DCAM approach associates L1 DC access information with the base register number of

a load or store instruction and detects when updates to this register does not invalidate this

information. Consider the data cache access structure (DCAS) in Figure 3.4(a) that contains

fields associated with each base register in load and store instructions. The DWV bit indicates

if the DTLB way field is valid. If the DWV bit is not set, then the rest of the DCAS entry is

considered invalid. The DTLB way field holds the DTLB way in which the associated physical

page number resides. The LWV bit indicates if the L1 DC way field associated with the address in

the base register is valid. The L1 DC way field holds the L1 DC way in which the cache line resides

that is associated with the address in the register. The LWVN bit indicates if the next sequential

line has a valid way. The L1 DC N way holds the way for the next sequential line. The L1 DC

set index field (see Figure 3.1) of the effective address indicates the L1 DC set and need not be

stored in the DCAS since the set index is available from the effective address calculation. The PP

field contains page protection bits from the DTLB entry since the DCAS structure allows DTLB

references to be avoided and these bits need to be checked to ensure pages are properly accessed.

The DCAS entry needs to be accessed during the EX stage to allow a single L1 DC data array

access for a load in the following cycle.

Figure 3.4(b) depicts the DCAV structure used to keep DCAS entries coherent when an L1 DC

line is evicted or invalidated. Each DCAV entry contains a bit vector, where each bit represents an

integer register. An entry is indexed by the L1 DC way, where n is the L1 DC associativity level.

11

...

n-1

0

wayLWVDWV
L1 DCDTLB

way PP

...

31

0

(a) Data Cache Access (b) Data Cache Access
Structure (DCAS) Valid Information (DCAV)

Figure 3.4: Data Cache Access Information

Each time a DCAS entry shown in Figure 3.4(a) is associated with a line, the bit corresponding

to the register number of that way in the DCAV structure is set. Each time a register’s LWV bit

(see Figure 3.4(a)) is cleared, the bit corresponding to that register number is also cleared in every

DCAV entry. When an L1 DC line is replaced or invalidated, the corresponding bits set in the

entry accessed by the L1 DC way of that line are used to determine which DCAS entries will have

their LWV bit cleared. Thus, this structure contains an inverse mapping between each L1 DC way

and the DCAS entries. All the DCAS DWV bits and the values in the DCAV structure are cleared

upon a DTLB eviction, which infrequently occurs.

3.3 Detecting DCAS Re-Use

There are many cases where the address in a register is updated, but still is within the same

line in the cache and more frequently within the same page. Figure 3.5 shows that it is simple

for the processor to detect if the cache line to be accessed will change during an effective address

computation of a load or store instruction (M[rs+immed]) or during an integer immediate addition

(rd = rs + immed). First, the magnitude of the immediate has to be less than the size of the line

offset field.

Second, the carry out values can be inspected during the addition to check whether or not the

L1 DC block number as shown in Figure 3.1 has changed. If the set index field is updated during

a load or store address computation with a positive displacement that is smaller than the L1 DC

line size, then either the L1 DC N way field can be used or the tag check has to be performed if

the LWVN bit is clear. In the latter case, a single way in the DTLB can be accessed using the

DTLB way field to obtain the physical tag value when the virtual page number (VPN) field is not

updated. If the VPN field is updated, then all the ways in the DTLB have to be accessed. If the set

12

index field is updated during an integer addition instruction by a small positive value, then the L1

DC way N field is copied to the L1 DC way field and the LWVN bit is cleared. By inspecting the

carry out values for integer add or subtract operations using either two register values or register

and an immediate, the processor can continue to memoize all or portions of a register’s data access

information after updates to the base register if the update does not change the cache line or page

associated with the address contained in the register.

Immediate

01531

Sign Extension

ADD

32-bits32-bits

031

16

Line O setSet IndexVPN

031

Register Value

no

carry

out?

all zeros or all ones

Figure 3.5: Detecting Address Changes

If an integer add instruction references a source register with its DWV bit set, then its cor-

responding DCAS information is copied to the destination register DCAS entry if the destination

register differs from the source register. Other integer register updates cause the DWV field in the

DCAS entry indexed by the destination register number to be invalidated.

Figure 3.6 shows the percentage reduction of L1 DC tag array and DTLB accesses as a result

of using the LWVN field. Benchmarks such as blowfish with larger offset sizes than average tend

to have a significant improvement. Benchmarks such as adpcm saw almost no improvement as

virtually all loads and stores used a displacement value of zero.

3.4 The DCAS Refresh Buffer

Frequently, a DCAS entry is invalidated but its contents continue to point to the correct cache

line. In Figure 3.7 DCAS entry 20 is set during the load instruction and is overwritten during the

function call to foo, shown in Figure 3.9(a). During foo’s epilogue code, r20’s value is restored,

again pointing to the same cache line in its DCAS entry. If the processor can detect during a load

or a store that the base register’s DCAS entry points to the same cache line as the value held inside

the base register, then the processor can restore the DCAS entry contents.

13

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

L
o

a
d

s
 t

h
a

t
u

s
e

 L
W

V
N

0

0.1

0.2

Figure 3.6: Reduction of L1 DC Tag and DTLB Accesses Using LWVN

r2=M[r20];

PC=r20!=r21,L3;

r20=r20+4;

...
L3:

jal foo
...

sp=sp-12;foo:
M[sp+4]=r20;

...
r20=0;

r20=M[sp+4];
sp=sp+12;

...

jr ra

Figure 3.7: DCAS Refresh Example

The processor stores the tag and set index portions of the virtual address of the L1 DC line

with a DCAS entry in addition to its L1 DC access information. If a load or store detects that its

DCAS entry is invalid but its contents still refer to the cache line associated with the tag and set

index stored alongside it, then the processor compares the virtual tag and set index portions of the

base register with the virtual tag and set index portions stored alongside the DCAS entry during

the EX stage. If they match, then the processor can restore the DWV, DTLB way, LWV, L1 DC

way, LWVN, and L1 DC way next fields if they were previously valid. Furthermore, if the DCAS

entry and base register don’t point to the same cache line but do point to the same page, then the

processor can restore the DCAS entry’s DWV and DTLB way fields to avoid a fully associative

DTLB access.

14

DCAS entries can now be in one of three states: 1) valid, meaning the DCAS entry and base

register value point to the same cache line and/or page and that the way is known, 2) false invalid,

meaning the DCAS entry and base register value may not point to the same line or page but

the DCAS information is still valid for the line and page stored in the virtual tag and set index

fields of the DCAS entry, and 3) true invalid, meaning the DCAS entry has no valid cache access

information.

A DCAS entry becomes valid after a load or a store instruction determines the L1 DC way

(DTLB way) and the effective address points to the same line (page) in the base register value. A

DCAS entry becomes true invalid after an L1 DC line eviction or a DTLB page eviction. A DCAS

entry becomes false invalid if the base register is overwritten by an instruction that doesn’t change

its DCAS information. For example, after instruction r20=0; executes in Figure 3.7, the DCAS

contents still refers to the same DTLB way and L1 DC way shown in Figure 3.9(b). The DWV

field is marked as false invalid, indicating that the DCAS cannot guarantee that the base register

contents and DCAS entry refer to the same cache line, but it can guarantee that the DCAS entry

is still valid for the stored tag and set index. The next time a load or store refers to a DCAS

entry marked as false invalid, the virtual tag and set index fields of the base register are compared

with those fields stored in the DCAS Refresh Buffer to see if the DCAS contents can be restored

by setting the DWV field to true valid as shown in Figure 3.9(c). As the DCAS and the DCAS

Refresh Buffer are both indexed by the base register number, the cost of accessing this buffer is

relatively inexpensive.

Figure 3.8 shows the percentage reduction in the number of L1 DC tag array and DTLB accesses

made when the DCAS refresh buffer is used. On average, this approach reduces the number of L1

DC tag array and DTLB accesses by 10.6%. Benchmarks like bitcount which update a global

variable inside of a loop with a function call, and therefore must continually re-load the address,

has a significant improvement of over 48%. As the refresh buffer is directly accessed and only used

when the DCAM entry is marked as false invalid, it will not expend a significant amount of energy,

mitigating the energy savings.

15

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

L
o

a
d

s
 t

h
a

t
u

s
e

 L
W

V
N

0

0.1

0.2

0.3

0.4

0.5

Figure 3.8: DCAS Refresh Buffer Effectiveness

Figure 3.9: DCAS Refresh Buffer Example

3.5 Evaluation Framework

In this section the experimental environment is described. The seventeen benchmarks from the

MiBench benchmark suite [8], which is a representative set of embedded applications, are used to

evaluate the DCAM approach. All benchmarks are simulated using the large dataset option and

compiled using gcc with the -03 option.

The ADL simulator [21] was used to simulate both a conventional MIPS processor as the baseline

and the modified processor as described in this dissertation. Both configurations are single-issue,

in-order processors with six-stage pipelines as shown in Table 3.1. Table 3.2 shows other details

regarding the processor configuration utilized in these simulations. Note that the DWV bit is

16

separated from the rest of the DCAS structure so this bit can be accessed during the RF (register

fetch) pipeline stage, which allows the processor to avoid accessing the rest of the DCAS structure

when the DWV bit is not set.

Table 3.1: DCAM Pipeline Stages

Stage Name DCAM Pipeline
IF Inst. Fetch
ID Inst. Decode
RF Reg. Fetch Read DWV Bit
EX Execute Read/Refresh DCAS
MEM Mem. Access Update DWV/DCAS
WB Write Back

Table 3.2: Processor Configuration

page size 8KB

L1 DC
32KB, 64B line size
4-way associative, 1 cycle hit,
10 cycle miss penalty

DTLB
32 entries,
fully associative

DCAS 64 total bytes
DCAS Refresh Buffer 96 total bytes
DCAV 4 total bytes

Table 3.3: Energy for L1 DC and DTLB Components

Component Energy

Read L1 DC Tags - All Ways 0.494 pJ
Read L1 DC Data - All Ways 6.358 pJ
Write L1 DC Data - One Way 2.723 pJ
Read L1 DC Data - One Way 1.590 pJ
Read DTLB - Fully Associative 1.675 pJ
Read DTLB - One Way 0.057 pJ
Read DCAS - 1 Entry 0.025 pJ
Write DCAS - 1 Entry 0.030 pJ
Read DCAV - 32 Bits in All 4 Entries 0.072 pJ
Write DCAV - 1 Bit in All 4 Entries 0.036 pJ
Refresh Buffer Read - 1 Entry 0.074 pJ
Refresh Buffer Write - 1 Entry 0.142 pJ

CACTI was used to estimate L1 DC and DTLB energy usage assuming 22-nm CMOS process

technology with low standby power (LSTP) cells. Table 3.3 shows the energy required for accessing

17

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
n

L
o

a
d

 D
a

ta
 A

rr
a

y
 A

c
c
e

s
s
e

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Direct Set−Associative

Figure 3.10: L1 DC Data Array Load Accesses

the various components. Leakage energy was gathered assuming a 1 GHZ clock rate.

3.6 Results

Figure 3.10 shows the ratio of L1 DC data array load accesses that are direct (single L1 DC

way) or set associative (all L1 DC ways). Over 59% of the load accesses on average are now direct.

In the baseline all loads access all L1 DC data arrays and all stores access a single L1 DC data

array as the tag check must occur before the L1 DC is updated.

Figure 3.11 shows the ratio of tag checks and DTLB accesses that remain after applying the

DCAM technique. On average about 63% of the L1 DC tag checks are eliminated and about 82% of

the fully associative DTLB accesses are eliminated. About 18% of the original DTLB accesses are

now just accessing a single way of the DTLB, which occurs when the set index field is updated and

causes an L1 DC tag check, but the virtual page number field is unaffected. A single way DTLB

access requires much less energy than a fully associative DTLB access, as shown in Table 3.3. On

average over 7% of these avoided L1 DC tag checks are due to memoizing the next sequential line.

18

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
n

T
a

g
 a

n
d

 D
T

L
B

 A
c
c
c
e

s
s
e

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L1 DC Tag Check DTLB Set Associative DTLB Direct

Figure 3.11: Remaining DTLB and Tag Checks

Figure 3.12 shows the breakdown of energy used by the components involved in a data access

operation. For each benchmark the left bar shows results for the baseline and the right bar shows

results for the DCAM technique. On average about 1.1% of the total energy is due to leakage. For

the average baseline data access energy, 57.9% is due to data array reads from load instructions,

12.5% is due to data array writes from store instructions, 6.7% is due to L1 DC tag checks, and

22.7% is due to DTLB accesses. DCAM reduces the energy on average for data array reads to

31.6%, L1 DC tag checks to 2.4%, and DTLB accesses to 4.2%. Note that the energy for data

array writes remains the same as writes are direct accesses in both the baseline and DCAM. There

is an average overhead of 1.5% for accessing the DCAS and DCAV structures when using the

DCAM technique. Overall, the data access energy is reduced to roughly 54% of the baseline on

average. The overall energy savings ranges from 71.4% for the susan benchmark to 12% for the

fft benchmark. These energy reductions are significant given that these benefits are obtained on

existing binaries with no ISA changes.

Figure 3.13 shows the same breakdown of energy used by the components involved in a data

access operation for other various techniques. Using DCAM alone (52.4%) fails to do better than

19

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

.
m

e
a

n

D
a

ta
 A

c
c
e

s
s
 E

n
e

rg
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Leakage DA Read DA Write TA Read DTLB AGS+AGV

Figure 3.12: DCAM Energy Relative to Baseline

way caching (46.1%). Way prediction [11, 22] is more commonly used than way caching due to

other way caching disadvantages. DCAM (a nonspeculative technique) in combination with way

prediction, which only predicts the way when it is not memoized by DCAM, achieves the best

results (36.3%). This is because way prediction and other speculative techniques, cannot avoid

accessing the DTLB and the tag array. Other techniques that can avoid these accesses do so at

a significantly higher cost in overhead energy relative to DCAM, such as way caching. All of the

other evaluated techniques have some disadvantages that are described in Section 3.7.

3.7 Related Work

Many techniques have been investigated to reduce data access energy. Most of these techniques

require trade-offs that may affect how they can be implemented or used. Not all of these techniques

conflict with the DCAM approach, as combining some approaches with DCAM could result in lower

data access energy than using either approach alone. Taken together, these various characteristics

provide a taxonomy of data access efficiency techniques that can be used to compare against the

DCAM approach that is shown in Table 3.4.

Unlike the DCAM approach, way-prediction techniques (WP) can have a performance penalty

of several percent [11, 22] (OM). These techniques predict which way of the data array is being

accessed and this prediction is then verified by performing a L1 DC tag comparison and DTLB

access (TD). Newer versions of way-prediction are more accurate, but require a custom SRAM

implementation to mitigate the latency of accessing way prediction information before the regular

20

B
a
s
e
lin

e

D
C

A
M

F
ilt

e
rC

a
c
h
e

L
in

e
B

u
ff
e
r

W
a
y
C

a
c
h
e

W
a
y
P

re
d
.

D
C

A
M

+
W

P

D
a
ta

 A
c
c
e
s
s
 E

n
e
rg

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 Leakage DA Read DA Write

TA Read DTLB Overhead

Figure 3.13: Comparison of Energy Techniques

L1 DC tag and data access (CS) using a hash of the virtual address. Nicolaescu et al. propose

to save the L1 DC way of the last 16 cache accesses in a table (WC), and each memory access

speculatively performs a fully associative tag search on this table (CP, CS). If there is a match,

then only the corresponding way is activated [20]. In contrast, the structures used in the DCAM

approach to avoid an associative L1 DC data array access are much less expensive to access. Way

halting (WH) is another method for reducing the number of tag comparisons [31], where partial

tags are stored in a fully associative memory (the halt tag array) with as many ways as there are

sets in the cache. In parallel with decoding the word line address the partial tag is searched in the

halt tag array. Only for the set where a partial tag match is detected can the word line be enabled

by the word line decoder. This halts access to ways that cannot contain the data as determined

by the partial tag comparison. Way halting requires a specialized SRAM implementation that

might have a negative impact on the maximum operational frequency (CS). WP and WH could be

combined with the DCAM approach to reduce energy usage even further (COM).

There have also been some techniques proposed to avoid DTLB accesses. For example, oppor-

tunistic virtual caching (OVC) is a technique to allow some blocks in the L1 caches to be cached

with virtual addresses by changing the operating system to indicate which pages can use virtual

21

Table 3.4: Comparison of DCAM Approach to Various L1 DC Access Techniques
Data Access Techniques Characteristics of Techniques

WP Way Prediction MS more space required
WC Way Caching OM overhead on m isses
WH Way Halting CP may be on critical path
TLC TagLess Cache CI compiler/ISA changes
LB Line Buffer CS custom SRAM required
FC Filter Cache TD Tag/DTLB access

TCE Tag Check Elision COM complements DCAM
DAGDA Decoupled AddrGen HC h igher complexity

& Data Access

MS OM CP HC CI CS TD COM

WP X X X X
WC X X X X
WH X X X X
TLC X X X
LB X X X
FC X X X

TCE X X X
DAGDA X

caching [5] (OS). In contrast, the DCAM technique can avoid many DTLB accesses by detecting

that the physical page has not changed while requiring no OS changes.

L1 DC tag checks for memory references are eliminated when the cache line to be accessed can

be identified by the compiler as being known by using direct address registers (DARs) [29]. The

compiler annotates a memory reference that sets a DAR identifying the accessed L1 DC line and

subsequent memory references that are guaranteed to access the same line reference the same DAR

to avoid the tag check (CI). Unlike the DCAM technique, several compiler transformations are

required, such as loop unrolling and alignment of variables on cache line boundaries, to make these

guarantees, which can result in both code and data size increases. In addition, the DAR approach

requires ISA modifications to support it.

A tagless cache (TLC) design has been proposed that uses an extended TLB (ETLB) to avoid

tag checks [24]. While the TLC approach can significantly reduce energy usage, the authors assume

the ETLB is accessed first to subsequently allow accessing a single L1 DC data array, which could

either increase the cycle time or require an additional cycle to service an L1 DC access (CP).

The DCAM approach could be used in conjunction with the TLC approach as the ETLB can be

avoided when memoization detects that the L1 DC way is already known (COM). Unlike DCAM,

22

the TLC approach does not avoid TLB accesses (TD). Finally, the use of a TLC requires dealing

with synonyms, homonyms, and other problems associated with virtually addressed data accesses.

Other small structures have been suggested to reduce L1 DC energy usage. A line buffer (LB)

can be used to hold the last line accessed in the L1 DC [26]. The buffer must however be checked

before accessing the L1 DC, placing it on the critical path, which can degrade performance (CP). A

line buffer also has a high miss rate, which may increase the L1 DC energy usage due to continuously

fetching full lines from the L1 DC memory (OM). A small filter cache (FC) accessed before the L1

DC has been proposed to reduce the power dissipation of data accesses [15]. However, filter caches

reduce energy usage at the expense of a significant performance penalty due to their high miss rate

(OM), which mitigates some of the energy benefits and has likely discouraged its use.

There are some similarities between the Tag Check Elision (TCE) approach and the DCAM

approach [34]. Like DCAM, the TCE approach stores an L1 DC way with each integer register.

However, there are several significant differences between TCE and DCAM. The TCE approach is

likely to memoize more cases with large displacements. However, this feature comes with several

disadvantages as compared to the DCAM approach, as depicted in Table 3.4, including that the

TCE complexity may increase the critical path that could affect the cycle time (CP). Unlike TCE,

DCAM retains the DTLB way to avoid DTLB accesses when a different line is accessed within

the same page. TCE stores a bound with every register to memoize L1 DC ways, which in their

evaluation was a 29-bit value (MS). In contrast, DCAM requires no immediate value with DCAS

entries, which should require much less power to access. TCE requires two comparisons and an

addition to verify that the effective address of the memory reference is within the bounds of the

cache line as well as an extra addition and a bound read and write each time an integer register is

incremented by a value (CP, HC). DCAM’s check for a carry out of an addition into the set index

field and VPN fields is much simpler. Finally, TCE’s invalidation scheme requires much more space

than DCAM’s invalidation method (MS).

The Decoupled Address Generation and Data Access (DAGDA) technique exploits memoization

to improve data access energy efficiency. However, all loads and stores are required to utilize zero

displacements, requiring both compiler and instruction set architecture (ISA) changes [25].

23

3.8 Conclusions

In this chapter, an approach was described to reduce energy usage by saving L1 DC access

information with the register used to access memory. By associating the DTLB access and L1 DC

tag check with the base register used in a memory operation the processor is often able to avoid

L1 DC tag array accesses and DTLB accesses and access a single L1 DC data array for loads.

Furthermore, a technique is shown to retain this information across pointer updates if the updated

value falls within the same cache line or page of the source register. These energy saving benefits

were able to be obtained on unmodified binaries.

