FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCE

TECHNIQUES TO REDUCE DATA CACHE ACCESS ENERGY USAGE AND LOAD DELAY

HAZARDS

By

MICHAEL STOKES

A Dissertation submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

2019

Copyright (©) 2019 Michael Stokes. All Rights Reserved.

Michael Stokes defended this dissertation on August 1, 2019.
The members of the supervisory committee were:

David B. Whalley

Professor Directing Thesis

Linda DeBrunner

University Representative

Xin Yuan

Committee Member

Gary Tyson

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii

TABLE OF CONTENTS

Abstract L e e v
1 Introduction 1
2 Background 3
2.1 The Memory Hierarchy 3
2.2 Anatomy of Memory Access Operations 4
2.3 Virtually Indexed, Physically Tagged Caches 5
2.4 Level-Zero Data Caches e 6
2.5 Impact of L1 DC Misses on Processor Performance 7
2.5.1 Sub-blocking 7
3 Improving Energy Efficiency by Memoizing Data Access Information 8
3.1 Introduction e e 8
3.2 Memoizing L1 DC and DTLB Information 10
3.3 Detecting DCAS Re-Use 12
3.4 The DCAS Refresh Buffer 13
3.5 Evaluation Framework 16
3.6 Results. e 18
3.7 Related Work e e 20
3.8 Conclusions e e e e 24
4 An Energy Efficient Design for Utilizing a Level-Zero Data Cache 25
4.1 Introduction e 25
4.2 Proposed LO DC Design o 26
4.3 Utilizing an LO DC to Improve Performance 28
4.3.1 Making Base Register Values Available Earlier in the Pipeline 28
4.3.2 Using Base Register Values in Loads and Stores 29
4.3.3 Integrating LO DC Accesses into the Instruction Pipeline 31
4.3.4 Filling LODC Lines 33
4.3.5 Utilizing a Virtually Tagged LODC 34
4.4 Evaluation Environment e 35
4.5 Results. e 37
4.6 Related Work e 43
4.7 Conclusions e e 47

5 Decreasing the Miss Rate and Eliminating the Performance Penalty of a Data

Filter Cache 48
5.1 Introduction e e 48
5.2 Evaluation Environment 49
5.3 Lazily Filling Data Words into a DFC Line 50
5.4 Decreasing the DFC Miss Rate by Line Sharing and Data Packing 55

iii

5.5 Eliminating the DFC Miss Penalty by Only Accessing DFC Data on Guaranteed Hits 62

5.6 Related Work e 65
5.7 Conclusions 68
6 Decreasing the Miss Rate and the Miss Penalty of a L1 DC 69
6.1 Introduction e e 69
6.2 Sharing Words between Multiple L2 Sublines 71
6.3 Compressing and Decompressing L1 DC Data 73
6.4 L1 DC Metaline Fill Policy 78
6.5 L1 DC Metaline Replacement Policy for Set-Associative Organizations 79
6.6 Evaluation Environment 82
6.7 Results. e 83
6.8 Related Work e 92
6.9 Future Work L e 95
6.10 Conclusions e e e e e e 96
7 Conclusions 97
Bibliography 100
Biographical Sketch 103

v

ABSTRACT

Level-one data cache (L1 DC) accesses impact energy usage as they frequently occur and use signif-
icantly more energy than register file accesses. Modern processors use virtually-indexed, physically-
tagged caches to reduce the L1 DC access time at the expense of increasing the energy to access it.
It has been estimated that 28% of embedded processor energy is due to data supply [6]. In addi-
tion, level-one data caches have a significant impact on performance as a hit in the level-one data
cache avoids accessing higher levels of the memory hierarchy, which typically have longer access
times. Modern processors employ strategies such as critical-word first as well as lockup-free caches
to limit the penalty of an L1 DC miss. However, as the issue-width of a processor is increased,
the number of cycles that can be overlapped with a L1 DC line fill is decreased. This dissertation
provides techniques that reduce both the energy usage of level-one data caches as well as improves

the performance of processors by reducing the number of stalls due to loads and stores.

CHAPTER 1

INTRODUCTION

Level-one data cache (L1 DC) accesses impact energy usage as they frequently occur and use signif-
icantly more energy than register file accesses. Level-one data caches are typically set-associative
and virtually-indexed, physically-tagged (VIPT). Making a cache set-associative reduces its miss
rate while making it VIPT reduces its access time at the expense of increasing the energy required
to access it. As the number of transistors placed onto a chip increases according to Moore’s Law,
the energy expended by simultaneously switching these transistors also increases. As a result, the
overall temperature of the chip increases. The processor’s clock rate must be constrained to avoid
damaging the chip, reducing the chip’s power density at the expense of performance, a phenomenon
known as the power wall. Tt has been estimated that 28% of embedded processor energy is due to
data supply [6]. Thus, reducing data access energy on such processors is a reasonable goal.

In addition, level-one data caches have a significant impact on performance as a hit in the level-
one data cache avoids accessing higher levels of the memory hierarchy, which typically have longer
access times. Even so, hits in the level-one data cache can still cause load-delay hazards when a
subsequent instruction demands a value before it can be loaded from the data cache. This problem
is exacerbated as modern processors increase the number of cycles required to access the level-one
data cache. Modern processors employ strategies such as critical-word first as well as lockup-free
caches to limit the penalty of an L1 DC miss. However, as the issue-width of a processor is
increased, the number of cycles that can be overlapped with a L1 DC line fill is decreased.

This dissertation provides techniques that reduce both the energy usage of level-one data caches
as well as improves the performance of processors by reducing the number of stalls due to loads
and stores. Chapter 3 introduces a non-speculative technique that allows a processor to directly
access a set-associative data cache, allowing the processor to 1) avoid accessing the ways of a set
that don’t hold the data, 2) avoid the DTLB, and 3) avoid the L1 DC tag array. Chapter 4
proposes a technique that not only removes the performance penalty associated with level-zero

data caches, but uses level-zero data caches to improve performance by reducing the number of

load-delay hazards. In Chapter 5, detailed findings are introduced showing that word-filled level-
zero data caches are able to save more energy than line-filled level-zero data caches. Chapter 5
then provides two methods, line sharing and data packing, that increase the hit rate of level-zero
data caches by significantly increasing the amount of data that can be stored. Chapter 5 goes
on to provide a method of utilizing a word-filled, line sharing and data packing level-zero data
cache without the performance penalty typically associated with level-zero data caches. Chapter 6
extends the methods shown in Chapter 5 to the level-one data cache. A thorough analysis of line
sharing and data packing’s effect on various level-one data cache designs is conducted, varying the
size, associativity, and the sub-block size, data packing methods, as well as the amount of 1.2 DC

(sub)lines that share an L1 DC line.

CHAPTER 2

BACKGROUND

To understand the following dissertation, it’s important to know the purpose and functionality of

the level-one data cache (L1 DC).

2.1 The Memory Hierarchy

1000 i A

Processor-Memory
Performance Gap

m =8 =
1 1
O~ NMO T ON~NOHZTO —~—ANMTWL O~ OO
O VOOV ODIDODOZO OO OO O O
OO OO0 OO OO OO
——_—r—rr—_rrr T rrrrTmFrrrr T+ Q

Figure 2.1: The Processor-Memory Performance Gap

Since 1980, processor speeds have increased year-over-year by roughly 60% while DRAM speeds
have only increased at a rate of only 7%, a problem known as the processor-memory gap. Processors
take advantage of both temporal locality, where data that is referenced is likely to be referenced
again in the near future, as well as spatial locality, where data in proximity to referenced data will
likely be referenced as well. To address the processor-memory performance gap, multiple levels of
cache are now used. Level-one (L1) caches in the memory hierarchy are large enough to provide
reasonable hit rates, but also small enough to provide fast access times. Level-two (L2) and level-
three (L3) caches provide slower access times, but reduce the number of references that need to
access main memory. These multiple levels of cache now all reside on the same chip as the processor
and are built using SRAM technology. In addition to this, CMOS scaling trends result in faster

transistors with with relatively longer wire delays. Because of these reasons, level-one data cache

sizes have largely remained the same and are now pipelined to keep up with reduced clock cycle
times.

Upon a cache miss, a (sub)line is fetched from higher levels of the memory hierarchy and placed
into the cache. Where a cache line can be placed is determined by its associativity. In a fully
associative cache, a (sub)line can be placed in any cache line of a cache. In an n-way set associative
cache, a cache is split into sets with n cache lines per set and a (sub)line can be placed inside any
one of the n ways of a set. A direct mapped cache is a special case of a set-associative cache where
n is equal to one. By restricting the cache lines where a (sub)line can be placed, both the time and

the energy to access the cache decrease at the expense of also decreasing the hit rate.

2.2 Anatomy of Memory Access Operations

Contemporary architectures designed using RISC principles attempt to implement each instruc-
tion using a single pop. However, memory operations involve many hidden hardware pops. These

pops not only form dependence chains, but also use a significant amount of energy.

r4=sp+72; 1. va=r4+0;

L1: r3=M[r4]; 2. pa=dtlb_access(va);
r4=r4+4; 3. way:tag_ChECk(pa);
r3=r3+rs; 4. r3=load_access(pa,way);
PC=r4!=r8,L1;

Conventional Micro Operations

Figure 2.2: Micro-Ops Associated with Load Instructions

Figure 2.2(a) shows code containing a load and a store along with the pops that implement
these instructions. The load pops are: #1 Add the base register value and the offset to obtain the
virtual address (va); #2 Access the data translation lookaside buffer (DTLB) using the va to get
the physical address (pa); #3 Perform the tag check to identify the way where the data resides in
a set-associative cache; and #4 use the pa index and the way to access the cache data and update
the register. Unfortunately, these pops are not visible to the compiler with conventional ISAs and
it would be expensive to implement each pop as an ISA instruction in terms of code size, fetch

bandwidth, and energy.

2.3 Virtually Indexed, Physically Tagged Caches

Several hardware techniques shorten this dependence chain and mitigate the delay, but do so
at the expense of significantly more energy usage and/or imposed constraints, such as a limited
page size. For example, virtually-indexed, physically-tagged (VIPT) caches exploit the fact that
the cache index remains invariant during translation with appropriately sized pages, allowing pops
(2), (3), and (4) shown in Figure 2.2(a) to proceed in parallel by simultaneously accessing all ways
of data in the L1 DC set at the expense of significant energy usage. This approach leaves the
dependence between the first and the remaining three pops into successive pipeline stages such
that the execution unit performs the virtual address computation (i.e., pop #1) and the memory
access stage performs all the remaining operations, leading to the infamous

Figure 2.3 depicts how a classical in-order pipeline performs a load from an n-way set-associative
L1 DC. The virtual memory address is generated by adding a displacement to a base address
obtained from the register file in an address generation (ADDR-GEN) stage. The displacement is
a sign-extended immediate and the base address is obtained from the register file. In the SRAM-
ACCESS stage the DTLB, the L1 DC tags, and the L1 DC data are all accessed in parallel to
minimize load hazard stalls and the tag value of the physical address is compared to the tag value
of the physical page number from the DTLB.! This organization is energy inefficient as all data

arrays are accessed, but the value can reside in at most one way within a cache set.

ADDR-GEN SRAM-ACCESS
> DTLBA [~
Displacement ™ TAG:0 A
\A‘
G > TAG: n—1 A
Base Addresi)
= DATA: 0 A -
A > DATA:n-1 A > A

Figure 2.3: Conventional L1 DC Pipeline Load Access

!The register level after the ADDR-GEN stage is embedded in the DTLB, TAG, and DATA blocks.

Figure 6.1 shows the address fields used to access the DTLB and the L1 DC. The virtual page
number is used to access the DTLB, which produces the corresponding physical page number. The
virtual and physical page offsets remain the same. The L1 DC block number uniquely identifies
the L1 DC line being accessed. The L1 DC offset indicates the first byte of the data to be accessed
in the L1 DC line. The set index is used to access the L1 DC set. The tag contains the remaining
bits that are used to verify if the line resides in the L1 DC.?

virtual address

virtual page number \ page offset

physical address
physical page number \ page offset
L1 DC block number L1 DC
tag | setindex | offset

Figure 2.4: Address Fields

2.4 Level-Zero Data Caches

A level-zero data cache (L0 DC), also known as a data filter cache (DFC), has been shown to
be effective at reducing data access energy [14,15]. An L0 DC is a smaller, typically direct-mapped
cache that is accessed before the L1 DC. A reference that hits in the L0 DC does not need to access
the L1 DC while a reference that misses in the LO DC accesses the L1 DC in the following cycle.
An L0 DC is energy efficient since a large fraction of the memory references can be serviced from
the LO DC that is much smaller than a level-one data cache (L1 DC), resulting in less energy usage
for each LO DC reference as compared to an L1 DC reference. However, a conventional L0 DC has
disadvantages that has discouraged its adoption in contemporary processors. First, an LO DC can
cause a performance penalty as it has to be accessed before the L1 DC in order to reduce energy
usage; upon an L0 DC miss, the L1 DC is accessed a cycle later than it normally would, potentially

causing load-delay hazards that would not occur had an LO DC not been used. This increase in

2We depict the physical page number and the tag fields being the same size, but the physical page number could
be smaller for a virtually-indexed, physically-tagged (VIPT) cache. To simplify the description, we assume these two
fields are the same size.

execution time will mitigate some of the energy benefit of using an L0 DC. Second, a single cycle
LO line fill as proposed in many prior studies [7,9,10,14,15,27] has been shown to be unrealistic as

it can adversely affect L1 DC area and energy efficiency [3].

2.5 Impact of L1 DC Misses on Processor Performance

L1 DC misses decrease performance as the data must be fetched from higher levels of the memory
hierarchy. Higher levels of the memory hierarchy typically take many more cycles to access than the
L1 DC. In addition, caches in embedded processors are typically blocking, meaning that memory
operations are stalled while an L1 DC line is being filled. One technique mitigates this delay by
servicing a load that missed in the L1 DC as quickly as possible by fetching the requested data
first. This allows the load to complete faster than if it waited for the entire L1 DC line to be
filled. While the remainder of the L1 DC line is being filled, the processor can continue issuing new
instructions. However, if a memory-accessing instruction is issued before the L1 DC line is filled,
then the pipeline must stall before the line fill is completed. This decreases the latency of an L1

DC miss penalty as well as overlaps the L1 DC line fill with non-memory access operations.

2.5.1 Sub-blocking

One technique embedded processors use to decrease the miss penalty of L1 DCs as well as the
energy they consume is to decrease the number of words fetched during an L1 DC line fill. L1
DC lines are split into sub-blocks and line fills occur at the granularity of sub-blocks: when an L1
DC miss occurs, only the sub-block containing the requested word is filled. This means that some
sub-blocks of an L1 DC will remain empty as they will not be referenced before the line is evicted.
Sub-blocking increases the miss rate as filling an entire L1 DC line captures more spatial locality
but decreases the number of words needlessly fetched from higher levels of the memory hierarchy.
In addition, it takes fewer cycles to fill a sub-block as fewer words need to be fetched from higher

levels of the memory hierarchy.

CHAPTER 3

IMPROVING ENERGY EFFICIENCY BY
MEMOIZING DATA ACCESS INFORMATION

Level-one data cache (L1 DC) and data translation lookaside buffer (DTLB) accesses impact energy
usage as they frequently occur and each L1 DC and DTLB access uses significantly more energy than
a register file access. Often, multiple memory operations will reference the same cache line using
the same register, such as when iterating through an array. A technique is proposed in this chapter
to memoize L1 DC access information, such as the L1 DC data array way and the DTLB way, by
associating this information with the register used to access it. When a load or store calculates
the effective address by adding the base register with the displacement value, the processor detects
whether the effective address shares the cache line memoized with the base register. If so, the L1
DC tag array access and the DTLB access to determine the L1 DC way are avoided and instead
the memoized information is used. In addition, only a single data array way in a set-associative
L1 DC needs to be accessed during a load instruction when the L1 DC way has been memoized.
This nonspeculative memoization approach provides existing executables a significant reduction in
data access energy usage compared to a conventional cache and provides even greater energy usage

reduction after way prediction is applied when memoized information is unavailable.

3.1 Introduction

Level-one data cache and data translation lookaside buffer accesses frequently occur and each
of these accesses use significantly more power than a register file access. It has been estimated that
28% of embedded processor energy is due to data supply [6]. Thus, reducing data access energy on
such processors is a reasonable goal.

The tag arrays and data arrays of an L1 DC can be accessed in parallel for load instructions
to improve the latency of obtaining data from the L1 DC, which is sometimes referred to as a
conventional cache [19]. The tag arrays are often accessed before the data arrays of level-two (L2)

and level-three (L3) caches to reduce energy usage, which is sometimes referred to as a phased

virtual address

virtual page number ‘ page offset
physical address
physical page number ‘ page offset
L1 DC block number L1 DC
tag | setindex | offset

Figure 3.1: Address Fields

cache [19]. The advantage of a phased cache is that at most a single data array need be accessed
as the result of the tag check will be known when the data in the cache is accessed. However, using
a phased L1 DC is often impractical since the reduced energy usage for the phased L1 DC data
accesses would be largely offset by the increased energy required for longer execution times.

This dissertation proposes the Data Cache Access Memoization (DCAM) technique to retain
data access information so that subsequent memory accesses dereferencing the same register can
often more efficiently access the L1 DC. These efficient L1 DC accesses are achieved by associating
the L1 DC way and DTLB way with the base register of a memory reference. When the processor
detects that a subsequent memory reference will reference the same .1 DC line, the processor can
use the memoized information to avoid the L1 DC tag check, avoid the DTLB access, and access
only a single data array in a set-associative L1 DC organization. When memoization information
cannot be utilized for the base register, the default L1 DC access mechanism (e.g. conventional [19]
or way prediction [11,22]) can be used.

The contributions of this dissertation are as follows. (1) We show that simple and efficient
memoization techniques that associate data access information with the base register being deref-
erenced can often be utilized without ISA changes to significantly reduce data access energy usage.
(2) We provide a simple method that allows the data access information to be restored even after
other instructions update the base register value. (3) We show that energy usage can be further
reduced when data access information is unavailable for the nonspeculative DCAM approach by

applying a speculative approach, such as way prediction.

3.2 Memoizing L1 DC and DTLB Information

The L1 DC way and DTLB way must be stored in a structure to allow reuse of data access
information. In fact, a DTLB access and L1 DC tag check will often be redundant since the same
line may be accessed again. Figure 3.2(a) shows code for loading from and storing to the same
variable. The store can use the same LL1 DC way as the load instruction since the value of r6 has
not been changed. Figure 3.2(b) shows an example of accessing sequential array locations, where

an L1 DC line is likely to be repeatedly accessed.

r6=...; [pam] r20=...; [pam]

L3:r2=M[r20];

...=M[r6];

... r20=r20+4; [pam]

M[r6]=...; PC=r20!'=r21,13;
(a) Redundant Accesses (b) Strided Accesses

Figure 3.2: Memoization Examples

One issue that must be resolved is when the displacement in the load or store instruction is a
nonzero value. Figure 3.3 shows the average frequency of the number of bits needed to represent
displacement values (the most significant 16 bits are sign extended to be all 0’s or 1’s) for load and
store operations in the MiBench benchmark suite, where the range for n bits is —2"~1..2"~! —1 and
does not comprise the values in the previous range. A zero displacement occurs 46% of the time
and large offsets comprise a small fraction of the displacements. Note that negative displacements
occur less than 2% of the time.