24

CHAPTER 4

AN ENERGY EFFICIENT DESIGN FOR

UTILIZING A LEVEL-ZERO DATA CACHE

Level-zero data caches (L0 DCs), also known as data filter caches (DFCs), have been shown to

be effective at reducing data access energy usage. However, this energy reduction comes with a

performance penalty when the data being accessed is not in the L0 DC as the initial access to the

L1 DC is delayed by at least one cycle. In this chapter a design is described for utilizing an L0 DC

that both reduces data access energy usage and provides a performance improvement. In contrast

to a traditional L0 DC, the L0 DC design proposed in this chapter allows data to be accessed during

the level-one data cache (L1 DC) address generation stage. Performance is improved as L0 DC

load hits provide the data earlier than the L1 DC, reducing stalls due to load hazards. Data access

energy usage is reduced as the proposed L0 DC design is smaller and requires no DTLB access,

making it more efficient to access than an L1 DC. This chapter also provides additional techniques

that reduce the power for many of the memory operations still accessing the L1 DC.

4.1 Introduction

A level-zero data cache (L0 DC), also known as a data filter cache (DFC), has been shown

to be effective at reducing data access energy [14, 15]. An L0 DC is energy efficient since a large

fraction of the memory references can be serviced from the L0 DC that is much smaller than a

level-one data cache (L1 DC), resulting in less energy usage for each L0 DC reference as compared

to an L1 DC reference. However, a conventional L0 DC has disadvantages that has discouraged

its adoption in contemporary processors. First, an L0 DC can cause a performance penalty as it

has to be accessed before the L1 DC in order to to reduce energy usage. Upon an L0 DC miss,

the L1 DC is accessed a cycle later than it normally would, potentially causing load-delay hazards

that would not occur had an L0 DC not been used. This increase in execution time will mitigate

some of the energy benefit of using an L0 DC. Second, a single cycle L0 line fill as proposed in

many prior studies [7, 9, 10, 14, 15, 27] has been shown to be unrealistic as it can adversely affect

25

L1 DC area and energy efficiency [3]. These issues must be resolved for an L0 DC to be a practical

alternative for a high performance embedded processor.

This chapter proposes a new design that allows the use of an L0 DC that improves both energy

efficiency and performance. The key insight for this design is to dynamically detect instructions

that update a register whose value is dereferenced by a load or a store and to keep these register

values in a small structure that can be accessed a cycle earlier in the pipeline. This feature allows

the effective address to be calculated a cycle earlier so that the L0 DC can be accessed a pipeline

stage before the L1 DC is conventionally accessed.

Our design for utilizing an L0 DC makes the following contributions. (1) In contrast to a

conventional L0 DC that degrades performance, accessing the L0 DC data early provides a small

performance improvement by avoiding many load hazard stalls and removing the potential perfor-

mance penalty typically associated with L0 DCs. (2) Data access energy usage is reduced not only

because the L0 DC is smaller than an L1 DC, but also because the proposed L0 DC design does

not require a DTLB access. (3) L1 DC access information obtained during the L0 DC access allows

the L1 DC to be more efficiently accessed when servicing L0 DC misses, writing through to the

L1 DC, and filling words within an L0 DC line from the L1 DC.

4.2 Proposed L0 DC Design

In this section an approach is described for utilizing an L0 DC to both improve performance

and reduce energy usage. This section provides a high-level overview of the design.

Figure 4.1 shows a high-level datapath for ALU and load instructions in a six stage instruction

pipeline that is utilized in this chapter. Loads from the L0 DC occur during the fourth (L0DC)

stage and loads from the L1 DC occur during the fifth (L1DC) stage. Loads from the L0 DC

are possible one cycle before the L1 DC is accessed when the effective address (base register plus

displacement) can be calculated during the RF stage. To accomplish this, the base register of the

load is obtained during the ID stage from the basereg structure, a small subset of the register file

used by loads and stores. Since the displacement value is available immediately from the instruction

bits, the effective address can be computed during the RF stage. Alternatively, if the displacement

of the load is zero, there is no need to calculate the effective address. In this case, the effective

address is simply the base register value which can be obtained from the register file. Using this

26

control

basereg

IF ID

L1 IC

reg
file

AG

ALU

L0 DC

L1DC
way

RF/AG L1DC/XXEX/L0DC WB

SE

L1 DC

DTLB

Figure 4.1: Datapath for ALU and Load Instructions

early effective address computation strategy, the data can be obtained from the L0 DC during the

address generation (AG) stage, one cycle before the the L1 DC is accessed during the MEM stage.

Having the L0 DC and L1 DC always accessed in a given pipeline stage helps to avoid structural

hazards and simplifies the pipeline. Each L0 DC line contains the corresponding L1 DC way in

which it resides, which is used to make L1 DC accesses more efficient when they are needed to be

performed. The DTLB is only accessed when accessing the L1 DC and the L1 DC way is unknown.

Forwarding paths and the internal pipelining for the L0 DC and L1 DC to handle stores are not

shown to simplify the figure.

The L0 DC in this design will not be accessed on every load instruction since sometimes the

base register value is not available from the basereg structure and the displacement is not zero.

One strategy would be to access the L0 DC after the effective address is calculated during the AG

stage. However, an L0 DC miss could cause a performance penalty as the data would be retrieved

from higher levels of cache a cycle later than it normally would. Instead, it would be desirable to

load the data from the L1 DC instead of waiting until the address generation is complete to access

the L0 DC, effectively removing the perfomance penalty typically associated with L0 DCs. Since

the data can be retrieved from either the L0 DC or the L1 DC the processor needs to ensure that

data in the L1 DC has the same values as any data that are resident in the L0 DC. An inclusive

cache policy and an L0 DC write-through policy are used to ensure that the L1 DC always has the

most recent data. A write-through policy is much simpler to implement than a write-back policy as

the processor does not have to deal with writing back dirty L0 DC lines over multiple cycles, which

27

would allocate the L0 DC read port, making the L0 DC inaccessible during this period. Instead,

evicted L0 DC lines simply need to be invalidated.

Figure 4.2 shows the information that will be contained in each L0 DC line. The page protection

bits are copied from the DTLB when the L0 DC line is allocated. This is necessary to ensure that

data is accessed properly as the DTLB is avoided during L0 DC hits, as described is Section 4.3.5.

An L0 DC line also identifies the L1 DC way where the L0 DC line resides. Each data byte within

the line has a filled bit to indicate if that byte within the line is resident, described in Section 4.3.4.

PP

L1

DC

way

f...data dataftagv

v = valid bit f = filled bitPP = page protection bits

Figure 4.2: L0 DC Line Contents

The remainder of this section is used to describe the design in more detail.

4.3 Utilizing an L0 DC to Improve Performance

The following subsections describe how this design makes base register values available earlier

in the pipeline, is integrated into a pipeline, fills data words in an L0 DC line, and is virtually

addressed.

4.3.1 Making Base Register Values Available Earlier in the Pipeline

A simple approach to ensure that base register values are available in the basereg structure is

to have all integer instructions that update a register to write their register value to the basereg

structure. There are two problems with this approach: 1) the energy-saving benefits of using an

L0 DC are mitigated due to unnecessary basereg writes and 2) additional pressure is placed on the

basereg structure, meaning it will be harder to retain basereg values long enough so that they can

be used by loads and stores because they will be evicted by unnecessary basereg writes.

To solve these problems, an approach is described to dynamically detect instructions that update

an integer register whose value will be dereferenced by a load or a store. Such registers are referred

to as base registers since they contains the base value of the effective address for a load or a store.

Such instructions are referred to as base address generation (BAG) instructions as they update the

28

base register of a load or store. Table 4.1 shows the different MIPS instructions that are likely to

be a BAG instruction and account for over 99.9% of the BAG instructions. An instruction with

one of these opcodes is referred to as a potential BAG (PBAG) instruction.

Table 4.1: Last Instruction to Compute a Data Address
Size Type Operation MIPS Inst Effect Source Operands

Scalar
Local (1) int immed add rd = rs + immed stack pointer and offset
Global (2) bitwise immed OR rd = rs | immed high | low global address
Pointer (3) int load rt = M[rs] pointer variable address

Composite
Array Elem (4) int reg add rd = rs + rt array address + elem offset
Struct Field (1) int immed add rd = rs + immed struct address + field offset

Ptr Arith (5) int reg sub rd = rs - rt pointer - var offset

When a PBAG instruction is executed, a small basereg structure as depicted in Figure 4.3 is

updated. Each basereg element contains the value of an integer register that was dereferenced in

a load or store instruction. The structure shown in the figure contains at most four base register

values. The baseregindex structure is indexed by the base register number of a load or store

instruction and is used to select the base register value from a multiplexor. The BV (Base register

Valid) bit indicates if the integer architectural register currently points to a basereg element. The

DR (DeReferenced) bit indicates if the base register has been dereferenced by a load or a store with

a nonzero displacement. The processor will update the basereg element during the WB stage of a

BAG instruction. A separate baseregnum structure contains for each basereg element the integer

register number associated with that value. The LRU element of the basereg structure is replaced

if there is not a valid value already associated with the base register number and the baseregnum

is used to clear the BV bit of the replaced basereg element.

index
basereg

DRBV

0
...

31

...

3

0

baseregnum

0

3

...

basereg

...

Figure 4.3: Base Register Structure

4.3.2 Using Base Register Values in Loads and Stores

Similar to how to the number of unnecessary basereg writes have been reduced, a technique

is proposed to reduce the number of unnecessary basereg reads. Ideally, a basereg element is

29

accessed only during load and store instructions that use a non-zero displacement value so there

are no unnecessary basereg reads, which mitigate the energy savings of the approach. However,

since the instruction type isn’t known until the end of the ID stage and possibly the register

number depending on the instruction set architecture, this section describes an approach which

approximates this behavior.

A bit is associated with each instruction in the L1 IC, called the LS (Load/Store) bit, to classify

instructions that are a load or store with a nonzero displacement (when any bits in the immediate

field are not zero) as shown in Table 4.2. The reason the processor checks for a nonzero displacement

is that a load or store with a zero displacement does not need to access the basereg structure as

described in Section 4.3.3. This LS bit associated with an instruction is read each time during the

instruction fetch (IF) pipeline stage.

Table 4.2: Value Associated with the LS Bit
Value Meaning

0 otherwise
1 load or store with a nonzero displacement

Instructions with a PBAG opcode as shown in Table 4.1 comprise a significant fraction of the

instructions executed. It is desirable to only update the basereg when an actual address is being

generated as unnecessary basereg updates expend additional energy and may replace useful basereg

values. The following technique is used to avoid unnecessary updates to the basereg structure. The

DR (dereferenced) bit in Figure 4.3 is set when a register is dereferenced by a load or a store with a

nonzero displacement where the PBAG instruction was executed in time for the basereg structure

to be dereferenced. When a BAG instruction sets a register that has its DR bit set, then the BAG

instruction will update the basereg structure and set the BV bit in Figure 4.3. This approach

works well as a register that is used to access memory in loops is often not set by other non-PBAG

instructions. Note that non-PBAG instructions will clear both the BV and DR bits associated

with the register number being updated.

Figure 4.4 shows a comparison of several different approaches that can be used to determine

which instructions will update the basereg structure. One approach that can be used is to allow all

instructions that update to an integer register to write their result to the basereg structure, referred

to as the ”Side Effect” approach as all instructions with an integer side effect write to it. However,

30

L1 DC Access Times

S
id

e
E

ff
e
c
t

B
A

G
I

B
R

S

E
x
e

c
u

ti
o

n
 T

im
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Total Updates Useful Updates

Figure 4.4: Comparison of BRS Update Approaches

as shown in the figure, only about 2.8% of these instructions will have their basereg element used

by a load or store instruction. This is because many instructions 1) don’t update a register used by

a load or store instruction, 2) update a register that is used by a load or a store whose displacement

value is zero and thus doesn’t need to access the basereg structure, or 3) updates a register that

is used by a load or a store but whose value will not be ready in time to be read from the basereg

structure. An additional approach used is to only update basereg structure for BAG instructions

(BAGI), which constitute the vast majority of instructions that are the last to update a register

before the register is used in a load or store. This filters out approximately 61% of unnecessary

basereg writes. However, this still updates the basereg structure 15 times unnecessarily for every

one update eventually used by a load or store. Utilizing the DR bit to detect registers that are used

by loads and stores only updates the basereg structure for about 4% of all instructions, of which,

about half of them are used by subsequent loads and stores. This approach drastically reduces the

number of updates to the basereg structure, enabling the basereg structure to use fewer elements

as there is less pressure due to unnecessary updates evicting useful entries.

4.3.3 Integrating L0 DC Accesses into the Instruction Pipeline

Table 4.3 describes the different integer instruction pipeline stages used in this study. Note

many of the names for these stages occur at the same time in the pipeline, but distinct names are

provided to facilitate understanding what pipeline actions are performed by different instructions.

This pipeline separates the ID (instruction decode) and RF (register fetch) stages to reduce energy

usage caused by unnecessary register fetches. The basereg structure is accessed during the ID stage

31

of an instruction marked as a load or store with a nonzero displacement (see Table 4.2) to obtain

the base register value. The AG (address generation) stage performs an addition with this base

register value and the displacement to calculate the effective memory address.

Table 4.3: Instruction Pipeline Stages
Stage Meaning Stage Meaning

IF instruction fetch L0TC L0 DC tag check
ID instruction decode L1TC L1 DC tag check
RF register fetch WB write back
AG address generation TC L0 DC/L1 DC tag check
EX execute DCW L0/L1 DC write, no tag check

L0DC L0 DC access L1W L1 DC write, no tag check
L1DC L1 DC access XX stage not used

Table 4.4 shows how different instructions proceed through a six stage pipeline utilizing the

pipeline stages shown in Table 4.3. Note this design can easily be adapted to work with additional

pipeline stages supporting a multicycle L1 DC load access.

Table 4.4: Stages Used by Instructions

Instruction
Pipeline Stages

1 2 3 4 5 6

(a)ALU inst IF ID RF EX XX WB

(b)L1 load hit IF ID RF EX L1DC WB
(c)L0 load hit IF ID AG L0DC XX WB
(d)L0 load hit no disp IF ID RF L0DC XX WB
(e)L0 load miss IF ID AG L0DC L1DC WB
(f) L0 load miss no disp IF ID RF L0DC L1DC WB

(g)L1 store hit IF ID RF EX TC DCW
(h)L0 store hit IF ID AG L0TC XX DCW
(i) L0 store hit no disp IF ID RF L0TC XX DCW
(j) L0 store miss IF ID AG L0TC L1TC L1W
(k)L0 store miss no disp IF ID RF L0TC L1TC L1W

An ALU inst (case (a) in Table 4.4) proceeds through the pipeline and does not perform any

action (XX) in the 5th pipeline stage. A BAG ALU instruction also writes to the basereg structure

in the sixth stage.

An L1 load hit or L1 store hit (cases (b) and (g) in Table 4.4) operation means that the base

register value was not available in the basereg structure and the load or store will access the L1

DC. An L1 store hit will require that both the L0 DC and the L1 DC to be updated when the data

line is resident in the L0 DC since the L0 DC uses an inclusive cache policy. The L0 DC tag arrays

32

are replicated to allow an L0 DC tag check in either the L0DC or L1DC stages without causing a

structural hazard.

All operations beginning with L0 means the L0 DC is accessed. For cases (c) and (d) in Table 4.4,

the load hits in the L0 DC and no L1 DC access is performed. In the cases of (d), (f), (i), and

(k) in Table 4.4, the displacement of the load and store is zero, meaning no address calculation is

necessary and the processor does not access the basereg structure. For cases (c), (e), (h), and (j) in

Table 4.4, the load/store has a non-zero displacement and the processor obtains the base register

value from the basereg structure in the ID stage in order to complete the address calculation in the

AG stage, where a separate adder is utilized to avoid a structural hazard. Note an AG stage does

not access the register file when the base register value had already been obtained during the ID

stage from the basereg structure. For cases (e), (f), (j), and (k) in Table 4.4, the L0 DC is accessed

but the word being accessed is not resident and the processor accesses the L1 DC in the following

cycle.

The basereg structure is only accessed when an instruction has been marked in the LS bit

vector as a load or store instruction with a nonzero displacement. The base register value is not

available in the basereg structure when the base register value for a particular register in the basereg

structure was replaced or the base register value was not calculated in time to perform an address

calculation in the AG stage. The base register value can be forwarded to the AG stage of a load

or store after the EX stage of a BAG ALU instruction, the L0DC stage of BAG load that hits in

the L0 DC, or the L1 DC stage of a BAG load that obtains its value from the L1 DC. However,

there must be at least one instruction between the ALU BAG instruction (or a BAG load that hits

in the L0 DC) and the load or store that uses the BAG instruction destination register so that the

value can either be read from the basereg structure or forwarded to the AG stage of the load or

store instruction. A BAG load that obtains its value from the L1 DC must be separated from the

load or store that uses the value by at least two instructions for forwarding to occur. Note that if

forwarding cannot occur, then the L1 DC is accessed to avoid pipeline delays.

4.3.4 Filling L0 DC Lines

While the L0 DC line size can be smaller than an L1 DC line, it is still advantageous to utilize

a multiword L0 DC line size to exploit spatial locality in data references. Many prior filter cache

studies have assumed that an L0 line is the same size as an L1 line and can be filled in a single cycle

33

to reduce the L0 miss penalty [7, 9, 10, 14, 15, 27]. Such an assumption is unrealistic as reading an

entire line from an L1 DC in a single cycle requires a larger bitwidth, which could increase the area

of the L1 DC and negatively affect both L1 DC access time and access energy. In addition, some

applications referenced only a single word from an L0 DC line before the L0 DC line was evicted.

This section describes an L0 DC fill strategy that is realistic and does not require a performance

delay due to a miss penalty. An f (filled) bit is associated with each data byte in an L0 DC line, as

shown in Figure 4.2. Thus, there are two types of L0 DC misses. An L0 DC line miss means the

entire L0 DC line is not resident and an L0 DC reference miss means that the data reference being

accessed within an L0 DC line is not resident. An f bit is associated with each byte in an L0 DC

line to allow stores of bytes or halfwords into an L0 DC line without having to load a word from

the L1 DC on a store L0 DC reference miss. When a load L0 DC line miss occurs, the L0 DC line

is allocated and the single demanded word is loaded into the L0 DC line. This approach is able

to achieve a hit rate comparable to a line-filled L0 DC while not incurring the overhead associated

with filling an entire L0 DC line in a single cycle or the complexity of filling an L0 DC line over

multiple cycles.

Using this approach, it’s possible that the L0 DC line is resident but the desired word of data

is not resident. By storing additional information with each L0 DC line, L1 DC accesses can be

made more efficient after accessing the L0 DC in the case of line hits but word misses. Figure 4.2

shows that the L1 DC way is stored with each L0 DC line. In this case the L1 DC way is used to

access the L1 DC without an L1 DC tag check or DTLB access.

4.3.5 Utilizing a Virtually Tagged L0 DC

Our L0 DC is accessed using virtual addresses, which means that virtual tags are used to check

if there is an L0 DC hit. The advantage of this approach is that there is no need to access the DTLB

in parallel with the L0 DC access, which also avoids a structural hazard for accessing the DTLB

during the L0DC stage for some memory instructions and the L1DC for other memory instructions.

However, using a virtual cache causes a number of complications, which is simpler to handle in a

smaller L0 DC.

(1) To handle the synonym problem, where different virtual addresses can map to the same

physical address, the L0 DC lines corresponding to an evicted L1 DC line are also evicted. In

Figure 4.2 the L1 DC way associated with each L0 DC line is included. When an L0 DC line is

34

replaced after a miss, the L1 DC way and index values are compared to the same values in other

L0 DC lines within the same L0 DC set. If there is a match with another L0 DC line, then that

line is invalidated. Note the portion of the L1 DC index value that can differ can be obtained from

the least significant bits of the L0 DC tag as a virtually-indexed physically-tagged (VIPT) L1 DC

is assumed.

(2) The homonym problem is that a single virtual address may map to different physical ad-

dresses when multiple virtual address spaces are used due to context switches. Our solution is to

invalidate all the L0 DC lines on context switches. Few additional L0 DC misses will result from

this invalidation since the L0 DC is much smaller than the L1 DC and it is unlikely L0 DC lines

associated with one process will remain after switching back to the same process. Note the basereg

structure automatically gets updated as a context switch restores all the register values associated

with another process.

(3) The page protection problem is that pages must be safely accessed. The DTLB contains

page protection (PP) bits that will be copied into each L0 DC line as shown in Figure 4.2. The

overhead of storing and accessing these PP bits is small since there are only a few PP bits for each

DTLB page and there are few L0 DC lines.