One problem is that the address associated with the base register value may not be associated
with the same L1 DC line as the effective address that is computed by adding the base register
and the displacement value. For a load or store instruction to be able to use or memoize cache
access information, the magnitude of the displacement must be smaller than the L1 DC line size.
However, the effective address of a load or store instruction with such a displacement may still
fall outside of the cache line associated with the base register. If the displacement is positive and
is smaller than the cache line size, then the effective address must point to either the current or
next sequential cache line. Thus, the processor tracks both the current and the next sequential L1
DC line associated with the address in the base register, which allows dealing with small positive

displacements that cross to the next sequential line in memory.

10

0.5

0.4

0.3 1

0.2 1

Memory References

0.1+

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Used in Displacement

Figure 3.3: Displacement Size Frequency

The DCAM approach associates L1 DC access information with the base register number of
a load or store instruction and detects when updates to this register does not invalidate this
information. Consider the data cache access structure (DCAS) in Figure 3.4(a) that contains
fields associated with each base register in load and store instructions. The DWYV bit indicates
if the DTLB way field is valid. If the DWYV bit is not set, then the rest of the DCAS entry is
considered invalid. The DTLB way field holds the DTLB way in which the associated physical
page number resides. The LWV bit indicates if the L1 DC way field associated with the address in
the base register is valid. The L1 DC way field holds the L1 DC way in which the cache line resides
that is associated with the address in the register. The LWVN bit indicates if the next sequential
line has a valid way. The L1 DC N way holds the way for the next sequential line. The L1 DC
set index field (see Figure 3.1) of the effective address indicates the L1 DC set and need not be
stored in the DCAS since the set index is available from the effective address calculation. The PP
field contains page protection bits from the DTLB entry since the DCAS structure allows DTLB
references to be avoided and these bits need to be checked to ensure pages are properly accessed.
The DCAS entry needs to be accessed during the EX stage to allow a single L1 DC data array
access for a load in the following cycle.

Figure 3.4(b) depicts the DCAV structure used to keep DCAS entries coherent when an L1 DC
line is evicted or invalidated. Each DCAV entry contains a bit vector, where each bit represents an

integer register. An entry is indexed by the L1 DC way, where n is the L1 DC associativity level.

11

DTLB L1DC
DwV way Lwv way PP

0 0
31 n-1
(a) Data Cache Access (b) Data Cache Access
Structure (DCAS) Valid Information (DCAV)

Figure 3.4: Data Cache Access Information

Each time a DCAS entry shown in Figure 3.4(a) is associated with a line, the bit corresponding
to the register number of that way in the DCAV structure is set. Fach time a register’s LWV bit
(see Figure 3.4(a)) is cleared, the bit corresponding to that register number is also cleared in every
DCAV entry. When an L1 DC line is replaced or invalidated, the corresponding bits set in the
entry accessed by the LI DC way of that line are used to determine which DCAS entries will have
their LWV bit cleared. Thus, this structure contains an inverse mapping between each L1 DC way
and the DCAS entries. All the DCAS DWYV bits and the values in the DCAV structure are cleared

upon a DTLB eviction, which infrequently occurs.

3.3 Detecting DCAS Re-Use

There are many cases where the address in a register is updated, but still is within the same
line in the cache and more frequently within the same page. Figure 3.5 shows that it is simple
for the processor to detect if the cache line to be accessed will change during an effective address
computation of a load or store instruction (M/rs+immed]) or during an integer immediate addition
(rd = rs + immed). First, the magnitude of the immediate has to be less than the size of the line
offset field.

Second, the carry out values can be inspected during the addition to check whether or not the
L1 DC block number as shown in Figure 3.1 has changed. If the set index field is updated during
a load or store address computation with a positive displacement that is smaller than the L1 DC
line size, then either the L1 DC N way field can be used or the tag check has to be performed if
the LWVN bit is clear. In the latter case, a single way in the DTLB can be accessed using the
DTLB way field to obtain the physical tag value when the virtual page number (VPN) field is not
updated. If the VPN field is updated, then all the ways in the DTLB have to be accessed. If the set

12

index field is updated during an integer addition instruction by a small positive value, then the L1
DC way N field is copied to the L1 DC way field and the LWVN bit is cleared. By inspecting the
carry out values for integer add or subtract operations using either two register values or register
and an immediate, the processor can continue to memoize all or portions of a register’s data access
information after updates to the base register if the update does not change the cache line or page
associated with the address contained in the register.

all zeros or all ones

=< »!

31 16 15 |
- : T
| Sign Extension | Immediate |
1
1
1
(]
1
1
1

31

| Register Value

+32-bits | ~ 32-bits

no
ADD carr
; < out'}’
31 Y <« T)
| VPN Set Index Line Offset |

Figure 3.5: Detecting Address Changes

If an integer add instruction references a source register with its DWYV bit set, then its cor-
responding DCAS information is copied to the destination register DCAS entry if the destination
register differs from the source register. Other integer register updates cause the DWYV field in the
DCAS entry indexed by the destination register number to be invalidated.

Figure 3.6 shows the percentage reduction of L1 DC tag array and DTLB accesses as a result
of using the LWVN field. Benchmarks such as blowfish with larger offset sizes than average tend
to have a significant improvement. Benchmarks such as adpcm saw almost no improvement as

virtually all loads and stores used a displacement value of zero.

3.4 The DCAS Refresh Buffer

Frequently, a DCAS entry is invalidated but its contents continue to point to the correct cache
line. In Figure 3.7 DCAS entry 20 is set during the load instruction and is overwritten during the
function call to foo, shown in Figure 3.9(a). During foo’s epilogue code, r20’s value is restored,
again pointing to the same cache line in its DCAS entry. If the processor can detect during a load
or a store that the base register’s DCAS entry points to the same cache line as the value held inside

the base register, then the processor can restore the DCAS entry contents.

13

0.2 -

Z
=
|
()
g
Z 0.1+
©
<
——
(%)
o
I}
i I
|
= < O ®© = D ® QO ¥ 3 ®o £ Cc = C
EE 5 5 £ % &£ 3 %35 55 32 6 8 E 3
& o & 9 > 2 9 £ Qa o g »u g @ Q
g o 2 = 2 T3 ° £ o 3 £
© 35 3 B o = o <
= =
= [\
(/2]
Benchmarks

Figure 3.6: Reduction of L1 DC Tag and DTLB Accesses Using LWVN

L3: r2=M[r20]; foo:sp=sp-12;
T M[sp+4]=r20;
jal foo ce
e r20=0;
r20=r20+4; .
PC=r20!=r21,L3; r20=M[sp+4];
sp=sp+12;
jr ra

Figure 3.7: DCAS Refresh Example

The processor stores the tag and set index portions of the virtual address of the L1 DC line
with a DCAS entry in addition to its L1 DC access information. If a load or store detects that its
DCAS entry is invalid but its contents still refer to the cache line associated with the tag and set
index stored alongside it, then the processor compares the virtual tag and set index portions of the
base register with the virtual tag and set index portions stored alongside the DCAS entry during
the EX stage. If they match, then the processor can restore the DWV, DTLB way, LWV, L1 DC
way, LWVN, and L1 DC way next fields if they were previously valid. Furthermore, if the DCAS
entry and base register don’t point to the same cache line but do point to the same page, then the
processor can restore the DCAS entry’s DWV and DTLB way fields to avoid a fully associative
DTLB access.

14

DCAS entries can now be in one of three states: 1) valid, meaning the DCAS entry and base
register value point to the same cache line and/or page and that the way is known, 2) false invalid,
meaning the DCAS entry and base register value may not point to the same line or page but
the DCAS information is still valid for the line and page stored in the virtual tag and set index
fields of the DCAS entry, and 3) true invalid, meaning the DCAS entry has no valid cache access
information.

A DCAS entry becomes wvalid after a load or a store instruction determines the L1 DC way
(DTLB way) and the effective address points to the same line (page) in the base register value. A
DCAS entry becomes true invalid after an L1 DC line eviction or a DTLB page eviction. A DCAS
entry becomes false invalid if the base register is overwritten by an instruction that doesn’t change
its DCAS information. For example, after instruction r20=0; executes in Figure 3.7, the DCAS
contents still refers to the same DTLB way and L1 DC way shown in Figure 3.9(b). The DWV
field is marked as false invalid, indicating that the DCAS cannot guarantee that the base register
contents and DCAS entry refer to the same cache line, but it can guarantee that the DCAS entry
is still walid for the stored tag and set index. The next time a load or store refers to a DCAS
entry marked as false invalid, the virtual tag and set index fields of the base register are compared
with those fields stored in the DCAS Refresh Buffer to see if the DCAS contents can be restored
by setting the DWYV field to true valid as shown in Figure 3.9(c). As the DCAS and the DCAS
Refresh Buffer are both indexed by the base register number, the cost of accessing this buffer is
relatively inexpensive.

Figure 3.8 shows the percentage reduction in the number of L1 DC tag array and DTLB accesses
made when the DCAS refresh buffer is used. On average, this approach reduces the number of L1
DC tag array and DTLB accesses by 10.6%. Benchmarks like bitcount which update a global
variable inside of a loop with a function call, and therefore must continually re-load the address,
has a significant improvement of over 48%. As the refresh buffer is directly accessed and only used
when the DCAM entry is marked as false invalid, it will not expend a significant amount of energy,

mitigating the energy savings.