(4) The multiprocessor cache coherency problem occurs when a cache line needs to be invalidated

due to a cache coherency invalidation request. Our L0 DC is strictly inclusive with respect to the

L1 DC. When an L1 DC line is evicted (due to a line replacement or coherency invalidation request),

any L0 DC line that has a matching L1 DC way and index is also invalidated. Note all the L1 DC

ways fields can be checked in parallel.

4.4 Evaluation Environment

This section describes the evaluation environment. The seventeen benchmarks from the MiBench

benchmark suite [8], which is a representative set of embedded applications, are used to evaluate

the proposed design. All benchmarks are compiled using gcc with the -03 option.

The ADL simulator [21] was used to simulate both a conventional MIPS processor as the

baseline and the modified processor as described in this chapter. The ADL simulator performs a

more realistic simulation than many commonly used simulators (in ADL data values are actually

loaded from the caches, values are actually forwarded through the pipeline, branch target addresses

35

from the branch target buffer are actually used, etc.). Both configurations are single-issue, in-order

processors with six-stage pipelines. Branch instructions resolve in the EX stage, so there is a 3-

cycle misprediction penalty. The simulator used a gshare branch predictor with a branch target

buffer. Table 4.5 shows other details regarding the processor configuration that is utilized in the

simulations, where the L0 DC, basereg, baseregindex, and LS vector structures are only used in

the modified processor.

Table 4.5: Processor Configuration

page size 8KB

L1 DC
32KB, 64B line size,
4-way associative, 1 cycle hit,
10 cycle miss penalty

DTLB 32 entries, fully associative

L0 DC
512B, 16B line size,
4-way associative, 1 cycle hit,
1 cycle word miss penalty

basereg 4 entries, 16 total bytes
baseregindex 32 entries, 16 total bytes
LS vector 256 entries, 32 total bytes

The ADL simulator [21] was used in combination with CACTI [18] for energy evaluation to

model both a conventional MIPS processor as the baseline and the modified processor as described

in this chapter. CACTI was used to model the L1 DC, L0 DC, base register structure, and LS

vector assuming a 32-nm CMOS process technology with low standby power (LSTP) cells and power

gating. A way-predicted access is modeled as a direct-mapped L1 DC with one-quarter of the total

L1 size. On a misprediction, the energy of a way-associative access is added. Table 4.6 shows the

energy required for accessing the various components related to memory accesses. CACTI does not

provide energy values for very small caches. Thus, the energy for accessing the smaller L0 DCs is

estimated by using the same rate of decrease in energy usage going from a 2KB L1 DC to a 1KB

L1 DC with the same associativity and line size. Leakage energy was gathered assuming a 1 GHZ

clock rate.

36

Table 4.6: Energy for L1 DC and DTLB Components

Component Energy

L1 DC Tags - 3 Ways (WP miss) 0.473 pJ
L1 DC Data - 3 Ways (WP miss) 8.266 pJ
L1 DC Tag - 1 Way (WP hit) 0.177 pJ
L1 DC Data - 1 Way (WP hit) 1.930 pJ

DTLB - Fully Associative 1.030 pJ

L0 DC (512B) Tag - 1 Way 0.025 pJ
L0 DC (512B) Data - 1 Way 0.178 pJ

LS Bit Vector - 1 bit 0.005 pJ

Basereg+Baseregindex - 1 entry 0.071 pJ
Register File - 1 Entry 0.366 pJ

4.5 Results

Initially, an LS bit was associated with each L1 IC instruction. However, the energy overhead

for accessing such a bit from the L1 IC on each instruction outweighed the benefit of only accessing

the basereg structure for each load and store. A smaller bit vector was used to reduce the energy

usage as opposed to associating a bit with every instruction in the L1 IC. Figure 4.5 shows how

bits within an address are used to index into the mth bit in the LS vector. The least significant

bits of the address (with the exception of the two least significant bits that are always zero due

to instructions being aligned on a four-byte boundary) are used to index into the LS bit vector.

Section 4.3.3 shows how instructions marked as 1 (load or store with a nonzero displacement) utilize

the basereg structure.

O 0OIIITT ... 0...I......

0 1

LS

instruction address

......

m

where T = tag bit, I = index bit, O = offset bit

Figure 4.5: Accessing the LS Bit Vector

Because multiple instructions can map to the same bit in the LS vector, a misclassfication can

occasionally occur, which is detected after decoding the instruction. In such a case, the bit in the

LS vector will be reversed. A load/store with a nonzero displacement that is classified as 0 (see

37

Table 4.2) will not read from the basereg structure and will not access the L0 DC. Forwarding

can occur to the AG stage even when the bit in the LS vector is appropriately classified since the

basereg element could have the wrong value when the BV bit was valid as the basereg structure is

updated during the WB (write back) stage. An instruction that is not a load/store with a nonzero

displacement that is classified as 1 (see Table 4.2) will simply read the basereg structure. Note that

an instruction that successfully reads a value from the basereg structure will not redundantly read

the same register from the register file.

LS Vector Size

64b 128b 256b 512b 1024b 2048b 4096b 8192b

L
S

 B
it
 S

e
t

fo
r

L
o

a
d

s
/S

to
re

s

0.45

0.475

0.5

0.525

0.55

Figure 4.6: Service Rate for Varying
Size of LSVector

LS Vector Size

64b 128b 256b 512b 1024b 2048b 4096b 8192b

D
a

ta
 A

c
c
e

s
s
 E

n
e

rg
y

0.7

0.725

0.75

0.775

0.8

0.825

0.85

Figure 4.7: Data Access Energy for
Varying Size of LSVector

Different LS vector sizes are evaluated with a 512B L0 DC and 32 basereg elements. The best

data access energy was obtained when the LS vector size was 1024 bits.

Figure 4.8 shows the L0 DC service rate for a 512B L0 DC with a varying number of basereg

elements with an LS vector size of 1024 bits. About 30.6% of the values were provided by the

L0 DC with no basereg elements, which shows that many of the memory references had a zero

displacement. The difference in the L0 DC load service rate between 2 and 4 basereg elements

was only about 1.4%. Figure 4.9 shows the data access energy with a varying number of basereg

elements with an LS vector size of 1024 bits. This data access energy includes the L0 DC, L1 DC,

and DTLB and is relative to not using an L0 DC. The lowest data access energy was obtained when

the number of basereg elements was two. This is due to not many registers being live simultaneously

that are used to hold addresses to access memory when there is a nonzero displacement. Thus, two

basereg elements are used in the remaining results that are presented in this chapter.

Figure 4.10 shows the breakdown of memory accesses. The left and right bars associated with

each benchmark shows the types of loads and stores that occurred, respectively. An L0 Hit indicates

that the data was present in the L0 DC. In contrast, an L0 Line Hit indicates that the line was

resident, but that the data was not resident within the line. An L0 Hit for loads results in no access

38

Number of Basereg Elements
0 1 2 4 8 16L

0
 D

C
 L

o
a

d
 S

e
rv

ic
e

 R
a

te

0.3

0.35

0.4

0.45

0.5

0.55

Figure 4.8: Service Rate for Varying
Number of Basereg Elements

Number of Basereg Elements
0 1 2 4 8 16

D
a

ta
 A

c
c
e

s
s
 E

n
e

rg
y

0.5

0.55

0.6

0.65

0.7

0.75

Figure 4.9: Data Access Energy for
Varying Number of Basereg Elements

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

L
o

a
d

/S
to

re
 A

c
c
e

s
s
e

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L0 Hit L0 Line Hit L1 Access

left bars for loads, right bars for stores

Figure 4.10: Load and Store Access Taxonomy

to the L1 DC. An L0 Line Hit for loads indicates that a word was loaded from the L1 DC into the

L0 DC and that no DTLB access or L1 DC tag check was performed as the L1 DC way is known

since it is stored in the L0 DC line. An L0 Line Hit for stores results in a write to the L1 DC as a

write-through policy to the L1 DC is used. An L0 Line Hit for stores is similar to a L0 Line Hit

for loads in that the data is written to the L1 DC without a DTLB access or an L1 DC tag check.

Note there is no L0 Hit given for stores as it’s necessary to write-through to the L1 DC so the

L1 DC remains inclusive of the L0 DC. An L1 Access indicates that either the address could not

39

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
n

A
c
c
e
s
s
 E

n
e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Leakage L1 Read L1 Write DTLB L0 DC Overhead

left bars indicate no L0 DC, right bars indicate using an L0 DC

Figure 4.11: Data Access Component Energy

L1 DC Access Times

1
−

c
y
c
le

2
−

c
y
c
le

3
−

c
y
c
le

E
x
e

c
u

ti
o

n
 T

im
e

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04
Linefill BRS

Figure 4.12: Varying L1 DC Hit Access Times

be calculated early as the base register value was not available in the basereg structure or pipeline

or that the line was not resident in the L0 DC.

The classification of loads and stores within each benchmark shows the type of locality present

within the benchmark. The fraction of load L0 Hits indicates temporal locality or spatial locality

40

within a word (byte or halfword references) as an entire word is loaded into the L0 DC line on a load

miss. Note the bitcount benchmark has very high temporal locality and the dijkstra benchmark

has very low temporal locality. The fraction of load L0 Line Hits indicates spatial locality across

words within an L0 DC line. The fraction of L0 Line Hits would increase if the L0 DC line size

was larger.

Figure 4.11 shows the component data access energy of loads and stores. The left bar for

each benchmark shows the baseline results without an L0 DC and the right bar shows the results

with an L0 DC. The leakage energy for these structures is so small that it cannot be seen. The

L1 Read and L1 Write indicates the energy required for accessing the L1 DC during loads and

stores, respectively. The Overhead represents the energy required for accessing the LS bit vector

to recognize loads and stores with nonzero displacements, and the accesses to the basereg and

baseregindex structures by BAG instructions.

It is interesting to see the effect on the energy of the different components when utilizing an

L0 DC. The DTLB energy usage had a significant reduction for two reasons. First, an L0 DC load

hit does not access the DTLB since the L0 DC is virtually addressed. Second, many of the L1 DC

accesses (L1 DC loads, L1 DC stores, and L0 DC next sequential word line fills from the L1 DC) do

not need to perform a DTLB access as the L1 DC way is known after the L0 DC is accessed. The

L1 Read component representing the L1 DC access energy for load instructions was significantly

reduced due to a significant fraction of L0 DC hits that do not access the L1 DC and L0 DC

reference misses and L1 DC sequential word line fills that do not perform an L1 DC tag check. The

L1 Write component representing L1 DC access energy for store instructions was reduced due to

avoiding L1 DC tag checkson L0 line hits.

Figure 4.12 shows the effect on performance for using an L0 DC as the number of cycles required

to access the L1 DC increases. The ratios shown for each bar compares a traditional, line-filled

L0 DC as well as the proposed approach relative to a processor without an L0 DC. In the first

set of bars, it can be seen that a line-filled L0 DC incurs a performance penalty of 3.5% due to

load-delay hazard stalls caused by L0 DC misses compared to a processor with no L0 DC. Our

approach, on the other hand, improves performance by 5.1% by reducing load-delay hazard stalls

by retrieving data a cycle earlier than usual for L0 DC hits. As the access time of the L1 DC is

increased to 2 or 3 cycles, both the linefill approach and the proposed approach perform better

41

relative to the baseline. The linefill approach performs better as L0 DC hits can retrieve data 1 or

2 cycles earlier than usual, reducing the number of load-delay hazard stalls on L0 DC hits. While

L0 DC misses can still cause load-delay hazard stalls, this is largely offset by this reduction. Our

approach continues to improve performance as retrieving data during the EX stage can eliminate

1-, 2-, and 3-cycle load-delay hazards. Our approach reduces the number of cycles executed relative

to a conventional, line-filled L0 DC by 7.5% to 8.6% for each L1 DC access time. This result taken

together with the fact that a single-cycle L0 DC linefill strategy is not feasible as it increases the

time and energy to access the L1 DC means the approach outlined in this chaper outperforms a

conventional L0 DC and provides a template for implementing L0 DCs in modern processors.

Approach

L
F

W
P

W
C

B
R

S

W
P

+
B

R
S

D
a
ta

 A
c
c
e
s
s
 E

n
e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.13: Comparison of Methods that Reduce
L1 DC Access Energy

Figure 4.13 compares several different approaches for reducing memory access energy. A con-

ventional, line-filled L0 DC (LF) fails to provide significant energy savings (16%) even though it

provides a better L0 DC service rate than the proposed design. This is because the energy required

to fetch the data from the L1 DC and to fill the entire L0 DC line in a single cycle mitigates much

of the potenital energy savings.

Way prediction (WP) techniques [11, 22] are now commonly used to predict which way of the

L1 DC data array is being accessed and this prediction is verified by performing a DTLB access

42

and an L1 DC tag comparison. Way prediciton can both reduce energy usage (a single L1 DC tag

array and a single L1 DC data array are accessed) and improve L1 DC load hit time (the requested

data from one L1 DC data array can be sent to the CPU without waiting for an L1 DC tag check

to be performed). Way prediction provides significant energy savings (48.1%) as it’s able to avoid

an n-way set-associative L1 DC access. However, it still incurs the overhead of accessing the L1 DC

tag array and DTLB and performing a set-associative L1 DC access on mispredictions.

Way caching (WC) stores the tag and way of the 16 most recently accessing L1 DC lines in a

16-way, fully associative structure. Way caching is not only able to avoid set-associative L1 DC

accesses but also L1 DC tag array and DTLB accesses. However, way caching incurs a significant

amount of overhead because it must retrieve the desired way from this 16-way, fully associative

structure. In addition, way cache accesses lie on the critical path as this structure is accessed

between the time the effective address is calculated and the L1 DC is accessed.

Using the proposed approach (BRS) alone fails to beat way caching (45% vs 60.4%) due to way

caching’s high hit rate. By requiring the L0 DC to be accessed only for loads and stores that are

able to retrieve their base register value from the basereg structure or for loads and stores with

displacements of zero so the effective address can be calculated a cycle earlier, the L0 DC service

rate is lowered. However, this approach is complementary to way prediction. In the case that a

load or store is either unable to calculate its address early and thus cannot access the L0 DC in

time or because it misses in the L0 DC, the L1 DC is accessed using way prediction techniques.

Using this approach in conjunction with way prediction (WP+BRS) is able to reduce energy usage

of the L1 DC by 69.3%. Note that way caching and way prediction are not complementary as both

structures are accessed between the calculation of the effective address. Further, way caching has a

very high hit rate (96%), and thus adding way prediction will not reduce L1 DC read energy further.

In addition, there is no method to avoid both way caching’s high energy overhead for accessing the

way cache and way prediction’s overhead of accessing the DTLB and L1 DC tag array to verify

predictions.

4.6 Related Work

There have been numerous techniques that have been explored to reduce data access energy

within a processor. This section only considers techniques that do not require any changes to

43

an executable or the operating system. Most of these techniques include various compromises

that affect the benefits they can achieve and/or the feasibility of their implementation. Some of

these techniques can be used in combination with the proposed L0 DC design. Table 4.7 provides

acronyms for various data access techniques. Table 4.8 provides acronyms for the characteristics of

these data access techniques. Table 4.9 provides an overview of the characteristics of these various

techniques.

Table 4.7: Data Access Technique Acronyms
LB Line Buffer
FC Filter Cache

PDFC Practical DFC
ZCL Zero Cycle Loads
WC Way Caching
WH Way Halting
TLC TagLess Cache
TCE Tag Check Elision

Table 4.8: Data Access Characteristic Acronyms
MS More Space
MD Miss Delays
CP Critical Path
HC Higher Complexity
CS Custom Sram
TD Tag/DTLB access
ME More Energy
FA Fast Access
CM CoMplementary

Table 4.9: Characteristics of Various Data Access Techniques
MS MD CP HC CS TD ME FA CM

LB X X X
FC X X X

ZCL X X X
PDFC X X X X
WC X X X X
WH X X X X
TLC X X X
TCE X X X

Other small structures have been suggested to reduce L1 DC energy usage. A line buffer (LB)

can be used to hold the last line accessed in the L1 DC [26]. The buffer must however be checked

44

before accessing the L1 DC, placing it on the critical path, which can degrade performance (CP). A

line buffer also has a high miss rate, which may increase the L1 DC energy usage due to continuously

fetching full lines from the L1 DC memory (MD).

The original proposed filter cache (FC) accessed before the L1 DC has been proposed to reduce

the power dissipation of data accesses [15]. However, FCs reduce energy usage comes at the expense

of a significant performance penalty due to their high miss rate (MD), which mitigates some of their

energy benefits and has likely discouraged its use in industry. Small alterations to the FC design

have been explored [7], where these designs assume that L0 DC tag comparison is performed within

the execute stage after the effective address has been computed. This approach requires a very small

L0 DC and/or a slow clock rate to be feasible. Probably the most similar technique to the proposed

design is the practical DFC (PDFC) [3]. This approach speculatively performs an L0 DC tag check

in parallel with the effective address generation. The speculative L0 DC access is only attempted

when the load or store displacement is small so that the L0 index field is unlikely to be updated

and sometimes the speculative access fails due to the index field getting updated. In contrast, the

L0 DC in the proposed design is accessed after the effective address generation, so more accesses

can be obtained from the L0 DC. This PDFC design also assumed that the L0 DC data could be

accessed in the same cycle as the effective address generation, but after the computation of the L0

offset field. Thus, a very small L0 DC and/or an L0 DC implementation in flip-flops is required to

make this design feasible. The PDFC approach also has a more complicated L0 DC line fill strategy.

In contrast to these various FC approaches, the proposed design can support a much larger L0 DC

due to timing issues since the address calculation is performed before the L0 DC access. A larger

L0 DC can significantly improve the L0 DC hit rate.

A zero-cycle load (ZCL) approach has been used to improve performance by reducing the average

latency of loads [2]. Associated with the instruction address is a cache that contains the predicted

base register value and either an index register value or a displacement, which are all accessed

during the IF stage. Fast address calculation (FA) is used during the ID stage to speculatively

access the L1 DC [1]. This approach increases data access energy as the L1 DC is accessed twice

when the speculative address calculation fails. Also, the pipeline becomes more complicated as the

L1 DC is accessed both during the ID stage and the MEM stage.

45

Multiple techniques have been proposed to make L1 DC accesses more energy efficient. Nico-

laescu et al. propose to save the L1 DC way of the last 16 cache accesses in a table (WC), and each

memory access speculatively performs a fully associative tag search on this table (CP, CS). If there

is a match, then only the corresponding way is activated [20]. Way halting (WH) is another method

for reducing the number of tag comparisons [31], where partial tags are stored in a fully associative

memory (the halt tag array) with as many ways as there are sets in the cache. In parallel with

decoding the word line address the partial tag is searched in the halt tag array. Only for the set

where a partial tag match is detected can the word line be enabled by the word line decoder. This

halts access to ways that cannot contain the data as determined by the partial tag comparison.

Way halting requires a specialized SRAM implementation that might have a negative impact on

the maximum operational frequency (CS). WH for an L1 DC could be combined with the L0 DC

in the proposed design to reduce energy usage even further (CM).

A tagless cache (TLC) design has been proposed that uses an extended TLB (ETLB) to avoid

tag checks [24]. While the TLC approach can significantly reduce energy usage, the authors assume

the ETLB is accessed first to subsequently allow accessing a single L1 DC data array, which could

either increase the cycle time or require an additional cycle to service an L1 DC access (CP). Our

L0 DC approach could be used in conjunction with the TLC approach as the ETLB can be avoided

when there is an L0 DC hit or the L0 DC detects that the L1 DC way is already known (COM).

The TLC approach does not avoid TLB accesses (TD). Finally, the use of a TLC requires dealing

with synonyms, homonyms, and other problems associated with virtually addressed data accesses,

which is more difficult in an L1 DC.

The tag check elision (TCE) approach stores an L1 DC way with each integer register [34].

TCE stores a bound with every register to memoize L1 DC ways, which in their evaluation was

a 29-bit value (MS). The TCE approach requires two comparisons and an addition to verify that

the effective address of the memory reference is within the bounds of the cache line as well as an

extra addition and a bound read and write each time an integer register is incremented by a value

(CP, HC). Our memoization of L1 DC ways in L0 DC lines requires much less space and is much

simpler.

46

4.7 Conclusions

This chapter shows that an L0 DC can be effectively utilized. L0 DC accesses without a

performance penalty on misses is possible by detecting instructions that update a register whose

value will be dereferenced by a load or store and storing that base register in a small structure

that is accessed earlier in the pipeline. Likewise, a large fraction of memory references use a zero

displacement, which also allows L0 DC references to occur earlier in the pipeline. Utilizing an

L0 DC is appropriate as the base register value for a memory reference is not always available and

an L1 DC can always be directly accessed without a delay compared to a conventional processor

in these cases. This chapter also showed that the data access energy savings are significant and

that unlike the traditional use of an L0 DC, performance can be improved as opposed to being

degraded. Furthermore, the proposed design for utilizing an L0 DC requires no ISA changes or

compiler support.