15

0.5 ~

< 04
Z 0
-
Q0.3
>
2 021
(2]
S
S 0.1 I
) 1] |
0+ = - . N n l - = N
E B £ 90 ®8 £ £ T » € Q9 £ p ® £ < £ ¢
c 3255 5828202886887 §
T o 2 = = T ° £ o 3 £
© 3 5 © e = S £
c =
= ©
7]
Benchmarks
Figure 3.8: DCAS Refresh Buffer Effectiveness
Register File DCAS Refresh Buffer
DTLB L1DC L1 DC Way
DWv_ Way |wv Way |WVN Next VPN Set Index
r20| Oxbffffgo4 | [TV 12 1 2 0 X | | oxsffff 0x20 |
200 O0x0 | |Fl 12 1 2 0 X | | ox5ffff 0x20 |
r20| Oxbffff808 | [TV 12 1 2 0 X | OXSffff 0x20 |

Figure 3.9: DCAS Refresh Buffer Example

3.5 Evaluation Framework

In this section the experimental environment is described. The seventeen benchmarks from the
MiBench benchmark suite [8], which is a representative set of embedded applications, are used to
evaluate the DCAM approach. All benchmarks are simulated using the large dataset option and
compiled using gcc with the -03 option.

The ADL simulator [21] was used to simulate both a conventional MIPS processor as the baseline
and the modified processor as described in this dissertation. Both configurations are single-issue,
in-order processors with six-stage pipelines as shown in Table 3.1. Table 3.2 shows other details

regarding the processor configuration utilized in these simulations. Note that the DWV bit is

16

separated from the rest of the DCAS structure so this bit can be accessed during the RF (register
fetch) pipeline stage, which allows the processor to avoid accessing the rest of the DCAS structure

when the DWYV bit is not set.

Table 3.1: DCAM Pipeline Stages

Stage | Name DCAM Pipeline
IF Inst. Fetch

1D Inst. Decode

RF Reg. Fetch Read DWV Bit
EX Execute Read/Refresh DCAS
MEM | Mem. Access | Update DWV/DCAS
WB Write Back

Table 3.2: Processor Configuration

page size 8KB
32KB, 64B line size

L1 DC 4-way associative, 1 cycle hit,
10 cycle miss penalty

DTLB 32 entries7. '
fully associative

DCAS 64 total bytes

DCAS Refresh Buffer | 96 total bytes

DCAV 4 total bytes

Table 3.3: Energy for L1 DC and DTLB Components

] Component \ Energy \
Read L1 DC Tags - All Ways 0.494 pJ
Read L1 DC Data - All Ways 6.358 pJ
Write L1 DC Data - One Way 2.723 pJ
Read L1 DC Data - One Way 1.590 pJ
Read DTLB - Fully Associative 1.675 pJ
Read DTLB - One Way 0.057 pJ
Read DCAS - 1 Entry 0.025 pJ
Write DCAS - 1 Entry 0.030 pJ
Read DCAV - 32 Bits in All 4 Entries | 0.072 pJ
Write DCAV - 1 Bit in All 4 Entries 0.036 pJ
Refresh Buffer Read - 1 Entry 0.074 pJ
Refresh Buffer Write - 1 Entry 0.142 pJ

CACTT was used to estimate L1 DC and DTLB energy usage assuming 22-nm CMOS process
technology with low standby power (LSTP) cells. Table 3.3 shows the energy required for accessing

17

o Direct m Set—Associative

17 N
0.9
0.8 -
0.7
0.6
0.5 -
0.4
0.3 -
0.2
0.1 -
0 B ——

Load Data Array Accesses

jpeg T ——
m

—

rijndael T T
—

I

|

T T T T T T T T T T T T
= = (®] [y = (4] (o} k- 4y} e [3= C
E§S 25 £ %5283 5 9 S 6 3 = g
S o & 9 o s 2 @ ® g 2 P
S O < X R =] o > =
=22 % g 8 2
o o o <
c =
'_: 4]
wn
Benchmarks

Figure 3.10: L1 DC Data Array Load Accesses

the various components. Leakage energy was gathered assuming a 1 GHZ clock rate.

3.6 Results

Figure 3.10 shows the ratio of L1 DC data array load accesses that are direct (single L1 DC
way) or set associative (all L1 DC ways). Over 59% of the load accesses on average are now direct.
In the baseline all loads access all L1 DC data arrays and all stores access a single L1 DC data
array as the tag check must occur before the L1 DC is updated.

Figure 3.11 shows the ratio of tag checks and DTLB accesses that remain after applying the
DCAM technique. On average about 63% of the L1 DC tag checks are eliminated and about 82% of
the fully associative DTLB accesses are eliminated. About 18% of the original DTLB accesses are
now just accessing a single way of the DTLB, which occurs when the set indez field is updated and
causes an L1 DC tag check, but the wvirtual page number field is unaffected. A single way DTLB
access requires much less energy than a fully associative DTLB access, as shown in Table 3.3. On

average over 7% of these avoided L1 DC tag checks are due to memoizing the next sequential line.

18

ow L1 DC Tag Check m DTLB Set Associative = DTLB Direct

o
@
o

Benchmarks

0.9 1
0.8 1
0.7
0.6 1
0.5
0.4 1
0.3 1
0.2 1
0.1~

Tag and DTLB Acccesses

[

gsm

spel

dijkstra

m
Q.
(@)
o

sha.
stringsearch J:

susan J;
| —

arith mean

gsort J:

LUCELES—

blowfish J:

o
adpcm
bitcount J;

patricia

Figure 3.11: Remaining DTLB and Tag Checks

Figure 3.12 shows the breakdown of energy used by the components involved in a data access
operation. For each benchmark the left bar shows results for the baseline and the right bar shows
results for the DCAM technique. On average about 1.1% of the total energy is due to leakage. For
the average baseline data access energy, 57.9% is due to data array reads from load instructions,
12.5% is due to data array writes from store instructions, 6.7% is due to L1 DC tag checks, and
22.7% is due to DTLB accesses. DCAM reduces the energy on average for data array reads to
31.6%, L1 DC tag checks to 2.4%, and DTLB accesses to 4.2%. Note that the energy for data
array writes remains the same as writes are direct accesses in both the baseline and DCAM. There
is an average overhead of 1.5% for accessing the DCAS and DCAV structures when using the
DCAM technique. Overall, the data access energy is reduced to roughly 54% of the baseline on
average. The overall energy savings ranges from 71.4% for the susan benchmark to 12% for the
fft benchmark. These energy reductions are significant given that these benefits are obtained on
existing binaries with no ISA changes.

Figure 3.13 shows the same breakdown of energy used by the components involved in a data

access operation for other various techniques. Using DCAM alone (52.4%) fails to do better than

19

m Leakage m DARead m DAWrite m TARead m= DTLB & AGS+AGV

1 -
0.9 4
0.8
0.7
0.6
0.5+
0.4
0.3 4
0.2
0.1

0 l

Figure 3.12: DCAM Energy Relative to Baseline

Data Access Energy

adpcm
bitcount
blowfish
dijkstra
ispell

ipeg
patricia
gsort
rijndael
stringsearch
susan

tiff

arith. mean

way caching (46.1%). Way prediction [11,22] is more commonly used than way caching due to
other way caching disadvantages. DCAM (a nonspeculative technique) in combination with way
prediction, which only predicts the way when it is not memoized by DCAM, achieves the best
results (36.3%). This is because way prediction and other speculative techniques, cannot avoid
accessing the DTLB and the tag array. Other techniques that can avoid these accesses do so at
a significantly higher cost in overhead energy relative to DCAM, such as way caching. All of the

other evaluated techniques have some disadvantages that are described in Section 3.7.

3.7 Related Work

Many techniques have been investigated to reduce data access energy. Most of these techniques
require trade-offs that may affect how they can be implemented or used. Not all of these techniques
conflict with the DCAM approach, as combining some approaches with DCAM could result in lower
data access energy than using either approach alone. Taken together, these various characteristics
provide a taxonomy of data access efficiency techniques that can be used to compare against the
DCAM approach that is shown in Table 3.4.

Unlike the DCAM approach, way-prediction techniques (WP) can have a performance penalty
of several percent [11,22] (OM). These techniques predict which way of the data array is being
accessed and this prediction is then verified by performing a L1 DC tag comparison and DTLB
access (TD). Newer versions of way-prediction are more accurate, but require a custom SRAM

implementation to mitigate the latency of accessing way prediction information before the regular

20

1] Leakage [DA Read E DA Write
- 0.9 1 B TARead M DTLB M Overhead
o 0.8
2 0.7 A
L
2 0.6 + =
Q 0.5 +
g | |
g 0.4
o 0.3
B 02
0.1 -
0+~ -
(0] (0] = (0] 3 o
sz £ £ £ 3 %
Q O ® = ® o +
g 0 9 § Q = =
¢ " 5 2 g § %
T - = a

Figure 3.13: Comparison of Energy Techniques

L1 DC tag and data access (CS) using a hash of the virtual address. Nicolaescu et al. propose
to save the L1 DC way of the last 16 cache accesses in a table (WC), and each memory access
speculatively performs a fully associative tag search on this table (CP, CS). If there is a match,
then only the corresponding way is activated [20]. In contrast, the structures used in the DCAM
approach to avoid an associative L1 DC data array access are much less expensive to access. Way
halting (WH) is another method for reducing the number of tag comparisons [31], where partial
tags are stored in a fully associative memory (the halt tag array) with as many ways as there are
sets in the cache. In parallel with decoding the word line address the partial tag is searched in the
halt tag array. Only for the set where a partial tag match is detected can the word line be enabled
by the word line decoder. This halts access to ways that cannot contain the data as determined
by the partial tag comparison. Way halting requires a specialized SRAM implementation that
might have a negative impact on the maximum operational frequency (CS). WP and WH could be
combined with the DCAM approach to reduce energy usage even further (COM).

There have also been some techniques proposed to avoid DTLB accesses. For example, oppor-
tunistic virtual caching (OVC) is a technique to allow some blocks in the L1 caches to be cached

with virtual addresses by changing the operating system to indicate which pages can use virtual

21

Table 3.4: Comparison of DCAM Approach to Various L.L1 DC Access Techniques

’ Data Access Techniques H Characteristics of Techniques ‘
WP Way Prediction MS more space required
WC Way Caching OM overhead on misses
WH Way Halting CP may be on critical path
TLC TagLess Cache CI compiler/ISA changes

LB Line Buffer CS custom SRAM required
FC Filter Cache TD Tag/DTLB access
TCE Tag Check Elision COM complements DCAM

DAGDA | Decoupled AddrGen HC higher complexity
& Data Access

| [MS [OM | CP | IC | CI [CS | TD | COM |

WP X X X X
WC X X X X
WH X X X X
TLC X X X
LB X X X
FC X X X
TCE X X X
DAGDA X

caching [5] (OS). In contrast, the DCAM technique can avoid many DTLB accesses by detecting
that the physical page has not changed while requiring no OS changes.

L1 DC tag checks for memory references are eliminated when the cache line to be accessed can
be identified by the compiler as being known by using direct address registers (DARs) [29]. The
compiler annotates a memory reference that sets a DAR identifying the accessed L1 DC line and
subsequent memory references that are guaranteed to access the same line reference the same DAR
to avoid the tag check (CI). Unlike the DCAM technique, several compiler transformations are
required, such as loop unrolling and alignment of variables on cache line boundaries, to make these
guarantees, which can result in both code and data size increases. In addition, the DAR approach
requires ISA modifications to support it.

A tagless cache (TLC) design has been proposed that uses an extended TLB (ETLB) to avoid
tag checks [24]. While the TLC approach can significantly reduce energy usage, the authors assume
the ETLB is accessed first to subsequently allow accessing a single L1 DC data array, which could
either increase the cycle time or require an additional cycle to service an L1 DC access (CP).
The DCAM approach could be used in conjunction with the TLC approach as the ETLB can be
avoided when memoization detects that the L1 DC way is already known (COM). Unlike DCAM,

22

the TLC approach does not avoid TLB accesses (TD). Finally, the use of a TLC requires dealing
with synonyms, homonyms, and other problems associated with virtually addressed data accesses.

Other small structures have been suggested to reduce L1 DC energy usage. A line buffer (LB)
can be used to hold the last line accessed in the L1 DC [26]. The buffer must however be checked
before accessing the L1 DC, placing it on the critical path, which can degrade performance (CP). A
line buffer also has a high miss rate, which may increase the L1 DC energy usage due to continuously
fetching full lines from the L1 DC memory (OM). A small filter cache (FC) accessed before the L1
DC has been proposed to reduce the power dissipation of data accesses [15]. However, filter caches
reduce energy usage at the expense of a significant performance penalty due to their high miss rate
(OM), which mitigates some of the energy benefits and has likely discouraged its use.

There are some similarities between the Tag Check Elision (TCE) approach and the DCAM
approach [34]. Like DCAM, the TCE approach stores an L1 DC way with each integer register.
However, there are several significant differences between TCE and DCAM. The TCE approach is
likely to memoize more cases with large displacements. However, this feature comes with several
disadvantages as compared to the DCAM approach, as depicted in Table 3.4, including that the
TCE complexity may increase the critical path that could affect the cycle time (CP). Unlike TCE,
DCAM retains the DTLB way to avoid DTLB accesses when a different line is accessed within
the same page. TCE stores a bound with every register to memoize L1 DC ways, which in their
evaluation was a 29-bit value (MS). In contrast, DCAM requires no immediate value with DCAS
entries, which should require much less power to access. TCE requires two comparisons and an
addition to verify that the effective address of the memory reference is within the bounds of the
cache line as well as an extra addition and a bound read and write each time an integer register is
incremented by a value (CP, HC). DCAM'’s check for a carry out of an addition into the set index
field and VPN fields is much simpler. Finally, TCE’s invalidation scheme requires much more space
than DCAM’s invalidation method (MS).

The Decoupled Address Generation and Data Access (DAGDA) technique exploits memoization
to improve data access energy efficiency. However, all loads and stores are required to utilize zero

displacements, requiring both compiler and instruction set architecture (ISA) changes [25].

23

3.8 Conclusions

In this chapter, an approach was described to reduce energy usage by saving L1 DC access
information with the register used to access memory. By associating the DTLB access and L1 DC
tag check with the base register used in a memory operation the processor is often able to avoid
L1 DC tag array accesses and DTLB accesses and access a single L1 DC data array for loads.
Furthermore, a technique is shown to retain this information across pointer updates if the updated
value falls within the same cache line or page of the source register. These energy saving benefits

were able to be obtained on unmodified binaries.

24

CHAPTER 4

AN ENERGY EFFICIENT DESIGN FOR
UTILIZING A LEVEL-ZERO DATA CACHE

Level-zero data caches (LO DCs), also known as data filter caches (DFCs), have been shown to
be effective at reducing data access energy usage. However, this energy reduction comes with a
performance penalty when the data being accessed is not in the LO DC as the initial access to the
L1 DC is delayed by at least one cycle. In this chapter a design is described for utilizing an L0 DC
that both reduces data access energy usage and provides a performance improvement. In contrast
to a traditional LO DC, the LO DC design proposed in this chapter allows data to be accessed during
the level-one data cache (L1 DC) address generation stage. Performance is improved as L0 DC
load hits provide the data earlier than the L1 DC, reducing stalls due to load hazards. Data access
energy usage is reduced as the proposed L0 DC design is smaller and requires no DTLB access,
making it more efficient to access than an L1 DC. This chapter also provides additional techniques

that reduce the power for many of the memory operations still accessing the L1 DC.

4.1 Introduction

A level-zero data cache (LO DC), also known as a data filter cache (DFC), has been shown
to be effective at reducing data access energy [14,15]. An L0 DC is energy efficient since a large
fraction of the memory references can be serviced from the LO DC that is much smaller than a
level-one data cache (L1 DC), resulting in less energy usage for each L0 DC reference as compared
to an L1 DC reference. However, a conventional LO DC has disadvantages that has discouraged
its adoption in contemporary processors. First, an L0 DC can cause a performance penalty as it
has to be accessed before the L1 DC in order to to reduce energy usage. Upon an L0 DC miss,
the L1 DC is accessed a cycle later than it normally would, potentially causing load-delay hazards
that would not occur had an L0 DC not been used. This increase in execution time will mitigate
some of the energy benefit of using an L0 DC. Second, a single cycle LO line fill as proposed in

many prior studies [7,9,10,14,15,27] has been shown to be unrealistic as it can adversely affect

25

L1 DC area and energy efficiency [3]. These issues must be resolved for an L0 DC to be a practical
alternative for a high performance embedded processor.

This chapter proposes a new design that allows the use of an LO DC that improves both energy
efficiency and performance. The key insight for this design is to dynamically detect instructions
that update a register whose value is dereferenced by a load or a store and to keep these register
values in a small structure that can be accessed a cycle earlier in the pipeline. This feature allows
the effective address to be calculated a cycle earlier so that the LO DC can be accessed a pipeline
stage before the L1 DC is conventionally accessed.

Our design for utilizing an L0 DC makes the following contributions. (1) In contrast to a
conventional L0 DC that degrades performance, accessing the L0 DC data early provides a small
performance improvement by avoiding many load hazard stalls and removing the potential perfor-
mance penalty typically associated with L0 DCs. (2) Data access energy usage is reduced not only
because the L0 DC is smaller than an L1 DC, but also because the proposed LO DC design does
not require a DTLB access. (3) L1 DC access information obtained during the LO DC access allows
the L1 DC to be more efficiently accessed when servicing LO DC misses, writing through to the
L1 DC, and filling words within an L0 DC line from the L1 DC.

4.2 Proposed LO DC Design

In this section an approach is described for utilizing an LO DC to both improve performance
and reduce energy usage. This section provides a high-level overview of the design.

Figure 4.1 shows a high-level datapath for ALU and load instructions in a six stage instruction
pipeline that is utilized in this chapter. Loads from the LO DC occur during the fourth (LODC)
stage and loads from the L1 DC occur during the fifth (L1DC) stage. Loads from the L0 DC
are possible one cycle before the L1 DC is accessed when the effective address (base register plus
displacement) can be calculated during the RF stage. To accomplish this, the base register of the
load is obtained during the ID stage from the basereg structure, a small subset of the register file
used by loads and stores. Since the displacement value is available immediately from the instruction
bits, the effective address can be computed during the RF stage. Alternatively, if the displacement
of the load is zero, there is no need to calculate the effective address. In this case, the effective

address is simply the base register value which can be obtained from the register file. Using this

26

IF ID RF/AG EX/LODC L1DC/XX WB

. DTLB
ol e R _
.| file - L1DC
L1IC - .
I way
- |—e L F—
(> ‘>—> Lonc | .

Figure 4.1: Datapath for ALU and Load Instructions

\

early effective address computation strategy, the data can be obtained from the LO DC during the
address generation (AG) stage, one cycle before the the L1 DC is accessed during the MEM stage.

Having the LO DC and L1 DC always accessed in a given pipeline stage helps to avoid structural
hazards and simplifies the pipeline. Each LO DC line contains the corresponding L1 DC way in
which it resides, which is used to make L1 DC accesses more efficient when they are needed to be
performed. The DTLB is only accessed when accessing the L1 DC and the L1 DC way is unknown.
Forwarding paths and the internal pipelining for the LO DC and L1 DC to handle stores are not
shown to simplify the figure.

The LO DC in this design will not be accessed on every load instruction since sometimes the
base register value is not available from the basereg structure and the displacement is not zero.
One strategy would be to access the LO DC after the effective address is calculated during the AG
stage. However, an L0 DC miss could cause a performance penalty as the data would be retrieved
from higher levels of cache a cycle later than it normally would. Instead, it would be desirable to
load the data from the L1 DC instead of waiting until the address generation is complete to access
the LO DC, effectively removing the perfomance penalty typically associated with L0 DCs. Since
the data can be retrieved from either the LO DC or the L1 DC the processor needs to ensure that
data in the L1 DC has the same values as any data that are resident in the LO DC. An inclusive
cache policy and an LO DC write-through policy are used to ensure that the L1 DC always has the
most recent data. A write-through policy is much simpler to implement than a write-back policy as

the processor does not have to deal with writing back dirty L0 DC lines over multiple cycles, which

27

would allocate the L0 DC read port, making the LO DC inaccessible during this period. Instead,
evicted LO DC lines simply need to be invalidated.