47

CHAPTER 5

DECREASING THE MISS RATE AND

ELIMINATING THE PERFORMANCE PENALTY

OF A DATA FILTER CACHE

While data filter caches (DFCs) have been shown to be effective at reducing data access energy,

they have not been adopted in processors due to the associated performance penalty caused by

high DFC miss rates. In this chapter, a new DFC design is presented that both decreases the DFC

miss rate and completely eliminates the DFC performance penalty. First, this chapter shows that

a DFC that lazily fills each word in a DFC line from a level-one data cache (L1 DC) only when

the word is referenced is more energy efficient than eagerly filling the entire DFC line. Second, this

chapter demonstrates that a lazily word filled DFC line can effectively share and pack data words

from multiple L1 DC lines to lower the DFC miss rate. Finally, this chapter presents a method

that completely eliminates the DFC performance penalty by only accessing the DFC when a hit

is guaranteed. Using these DFC techniques this chapter then shows that data access energy usage

can be significantly improved with no performance degradation.

5.1 Introduction

It has been estimated that 28% of embedded processor energy is due to data supply [6]. Thus,

reducing data access energy on such processors is a reasonable goal. A data filter cache (DFC),

sometimes also known as a level-zero data cache (L0 DC), has been shown to be effective at reducing

energy usage since it requires much less energy to access than a level-one data cache (L1 DC) and

can still service a reasonable fraction of the memory references [14, 15]. However, a conventional

DFC has disadvantages that have prohibited its use in contemporary embedded or high performance

processors. First, a DFC has a relatively high miss rate due to its small size. A conventional DFC

is accessed before the L1 DC causing the L1 DC to be accessed later than it would traditionally be

accessed within the instruction pipeline, resulting in degradation of performance on DFC misses.

Second, a single cycle filter cache (FC) line fill as proposed in many prior studies [7,9,10,14,15,27]

48

has been claimed to be unrealistic as it can adversely affect L1 DC area and significantly increase

the energy usage for each L1 DC access [3]. A multicycle DFC line fill is also problematic when it

interferes with subsequent accesses to the DFC or L1 DC. These issues must be resolved for a DFC

to be a practical alternative in a processor design.

In this chapter a new design is proposed that utilizes a DFC without the aforementioned prob-

lems. The proposed design for effectively using a DFC makes the following contributions. (1) The

design shows that it is more energy efficient on a DFC miss to lazily fill only a single word into

a DFC line when the word is referenced and not resident than to eagerly fill every word of an

entire DFC line. (2) This design provides the first data compression technique for a DFC or for

any first-level cache that shares and packs data words in a single cache line at the granularity of

individual words from different lines or sublines in the next level of the memory hierarchy without

increasing the cache access time. (3) A method is presented that completely eliminates the DFC

miss performance penalty by only accessing DFC data when a hit is guaranteed.

5.2 Evaluation Environment

This section describes the experimental environment used in the following three sections of this

chapter. The design is evaluated using the 9 C benchmarks from the SPECint 2006 benchmark

suite compiled using gcc with the -03 option. The ADL simulator [21] was used to simulate

both a conventional MIPS processor as the baseline and a modified processor as described in this

chapter. Table 5.1 shows other details regarding the processor configuration that are utilized in the

following simulations. The ADL simulator was used in combination with CACTI [17, 18] for the

energy evaluation to model processor energy. CACTI was used assuming a 32-nm CMOS process

technology with low standby power (LSTP) cells and power gating. Table 5.2 shows the energy for

accessing various components in the L1 DC and DTLB. Table 5.3 shows the energy for accessing

various components of the DFC. CACTI does not provide energy values for very small caches.

Thus, the energy is estimated for accessing the smaller DFCs by using the same rate of decrease in

energy usage going from a 2KB L1 DC to a 1KB L1 DC with the same associativity and line size.

Likewise, similar estimations are made of the energy usage for accessing DFC word metadata. The

DFC metadata in the table includes the tag comparison along with accessing the word metadata.

49

Leakage energy was gathered assuming a 1 GHZ clock rate. DFC line sharing (LS), DFC data

packing (DP), and DFC word metadata will be described in Section 5.4.

Table 5.1: Processor Configuration

page size 8KB
L1 DC 32KB, 64B line size, 4-way associative
DTLB 32 entries, fully associative
DFC direct mapped, 32B line size, 128B to 1KB cache size

Table 5.2: Energy for L1 DC and DTLB Components

Component Energy

Read L1 DC Tags - All Ways 0.782 pJ
Read L1 DC Data 4 Bytes - All Ways 8.192 pJ
Read L1 DC Data 32 Bytes - All Ways 70.355 pJ
Write L1 DC Data 4 Bytes - One Way 3.564 pJ
Read L1 DC Data 4 Bytes - One Way 1.616 pJ
Read DTLB - Fully Associative 0.880 pJ

Table 5.3: Energy for DFC Components

Compo- LS+DP Energy for Different DFC Sizes
nent Config 128B 256B 512B 1024B

1 0.036 pJ 0.060 pJ 0.098 pj 0.162 pJ
Read 2xLS 0.039 pJ 0.065 pJ 0.109 pj 0.183 pJ
DFC 2xLS+DP 0.040 pJ 0.068 pJ 0.116 pj 0.199 pJ

Metadata 4xLS 0.062 pJ 0.109 pJ 0.190 pj 0.332 pJ
4xLS+DP 0.069 pJ 0.120 pJ 0.210 pj 0.367 pJ

1 0.143 pJ 0.169 pJ 0.199 pj 0.236 pJ
Write 2xLS 0.234 pJ 0.271 pJ 0.314 pj 0.363 pJ
DFC 2xLS+DP 0.276 pJ 0.311 pJ 0.352 pj 0.397 pJ

Metadata 4xLS 0.395 pJ 0.471 pJ 0.561 pj 0.669 pJ
4xLS+DP 0.405 pJ 0.485 pJ 0.582 pj 0.697 pJ

Read DFC Data 0.046 pJ 0.097 pJ 0.205 pj 0.434 pJ
Write DFC Data 0.126 pJ 0.240 pJ 0.455 pj 0.866 pJ

5.3 Lazily Filling Data Words into a DFC Line

In most caches, an eager line fill strategy is used where an entire cache line is filled with data

from the next level of the memory hierarchy when there is a cache miss. Eagerly filling cache lines

on a cache miss can improve performance as it increases the cache’s hit rate, thus avoiding accessing

the next level of the memory hierarchy to retrieve the data. However, a single cycle is required to

load a word from an L1 DC in many embedded processors, meaning that introducing a DFC that

is always accessed before the L1 DC can only degrade performance due to DFC misses. Section 5.5

50

shows that the performance degradation associated with DFC misses can be completely eliminated

by only loading a value from the DFC when a hit is guaranteed. In this context, eagerly filling

words into a DFC line on a DFC miss should only be performed if it can improve energy efficiency.

Many prior FC studies have proposed to fill an FC line in a single cycle to minimize the FC miss

penalty [7,9,10,14,15,27]. Fetching an entire DFC line of data in a single cycle has been asserted to

be unrealistic as a large bitwidth to transfer data between the CPU and the L1 DC can adversely

affect L1 DC area and significantly increase the energy usage for each L1 DC access [3]. Given that

a sizeable fraction of the data memory references will access the L1 DC due to a typically high

DFC miss rate, it is best to utilize an L1 DC configuration that is efficient for L1 DC accesses.

In this chapter DFC lazy word fill strategy is used where each word is only filled when the word

is referenced and is not resident in the DFC. This design assumes a uniform L1 DC bus width of 4

bytes. So when a load byte or load halfword instruction is performed and the word is not resident,

the entire word from the L1 DC is copied into the DFC and the appropriate portion of the word

is extended and sent to the CPU. Figure 5.1 shows the information in the DFC line that is used

for the DFC lazy word fill strategy. An f (filled) bit is associated with each word in the DFC line

indicating if the word is resident. A DFC word hit requires both a DFC tag match and the f bit

to be set. This cache organization can be viewed as an extreme instance of subblocking, where

each subblock is the size of one word. The design uses a DFC write through and write allocate

policy for a DFC line miss (DFC line is not resident) or for a DFC line hit+word miss (DFC line

is resident, but the referenced word within the line is not resident) as only a single word is written

to the line at a time. However, a word is not allocated on a line hit+word miss when there is a

byte or halfword store as the processor would have to read the word from the L1 DC first in order

to ensure that the entire word is resident in the DFC.

L1DC data data...V tag fway word wordf

Figure 5.1: Components of a DFC Lazy Word Filled Line

One advantage of eagerly filling an entire DFC line is that only a single L1 DC tag check is

required for the entire DFC line fill. With the lazy fill approach, DFC line hits+word misses are

common where the DFC line corresponding to the L1 DC (sub)line that holds the data is resident,

51

but the desired word is not. In order to still provide a benefit for these cases, the L1 DC way

corresponding to the L1 DC (sub)line that holds the data is stored along with the DFC line, as

shown in Figure 5.1. When there is a DFC line hit+word miss, the L1 DC way field is used to access

the L1 DC without an L1 DC tag check. In addition, only a single L1 DC data array is accessed

to load the word from the L1 DC into the DFC line. Only a DFC line miss will require an L1 DC

tag check and a set-associative L1 DC data access. Note the DFC in this design is inclusive, where

the data in each DFC line is guaranteed to be resident in the L1 DC. Thus, both DFC eagerly and

lazily filled line approaches can avoid redundant L1 DC tag checks and set associative L1 DC data

accesses.

Each data word filled in a DFC line will require a read from the L1 DC and a write to the

DFC. Placing a data word in a DFC line will only be beneficial for reducing energy usage when the

data word is subsequently referenced due to temporal locality or when multiple individual portions

(e.g. bytes) of the word are referenced due to spatial locality within the word. Energy usage will

be reduced when n L1 DC accesses are replaced by a single L1 DC access and n-1 DFC accesses

requiring less energy, where n is greater than one.

DFC lines are also more frequently evicted than L1 DC lines due to more capacity misses, which

can result in words never being referenced that were eagerly filled in a DFC line. In contrast, each

word in a lazily filled DFC line is referenced at least once. Figure 5.2 shows the fraction of words

within eagerly filled lines in a direct-mapped DFC with a 32B line size that are referenced before

the line was evicted. The fraction is quite small due to frequent conflicts between DFC lines even

though the initial referenced word that caused the line to be filled is counted as being referenced.

Thus, even a 1024B DFC with eager line filling has about 74% of the words within a line not

referenced before the line is evicted.

DFC Size in Bytes

1
2

8

2
5

6

5
1

2

1
0

2
4

A
v
g

 F
ra

c
ti
o

n
o

f
L

in
e

 U
s
e

d
B

e
fo

re
 E

v
ic

ti
o

n

0.15

0.2

0.25

0.3

Figure 5.2: Fraction of Eagerly Filled DFC Lines
Referenced before Eviction

52

Figure 5.3 shows the ratio of DFC lazy fill word hits and the ratio of DFC lazy fill line hits+word

misses. Note that the height of each stacked bar is equal to the ratio of DFC word hits if a one-cycle

eager line fill strategy was used. The space above the bar is the ratio of DFC lazy line misses. As

the DFC size increases, the ratio of DFC lazy fill hits increases since there are fewer capacity miss

evictions of DFC lines. The results show that a large fraction of the memory references do not need

to access the L1 DC at all (word hits) and do not need to perform an L1 DC tag check and can

access a single L1 DC data array when accessing the L1 DC (line hits+word misses).

DFC Size in Bytes

1
2
8

2
5
6

5
1
2

1
0
2
4

D
F

C
 A

c
c
e

s
s
e

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
lazy fill word hits lazy fill line hits+word misses

Figure 5.3: Taxonomy of DFC Accesses

Figure 5.4 shows the data access energy when eagerly filling an entire DFC line in a single cycle

versus lazily filling the demanded word when the word is not resident in the DFC. Data access

energy is the energy used for accessing the DTLB, L1 DC, and DFC. The baseline at 1.0 is for a

processor without a DFC. Different L1 DC bitwidths were simulated using the energy associated

with a DFC eager line fill strategy (32-byte access that fills an entire DFC line in a single cycle)

and a DFC lazy word fill strategy (4-byte access that fills a word in the DFC line only when the

word is first referenced after the line is allocated). When eagerly filling an entire DFC line in a

single cycle, the entire line from each L1 DC way must be read, resulting in more energy usage, as

shown in Table 5.2. The height of the eager fill bars are labeled rather than showing the entire bar

since a DFC eager one-cycle filled line strategy uses significantly more data access energy than a

processor without a DFC. For the lazy fill bar in the figure, an L1 DC tag check and associative

L1 DC data array is accessed for each DFC line hit+word miss. For the lazy fill + memoize L1

DC way bar in the figure, no L1 DC tag check is performed and a single L1 DC array is accessed

for each DFC line hit+word miss. For a 1024B DFC, using lazy fill and memoizing the L1 DC way

reduces data access energy by about 42%.

53

DFC Size in Bytes

1
2

8

2
5

6

5
1

2

1
0

2
4

D
a

ta
 A

c
c
e

s
s
 E

n
e

rg
y

0.4

0.6

0.8

1

3
.3

0

2
.7

5

2
.3

5

2
.0

5

1
.8

1

eager fill 1 cycle lazy fill lazy fill + memoize L1DC way

Figure 5.4: Data Access Energy with Eager vs Lazy Filling

Another DFC eager line fill strategy is to fill the entire DFC line one word at a time over multiple

cycles, which will be more energy efficient than filling a DFC line in one cycle. A multicycle DFC

line fill will be problematic as it will delay subsequent accesses to the DFC or L1 DC.

One solution is to provide separate read and write ports to the DFC so that DFC word fills

(DFC writes) can occur in parallel with servicing DFC loads (DFC reads). However, there are still

disadvantages with this solution. First, a DFC implemented with a two-port SRAM will require

more circuitry, resulting in more area and power. Second, there will still be read accesses to the

L1 DC on DFC load misses, which results in a structural hazard for the L1 DC read port during a

DFC multicycle line fill, requiring a delay of the DFC line fill for at least one cycle to service the

DFC miss. Third, DFC store hits will result in a structural hazard for the DFC write port during

DFC line fills, which will also delay a DFC line fill. Finally, dealing with multiple outstanding DFC

line fills will require even more complex logic.

After a DFC line is allocated, each word that is filled in that line using either an eager or

lazy approach will require an L1 DC read and a DFC write. However, a DFC lazy word fill

approach is much simpler and will not fill words that are never referenced before the line is evicted.

Furthermore, Figure 5.2 shows that many of the words that will be filled over multiple cycles will

not be referenced and thus needlessly loaded into the DFC, wasting energy.

Eagerly filling words into a DFC line will only improve energy efficiency if the remaining words

will be referenced and the energy for performing the entire DFC (sub)line fill, which will not require

subsequent DTLB accesses and L1 DC tag checks, will be less than referencing these words from

54

the L1 DC. However, utilizing way prediction to access the L1 DC will also reduce energy usage as

only a single L1 DC tag array and data array need to be accessed.

5.4 Decreasing the DFC Miss Rate by Line Sharing and Data
Packing

Since it was determined in Section 5.3 that a DFC lazy word filled approach is more energy

efficient than an aggressive DFC eager line fill approach when a DFC causes no performance penalty,

this section now presents optimizations to the lazy word filled DFC that improve its hit rate. Much

of the space available in a lazy word filled DFC line goes unused as some words in the line will not

be filled because they are not referenced before the DFC line is evicted. In order to make better use

of this available space in a lazy word filled DFC line, the proposed design allows multiple L1 DC

(sub)lines to share the same DFC line. As long as the L1 DC (sub)lines refer to words in different

parts of the DFC line, the DFC can simultaneously hold values from different L1 DC (sub)lines.

This approach decreases the DFC miss rate as there will be fewer DFC line evictions and increases

the amount of data the DFC will likely hold. However, if multiple L1 DC (sub)lines refer to words

corresponding to the same position in the DFC line, only the most recently referenced word is

retained.

This section assumes a direct-mapped DFC where a single DFC line is associated with each

DFC set. One, two, or four L1 DC (sub)lines are allowed to share each DFC line depending on the

hardwired DFC configuration. There must be a tag and other metadata for each L1 DC (sub)line

that shares a single DFC line. Thus, there are multiple DFC tag arrays, but only a single DFC

data array. There will be DFC metadata associated with each L1 DC (sub)line that currently

shares a DFC line denoting which words of the L1 DC (sub)line are resident. Figure 5.5 shows

that this DFC metadata for each L1 DC (sub)line will include a valid bit, a tag, an L1 DC way,

and metadata about each data word. Not shown in the figure is LRU information for the L1 DC

(sub)lines that share a DFC line, which is used to determine which L1 DC (sub)line to evict on a

DFC line miss.

Table 5.4 shows one option where different words within distinct L1 DC (sub)lines can reside in

the same DFC line at the same time. This option is referred to as DFC line sharing (LS). Only a

single bit of metadata is required for each word within each L1 DC (sub)line to indicate if the word

55

wordL1DC
way metadatatagv wordL1DC

way metadatatagv...

DFC metadata way 0 DFC metadata way n−1

Figure 5.5: DFC Line Metadata

is resident or not, replacing the f (filled) bit in Figure 5.1. At most a single value from two (four)

corresponding words in the L1 DC (sub)lines can reside in the DFC line at one time as this design

allows two (four) L1 DC (sub)lines to share a single DFC line. This requires DFC word evictions

if two or more words are referenced from multiple L1 DC (sub)lines that correspond to the same

word in the DFC line.

Table 5.4: DFC Metadata for Sharing Data Words

Code Interpretation

0 4-byte value
1 not resident

Figure 5.6 shows an example of two L1 DC lines sharing a DFC line (2xLS). These two L1 DC

lines i and j are depicted with the first three values shown in each line. The DFC metadata for

these two lines are also shown to the right of each L1 DC line, using the metadata codes shown

in Table 5.4. Word 0 in line i is resident and word 1 in line j is resident. Word 2 is not resident

for either L1 DC line. This type of DFC line sharing may be beneficial when different portions of

different L1 DC (sub)lines that map to the same DFC line are being accessed close in time.

Two L1 DC Lines Mapping to the Same DFC Line

i

j

...

...

0 1 2

0 1 2

DFC Metadata

1

1

...

...0xa111ff80

0x1ca240xbffff024

032

7 1

0

0

1

...

...

0 ...

0 1 2

7

DFC Line

Figure 5.6: Example of Line Sharing

56

Table 5.5 shows an extension to line sharing where values associated with the same corresponding

words from distinct L1 DC (sub)lines can sometimes reside in the same word within a DFC line at

the same time. This option is referred to as DFC line sharing and data packing (LS+DP). Rather

than evicting words from a DFC line if multiple L1 DC (sub)lines attempt to share the same DFC

word, the design allows multiple L1 DC (sub)lines to share the same word if the multiple values

taken together can fit in four bytes. This approach will decrease the miss rate as there will be fewer

DFC word evictions and the amount of data stored inside the DFC will increase.

Table 5.5: DFC Metadata for Sharing+Packing Data Words

Code Interpretation Can Pack with

00 zero value 00, 01, 10, 11
01 1-byte (4xLS) or 2-byte (2xLS) value 00, 01, 11
10 4-byte value 00, 11
11 not resident 00, 01, 10, 11

Two bits of metadata are required for each word within each L1 DC (sub)line sharing the same

DFC line to support data packing, as shown in Table 5.5. When a word is loaded from the L1 DC,

the processor checks if the value is narrow width, meaning that the value can be represented in fewer

bytes than a full data word. If only two distinct L1 DC (sub)lines are allowed to share the same

DFC line (2xLS+DP), then narrow width means that the value can be represented in two bytes. If

four distinct L1 DC (sub)lines are allowed to share the same DFC line (4xLS+DP), then narrow

width means that the value can be represented in one byte. Otherwise, the value is considered full

width (code 10). Zero can be viewed as a special narrow-width value, where the data value is not

actually stored in the DFC line. Thus, a zero value (code 00) can be packed in the same word with

any other value. A nonzero narrow width value (code 01) can be packed into the same word with

any value that is not full width.

The placement within the word of nonzero narrow-width values for a given L1 DC (sub)line will

be based on the DFC metadata way of the L1 DC (sub)line as shown in Figure 5.5. When only

two L1 DC (sub)lines can share the DFC line, a nonzero narrow width value will be placed in the

lower halfword if the DFC metadata way was zero and the upper halfword if the DFC metadata

way was one. Likewise, a nonzero narrow width value would be placed in the corresponding byte

57

based on the DFC metadata way of the L1 DC (sub)line that is sharing that DFC line when four

L1 DC (sub)lines can share the DFC line.

Figure 5.7 shows an example of line sharing and data packing with two L1 DC lines sharing a

DFC line (2xLS+DP). These two L1 DC lines have the same values as in Figure 5.6. The DFC

metadata for these two lines use the metadata codes shown in Table 5.5. Word 0 in each of the two

L1 DC lines can be packed into word 0 of the DFC line as both values are narrow width (can be

represented in 2 bytes). Word 1 in each of the two L1 DC lines can be packed into word 1 of the

DFC line as word 1 of L1 DC line j is zero and is not stored in the DFC line. At most one value

for word 2 can be stored as the values in word 2 for both L1 DC lines i and j are full width. It

may be the case that the value from word 2 in L1 DC line i has not yet been referenced from the

time the L1 DC line i was allocated in the DFC and thus has not yet been filled.

Two L1 DC Lines Mapping to the Same DFC Line

i

j

...

...

0 1 2

0 1 2

DFC Metadata

11

10

...

...0xa111ff80

0x1ca240xbffff024

032

7 10

00

01

01

0xbffff024 0xa111ff80 ...

0 1 2

DFC Line

7 32

...

...

Figure 5.7: Example of Line Sharing and Data Packing

Figure 5.8 shows the taxonomy of the data values stored in a DFC. On average, 18.5% were

zero values, which do not require an access to the DFC data. 23.6% could be represented in a

single byte and 13.7% required two bytes. 44.1% of the values required three or four bytes to be

represented. Thus, 55.9% of the values can be potentially packed into a word with a value from a

different L1 DC line.

The DFC word metadata is organized into arrays, where there is a separate array for each set

of corresponding words of DFC metadata from the L1 DC (sub)lines. The specific array to be

accessed is determined by the DFC word offset value. The specific DFC word metadata within

58

Benchmarks

b
z
ip

2

g
c
c

g
o
b
m

k

h
2
6
4
re

f

h
m

m
e
r

lib
q
u
a
n
tu

m

m
c
f

p
e
rl
b
e
n
c
h

s
je

n
g

a
ri
th

.
m

e
a
n

V
a

lu
e

 T
y
p

e
s
 S

to
re

d
 t

o
 D

F
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zero−Value One−byte Width Two−byte Width Four−byte Width

Figure 5.8: DFC Data Value Taxonomy

the set of corresponding DFC words is selected by which DFC tag matches and this metadata will

indicate if the word is resident.

Figure 5.9 shows the average utilization of words in the DFC for the different line sharing (LS)

and data packing (DP) techniques. Utilization indicates the average number of resident words that

are in the DFC after each 1000 cycles. The results are compared to a baseline at 1.0 in the graph

that represents a lazy word filled DFC with no line sharing or data packing. Line sharing and

data packing are both shown to be quite effective for increasing the DFC utilization. However, as

the DFC size increases, the relative utilization improvement decreases as compared to the baseline

since more of each application’s working set fits into the DFC.

Figure 5.10 shows the fraction of memory references that are word hits and line hits+word

misses in the DFC with different sizes and configurations. The space above the bars represent line

misses. Data packing increases the number of word hits within the line, but does not change the

number of line misses. Thus, the height of the bars with and without data packing are the same

when sharing the same number of L1 DC (sub)lines. As the DFC size increases, the sum of the DFC

word hits and line hits+word misses also increases. The figure also shows how valuable line sharing

and packing is for improving the DFC hit rate. For instance, a 256 byte DFC that shares 4 L1 DC

sublines with data packing (4xLS+DP) provides about the same DFC word hit rate (42%) as a

1024 byte DFC with no line sharing (43%). These results show that line sharing and data packing

provide more flexibility so that the DFC can often better adapt to the data reference patterns in

59

DFC Size in Bytes

1
2

8

2
5

6

5
1

2

1
0

2
4

R
a

ti
o

 o
f

D
F

C
 R

e
s
id

e
n

t
W

o
rd

s
R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

1

1.5

2

2.5

3

3.5

4
2xLS 2xLS+DP 4xLS 4xLS+DP

nxLS = n lines shared, DP = data packing

Figure 5.9: DFC Data Utilization

DFC Size in Bytes

1
2

8

2
5

6

5
1

2

1
0

2
4

D
F

C
 A

c
c
e

s
s
e

s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
F

C

D
F

C

D
F

C

D
F

C

2
x
L

S

2
x
L

S

2
x
L

S

2
x
L

S

2
x
L

S
+

D
P

2
x
L

S
+

D
P

2
x
L

S
+

D
P

2
x
L

S
+

D
P

4
x
L

S

4
x
L

S

4
x
L

S

4
x
L

S

4
x
L

S
+

D
P

4
x
L

S
+

D
P

4
x
L

S
+

D
P

4
x
L

S
+

D
P

word hits line hits+word misses

DFC = no line sharing, nxLS = n lines shared, DP = data packing

Figure 5.10: DFC Data Hit Rates

an application. Compressing cache data has a greater opportunity to decrease the DFC miss rate

compared to decreasing the miss rates of larger caches since an application’s working set is less

likely to fit in a smaller uncompressed DFC.

Figure 5.11 shows the average data access energy usage for the different combinations of line

sharing and data packing techniques varied for different DFC sizes. The baseline at 1.0 is for a

processor without a DFC. The figure shows that with smaller DFC sizes, energy usage is reduced

when sharing more L1 DC lines and packing more data words as the DFC miss rate is more

effectively lowered due to reducing contention for DFC lines. With larger DFC sizes, there is less

60

DFC Size in Bytes

1
2

8

2
5

6

5
1

2

1
0
2

4

D
a
ta

 A
c
c
e
s
s
 E

n
e
rg

y

0.5

0.55

0.6

0.65

0.7

0.75
DFC 2xLS 2xLS+DP 4xLS 4xLS+DP

DFC = no line sharing, nxLS = n lines shared, DP = data packing

Figure 5.11: Data Access Energy

contention for DFC lines and the extra overhead of additional DFC tag comparisons and word

metadata accesses outweighs a smaller improvement in the DFC miss rate. The best data access

energy usage is with sharing four lines (4xLS or 4xLS+DP) for a DFC size of 512 bytes. While

Figures 5.9 and 5.10 showed that data packing improved both DFC utilization and hit rates, the

energy used to access the word metadata mitigates most of those benefits. So the total energy

usage with data packing was only slightly less than without data packing.

Figure 5.12 shows the average data access energy usage for each component for the best con-

figuration of line sharing and data packing with each DFC size, as shown in Figure 5.11. A DFC

size of zero indicates no DFC was used. Using a DFC significantly reduces L1 DC read energy.

Note that L1 DC write energy stays constant due to using a DFC write-through policy. Likewise

the DTLB energy stays constant as the DTLB is accessed for each memory reference. The DFC

energy grows as the DFC size increases. One can see that the increase in DFC energy surpasses

the decrease in L1 DC read energy when moving from a 512 byte to a 1024 byte DFC. Thus, the

512 byte DFC has slightly lower total data access energy.

61

DFC Size in Bytes

0

1
2

8

2
5

6

5
1

2

1
0

2
4

D
a

ta
 A

c
c
e

s
s
 E

n
e

rg
y

0

0.2

0.4

0.6

0.8

1
L1 DC Read L1 DC Write DTLB DFC

Figure 5.12: Component Data Access Energy

DFC word

metadata

reg

file

IF

L1 IC

control

EXID WBMEM

DFC

data

=

VPN
DTLB

DFC
tags

DFC index

DFC index

ALU

SE

DFC word offset

L1 DC

Figure 5.13: Modified Datapath to Support Guaranteed DFC Hits

5.5 Eliminating the DFC Miss Penalty by Only Accessing DFC
Data on Guaranteed Hits

It is desirable to not degrade performance when a value is not resident in the DFC as DFC miss

rates can be fairly high. A traditional instruction pipeline was revised to only load data from a

DFC when a DFC word hit is guaranteed. DFC word hits are guaranteed by speculatively accessing

the DFC metadata using the upper bits of the base register when the offset is small. If the addition

of the base register and the offset does not cause these upper bits to change, then the speculation is

successful and the processor can use the L0 DC data if the metadata shows the word is resident or

62

the processor can use the L1 DC way if the metadata shows that the line is resident but the word

is not. Otherwise, if the processor 1) is not able to speculate because the offset was too large, 2)

speculatively accesses the metadata, but the calculation of the effective address modifies the bits

used to access the metadata, or 3) has a line miss in the metadata, then the processor must access

the L1 DC, but now with no performance penalty. Figure 5.13 shows a classical five stage pipeline

modified to support access to a DFC with no performance penalty. Only the datapath for ALU

and load instructions is shown with no forwarding to simplify the figure.

Assume a load instruction is being processed in the pipeline. The virtual page number (VPN)

field (see Figure 6.1) of the base register value is used to speculatively access the DTLB during

the EX stage. Unless the VPN is modified when calculating the effective address by adding the

displacement, the physical page number that is output from the DTLB will be valid. The DFC

index field (see Figure 6.1) of the base register value is used in the EX stage to speculatively access

the DFC tag arrays so that a DFC tag check can be performed. The processor will check that the

DFC index field of the address is unaffected by the effective address addition by ensuring that the

displacement is less than the DFC block size and inspecting the carry out of the DFC offset field.

The DFC index field is also used to access the DFC word metadata. The processor will access the

L1 DC during the MEM stage when the DFC block number field (see Figure 6.1) is affected by the

effective address calcuation, a DFC line miss occurs, or the specified word is not resident in the

DFC line. If there is a DFC line hit+word miss, then only a single L1 DC data array is accessed

with no L1 DC tag check as the L1 DC way field in the DFC line indicates which L1 DC way

to access. If the DFC word metadata indicates that the value is zero, then the DFC data is not

accessed. Otherwise, a DFC word hit for a nonzero value occurred, the DFC data will be accessed

in the MEM stage, and the word metadata obtained during the EX stage will be used to determine

how to extract the value from the word in the DFC line.

For DFC word hits that load a value of zero, the value is obtained after the EX stage instead of

the MEM stage. Although this feature could be used to provide a small performance improvement,

it was not evaluated in this study.

The DFC in the proposed design will not be able to service every load due to DFC line misses,

DFC line hits+word misses, and when the DFC block number field is affected by the effective

address calculation. Thus, it would be desirable to load the data from the L1 DC in the MEM

63

stage when the data cannot be supplied by the DFC in the EX stage. An inclusive cache policy and

a DFC write-through policy are used to ensure that the L1 DC always has the most recent data. A

write-through policy is much simpler to implement than a write-back policy in this proposed DFC

design as the processor does not have to deal with writing back dirty DFC lines over multiple cycles

when a DFC line is replaced. Eviction of DFC lines due to L1 DC line evictions is also simpler as

the evicted DFC lines simply need to be invalidated.

Although not shown in Figure 5.13, the DFC tag comparison and DFC word metadata access

is performed again in the MEM stage when the effective address calculation affects the DFC block

number. If there is not a DFC tag match (DFC line miss), then the appropriate L1 DC (sub)line

is allocated in the DFC line. The word loaded from the L1 DC is placed in the DFC line if there

is either a DFC line miss or DFC line hit+word miss. If there is a DFC tag match and the word

is resident on a store instruction, then both the DFC and L1 DC are updated in the MEM stage.

Figure 5.14 shows the taxonomy of loads accessing the DFC for different sizes. The word hits

indicate how often the value was obtained from the DFC, which ranged from 14.3% for a 128B DFC

to 29.5% for a 1024B DFC. The line hits+word misses indicate how often the line was resident in

the DFC, but the word was not resident. Note that a line hit+word miss means that the value can

be obtained from the L1 DC during the MEM stage without an L1 DC tag check and with accessing

only a single L1 DC data array. A lazy fill line hit+word miss is equivalent to a first reference to a

word that is a hit in an eagerly filled DFC line. The line misses indicate that the DFC was accessed

and that either the entire line was not resident or the speculative address generation caused the

DFC block number to change so that the wrong DFC set was accessed. The sum of the three

portions of the bar are the same regardless of the DFC size. This sum represents the fraction of

loads when a speculative DTLB tag access occurred. The space above each bar indicates that the

DFC was not accessed due to the displacement of the load instruction being larger than the DFC

line size.

Figure 5.15 shows the data access energy when accessing DFC data only on guaranteed hits

and without speculation (accessing DFC metadata after address generation) for each DFC size

with its best configuration. All configurations shown share 4 L1 DC (sub)lines per DFC line and

include data packing (4xLS+DP). Results are shown for both a 32 byte and 64 byte line size.

The energy usage is higher with speculation, which is due to two reasons. First, useless DFC

64

DFC Size in Bytes

1
2

8

2
5

6

5
1

2

1
0

2
4

L
o

a
d

 A
c
c
e

s
s
e

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
word hits line hits+word misses line misses

Figure 5.14: Taxonomy of Load Accesses

accesses occur due to speculation failures when the DFC block number was affected by the effective

address calculation. Second, loading data that resides in the DFC cannot be exploited when the

displacement is larger than the DFC block size or when speculation failures occur. The data access

energy using guaranteed hits is much less for a 64 byte line size as there are fewer speculation

failures and fewer displacements larger than 64 as opposed to 32. The data access energy reduction

using guaranteed DFC hits is still significant. For a 64 byte line size, the energy reduction ranges

from 31.2% for a 128B DFC to 36.4% for a 512B DFC. Note that a DFC without speculation

will cause a performance degradation due to a one cycle miss penalty on DFC misses. A longer

execution time will require more energy, which is not shown in Figure 5.15.

5.6 Related Work

There has been a number of prior studies on compressing data in first-level data caches or using

common values to avoid data accesses in a first-level data cache. A small frequent value cache

(FVC) has been proposed that is accessed in parallel to the L1 DC and is used to improve the miss

rate as the FVC effectively functions as a victim cache [33]. The FVC is very compact as it uses

3 bits to represent codes for seven frequent word values and an eighth code is used to represent

that the value is nonfrequent and not resident in the FVC. The FVC was later adapted so that

a separate frequent value L1 DC data array was accessed first to avoid the regular L1 DC data

array if the value was frequent [30]. This approach reduced L1 DC energy usage at the expense

of delaying access to a nonfrequent value by a cycle. A compression cache (CC) that serves as a

65

DFC Size in Bytes

1
2
8

2
5
6

5
1
2

1
0

2
4

D
a
ta

 A
c
c
e
s
s
 E

n
e
rg

y

0.4

0.5

0.6

0.7

0.8

0.9

1
32B guar 64B guar 32B 64B

nB = n byte line size, guar = guaranteed hits

Figure 5.15: Data Access Energy with Guaranteed DFC Hits

replacement for an L1 DC has also been designed to hold frequent values [32]. Each CC line holds

either a single uncompressed line or two compressed lines when half or more of the words in the line

are frequent values. A separate bit mask is used to indicate if a word value is frequent or not, which

then indicates where the word is located within the line. This cache design will result in a more

complicated access and likely a longer access time. It appears in both the FVC and CC designs

that a separate profiling run was performed to acquire the frequent values for each benchmark that

was simulated, which will limit the automatic utilization of these designs. An approach similar to

the CC was developed that allows two lines to be compressed into the size of one line, but does

not increase the L1 DC access latency [23]. One proposed technique was to require that all words

be representable in two bytes (narrow width) and another technique allows a couple of words in

the two lines to not be narrow width where additional halfwords in the line are used to store the

upper portions. Dynamic zero compression adds a zero indicator bit (ZIB) to every byte in a

cache [28]. This ZIB is checked and the access to the byte is disabled when the ZIB is set. This

approach requires more space overhead and may possibly increase the cache access time, but was

shown to reduce energy from data cache accesses. The zero-value cache (ZVC) contains a bit vector

of the entire block, where each bit indicates if the corresponding byte or word contains the value

zero [12]. Blocks are placed in the ZVC (exclusive of the L1 DC) when a threshold of zero values

for bytes/words within a block is met. The ZVC allows the access for loads and stores to the L1 DC

66

to be completely avoided. ZVC misses may result in execution time penalties, though the authors

claim the ZVC is small enough to be accessed before the L1 DC with no execution time penalty.

The same authors later developed the narrow-width cache (NWC) containing 8-bit values to reduce

the miss rate [13]. The NWC is accessed in parallel to the L1 DC cache and blocks are placed in

the NWC if a threshold of narrow values within the block is met. The NWC is used to reduce the

miss rate. While all of these cache techniques either decrease the cache miss rate or reduce energy

usage, no prior DFC or first-level cache technique shares and packs data from different lines in the

next level of the memory hierarchy into the same line at the current level of the memory hierarchy

at the granularity of individual words without increasing the access time.

The speculative tag access approach is used to reduce the energy for accessing the L1 DC [4]. It

speculatively performs an L1 DC tag check and DTLB access during the address generation stage

using the index and tag fields from the base register value. If adding the displacement does not

affect the index and tag fields, then only a single L1 DC data way is accessed during the MEM

stage. This design uses a similar speculative tag access approach, but instead accesses the DFC

tag and word metadata during the address generation stage to only access the DFC data during

the MEM stage when a hit is guaranteed.

There have been a few DFC designs that have been proposed to eliminate the DFC miss penalty.

Small alterations to the original FC design have been explored, where these new designs assume

that DFC tag comparison is performed within the execute stage after the effective address has

been computed [7]. This approach requires a very small DFC and/or a slow clock rate to be

feasible. The practical DFC (PDFC) speculatively performs an DFC tag check in parallel with the

effective address generation [3]. The speculative DFC access is only attempted when the load or

store displacement is small so that the DFC index field is unlikely to be updated. The PDFC also

assumed the DFC data could be accessed in the address generation stage, but after the computation

of the DFC offset field. In contrast to these approaches, our design can support a much larger DFC

due to timing issues since the DFC data access occurs in the MEM pipeline stage only after a DFC

hit has been guaranteed in the EX stage.

A prior work speculatively accesses the DFC in the MEM stage when a reference is predicted

to hit in the DFC by performing a partial tag comparison [16]. This approach is similar to our

approach of guaranteeing a hit in the DFC, though their approach may occasionally result in a

67

performance delay when the prediction is incorrect. Performance can also be potentially affected

due to write backs of dirty DFC lines in their approach. Their approach also did not lazily fill DFC

lines or use line sharing or data packing to decrease the miss rate.

5.7 Conclusions

This chapter described a design that allows a DFC to reduce energy usage and not degrade

performance. This chapter showed that a DFC lazy word fill approach is more energy efficient than

a DFC eager line fill approach. This chapter also demonstrated that it is possible to share and pack

multiple L1 DC lines into a single DFC line at the granularity of individual words to improve the

DFC hit rate. Finally, a method was presented to eliminate the DFC miss performance penalty by

only accessing DFC data when a DFC hit is guaranteed. This design should allow a DFC to be

efficiently utilized in embedded processors.

68

CHAPTER 6

DECREASING THE MISS RATE AND THE MISS

PENALTY OF A L1 DC

Level-one data caches (L1 DCs) need to be small to match the speed of processors and to reduce

L1 DC energy usage. However, smaller cache sizes result in higher L1 DC miss rates, which can

degrade performance. We introduce an L1 DC line sharing technique at the granularity of individual

words that attempts to retain data values longer in an L1 DC by compressing values in an efficient

manner that has a minimal impact on the L1 DC access time. This technique reduces the L1 DC

miss rate by increasing the effective L1 DC capacity. We also show that our technique decreases

the number of words fetched between the L1 DC and the level-two cache (L2C), which reduces both

L1 DC stall cycles and L1 DC bus contention. When sharing four L2 sublines in each L1 DC line, a

processor with a direct-mapped 16KB L1 DC has its average miss rate percentage decreased from

10.3% to 5.5% and the average number of data words fetched from the L2C decreased by 49%.

6.1 Introduction

In order to maintain fast level-one data cache (L1 DC) access times on contemporary processors,

L1 DC sizes in recent years have largely remained the same. L1 DC misses incur stalls as the data

must be retrieved from higher levels of the memory hierarchy, such as the shared level-two cache

(L2C). Non-blocking caches in out-of-order processors attempt to hide this delay by allowing the

L1 DC to continue servicing loads while outstanding load misses are still being completed. Factors

such as the complexity of the circuitry as well as bus contention means that this approach can be

extended to allow only a limited number of outstanding L1 DC misses to remain in flight before the

L1 DC must be stalled. In addition, as the instruction issue width for OoO processors increases,

loads often become the bottleneck for performance.