Figure 4.2 shows the information that will be contained in each LO DC line. The page protection
bits are copied from the DTLB when the L0 DC line is allocated. This is necessary to ensure that
data is accessed properly as the DTLB is avoided during LO DC hits, as described is Section 4.3.5.
An LO DC line also identifies the L1 DC way where the LO DC line resides. Each data byte within

the line has a filled bit to indicate if that byte within the line is resident, described in Section 4.3.4.

L1
v tag PP | DC |f | data ... |f] data
way

v = valid bit PP = page protection bits f = filled bit
Figure 4.2: L0 DC Line Contents

The remainder of this section is used to describe the design in more detail.

4.3 Utilizing an LO DC to Improve Performance

The following subsections describe how this design makes base register values available earlier
in the pipeline, is integrated into a pipeline, fills data words in an LO DC line, and is virtually

addressed.

4.3.1 Making Base Register Values Available Earlier in the Pipeline

A simple approach to ensure that base register values are available in the basereg structure is
to have all integer instructions that update a register to write their register value to the basereg
structure. There are two problems with this approach: 1) the energy-saving benefits of using an
L0 DC are mitigated due to unnecessary basereg writes and 2) additional pressure is placed on the
basereg structure, meaning it will be harder to retain basereg values long enough so that they can
be used by loads and stores because they will be evicted by unnecessary basereg writes.

To solve these problems, an approach is described to dynamically detect instructions that update
an integer register whose value will be dereferenced by a load or a store. Such registers are referred
to as base registers since they contains the base value of the effective address for a load or a store.

Such instructions are referred to as base address generation (BAG) instructions as they update the

28

base register of a load or store. Table 4.1 shows the different MIPS instructions that are likely to
be a BAG instruction and account for over 99.9% of the BAG instructions. An instruction with

one of these opcodes is referred to as a potential BAG (PBAG) instruction.

Table 4.1: Last Instruction to Compute a Data Address

[Size [Type] Operation [MIPS Inst Effect [Source Operands]
Local (1) int immed add rd = rs + immed stack pointer and offset
Scalar Global (2) bitwise immed OR | rd = rs | immed high | low global address
Pointer (3) int load rt = M]rs] pointer variable address
Array Elem | (4) int reg add rd =1s + 1t array address 4 elem offset
Composite | Struct Field | (1) int immed add rd = rs + immed | struct address + field offset
Ptr Arith (5) int reg sub rd =rs - rt pointer - var offset

When a PBAG instruction is executed, a small basereg structure as depicted in Figure 4.3 is
updated. Each basereg element contains the value of an integer register that was dereferenced in
a load or store instruction. The structure shown in the figure contains at most four base register
values. The baseregindex structure is indexed by the base register number of a load or store
instruction and is used to select the base register value from a multiplexor. The BV (Base register
Valid) bit indicates if the integer architectural register currently points to a basereg element. The
DR (DeReferenced) bit indicates if the base register has been dereferenced by a load or a store with
a nonzero displacement. The processor will update the basereg element during the WB stage of a
BAG instruction. A separate baseregnum structure contains for each basereg element the integer
register number associated with that value. The LRU element of the basereg structure is replaced
if there is not a valid value already associated with the base register number and the baseregnum
is used to clear the BV bit of the replaced basereg element.

basereg
baseregnum BV DR index basereg \¢\
0 0 0

Y

3 31 3 -

Figure 4.3: Base Register Structure

4.3.2 Using Base Register Values in Loads and Stores

Similar to how to the number of unnecessary basereg writes have been reduced, a technique

is proposed to reduce the number of unnecessary basereg reads. Ideally, a basereg element is

29

accessed only during load and store instructions that use a non-zero displacement value so there
are no unnecessary basereg reads, which mitigate the energy savings of the approach. However,
since the instruction type isn’t known until the end of the ID stage and possibly the register
number depending on the instruction set architecture, this section describes an approach which
approximates this behavior.

A bit is associated with each instruction in the L1 IC, called the LS (Load/Store) bit, to classify
instructions that are a load or store with a nonzero displacement (when any bits in the immediate
field are not zero) as shown in Table 4.2. The reason the processor checks for a nonzero displacement
is that a load or store with a zero displacement does not need to access the basereg structure as
described in Section 4.3.3. This LS bit associated with an instruction is read each time during the

instruction fetch (IF) pipeline stage.

Table 4.2: Value Associated with the LS Bit
] Value \ Meaning \

0 otherwise
1 load or store with a nonzero displacement

Instructions with a PBAG opcode as shown in Table 4.1 comprise a significant fraction of the
instructions executed. It is desirable to only update the basereg when an actual address is being
generated as unnecessary basereg updates expend additional energy and may replace useful basereg
values. The following technique is used to avoid unnecessary updates to the basereg structure. The
DR (dereferenced) bit in Figure 4.3 is set when a register is dereferenced by a load or a store with a
nonzero displacement where the PBAG instruction was executed in time for the basereg structure
to be dereferenced. When a BAG instruction sets a register that has its DR bit set, then the BAG
instruction will update the basereg structure and set the BV bit in Figure 4.3. This approach
works well as a register that is used to access memory in loops is often not set by other non-PBAG
instructions. Note that non-PBAG instructions will clear both the BV and DR bits associated
with the register number being updated.

Figure 4.4 shows a comparison of several different approaches that can be used to determine
which instructions will update the basereg structure. One approach that can be used is to allow all
instructions that update to an integer register to write their result to the basereg structure, referred

to as the ”Side Effect” approach as all instructions with an integer side effect write to it. However,

30

] o Total Updates m Useful Updates

0.9 1
0.8 1
0.7
0.6 1
0.5+
0.4
0.3 4
0.2
0.1+

Execution Time

E=
%
s
m

SideEffect |
|
BAGI

L1 DC Access Times
Figure 4.4: Comparison of BRS Update Approaches

as shown in the figure, only about 2.8% of these instructions will have their basereg element used
by a load or store instruction. This is because many instructions 1) don’t update a register used by
a load or store instruction, 2) update a register that is used by a load or a store whose displacement
value is zero and thus doesn’t need to access the basereg structure, or 3) updates a register that
is used by a load or a store but whose value will not be ready in time to be read from the basereg
structure. An additional approach used is to only update basereg structure for BAG instructions
(BAGI), which constitute the vast majority of instructions that are the last to update a register
before the register is used in a load or store. This filters out approximately 61% of unnecessary
basereg writes. However, this still updates the basereg structure 15 times unnecessarily for every
one update eventually used by a load or store. Utilizing the DR bit to detect registers that are used
by loads and stores only updates the basereg structure for about 4% of all instructions, of which,
about half of them are used by subsequent loads and stores. This approach drastically reduces the
number of updates to the basereg structure, enabling the basereg structure to use fewer elements

as there is less pressure due to unnecessary updates evicting useful entries.

4.3.3 Integrating LO DC Accesses into the Instruction Pipeline

Table 4.3 describes the different integer instruction pipeline stages used in this study. Note
many of the names for these stages occur at the same time in the pipeline, but distinct names are
provided to facilitate understanding what pipeline actions are performed by different instructions.
This pipeline separates the ID (instruction decode) and RF (register fetch) stages to reduce energy

usage caused by unnecessary register fetches. The basereg structure is accessed during the ID stage

31

of an instruction marked as a load or store with a nonzero displacement (see Table 4.2) to obtain
the base register value. The AG (address generation) stage performs an addition with this base

register value and the displacement to calculate the effective memory address.

Table 4.3: Instruction Pipeline Stages
] Stage \ Meaning H Stage \ Meaning

IF instruction fetch LOTC | L0 DC tag check

1D instruction decode || L1TC | L1 DC tag check

RF register fetch WB | write back

AG address generation TC L0 DC/L1 DC tag check

EX | execute DCW | L0O/L1 DC write, no tag check
LODC | Lo DC access L1W | L1 DC write, no tag check
L1DC | L1 DC access XX | stage not used

Table 4.4 shows how different instructions proceed through a six stage pipeline utilizing the
pipeline stages shown in Table 4.3. Note this design can easily be adapted to work with additional

pipeline stages supporting a multicycle L1 DC load access.

Table 4.4: Stages Used by Instructions

. Pipeline Stages
Instruction T ‘ 5 ‘ 3 F‘) 1 ‘ 8 5 ‘ 6
| (a)ALU inst JIF[ID[RF | EX [XX | WB |
(b)L1 load hit IF | ID | RF EX | L1IDC | WB
(c)LO load hit IF | ID | AG | LODC | XX WB
(d)LO load hit no disp IF | ID | RF | LODC | XX WB
(e)LO load miss IF | ID | AG | LODC | L1IDC | WB
(f) L0 load miss no disp || IF | ID | RF | LODC | L1IDC | WB
(g)L1 store hit IF | ID | RF EX TC | DCW
(h)LO store hit IF | ID | AG | LOTC | XX | DCW
(i) LO store hit no disp IF | ID | RF | LOTC | XX | DCW
(j) LO store miss IF | ID | AG | LOTC | L1TC | L1W
(k)LO store miss no disp || IF | ID | RF | LOTC | L1TC | L1W

An ALU inst (case (a) in Table 4.4) proceeds through the pipeline and does not perform any
action (XX) in the 5th pipeline stage. A BAG ALU instruction also writes to the basereg structure
in the sixth stage.