69

We introduce an L1 DC line sharing technique that allows multiple level-two (L2) cache sublines

to share a single L1 DC line at a word-level granularity.1 This technique allows a single L1 DC line

to simultaneously hold data values from the same corresponding word in multiple L2 sublines by

compressing these values into a single word. Furthermore, a subblocked L1 DC line can simultane-

ously hold values from multiple L2 sublines even if values cannot be compressed when they belong

to separate subblocks in the same L1 DC line. By using sign-extension, we allow multiple values

to be placed together inside a single word if they can be represented in halfword-width values,

byte-width values, or zero-width values (a value of zero). Our compression technique has minimal

impact on the L1 DC access time as the L1 DC line offset of the address doesn’t change, which

allows the same word to be loaded from an L1 DC line regardless of the L2 subline to which it

belongs. In effect, a load from a direct-mapped L1 DC using our line sharing approach would access

a single word of data, but would access multiple L1 DC tags that are associated with that L1 DC

line to determine if the accessed L2 subline is resident within the L1 DC line and would access word

metadata to determine how to extract the value from the word. We show that this line sharing

technique increases the effective capacity of an 16KB, direct-mapped L1 DC by as much as 60%

(160%) when sharing two (four) L2 sublines. By allowing multiple L2 sublines to share words in a

single L1 DC line, we retain values longer as an existing word value in a resident metaline doesn’t

need to be evicted if it can be stored together with a word value from the same corresponding word

in the incoming L2 subline. By retaining values longer, not only do we decrease the miss rate, but

we also decrease the miss penalty associated with L1 DC line fills as fewer words need to be filled

from an L2 subline when some of the words in that L2 subline already reside in the L1 DC line. On

average, we reduce the number of data words needed to be fetched from the L2C and placed inside

the L1 DC by 41% (48%) for a direct-mapped 16KB L1 DC that shares two (four) L2 sublines in

each L1 DC line. Although our approach requires two (four) times the number of L1 DC tag bits

to be accessed when we allow two (four) L2 sublines to share the same L1 DC line, our approach

reduces data access energy usage as the L1 DC tag memory requires less power to access than the

much larger L1 DC data memory and the number of L2 accesses is also decreased.

1We define an L2 subline as the portion of an L2C line that maps to an L1 DC line. Our L1 DC line sharing
technique does not imply that the L2C line size must be larger than the L1 DC line size and does not imply that
L2C lines are subblocked.

70

This paper makes the following contributions. (1) To the best of our knowledge, we present

the first cache line compression technique that shares lines at the granularity of individual words

that has a minimal impact on the cache access time. Sharing corresponding data words between

multiple cache lines and allowing arbitrary words from these cache lines to be nonresident provides

more flexibility for compressing values. Hence, line sharing is more effective than attempting to

compress entire cache lines. (2) We outline novel L2 subline replacement and fill policies within a

shared L1 DC line that significantly reduces unnecessary fetches of words from the L2C. (3) We

provide an extensive empirical evaluation of our L1 DC line sharing technique.

The remainder of this paper is organized as follows. In Section 6.2 we describe how multiple

L2 sublines can be shared within each L1 DC line. We illustrate in Section 6.3 how multiple word

values can be compressed into a single word within an L1 DC line and how the word value can

be efficiently decompressed when accessed. In Section 6.4 we outline when we fill the nonresident

words in a L2 subline. We detail in Section 6.6 the processor design and parameters used to evaluate

our approach. In Section 6.5 we illustrate the L2 subline replacement and line fill policies within

the L1 DC. Section 6.7 presents the results of our analysis. We contrast in Section 6.8 our approach

with other techniques that compress data in the L1 DC. We propose future evaluations of how line

sharing affects other L1 DC parameters or techniques in Section 6.9. Finally in Section 6.10 we

provide the conclusions of the paper.

6.2 Sharing Words between Multiple L2 Sublines

A data value in an L1 DC is accessed by using the set index and line offset portions of the

address (see Figure 6.1) to index into the data line array and retrieve the data within the line,

respectively. For a load from an m-way set associative cache, the data in all m ways are accessed

and if there is a matching tag in the tag array, then only the data word associated with the matched

tag is forwarded to the processor. In order to not affect the L1 DC access time, it’s imperative

that the location of the data word within the L1 DC line not be affected by accessing a compressed

value so that the L1 DC data word can be accessed in parallel with performing the L1 DC tag

check. To accomplish this, we restrict the scope of compression to a set of predetermined categories

that allows a data word to be uniformly accessed from the L1 DC and only affects the logic for

extracting the value from the data word. In this section we assume a direct-mapped L1 DC where

71

a single L1 DC line is associated with each L1 DC set for ease of explanation. Our line sharing

approach can be easily extended to set-associative L1 DCs and we show results for 1-way, 2-way,

and 4-way set-associative line-shared L1 DCs in Section 6.7.

offset

set

index
tag

line

Figure 6.1: Partitioning of Address to Access the L1 DC

Assume an L2 subline is the portion of an L2 line that corresponds to an L1 DC line. During

an L1 DC line fill, the L2 subline where the data resides is fetched from the L2C and placed inside

the corresponding L1 DC line. An L1 DC line contains m word slots, where m is the L1 DC line

size in words. Upon an L1 DC line fill, word 0 of the L2 subline is placed inside word slot 0 of the

L1 DC line, word 1 of the L2 subline is placed inside word slot 1 of the L1 DC line, and so forth.

We allow two or four L2 sublines to share each L1 DC line depending on the hardwired L1 DC

configuration.

Figure 6.2 shows the organization of a direct-mapped line-shared L1 DC with n lines and m L2

sublines that can be placed in each L1 DC line. We refer to each L2 subline that can reside in an

L1 DC line as a metaline. A conventional L1 DC line has a single valid bit and tag associated with

it. In contrast, a line-shared L1 DC cache has a valid bit and tag associated with each metaline

(L2 subline) that can simultaneously reside within the same L1 DC line. In addition, there are

word metadata for each metaline, where a few bits are associated with each data word to describe

whether or not a data value is resident and how it is compressed within the word when it is resident.

Not shown in the figure is least recently used (LRU) information for the metalines that share an

L1 DC line, which is used to determine which metaline to evict on an L1 DC line miss.

If the tag comparison on a data reference indicates that the referenced L2 subline is not currently

sharing the L1 DC line, we evict one of the metalines according to the policy specified in Section 6.5

and mark all of the words associated with that evicted metaline as not resident. Likewise, the tag

comparison may indicate that the referenced L2 subline is currently sharing the L1 DC line, but the

referenced word within the L2 subline may not be resident within the L1 DC line. In this case the

processor loads not only the nonresident word in the L2 subline, but all other nonresident words

associated with the same L2 subline. Rather than evicting the values associated with the other

72

dataV tag metadata

word

metaline m-1

...

0

...

n-1

V tag metadata

word

metaline 0

...

n-1

0 0

...

n-1

Figure 6.2: L1 DC with m Metalines for Each L1 DC Line

metalines currently sharing the L1 DC line, we allow these other metalines to share the L1 DC line

with the words associated with the incoming L2 subline when possible. When placing the values

of the words comprising the incoming L2 subline into the L1 DC line, we check for each word slot

to see if the resident values and the incoming L2 subline can share the word slot. This approach

decreases the miss rate as there are fewer L1 DC word evictions and the amount of data stored

inside the L1 DC increases.

The L1 DC word metadata is organized into arrays, where there is a separate array for each set

of corresponding words of L1 DC metadata from the L2 sublines. The specific array element to be

accessed is determined by the L1 DC word offset value. The specific L1 DC word metadata within

the set of corresponding L1 DC words is selected by which L1 DC tag matches and this metadata

will indicate if the word is resident and how to extract the value from that word.

6.3 Compressing and Decompressing L1 DC Data

Our line-shared L1 DC attempts to compress a data value within a word during a store instruc-

tion or when an L1 DC word is being filled from the L2C. Note that a store instruction requires

an L1 DC tag check before the value is actually stored. Thus, how other values are stored in the

word is known before storing the new value as word metadata associated with the corresponding

word from all of the metalines sharing the L1 DC line is checked in parallel with the tag compar-

isons. The type of encoding for the value to be stored is determined after the value to be stored

is available. The word metadata with the corresponding data word for each metaline associated

with an L1 DC line may need to be updated depending upon the new value to be stored as values

from other metalines will be marked as nonresident when they cannot be compressed with the new

73

value. Note that we do not attempt to compress a value if we are storing a byte or a halfword to

the upper halfword of a word.

Table 6.1 shows that when using only two metadata bits for each data word, values associated

with the same word slot from distinct L2 sublines can sometimes be compressed to reside within

an L1 DC word slot at the same time. When a word is loaded from the L2C, the processor checks

if the value is narrow width, meaning that the value can be represented in fewer bytes than a full

data word through sign extension. Otherwise, the value is considered full width (code 10). Zero

can be viewed as a special narrow-width value, where the data value is not actually stored in the

L1 DC line. The third column of Table 6.1 indicates when each value can be shared with other

values in the same word. A nonzero narrow width (2-byte) value (code 01) can be shared in the

same word with any value that is not full width (code 10). In other words, a 2-byte value (code

01) can share a word with a zero value (code 00), a 2-byte value (code 01), or a nonresident value

(11). A zero value (code 00) can be shared in the same word with any other value.

Table 6.1: L1 DC 2-Bit Word Metadata Encoding

Code Interpretation Can Share a Data Word with

00 zero value 00, 01, 10, 11
01 2-byte value 00, 01, 11
10 4-byte value 00, 11
11 not resident 00, 01, 10, 11

The placement within the word of nonzero narrow-width values for a given L2 subline will be

based on the L1 DC metaline way of the L2 subline as shown in Figure 6.2. When two L2 sublines

can share the same L1 DC line (2xLS), a nonzero narrow width value will be placed in the lower

halfword if the L1 DC metadata way was zero and the upper halfword if the L1 DC metadata way

was one. When four L2 sublines can share the same L1 DC line (4xLS), a nonzero narrow width

value will be placed in the lower halfword if L1 DC metaline way was zero or one and the upper

halfword if the L1 DC metaline way was two or three.

Figure 6.3 shows an example of line sharing with two L2 lines sharing an L1 DC line (2xLS).

The L1 DC metadata for these two lines use the metadata codes shown in Table 6.1. Word 0 in each

of the two L2 sublines can be compressed into word 0 of the L1 DC line as both values are narrow

width (can be represented in 2 bytes). Word 1 in each of the two L2 sublines can be compressed

74

into word 1 of the L1 DC line as word 1 of L2 subline j is zero and is not stored in the L1 DC line.

At most one value for word 2 can be stored as the value in word 2 for L2 subline j is full width.

Two L2 Sublines Mapping to the Same L1 DC Line

i

j

...

...

0 1 2

0 1 2

2-Bit Word Metadata

11

10

...

...0xa111ff80

130xbffff024

032

7 10

00

01

01

0xbffff024 0xa111ff80 ...

0 1 2

L1 DC Line

7 32

...

...

Figure 6.3: Line Sharing Example with 2-Bit Word Metadata

Figure 6.4 shows the taxonomy of the data values stored in an L1 DC for the SPECint 2006

benchmark suite. On average, 18.5% were zero values, which do not require an access to the L1 DC

data to store the data. 23.6% could be represented in a single byte and 13.7% required two bytes.

44.1% of the values required three or four bytes to be represented. Thus, 55.9% of the values can

be potentially compressed into a word with a value from a different L2 subline.

Table 6.2 shows an extended set of ways that data values can be compressed into a single

word by using 3 bits for each word encoding. Code 001 allows a 1-byte sign-extended value to

be represented, which has the advantage of allowing up to four byte values to share a single data

word. If only two L2 sublines can share an L1 DC line, then this encoding would still reduce energy

usage as the number of bytes being updated in the cache will be reduced. Code 011 indicates

that the upper halfword will come from the upper half of the address used to access the L1 DC,

which is comprised from the tag field and possibly a portion of the set index field (see Figure 6.1).

The motivation for this encoding is that sometimes a word can contain a pointer to a value that

is nearby to the address where the pointer itself is stored (within the same lower 16-bit or 64KB

offset). Code 100 indicates that a common upper halfword is to be used. The idea is that often

75

Benchmarks

b
z
ip

2

g
c
c

g
o
b
m

k

h
2
6
4
re

f

h
m

m
e
r

lib
q
u
a
n
tu

m

m
c
f

p
e
rl
b
e
n
c
h

s
je

n
g

a
ri
th

.
m

e
a
n

V
a
lu

e
 T

y
p
e
s
 S

to
re

d
 t
o
 D

F
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zero−Value One−byte Width Two−byte Width Four−byte Width

Figure 6.4: L1 DC Data Value Taxonomy

the same upper halfword value is used in different words in the same L2 subline (e.g. high half

of pointer address). One common upper halfword value is stored with each metaline. If the valid

bit for the common upper halfword is not set, then the upper halfword of a 4-byte value (code

110) being stored or filled will be placed in the common upper halfword. When there is a store

word instruction or word fill, the L1 DC compares the upper halfword of the current value to be

stored with this common halfword value associated with the entire metaline. If the current upper

halfword matches this common upper halfword value, then only the lower halfword is stored in the

data word. A valid bit is not set for the common upper halfword until a match is found indicating

that the upper halfword value is the same as another word in the line. A counter for the common

upper halfword is incremented on each match and the counter is decremented when a new value is

stored that does not match the current upper halfword associated with the previous value or the

current value using the common upper halfword becomes no longer resident. The common upper

halfword can only be replaced when the counter is zero, which simplifies replacement since other

word values within the same L1 DC line do not have to be updated. Code 101 contains the upper

half of the $gp register, whose value is used to access global variables and is obtained at the start

of the execution. If a global address is stored within this 64KB offset, then only the lower halfword

76

of the value needs to be stored.

Table 6.2: L1 DC 3-Bit Word Metadata Encoding

Code Interpretation Can Share a Data Word with

000 zero value 000,001,010,011,100,101,110,111
001 1-byte value 000,001,010,011,100,101,111
010 2-byte value 000,001,010,011,100,101,111
011 upper half address 000,001,010,011,100,101,111
100 common upper half 000,001,010,011,100,101,111
101 $gp upper half 000,001,010,011,100,101,111
110 4-byte value 000,111
111 not resident 000,001,010,011,100,101,110,111

Figure 6.5 shows an example of line sharing with two L2 lines sharing an L1 DC line (2xLS)

using the 3-bit word metadata codes shown in Table 6.2. Word 0 in each of the two L2 sublines

can be compressed into word 0 of the L1 DC line as word 0 of L2 subline i has an upper halfword

that is the same as the common upper halfword that is stored with this metaline and word 0 of

L2 subline j is the upper halfword of the $gp value. Word 1 in each of the two L2 sublines can

be compressed into word 1 of the L1 DC line as word 1 of L2 subline i also has the same upper

halfword value as the common upper halfword and word 1 of L2 subline j has an upper halfword

that has the same bits as the upper halfword of the address of the L1 DC line. Finally, word 2 in

each of the two metalines can be stored in word 2 of the L1 DC line as word 2 of L2 subline i is

zero.

A value is decompressed from a word in the L1 DC line when it is loaded from the cache

due to a load instruction being executed. The word is loaded in parallel with performing the tag

comparisons and checking the word metadata. Thus, accessing the data word is not delayed as the

same set index and line offset of the address (see Figure 6.1) is used to access the word within the

L1 DC line. The loading of a value from a conventional cache goes through a multiplexor as only a

portion of the loaded word is used when a load byte (signed or unsigned) or load halfword (signed

or unsigned) instruction is performed. The only change we require is that there is a greater number

of values that will be fed into this multiplexor, which will now not only be controlled by the type of

load instruction, but also by the word metadata encoding associated with that word value. Thus,

loading a value using line sharing will increase the logic depth by at most one or two gates due to

the use of a larger multiplexor to extract the value from the loaded word.

77

0xbfff

0x6c07

upper half

$gp value

Two L2 Sublines Mapping to the Same L1 DC Line

i

j

...

...

0 1 2

0 1 2

00xbffff024

...

0 1 2

0x12e0 0xa140

...

...

L1 DC Line at address 0xa1e1ff00

0x6c07a140

0xbfff12e0

0xf024

0x1ca24

0xff80 0x1ca24

0xa1e1ff80

000 ...

...

100

011101

100

110

3-Bit Word Metadata

?

common
upper

halfword
for each
metaline

Figure 6.5: Line Sharing Example with 3-Bit Word Metadata

6.4 L1 DC Metaline Fill Policy

We define metaline thrashing as repeatedly fetching data words associated with metalines where

most of the data words are not referenced before they are replaced. We selectively choose not to

fill L1 DC lines if they could potentially evict useful data. There are three possible L1 DC access

results: word hit (the accessed word is resident and other words in the same metaline may or

may not be resident), word miss+line hit (the accessed metaline is resident within the L1 DC

line, but the word in the metaline is not resident), and line miss (the accessed metaline is not

resident within any of the L1 DC lines within the indexed L1 DC set). During an L1 DC access,

it’s possible that some words of the metaline are not resident for a word hit or word miss+line

hit. An eager metaline fill approach would always fetch the missing words in a metaline from the

L2C as this can potentially increase the L1 DC hit rate due to spatial locality. However, an eager

metaline fill approach can result in metaline thrashing when two metalines in the same L1 DC line

are alternatively referenced, as they would continuously replace the other metaline’s data when the

two data values cannot be compressed into the same word. We avoid this thrashing behavior in

the following manner. If the L1 DC detects a word hit to a metaline that isn’t the MRU metaline

within the L1 DC line, then the L1 DC does not fetch the missing data words in that metaline

from the L2C and updates the LRU information. Hence, the L1 DC doesn’t evict data words from

78

the MRU metaline within the L1 DC line. If the L1 DC detects a word hit to a metaline that is

the MRU, then the L1 DC does fetch the missing data words in that metaline from the L2C. Thus,

it takes two word hit references to a resident L1 DC metaline to trigger a fill of the nonresident

values within that metaline.

6.5 L1 DC Metaline Replacement Policy for Set-Associative
Organizations

The L1 DC metaline (L2 subline) replacement decisions become more complex as we move from

a direct-mapped cache to a set-associative cache. Ideally, the most recently used (MRU) metalines

will be mapped to separate L1 DC lines so they are not competing for a single line within an

L1 DC set. For example, for a 4-way L1 DC using 4xLS (four metalines sharing a single L1 DC

line), there are 16 metalines per set. It would be best if the four MRU metalines map to separate

L1 DC lines in the set. Metaline thrashing can occur when the two MRU metalines map to the

same L1 DC line within the L1 DC set, which will decrease the L1 DC hit rate and increase the

number of words fetched from the L2C. In addition, maintaining LRU information for up to sixteen

metalines is unnecessary complex in terms of circuitry. In our initial experiments we found that

line sharing caused an increase in the miss rate and/or the number of words fetched from the L2C

for some benchmarks in some configurations. Thus, we refined the L1 DC metaline replacement

policy in a set-associative L1 DC (as well as the L1 DC metaline fill policy) to decrease thrashing

and we refined the LRU information stored with each metaline to reduce the complexity of the LRU

circuitry. After much experimentation, there are three metaline replacement policy refinements we

found that eliminates most of the metaline thrashing and improves the overall L1 DC miss rate.

The pseudocode for processing an L1 DC access with line sharing in a set-associative cache is shown

in Figure 6.6.

79

select_metaline_to_replace(in set; out way, metaway) {

way = LRU_line(set);

if (2xLS)

metaway = LRU_metaline(set, way);

else

metaway = LRU_metaline_in_nonMRUgroup(set, way);

}

replace_metaline(in set; out way, metaway) {

select_metaline_to_replace(set, way, metaway);

invalidate_metaline(set, way, metaway);

fill_metaline(set, way, metaway);

}

process_L1DC_access(in tag, set, word_offset) {

if (line_hit(tag, set, way, metaway)) {

if (word_miss(set, way, metaway, word_offset))

if (MRU_line(set) == way &&

invalidate_metaline(set, way, metaway);

replace_metaline(tag, set, way, metaway);

}

else

fill_metaline(set, way, metaway);

}

MRU_metaline(set, way) != metaway) {

// fill refinement for word hit

else if (MRU_metaline(set, way, metaway))

fill_metaline(set, way, metaway);

}

else

replace_metaline(tag, set, way, metaway);

return extract_value(tag, set, way, metaway, word_offset);

// replacement refinement to support 2-level LRU info

// replacement refinement to separate 2 MRU metalines

}

Figure 6.6: Processing an L1 DC Access in a Set-Associative Line-Shared Cache

First, we use a two-level LRU metaline replacement policy. For 2xLS (two metalines sharing

a single L1 DC line), we find the LRU L1 DC line within the L1 DC set in the first level, and

in the second level, we find the LRU metaline within that L1 DC line. Using a two-level LRU

metaline replacement policy initally prevents the two MRU metalines within the entire L1 DC set

from mapping to the same L1 DC line. We also use two levels of LRU information for 4xLS (four

metalines sharing a single L1 DC line). In addition, we treat metalines in an L1 DC line as a

member of one of two groups: group a for metalines 0 and 1 and group b for metalines 2 and 3. A

two-byte narrow width value in a 4xLS line is placed in the lower halfword if the L1 DC metaline

80

way is zero or one and is placed in the upper halfword if the L1 DC metaline way is two or three

(see Section 6.3). We extend the two-level metaline replacement policy for 4xLS in the following

manner. In the first level, we find the LRU L1 DC line. In the second level, we select the LRU

metaline within the group that doesn’t contain the MRU metaline. For example, assume there are

four metalines 0, 1, 2, and 3 associated with a single L1 DC line. If the MRU metaline is in group a

(metaline 0 or 1), then a metaline eviction would replace the LRU metaline from group b (metaline

2 or 3) as this would allow two narrow-width values from the two MRU metalines to share the same

word in the L1 DC line. If we instead assigned the two MRU metalines of an L1 DC line to the

same group, then narrow-width values stored in the two MRU metalines would be placed in the

same halfword of the L1 DC word slot causing the first value placed within that word slot to be

evicted.

Second, we decrease metaline thrashing in set-associative caches by selectively invalidating lines

that could cause thrashing. If there is a word miss+line hit to a metaline that is not the MRU, but

shares the L1 DC line with the MRU metaline within the entire L1 DC set, we mark the accessed

metaline as invalid and return a miss. This approach decreases line thrashing as we don’t allow the

two MRU metalines to compete for a single L1 DC line. Instead, this approach forces the accessed

metaline to be reallocated to another L1 DC line.

Third, sometimes a metaline is not filled due to other issues, which is not shown in Figure 6.6. A

metaline is not filled when there is a word hit and the maximum number of outstanding L1 DC line

fill requests has been reached since the memory access can be resolved without a line fill. Likewise,

a prior outstanding line fill request is cancelled if it was a word hit, the limit on outstanding L1 DC

line fill requests is reached, and a new word miss+line hit or line miss is encountered. Finally,

a line fill associated with a word hit or word miss+line hit is not performed if there is already a

pending line fill to the same line.

81

6.6 Evaluation Environment

In this section we describe the experimental environment used in the following section of the

paper. We use the 9 C benchmarks from the SPECint 2006 benchmark suite, which are compiled

using gcc with the -03 option. We use the ADL simulator [21] to simulate both a conventional MIPS

processor as the baseline and a modified processor containing a line shared L1 DC as described in

this paper. Table 6.3 shows other details regarding the processor configuration that we utilize in our

simulations. We use the ADL simulator combined with CACTI [17, 18] for the energy evaluation

to model processor energy. CACTI was used assuming a 22-nm CMOS process technology with

low-standy power (LSTP) cells and power gating. Tables 6.4 and 6.5 show the energy for accessing

various components in the 16KB and 32KB L1 DCs, respectively. Leakage energy was gathered

assuming a 1 GHZ clock rate.

Table 6.3: Processor Configuration

Processor

Single-stage MIPS processor

L1 DC

16/32KB, 64B line size,
1/2/4-way associative,
1-cycle hit time,
10-cycle miss penalty

L2C
512KB, 64B line size,
8-way associative, 8-byte bus width,
100 cycle miss time

Table 6.4: Energy for 16KB L1 DC Components (pJ)

L1 DC Size 16384B
Associativity 1-way
L1 DC Read 2.900
Configuration 1xLS 2xLS 4xLS 4xLS-ext

Tag Array 0.381 0.728 0.981 0.981
Meta Array 0.000 0.378 0.718 0.951

Associativity 2-way
L1 DC Read 4.129
Configuration 1xLS 2xLS 4xLS 4xLS-ext

Tag Array 0.403 0.782 1.091 1.091
Meta Array 0.000 0.381 0.725 0.961

Associativity 4-way
L1 DC Read 6.617
Configuration 1xLS 2xLS 4xLS 4xLS-ext

Tag Array 0.448 0.892 1.275 1.275
Meta Array 0.000 0.388 0.739 0.982

82

Table 6.5: Energy for 32KB L1 DC Components (pJ)

L1 DC Size 32768B
Associativity 1-way
L1 DC Read 3.444
Configuration 1xLS 2xLS 4xLS 4xLS-ext

Tag Array 0.701 0.927 1.499 1.499
Meta Array 0.000 0.647 1.226 1.823

Associativity 2-way
L1 DC Read 5.065
Configuration 1xLS 2xLS 4xLS 4xLS-ext

Tag Array 0.728 0.981 1.661 1.661
Meta Array 0.000 0.718 1.233 1.834

Associativity 4-way
L1 DC Read 8.193
Configuration 1xLS 2xLS 4xLS 4xLS-ext

Tag Array 0.782 1.091 2.019 2.019
Meta Array 0.000 0.725 1.247 1.854

6.7 Results

Table 6.6: L1 DC Hit Rates

L1 DC Configuration Line Sharing Technique

Size Assoc. Sub-block
Size

1xLS 2xLS 2xLS-ext 4xLS 4xLS-ext

16KB

1-way
16B 82.9% 90.9% 91.1% 91.7% 92.1%
32B 87.1% 92.7% 92.7% 93.2% 93.8%
64B 89.7% 93.7% 94.1% 94.1% 94.5%

2-way
16B 84.2% 91.7% 91.8% 92.5% 92.6%
32B 88.7% 93.7% 93.8% 94.1% 94.3%
64B 91.5% 94.7% 94.8% 95.0% 95.1%

4-way
16B 86.0% 91.7% 91.9% 92.8% 92.9%
32B 90.8% 93.9% 94.0% 94.5% 94.6%
64B 93.2% 94.9% 95.0% 95.3% 95.4%

32KB

1-way
16B 90.5% 92.8% 92.9% 93.3% 93.4%
32B 92.8% 94.2% 94.6% 94.6% 95.0%
64B 92.7% 95.3% 95.3% 95.4% 95.6%

2-way
16B 92.0% 93.2% 93.2% 93.8% 93.9%
32B 94.2% 95.0% 95.1% 95.4% 95.4%
64B 95.0% 95.9% 95.9% 96.1% 96.2%

4-way
16B 92.4% 93.5% 93.5% 93.9% 94.0%
32B 94.4% 95.2% 95.2% 95.5% 95.6%
64B 95.5% 96.1% 96.1% 96.2% 96.3%

83

16KB
Direct

SB: 16B

16KB
Direct

SB: 32B

16KB
Direct

SB: 64B

16KB
2−way

SB: 16B

16KB
2−way

SB: 32B

16KB
2−way

SB: 64B

16KB
4−way

SB: 16B

16KB
4−way

SB: 32B

16KB
4−way

SB: 64B

L
1
 D

C
 D

a
ta

R
e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

1

1.5

2

2.5

3
2xLS 2xLS−ext 4xLS 4xLS−ext

nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

L1 DC Configuration

32KB
Direct

SB: 16B

32KB
Direct

SB: 32B

32KB
Direct

SB: 64B

32KB
2−way

SB: 16B

32KB
2−way

SB: 32B

32KB
2−way

SB: 64B

32KB
4−way

SB: 16B

32KB
4−way

SB: 32B

32KB
4−way

SB: 64B

L
1
 D

C
 D

a
ta

R
e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

1

1.5

2

2.5

3 nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

Figure 6.7: Data Utilization of L1 DC

Figure 6.7 shows how well we utilize the L1 DC in terms of storage. L1 DC utilization is a

measure of the amount of data stored inside the L1 DC relative to the baseline. Here, the baseline

is an L1 DC of the same size, associativity, and sub-block size but without line sharing and data

packing. For 2xLS and 4xLS(-ext), the maximum amount of data we can hold relative to the

baseline is two times or four times, respectively. The L1 DC size has little effect on the amount of

data that can be stored relative to the baseline for our apporach. The difference between a 16KB,

4-way, 64 byte sub-blocked cache using 4xLS versus a 32KB cache with the same configuration is

less than two percent. However, as we increase the sub-block size the amount of data we store

relative to the baseline decreases. For a 16KB, 4-way L1 DC using 4xLS, the amount of data stored

84

relative to the baseline decreases by roughly 24% as we move from a 16-byte sub-block size to a

64-byte sub-block size. Similarly, the amount of data stored relative to the baseline decreases as we

increase the associativity. A direct-mapped, 16KB cache with a 64-byte sub-block size using 4xLS

can store about 20% more data relative to the baseline than a 4-way associative 16KB cache with

a 64-byte sub-block size. As previously stated, there are more opportunities for line sharing with

a small sub-block size.

L1 DC Configuration

16KB
Direct

16KB
2−way

16KB
4−way

32KB
Direct

32KB
2−way

32KB
4−way

L
1
 D

C
 S

iz
e
 (

m
m

2
)

10

20

30

40

50

1xLS 2xLS 2xLS−ext 4xLS 4xLS−ext

nxLS = n lines shared, ext = extended bit encoding

Figure 6.8: Increase in L1 DC Size

Figure 6.8 shows how our approach increases the size of the L1 DC for different L1 DC sizes and

associativities. As we increase the associativity, the size of the cache decreases. This is because it

is inefficient in terms of space to have long, narrow data structures as the decoding logic increases.

By splitting the structure into multiple data arrays, the decoding logic decreases and the height

of the L1 DC and the structure becomes more symmetrical. For 2xLS(-ext) and 4xLS(-ext), we

increase the size of the L1 DC as we increase the number of tags per line by two and four times,

respectively. As expected, 2xLS has the smallest footprint as this requires only two tags per L1 DC

line and 32 bits (64B cache line = 16 words, 2 bits per word) per tag for the metadata array. For

a 4-way, 16KB L1 DC, 2xLS increases the size of the L1 DC by roughly 17% for a 16KB cache and

14% for a 32KB L1 DC. Using 4xLS-ext has the largest footprint as it requires four tags per L1 DC

line and 48 bits (64B cache line = 16 words, 3 bits per word) per tag for the metadata array. For

85

a 4-way, 16KB L1 DC, 4xLS-ext increases the size of the L1 DC by 55% and by 52% for a 32KB

L1 DC.

16KB

Direct

Subblock: 16B

16KB

Direct

Subblock: 32B

16KB

Direct

Subblock: 64B

16KB

2−way

Subblock: 16B

16KB

2−way

Subblock: 32B

16KB

2−way

Subblock: 64B

16KB

4−way

Subblock: 16B

16KB

4−way

Subblock: 32B

16KB

4−way

Subblock: 64B

R
e
d
u
c
ti
o
n
 i
n

L
1
 D

C
 M

is
s
 R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6
2xLS 2xLS−ext 4xLS 4xLS−ext

L1 DC Configuration

32KB

Direct

Subblock: 16B

32KB

Direct

Subblock: 32B

32KB

Direct

Subblock: 64B

32KB

2−way

Subblock: 16B

32KB

2−way

Subblock: 32B

32KB

2−way

Subblock: 64B

32KB

4−way

Subblock: 16B

32KB

4−way

Subblock: 32B

32KB

4−way

Subblock: 64B

R
e
d
u
c
ti
o
n
 i
n

L
1
 D

C
 M

is
s
 R

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.9: Reduction in L1 DC Miss Rate

Figure 6.9 shows the effect our approaches have on the L1 DC miss rate. Our approach allows

an L1 DC to approach the performance of a higher-associativity data cache. The benefits of our

approach rely on two key factors. The first is the taxonomy of values placed inside the L1 DC,

which determines how often data can be compressed inside our L1 DC. Compressed values can

share space with other compressed values and therefore can be retained longer as they are less

likely to evict other values and are less likely to be evicted by other values. The second factor is

how often references switch between meta-lines in a set. If all accesses are to the MRU meta-line,

86

then there would be no benefit to our approach as the performance would perform the same as the

baseline. However, if accesses switch between the lines in a set, then our approach will see benefits.

The factor that has the largest impact on the miss rate reduction is the associativity. For

example, the miss-rate reduction for a 16KB cache with a sub-block size of 64 bytes using 4xLS

decreases from 42.7% to 29.8% as we increase the associativity from 1-way to 4-way. This is because

our approach obtains some of the benefits of a higher associative L1 DC, but there are diminishing

returns to increasing the associativity. For example, the difference in reducing the miss rate is

larger as we go from a direct-mapped cache to a cache with four ways per set than when we go

from a cache with four ways per set to a cache with sixteen ways per set. However, increasing the

associativity has drawbacks, most notably the energy and time required to access the L1 DC. Our

approach can allow a processor to use a smaller, direct-mapped L1 DC with a smaller sub-block

size without affecting the hit rate and also potentially decreasing the number of cycles for an L1 DC

hit. As we vary the approach from 2xLS, 2xLS-ext, 4xLS, and 4xLS-ext, the miss rate improves.

However, the benefits of reducing the miss rate must be compared against the cost of increasing

the L1 DC size as well as the energy required to access it.

87

16KB
Direct

SB: 16B

16KB
Direct

SB: 32B

16KB
Direct

SB: 64B

16KB
2−way

SB: 16B

16KB
2−way

SB: 32B

16KB
2−way

SB: 64B

16KB
4−way

SB: 16B

16KB
4−way

SB: 32B

16KB
4−way

SB: 64B

W
o
rd

s
 F

e
tc

h
e
d

fr
o
m

 L
2
C

0.5

0.6

0.7

0.8

0.9
2xLS 2xLS−ext 4xLS 4xLS−ext

nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

L1 DC Configuration

32KB
Direct

SB: 16B

32KB
Direct

SB: 32B

32KB
Direct

SB: 64B

32KB
2−way

SB: 16B

32KB
2−way

SB: 32B

32KB
2−way

SB: 64B

32KB
4−way

SB: 16B

32KB
4−way

SB: 32B

32KB
4−way

SB: 64B

W
o
rd

s
 F

e
tc

h
e
d

fr
o
m

 L
2
C

0.5

0.6

0.7

0.8

0.9 nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

Figure 6.10: Words Fetched from L2

Figure 6.10 shows the the number of words fetched from the L2 and placed in the L1 DC relative

to the baseline. As our approach can retain values longer, we don’t need to fetch words from the L2

if their values still remain in the L1 DC at the time we are filling that line. In other words, upon an

L1 DC word miss but tag hit, we only need to fill the words missing from the L1 DC meta-line. The

word-fill rate tells us how much we reduce the words needed to be filled in lines and is measured

by counting the number of words retrieved from the L2 and placed in the L1 DC compared to the

baseline. Lowering the word-fill rate impacts performance, as L1 DC line fills don’t take as long, as

well as energy, as fewer words are fetched from the L2. As we increase the associativity of the cache,

the number of words we fetch from the L2 approaches that of the baseline. For a 16KB L1 DC

88

with a 64 byte sub-block size using 4xLS, the ratio of words retrieved from L2 increases from 54.2%

to 72% as we increase the associativity from 1-way to 4-way. For a 16KB, direct-mapped L1 DC

using 4xLS, the ratio of words that need to be retrieved from L2 increases from 59% to 54%. As

we increase the size of the sub-block, the ratio of the words fetched from L2 relative to the baseline

tends to decrease. This is because the baseline fetches fewer words in total for a smaller sub-block

size. For a direct-mapped L1 DC using 2xLS, the number of words fetched from L2 decreases from

62% to 57% as we increase the sub-block size from 16 bytes to 64 bytes.

16KB
Direct

SB: 16B

16KB
Direct

SB: 32B

16KB
Direct

SB: 64B

16KB
2−way

SB: 16B

16KB
2−way

SB: 32B

16KB
2−way

SB: 64B

16KB
4−way

SB: 16B

16KB
4−way

SB: 32B

16KB
4−way

SB: 64B

A
c
c
e

s
s
 E

n
e

rg
y

R
e

la
ti
v
e

 t
o

 B
a

s
e

lin
e

0

0.2

0.4

0.6

0.8

1

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

L1 Read L1 Write Tag Metadata L2 Read L2 Write

L1 DC Configuration

32KB
Direct

SB: 16B

32KB
Direct

SB: 32B

32KB
Direct

SB: 64B

32KB
2−way

SB: 16B

32KB
2−way

SB: 32B

32KB
2−way

SB: 64B

32KB
4−way

SB: 16B

32KB
4−way

SB: 32B

32KB
4−way

SB: 64B

A
c
c
e

s
s
 E

n
e

rg
y

R
e

la
ti
v
e

 t
o

 B
a

s
e

lin
e

0

0.2

0.4

0.6

0.8

1

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

B
a
s
e
lin

e

2
x
L
S

2
x
L
S

2
x
L
S 2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t 2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

2
x
L
S

−
e
x
t

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t 4

x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

4
x
L
S

−
e
x
t

Figure 6.11: Breakdown of L1 DC Energy by Component

Figure 6.11 shows the energy consumption of our modified L1 DC relative to the baseline for

89

various L1 DC configurations. As the size of the L1 DC decreases, the energy consumed by the L2

begins to dominate the total energy expenditure. As we decrease the energy expended by the L2 by

decreasing the L1 DC miss rate as well as decreasing the number of words that need to be fetched

from the L2, we are able to achieve significant energy savings (over 18% for 16KB/Direct/16B

Sub-Block/4xLS). However, as we increase the size, associativity, and sub-block size of the L1 DC,

the energy expended by the L1 DC dominates as there are fewer L1 DC misses and the energy

to access the L1 DC increases. This overhead energy is offset by decreasing the energy expended

by writing to the L1 DC, as we write only the bytes necessary to be able to retrieve the data

using sign-extension and entirely avoiding writing to the L1 DC for zero values. The total energy

expended approaches the (97.7%) for a 32KB, 4-way associative, 64B sub-block size L1 DC using

4xLS-ext. The most energy efficient of our approaches is 2xLS, as this doubles the size of the tag

array and only requires 64 bits per cache line for the metadata array. The most expensive in terms

of energy usage is 4xLS-ext, as this quadruples the size of the tag array and requires 192 bits per

cache line for the metadata array (3 bits per word, 16 words per meta-line, 4 meta-lines per L1 DC

line). All approaches, on average, decrease the energy usage relative to the baseline.

90

16KB
Direct

SB: 16B

16KB
Direct

SB: 32B

16KB
Direct

SB: 64B

16KB
2−way

SB: 16B

16KB
2−way

SB: 32B

16KB
2−way

SB: 64B

16KB
4−way

SB: 16B

16KB
4−way

SB: 32B

16KB
4−way

SB: 64B

L
1

 D
C

 C
y
c
le

s
R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

0.8

0.84

0.88

0.92

0.96

1
2xLS 2xLS 4xLS 4xLS−ext

nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

L1 DC Configuration

32KB
Direct

SB: 16B

32KB
Direct

SB: 32B

32KB
Direct

SB: 64B

32KB
2−way

SB: 16B

32KB
2−way

SB: 32B

32KB
2−way

SB: 64B

32KB
4−way

SB: 16B

32KB
4−way

SB: 32B

32KB
4−way

SB: 64B

L
1

 D
C

 C
y
c
le

s
R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

0.8

0.84

0.88

0.92

0.96

1 nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

Figure 6.12: Performance Relative to Baseline

Figure 6.12 shows the number of cycles executed by the processor using our modified L1 DC

designs relative to a baseline 16KB, direct-mapped, 16B sub-blocked L1 DC, not the baseline for a

processor with the same size, associaitivty, and sub-block size. By using a constant baseline for all

approaches, we can compare the performance between sizes and configurations. The performance

is largely determined by the L1 DC miss rate as well as the number of words fetched from the

L2. Decreasing the L1 DC miss rate reduces the number of load-delay hazards and decreasing the

number of words fetched from the L2 decreases the number of cycles required to fill the L1 DC

line. While the miss rates for a 16KB 4-way, 64B sub-block size L1 DC using 4xLS-ext is nearly

identical to a baseline 32KB, 4-way, 64-B sub-block size L1 DC without our approach L1 DC (95.4%

91

versus 95.5%), the performance of the 32KB is still superior (roughly 2% fewer cycles relative to

the baseline). This is the 16KB cache fetches more words from the L2, requiring more stalls due to

L1 DC line fills. Even though the L1 DC uses critical-word first, which decreases the miss penalty

for a load that misses in the L1 DC, a subsequent memory operation must stall if it tries to access

the L1 DC while the rest of the line is being filled. From Figures 6.9 and 6.10, we see that the

miss rate reduction increases and the number of words filled relative to the baseline decreases as

we decrease the L1 DC size, associativity, and sub-block size.

perlbench gcc mcf godmk hmmer sjeng libquantum h264ref bzip2 arith. mean

L
1
 D

C
 H

it
 R

a
te

0.5

0.6

0.7

0.8

0.9

1
1xLS 2xLS 2xLS−ext 4xLS 2xLS−ext

16KB, 4-way set-associative Cache with 64B Sub-block

Figure 6.13: Hit Rate by Benchmark

Figure 6.13 shows the hit rates for individual benchmarks as we vary the approach for a 16KB,

direct-mapped, 16-byte sub-block size L1 DC. On average, we improve the hit rate by 8.1%, 8.25%,

8.84%, and 9.2% as we vary the approach from 2xLS, 2xLS-ext, 4xLS, and 4xLS-ext, respectively.