An L1 load hit or L1 store hit (cases (b) and (g) in Table 4.4) operation means that the base
register value was not available in the basereg structure and the load or store will access the L1
DC. An L1 store hit will require that both the LO DC and the L1 DC to be updated when the data

line is resident in the L0 DC since the LO DC uses an inclusive cache policy. The L0 DC tag arrays

32

are replicated to allow an LO DC tag check in either the LODC or L1DC stages without causing a
structural hazard.

All operations beginning with L0 means the L0 DC is accessed. For cases (c) and (d) in Table 4.4,
the load hits in the LO DC and no L1 DC access is performed. In the cases of (d), (f), (i), and
(k) in Table 4.4, the displacement of the load and store is zero, meaning no address calculation is
necessary and the processor does not access the basereg structure. For cases (c), (e), (h), and (j) in
Table 4.4, the load/store has a non-zero displacement and the processor obtains the base register
value from the basereg structure in the ID stage in order to complete the address calculation in the
AG stage, where a separate adder is utilized to avoid a structural hazard. Note an AG stage does
not access the register file when the base register value had already been obtained during the ID
stage from the basereg structure. For cases (e), (f), (j), and (k) in Table 4.4, the L0 DC is accessed
but the word being accessed is not resident and the processor accesses the L1 DC in the following
cycle.

The basereg structure is only accessed when an instruction has been marked in the LS bit
vector as a load or store instruction with a nonzero displacement. The base register value is not
available in the basereg structure when the base register value for a particular register in the basereqg
structure was replaced or the base register value was not calculated in time to perform an address
calculation in the AG stage. The base register value can be forwarded to the AG stage of a load
or store after the EX stage of a BAG ALU instruction, the LODC stage of BAG load that hits in
the LO DC, or the L1 DC stage of a BAG load that obtains its value from the L1 DC. However,
there must be at least one instruction between the ALU BAG instruction (or a BAG load that hits
in the LO DC) and the load or store that uses the BAG instruction destination register so that the
value can either be read from the basereg structure or forwarded to the AG stage of the load or
store instruction. A BAG load that obtains its value from the L1 DC must be separated from the
load or store that uses the value by at least two instructions for forwarding to occur. Note that if

forwarding cannot occur, then the L1 DC is accessed to avoid pipeline delays.

4.3.4 Filling LO DC Lines

While the LO DC line size can be smaller than an L1 DC line, it is still advantageous to utilize
a multiword LO DC line size to exploit spatial locality in data references. Many prior filter cache

studies have assumed that an L0 line is the same size as an L1 line and can be filled in a single cycle

33

to reduce the LO miss penalty [7,9,10,14,15,27]. Such an assumption is unrealistic as reading an
entire line from an L1 DC in a single cycle requires a larger bitwidth, which could increase the area
of the L1 DC and negatively affect both L1 DC access time and access energy. In addition, some
applications referenced only a single word from an LO DC line before the LO DC line was evicted.

This section describes an L0 DC fill strategy that is realistic and does not require a performance
delay due to a miss penalty. An f (filled) bit is associated with each data byte in an LO DC line, as
shown in Figure 4.2. Thus, there are two types of LO DC misses. An L0 DC line miss means the
entire LO DC line is not resident and an L0 DC reference miss means that the data reference being
accessed within an LO DC line is not resident. An f bit is associated with each byte in an L0 DC
line to allow stores of bytes or halfwords into an LLO DC line without having to load a word from
the L1 DC on a store LO DC reference miss. When a load L0 DC' line miss occurs, the LO DC line
is allocated and the single demanded word is loaded into the L0 DC line. This approach is able
to achieve a hit rate comparable to a line-filled LO DC while not incurring the overhead associated
with filling an entire LO DC line in a single cycle or the complexity of filling an LO DC line over
multiple cycles.

Using this approach, it’s possible that the LO DC line is resident but the desired word of data
is not resident. By storing additional information with each LO DC line, .1 DC accesses can be
made more efficient after accessing the LO DC in the case of line hits but word misses. Figure 4.2
shows that the L1 DC way is stored with each LO DC line. In this case the L1 DC way is used to
access the L1 DC without an L1 DC tag check or DTLB access.

4.3.5 Utilizing a Virtually Tagged L0 DC

Our L0 DC is accessed using virtual addresses, which means that virtual tags are used to check
if there is an LO DC hit. The advantage of this approach is that there is no need to access the DTLB
in parallel with the LO DC access, which also avoids a structural hazard for accessing the DTLB
during the LODC stage for some memory instructions and the L1DC for other memory instructions.
However, using a virtual cache causes a number of complications, which is simpler to handle in a
smaller LO DC.

(1) To handle the synonym problem, where different virtual addresses can map to the same
physical address, the LO DC lines corresponding to an evicted L1 DC line are also evicted. In
Figure 4.2 the L1 DC way associated with each LO DC line is included. When an LO DC line is

34

replaced after a miss, the L1 DC way and index values are compared to the same values in other
L0 DC lines within the same L0 DC set. If there is a match with another LO DC line, then that
line is invalidated. Note the portion of the L1 DC index value that can differ can be obtained from
the least significant bits of the L0 DC tag as a virtually-indexed physically-tagged (VIPT) L1 DC
is assumed.

(2) The homonym problem is that a single virtual address may map to different physical ad-
dresses when multiple virtual address spaces are used due to context switches. Our solution is to
invalidate all the LO DC lines on context switches. Few additional LO DC misses will result from
this invalidation since the LO DC is much smaller than the L1 DC and it is unlikely LO DC lines
associated with one process will remain after switching back to the same process. Note the basereg
structure automatically gets updated as a context switch restores all the register values associated
with another process.

(3) The page protection problem is that pages must be safely accessed. The DTLB contains
page protection (PP) bits that will be copied into each LO DC line as shown in Figure 4.2. The
overhead of storing and accessing these PP bits is small since there are only a few PP bits for each
DTLB page and there are few L0 DC lines.

(4) The multiprocessor cache coherency problem occurs when a cache line needs to be invalidated
due to a cache coherency invalidation request. Our L0 DC is strictly inclusive with respect to the
L1 DC. When an L1 DC line is evicted (due to a line replacement or coherency invalidation request),
any L0 DC line that has a matching L1 DC way and index is also invalidated. Note all the L.L1 DC

ways fields can be checked in parallel.

4.4 FEvaluation Environment

This section describes the evaluation environment. The seventeen benchmarks from the MiBench
benchmark suite [8], which is a representative set of embedded applications, are used to evaluate
the proposed design. All benchmarks are compiled using gcec with the -03 option.

The ADL simulator [21] was used to simulate both a conventional MIPS processor as the
baseline and the modified processor as described in this chapter. The ADL simulator performs a
more realistic simulation than many commonly used simulators (in ADL data values are actually

loaded from the caches, values are actually forwarded through the pipeline, branch target addresses

35

from the branch target buffer are actually used, etc.). Both configurations are single-issue, in-order
processors with six-stage pipelines. Branch instructions resolve in the EX stage, so there is a 3-
cycle misprediction penalty. The simulator used a gshare branch predictor with a branch target
buffer. Table 4.5 shows other details regarding the processor configuration that is utilized in the
simulations, where the L0 DC, basereg, baseregindex, and LS vector structures are only used in

the modified processor.

Table 4.5: Processor Configuration

page size 8KB
32KB, 64B line size,

L1 DC 4-way associative, 1 cycle hit,
10 cycle miss penalty

DTLB 32 entries, fully associative
512B, 16B line size,

LO DC 4-way associative, 1 cycle hit,
1 cycle word miss penalty

basereg 4 entries, 16 total bytes

baseregindex | 32 entries, 16 total bytes

LS vector 256 entries, 32 total bytes

The ADL simulator [21] was used in combination with CACTI [18] for energy evaluation to
model both a conventional MIPS processor as the baseline and the modified processor as described
in this chapter. CACTI was used to model the L1 DC, LO DC, base register structure, and LS
vector assuming a 32-nm CMOS process technology with low standby power (LSTP) cells and power
gating. A way-predicted access is modeled as a direct-mapped L1 DC with one-quarter of the total
L1 size. On a misprediction, the energy of a way-associative access is added. Table 4.6 shows the
energy required for accessing the various components related to memory accesses. CACTI does not
provide energy values for very small caches. Thus, the energy for accessing the smaller LO DCs is
estimated by using the same rate of decrease in energy usage going from a 2KB L1 DC to a 1KB
L1 DC with the same associativity and line size. Leakage energy was gathered assuming a 1 GHZ

clock rate.

36

Table 4.6: Energy for L1 DC and DTLB Components

’ Component \ Energy ‘
L1 DC Tags - 3 Ways (WP miss) | 0.473 pJ
L1 DC Data - 3 Ways (WP miss) | 8.266 pJ
L1 DC Tag - 1 Way (WP hit) 0.177 pJ
L1 DC Data - 1 Way (WP hit) 1.930 pJ

| DTLB - Fully Associative | 1.030 pJ |
L0 DC (512B) Tag - 1 Way 0.025 pJ
L0 DC (512B) Data - 1 Way 0.178 pJ

[LS Bit Vector - 1 bit | 0.005 pJ |
Basereg+Baseregindex - 1 entry 0.071 pJ
Register File - 1 Entry 0.366 pJ

4.5 Results

Initially, an LS bit was associated with each L1 IC instruction. However, the energy overhead
for accessing such a bit from the L1 IC on each instruction outweighed the benefit of only accessing
the basereg structure for each load and store. A smaller bit vector was used to reduce the energy
usage as opposed to associating a bit with every instruction in the L1 IC. Figure 4.5 shows how
bits within an address are used to index into the mth bit in the LS vector. The least significant
bits of the address (with the exception of the two least significant bits that are always zero due
to instructions being aligned on a four-byte boundary) are used to index into the LS bit vector.
Section 4.3.3 shows how instructions marked as 1 (load or store with a nonzero displacement) utilize
the basereg structure.

instruction address

[T .T1.1[T..10. 0|0 o

L] M |

0 1 m

where T = tag bit, I = index bit, O = offset bit

Figure 4.5: Accessing the LS Bit Vector

Because multiple instructions can map to the same bit in the LS vector, a misclassfication can
occasionally occur, which is detected after decoding the instruction. In such a case, the bit in the

LS vector will be reversed. A load/store with a nonzero displacement that is classified as 0 (see

37

Table 4.2) will not read from the basereg structure and will not access the LO DC. Forwarding
can occur to the AG stage even when the bit in the LS vector is appropriately classified since the
basereg element could have the wrong value when the BV bit was valid as the basereg structure is
updated during the WB (write back) stage. An instruction that is not a load/store with a nonzero
displacement that is classified as 1 (see Table 4.2) will simply read the basereg structure. Note that
an instruction that successfully reads a value from the basereg structure will not redundantly read

the same register from the register file.