It should be noted that it’s impossible for our approach to perform worse than the baseline. The

largest improvement was for libquantum, which demonstrates nearly pathological cache behavior

as it iterates sequentially through two arrays, causing constant thrashing for cache lines.

6.8 Related Work

The need for maintaining a fast access time has limited the exploration of data compression

techniques in L1 DCs. This is because the overhead for loading and decompressing the data extends

the critical path for memory accesses. In order to not increase the access time, the set index and

92

line offset portions must remain unchanged during data decompression so as to not increase the

time required to load the compressed data. In addition, data decompression must be fast enough

that it does not increase the time required to forward the data to the next pipeline stage. We limit

this section to first-level data cache compression techniques, which are most relevant to this paper.

[23] is a L1 DC compression technique that compresses data inside the L1 DC at the granularity

of L1 DC lines. If each word in an L2 subline can be represented in two bytes using sign-extension,

then the L2 subline is stored in only half of the corresponding L1 DC line. A single L1 DC line

can be shared by two L2 sublines if all the values in each L2 subline can be represented in two

bytes using sign extension. To increase the number of opportunities for compressing an entire L2

subline, the technique also allows an L2 subline to be compressed if it has only a small number of

values that can’t be stored in two bytes. In this case, the upper two bytes of these values are stored

in a separate cache which is read in parallel to the data access. Each word in the L1 DC line has

an additional extra storage bit indicating that the word’s upper two bytes are in this additional

half-word storage. As with our approach, [23] compresses data inside an L1 DC, increasing the

amount of data relative to an uncompressed cache. Both approaches don’t affect the access time

for the L1 DC while also improving the hit rate. However, our approach compresses data inside

an L1 DC line at the granularity of words rather than cache lines, which increases the number of

opportunities available for data compression and thus increases the amount of data held inside the

L1 DC. In addition, our approach also decreases the time required to fill L1 DC lines due to words

often already being resident.

The compression cache (CC) is another L1 DC compression technique that compresses data

inside the L1 DC at the granularity of L1 DC lines [32]. Each cache line can either hold one

uncompressed line or two cache lines compressed to half their lengths. This is done by encoding

values that appear frequently during program execution using only a few bits. If at least half the

words can be represented using an encoding for a freqently-occuring value, then the line can be

compressed to half its size and placed inside the L1 DC alongside another compressed line. A

separate bit mask is used to indicate if a word value is frequent and if not, then indicates where

the word is located within the line. This cache design will result in a more complicated access and

likely a longer access time.

93

A small frequent value cache (FVC) has been proposed that is accessed in parallel to the L1 DC

and is used to improve the miss rate as the FVC effectively functions as a victim cache [33]. The

FVC is very compact as it uses 3 bits to represent codes for seven frequent word values and an

eighth code is used to represent that the value is nonfrequent and not resident in the FVC. The

FVC was later adapted so that a separate frequent value L1 DC data array was accessed first to

avoid the regular L1 DC data array if the value was frequent [30]. This approach reduced L1 DC

energy usage at the expense of delaying access to a nonfrequent value by a cycle.

Both [23] and [32] increase cache complexity as updating a value may require decompressing a

compressed cache line. In [23], a value that could previously be stored in two-bytes could be over-

written with a 4-byte value, and, similarly, an encoded frequent value in [32] could be overwritten

with a value with no encoding. In both cases, the cache line must be decompressed potentially

causing an execution penalty. Our approach, however, updates the word in the cache and only

needs to update the metadata corresponding to L2 subline values conflicting for the same word slot

in the cache. In addition, the cache line size affects the amount of data that can be compressed

for both [23] and [32], whereas the cache line size does not affect our approach. As the cache line

size increases, the likelihood that at least half of the values in [23] can be stored in two bytes using

sign extension or that at least half of the values are frequent values [32] and thus can be encoded

using a shorter sequence drops. Finally, it appears that both [32] and [33] requires profile runs of

programs in order to identify frequently occurring values and also increases L1 DC access time as

the location of the data inside the cache can change depending on whether or not it belongs to a

compressed cache line or decompressed cache line.

Dynamic zero compression adds a zero indicator bit (ZIB) to every byte in a cache [28]. This ZIB

is checked and the access to the byte is disabled when the ZIB is set. This approach requires more

space overhead and may possibly increase the cache access time, but was shown to reduce energy

from data cache accesses. The zero-value cache (ZVC) contains a bit vector of the entire block,

where each bit indicates if the corresponding byte or word contains the value zero [12]. Blocks are

placed in the ZVC (exclusive of the L1 DC) when a threshold of zero values for bytes/words within

a block is met. The ZVC allows the access for loads and stores to the L1 DC to be completely

avoided. ZVC misses may result in execution time penalties, though the authors claim the ZVC is

small enough to be accessed before the L1 DC with no execution time penalty. The same authors

94

later developed the narrow-width cache (NWC) containing 8-bit values to reduce the miss rate [13].

The NWC is accessed in parallel to the L1 DC cache and blocks are placed in the NWC if a

threshold of narrow values within the block is met. The NWC is used to reduce the miss rate.

While all of these cache techniques either decrease the cache miss rate or reduce energy usage,

we are unaware of any prior first-level cache technique that shares data from different lines in the

next level of the memory hierarchy into the same line at the current level of the memory hierarchy

at the granularity of individual words without increasing the access time.

Way prediction techniques [11,22] are now commonly used to predict which way of the L1 DC

data array is being accessed and this prediction is verified by performing a DTLB access and an L1

DC tag comparison. Way prediction can both reduce energy usage (a single L1 DC tag array and a

single L1 DC data array are accessed) and improve L1 DC load hit time (the requested data from

one L1 DC data array can be sent to the CPU without going through a multiplexor that selects

the data word based on which tag comparison is a hit). Way prediction imposes a performance

penalty when the L1 DC way is incorrectly predicted. Newer versions of way prediction are more

accurate, but require a custom SRAM implementation to mitigate the latency of accessing way

prediction information before the regular L1 DC tag and data access by using a hash of the virtual

address. A direct-mapped line-shared L1 DC can provide the energy and access time benefits of

way prediction without its disadvantages. Way prediction could also be used in conjunction with

an associative L1 DC that supports our line sharing approach.

6.9 Future Work

The fragmentation problem occurs when not all of the block that is filled into a cache is used

before it is evicted. Subblocking is sometimes used to address the fragmentation problem with

large cache lines to reduce the fill time requiring that a subblock is only fetched when accessed and

not resident. Line sharing provides additional benefits for subblocked L1 DCs. Much of the space

available in a conventional subblocked L1 DC line may go unused as subblocks in the line will not be

filled when they are not referenced before the line is evicted. Allowing multiple L2 sublines to share

the same L1 DC line can make better use of this available space in the presence of subblocking. As

long as distinct L2 sublines refer to subblocks in different portions of the L1 DC line, the L1 DC can

simultaneously hold entire subblocks from different L2 sublines even without compressing values.

95

Thus, we are considering using subblocking with line sharing and experiment with different line

sizes. With a small subblock size, there are more opportunities for line sharing as L2 sublines values

won’t compete for words in the L1 DC line if they don’t belong to the same referenced subblock.

With a larger subblock size, line sharing can overcome some of the disadvantages of subblocking

such as a higher miss rate and also reduce the size of the L1 DC tag memory.

There are other L1 DC parameters or techniques that would be interesting to investigate to

determine the impact of line sharing. A larger line size may be beneficial to reduce L1 DC tag

storage and not suffer as much from the fragmentation problem with line sharing. Prefetching of

lines when using line sharing may be more beneficial as fewer data words may be evicted.

6.10 Conclusions

In this paper we described an L1 DC line sharing technique where multiple L2 sublines can be

shared in each L1 DC line. The technique shares data at the granularity of individual words within

each L1 DC line and uses a tag for each L2 subline to determine if it is resident and metadata

for each word to determine if the word is resident and how the word can be extracted. Metaline

fill and replacement policies were presented to decrease the amount of metaline thrashing. The

results showed reductions in L1 DC miss rates and words fetched from the L2C. These reductions

positively impacted both performance and energy usage.

L1 DC line sharing is a relatively simple technique to implement with minimal impact on the

L1 DC access time. L1 DC line sharing was shown to be beneficial over a variety of configurations

with the most benefit achieved when used with simpler (less associativity) and smaller caches. The

benefits in performance and energy usage make L1 DC line sharing applicable to a variety of types

of processors.

96

CHAPTER 7

CONCLUSIONS

This dissertation has provided techniques that both reduce the energy usage of first-level data

accesses as well as improves performance by decreasing the number of stall cycles due to load and

store hazards. We studied four different techniques that help to achieve these goals.

Chapter 3 proposed a design that memoizes L1 DC access information associated with the

register used to access the data. This allows subsequent memory accesses using the same register

to perform direct, non-speculative accesses to set-associative data caches. We also propose a small

ALU modification to preserve this access information during register updates if the cache line the

register points to doesn’t change. Furthermore, this chapter also proposed the DCAS Refresh Buffer

to retain L1 DC access information longer. This approach doesn’t require changes to binaries or

extensive pipeline modifications. By using a non-speculative approach to accessing a set-associative

cache, the DTLB access as well as the L1 DC tag array access can be avoided during the L1 DC

access. In addition, only a single way of a set is accessed during loads, avoiding accesses to the

remaining n-1 ways. The approach presented in this chapter provides significant energy savings

over traditional, set-associative L1 DCs. Using this approach alone failed to achieve energy saving

benefits over way prediction or way caching. This is because way prediction and way caching

achieve very high hit rates by accessing a small structure between the time of the effective address

calculation and accessing memory, which is not always feasible to access without increasing the cycle

time. However, this chapter also showed that this approach is complementary to way prediction, as

our non-speculative approach can be used to avoid the DTLB, tag array, and a speculative direct

L1 DC access when possible and using way prediction’s speculative approach otherwise, which

achieved the largest energy savings.

Chapter 4 proposed a method that allowed a processor to achieve the energy-saving benefits

of a L0 DC while improving performance. This design introduced an additional structure, the

base register structure, which holds the base register value used during loads and stores. With this

structure, the base register value for a load or store can be accessed during the instruction decode

97

stage to calculate the effective address during the register fetch stage. Since the effective address

is available one cycle before the memory access stage, we can access the L0 DC one cycle before

the memory access stage. If the access is a hit, then the data is available one cycle earlier, possibly

avoiding load-delay hazards. If the access is a miss, we can still access memory in the same stage we

normally would, avoiding the performance penalty typically associated with L0 DCs. In addition,

we also introduced the load-store vector as well as the base register-index structure to reduce the

number of reads and writes to the base register structure, greatly reducing its energy consumption.

Chapter 5 presented a design for an L0 DC that can both reduce data access energy and

eliminate the performance penalty normally associated with an L0 DC. We showed that a word-

filled L0 DC can achieve significant energy saving benefits over a line-filled L0 DC. This is because

fetching a L0 DC line in a single cycle from the L1 DC consumes significantly more energy than

fetching a single word. This increase in L1 DC access energy outweighs the benefits of reducing

the L0 DC miss rate. This chapter also proposed a method of improving the hit rate of L0 DCs by

allowing multiple L1 DC (sub)lines to share a single L0 DC line, called line sharing. If the words

of two or more L1 DC (sub)lines refer to different portions of an L0 DC line, then the values don’t

conflict and can be stored in the L0 DC line simultaneously. Chapter 5 also proposed a method

that potentially allows values belonging to two different L1 DC (sub)lines referring to the same

word of an L0 DC (sub)line to be stored simultaneously if both values taken together can fit within

a single word, called data packing. Using a word-filled L0 DC with line sharing and data packing,

this thesis achieved significant energy saving benefits by greatly reducing the miss rate of a L0

DC. Finally, Chapter 5 also introduced a method of removing the performance penalty typically

associated with L0 DCs. This was done by speculatively accessing the metadata for the L0 DC line

during the ALU stage of the processor using the base register value. If the metadata access using

the base register value shows that the data is available and the cache line associated with the base

register value and the effective address are the same, we guarantee that the L0 DC access will be

a hit, removing any potential performance penalty. This comes at the cost of reducing the L0 DC

service rate, defined to be the number of loads that retrieve their data from the L0 DC, as only

loads with small displacements will be able to use the L0 DC.

Chapter 6 uses the line sharing and data packing method as described in Chapter 5 for the L1

DC. The approach is evaluated using direct-mapped as well as set-associative L1 DCs in order to

98

provide a more thorough analysis. In addition, sub-blocked L1 DCs are also evaluated as they can

see additional benefits when using line sharing as L2 (sub)lines can share different sub-blocks of the

same L1 DC line. Finally, Chapter 6 extensively evaluates possible data compression techniques

by adding four additional categories for compressing data values. While there are few benefits to

extending the compression categories as well as increasing the number of L2 (sub)lines that map

to a single L1 DC line past two, this paper shows that allowing two L2 (sub)lines to share a single

L1 DC line provides significant benefits with very little overhead in the space required. These

benefits include increasing the performance as well as decreasing the energy consumption of the

memory hierarchy. The performance benefits achieved were due to decreasing the number of L1 DC

misses as well as decreasing the miss cycle penalty by decreasing the number of words that need

to be fetched from the L2 cache. The energy saving benefits come from fewer L2 cache reads and

writes, as well as decreasing the energy consumed during L1 DC writes as only the bytes necessary

for decompressing the value are written to the L1 DC.

The techniques laid out in this dissertation are applicable to a wide range of processors. None

of the four techniques shown in Chapters 3-6 degrade performance while Chapters 4 and 6 discuss

techniques that can be used to improve the performance of a processor. Furthermore, all of these

techniques can be used to reduce the energy consumed by a processor. Taken together, the tech-

niques discussed in this dissertation provide realistic methods to improve the memory hierarchy by

reducing its energy usage as well as by reducing the number of stalls due to load and store hazards.

99

BIBLIOGRAPHY

[1] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Streamlining data cache access with fast
address calculation. In Proc. Int. Symp. on Computer Architecture, pages 369–380, New York,
NY, USA, June 1995. ACM.

[2] T. M. Austin and G. S. Sohi. Zero-cycle loads: Microarchitecture support for reducing load
latency. In Proc. Int. Symp. on Microarchitecture, pages 82–92. ACM/IEEE, 1995.

[3] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. Designing a practical
data filter cache to improve both energy efficiency and performance. ACM Transactions on
Architecture and Compiler Optimizations (TACO), 10(4):54:1–54:25, December 2013.

[4] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors. Speculative tag access
for reduced energy dissipation in set-associative l1 data caches. In Proceedings of the IEEE
International Conference on Computer Design (ICCD 2013), October 2013.

[5] A. Basu, M. Hill, and M. Swift. Reducing memory reference energy with opportunistic virtual
caching. In Proceedings of ACM/IEEE International Symposium on Computer Architecture,
pages 297–308, June 2012.

[6] W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh, J. Park, and
D. Sheffield. Efficient embedded computing. IEEE Computer, 41(7):27–32, July 2008.

[7] N. Duong, T. Kim, D. Zhao, and A. Veidenbaum. Revisiting level-0 caches in embedded pro-
cessors. In Proc. Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems,
pages 171–180, New York, NY, USA, October 2012. ACM.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In Proc. Int. Work-
shop on Workload Characterization, pages 3–14, December 2001.

[9] S. Hines, P. Gavin, Y. Peress, D. Whalley, and G. Tyson. Guaranteeing instruction fetch
behavior with a lookahead instruction fetch engine (life). In Proceedings of the ACM SIGPLAN
Conference on Languages, Compilers, and Tools for Embedded Systems, pages 119–128, June
2009.

[10] S. Hines, D. Whalley, and G. Tyson. Guaranteeing hits to improve the efficiency of a small
instruction cache. In Proceedings of the ACM SIGMICRO International Symposium on Mi-
croarchitecture, pages 433–444, December 2007.

100

[11] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. Way-predicting set-associative cache for
high performance and low energy consumption. In Proc. IEEE Int. Symp. on Low Power
Design (ISLPED), pages 273–275, August 1999.

[12] Mafijul Islam and Per Stenstrom. Zero-value caches: Cancelling loads that return zero. In
IEEE International Conference on Parallel Architectures and Compilation Techniques, pages
237–245, 2009.

[13] Mafijul Islam and Per Stenstrom. Characterization and exploitation of narrow-width loads:
the narrow-width cache approach. In International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems, pages 227–236, 2010.

[14] J. Kin, M. Gupta, and W. H. Mangione-Smith. Filtering memory references to increase energy
efficiency. IEEE Trans. Computers, 49(1):1–15, January 2000.

[15] J. Kin, M. Gupta, and W.H. Mangione-Smith. The filter cache: An energy efficient memory
structure. In Proc. Int. Symp. on Microarchitecture, pages 184–193, December 1997.

[16] J. Lee and S. Kim. Filter data cache: An energy-efficient small l0 data cache architecture
driven by miss cost reduction. IEEE Trans. Computers, 64(7):1927–1939, July 2015.

[17] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P.
Jouppi. McPAT: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. pages 469–480, December 2009.

[18] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P Jouppi. CACTI-P:
Architecture-level modeling for SRAM-based structures with advanced leakage reduction tech-
niques. pages 694–701, 2011.

[19] R. Megalingam, K. Deepu, I Joseph, and V. Vandana. Phased set associative cache design for
reduced power consumption. In Proceedings of International Conference on Computer Science
and Information Technology, pages 551–556, 2009.

[20] D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero. Fast speculative address generation
and way caching for reducing l1 data cache energy. In Proceedings of International Conference
on Computer Design, October 2007.

[21] Soner Önder and Rajiv Gupta. Automatic generation of microarchitecture simulators. In
IEEE International Conference on Computer Languages, pages 80–89, Chicago, May 1998.

[22] Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi, and Kaushik Roy. Re-
ducing set-associative cache energy via way-prediction and selective direct-mapping. In Proc.
ACM/IEEE Int. Symp. on Microarchitecture (MICRO), pages 54–65, December 2001.

101

[23] Prateek Pujara and Aneesh. Restrictive compression techniques to increase level 1 cache
capacity. In International Conference on Computer Design, pages 327–333, 2005.

[24] A. Sembrant, E. Hagersten, and D. Black-Shaffer. Tlc: A tag-less cache for reducing dynamic
first level cache energy. In Proc. 46th ACM/IEEE Int. Symp. on Microarchitecture (MICRO),
pages 351–356, December 2013.

[25] Michael Stokes, Ryan Baird, Zhaoxiang Jin, David Whalley, and Soner Önder. Decoupling ad-
dress generation from loads and stores to improve data access energy efficiency. In Proceedings
of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems, LCTES 2018, pages 65–75, New York, NY, USA, 2018. ACM.

[26] C. Su and A Despain. Cache design trade-offs for power and performance optimization: A
case study. In Proc. Int. Symp. on Low Power Design (ISLPED), pages 63–68, 1995.

[27] W. Tang, R. Gupta, and A. Nicolau. Design of a predictive filter cache for energy savings
in high performance processor architectures. In Proc. Int. Conf. on Computer Design, pages
68–73, Washington, DC, USA, 2001. IEEE Computer Society.

[28] L. Villa, M. Zhang, and K. Asanovic. Dynamic zero compression for cache energy reduction.
In IEEE/ACM International Symposium on Microarchitecture, pages 214–220, 2000.

[29] Emmett Witchel, Sam Larsen, C. Scott Ananian, and Krste Asanović. Direct addressed caches
for reduced power consumption. In Proc. 34th ACM/IEEE Int. Symp. on Microarchitecture
(MICRO), pages 124–133, December 2001.

[30] Jun Yang and Rajiv Gupta. Energy efficient frequent value data cache design. In ACM/IEEE
International Symposium on Microarchitecture, pages 197–207, 2002.

[31] C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-halting cache for low-energy high-
performance systems. ACM Transactions on Architecture and Compiler Optimizations
(TACO), 2(1):34–54, March 2005.

[32] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value compression in data caches. In
ACM/IEEE International Symposium on Microarchitecture, pages 258–265, 2000.

[33] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value locality and value-centric data
cache design. In International Symposium on Architecture Support for Programming Languages
and Operating Systems, pages 150–159, 2000.

[34] Zhong Zheng, Zhiying Wang, and Mikko Lipasti. Tag check elision. In International Symposium
on Low Power Electronics and Design, pages 351–356, New York, NY, USA, 2014. ACM.

102

BIOGRAPHICAL SKETCH

I was born in Miami. I attended Hialeah High School and went on to Miami Dade College for my

Associates in Arts and then finished my undergraduate at Florida State University. There, I also

obtained my Masters in Computer Science and then pursued my doctorate in Computer Science.

103