20.

0525
08
. 0775
075

0475
0.725
0.45 I 0.7

64b 1280 256b 512b 1024b 2048b 4096b 8192b 64b 128 256b 512b 1024b 2048b 4096b 8192b

o

o

a
S
o 2
R @
a o

LS Bit Set for Loads/Stores
o
o
Data Access Ener:

LS Vector Size LS Vector Size
Figure 4.6: Service Rate for Varying Figure 4.7: Data Access Energy for
Size of LSVector Varying Size of LSVector

Different LS wvector sizes are evaluated with a 512B L0 DC and 32 basereg elements. The best
data access energy was obtained when the LS vector size was 1024 bits.

Figure 4.8 shows the LO DC service rate for a 512B L0 DC with a varying number of basereg
elements with an LS wvector size of 1024 bits. About 30.6% of the values were provided by the
LO DC with no basereg elements, which shows that many of the memory references had a zero
displacement. The difference in the LO DC load service rate between 2 and 4 basereg elements
was only about 1.4%. Figure 4.9 shows the data access energy with a varying number of basereg
elements with an LS vector size of 1024 bits. This data access energy includes the LO DC, L1 DC,
and DTLB and is relative to not using an L0 DC. The lowest data access energy was obtained when
the number of basereg elements was two. This is due to not many registers being live simultaneously
that are used to hold addresses to access memory when there is a nonzero displacement. Thus, two
basereg elements are used in the remaining results that are presented in this chapter.

Figure 4.10 shows the breakdown of memory accesses. The left and right bars associated with
each benchmark shows the types of loads and stores that occurred, respectively. An L0 Hit indicates
that the data was present in the LO DC. In contrast, an L0 Line Hit indicates that the line was

resident, but that the data was not resident within the line. An L0 Hit for loads results in no access

38

o)
g 0.55 ~ 5 0.75 -
8 05- & 07
> w
o 0.45 n 0.65 -
N (%]
o 3
(o] 04 7 (&) 06 7
3 <<
o 0.35- T 0.55 l I l
a S I
o 03- - o 05-
- 1 4 8 16 0o 1 4 8 16
Number of Basereg Elements Number of Basereg Elements
Figure 4.8: Service Rate for Varying Figure 4.9: Data Access Energy for
Number of Basereg Elements Varying Number of Basereg Elements
| LO Hit ® LO Line Hit O L1 Access

Load/Store Accesses
o
(6)]

1 5 - i —
0.9
0.8
0.7 1
0.6
0.4 1
0.3
0.2 1
0.1 1
0

left bars for loads, right bars for stores

adpcm
bitcount
blowfish
dijkstra

fft

gsm

ispell

Jpeg
patricia
gsort
rijndael
stringsearch
susan

tiff

arith mean

Figure 4.10: Load and Store Access Taxonomy

to the L1 DC. An L0 Line Hit for loads indicates that a word was loaded from the L1 DC into the
L0 DC and that no DTLB access or L1 DC tag check was performed as the L1 DC way is known
since it is stored in the LO DC line. An L0 Line Hit for stores results in a write to the L1 DC as a
write-through policy to the L1 DC is used. An L0 Line Hit for stores is similar to a L0 Line Hit
for loads in that the data is written to the L1 DC without a DTLB access or an LL1 DC tag check.
Note there is no L0 Hit given for stores as it’s necessary to write-through to the L1 DC so the
L1 DC remains inclusive of the LO DC. An LI Access indicates that either the address could not

39

m Leakage mL1Read mL1Write = DTLB ©oLODC o Overhead

i

left bars indicate no LO DC, right bars indicate using an LO DC

Access Energy

adpcm

bitcount

blowfish

dijkstra
gsm

ispell

jreg

patricia

gsort

rijndael

stringsearch

susan

tiff

arith mean

Figure 4.11: Data Access Component Energy

@ Linefill m BRS
1.04
1.02
® 1-
=

— 0.98 -
© 0.96 1
Q 0.94 1
w 0.92 +
0.9
0.88 -

o o o

[$] [$) o

> > >

7 ? 7

~— [a\] ™

L1 DC Access Times
Figure 4.12: Varying L1 DC Hit Access Times

be calculated early as the base register value was not available in the basereg structure or pipeline
or that the line was not resident in the LO DC.
The classification of loads and stores within each benchmark shows the type of locality present

within the benchmark. The fraction of load L0 Hits indicates temporal locality or spatial locality

40

within a word (byte or halfword references) as an entire word is loaded into the LO DC line on a load
miss. Note the bitcount benchmark has very high temporal locality and the dijkstra benchmark
has very low temporal locality. The fraction of load L0 Line Hits indicates spatial locality across
words within an L0 DC line. The fraction of L0 Line Hits would increase if the LO DC line size
was larger.

Figure 4.11 shows the component data access energy of loads and stores. The left bar for
each benchmark shows the baseline results without an LO DC and the right bar shows the results
with an LO DC. The leakage energy for these structures is so small that it cannot be seen. The
L1 Read and L1 Write indicates the energy required for accessing the L1 DC during loads and
stores, respectively. The Owverhead represents the energy required for accessing the LS bit vector
to recognize loads and stores with nonzero displacements, and the accesses to the basereg and
baseregindex structures by BAG instructions.

It is interesting to see the effect on the energy of the different components when utilizing an
L0 DC. The DTLB energy usage had a significant reduction for two reasons. First, an L0 DC load
hit does not access the DTLB since the L0 DC is virtually addressed. Second, many of the L1 DC
accesses (L1 DC loads, L1 DC stores, and LO DC next sequential word line fills from the L1 DC) do
not need to perform a DTLB access as the L1 DC way is known after the L0 DC is accessed. The
L1 Read component representing the L1 DC access energy for load instructions was significantly
reduced due to a significant fraction of LO DC hits that do not access the L1 DC and LO DC
reference misses and L1 DC sequential word line fills that do not perform an L1 DC tag check. The
L1 Write component representing .1 DC access energy for store instructions was reduced due to
avoiding L1 DC tag checkson LO line hits.

Figure 4.12 shows the effect on performance for using an L0 DC as the number of cycles required
to access the L1 DC increases. The ratios shown for each bar compares a traditional, line-filled
L0 DC as well as the proposed approach relative to a processor without an LO DC. In the first
set of bars, it can be seen that a line-filled LO DC incurs a performance penalty of 3.5% due to
load-delay hazard stalls caused by LO DC misses compared to a processor with no LO DC. Our
approach, on the other hand, improves performance by 5.1% by reducing load-delay hazard stalls
by retrieving data a cycle earlier than usual for LO DC hits. As the access time of the L1 DC is

increased to 2 or 3 cycles, both the linefill approach and the proposed approach perform better

41

relative to the baseline. The linefill approach performs better as LO DC hits can retrieve data 1 or
2 cycles earlier than usual, reducing the number of load-delay hazard stalls on LO DC hits. While
L0 DC misses can still cause load-delay hazard stalls, this is largely offset by this reduction. Our
approach continues to improve performance as retrieving data during the EX stage can eliminate
1-, 2-; and 3-cycle load-delay hazards. Our approach reduces the number of cycles executed relative
to a conventional, line-filled L0 DC by 7.5% to 8.6% for each L1 DC access time. This result taken
together with the fact that a single-cycle LO DC linefill strategy is not feasible as it increases the
time and energy to access the L1 DC means the approach outlined in this chaper outperforms a

conventional L0 DC and provides a template for implementing LLO DCs in modern processors.

1,
0.9 -
> 081 [

L%’ 0.7 -
o 06-
§ 0.5
S 04-
< 0.3
] i
S o2
0.1-
0,

L o O n n

-4 = = e =

+

[a

=

Approach

Figure 4.13: Comparison of Methods that Reduce
L1 DC Access Energy

Figure 4.13 compares several different approaches for reducing memory access energy. A con-
ventional, line-filled LO DC (LF) fails to provide significant energy savings (16%) even though it
provides a better LO DC service rate than the proposed design. This is because the energy required
to fetch the data from the L1 DC and to fill the entire L0 DC line in a single cycle mitigates much
of the potenital energy savings.

Way prediction (WP) techniques [11,22] are now commonly used to predict which way of the
L1 DC data array is being accessed and this prediction is verified by performing a DTLB access

42

and an L1 DC tag comparison. Way prediciton can both reduce energy usage (a single L1 DC tag
array and a single L1 DC data array are accessed) and improve L1 DC load hit time (the requested
data from one L1 DC data array can be sent to the CPU without waiting for an .1 DC tag check
to be performed). Way prediction provides significant energy savings (48.1%) as it’s able to avoid
an n-way set-associative L1 DC access. However, it still incurs the overhead of accessing the L1 DC
tag array and DTLB and performing a set-associative L1 DC access on mispredictions.

Way caching (WC) stores the tag and way of the 16 most recently accessing L1 DC lines in a
16-way, fully associative structure. Way caching is not only able to avoid set-associative L1 DC
accesses but also L1 DC tag array and DTLB accesses. However, way caching incurs a significant
amount of overhead because it must retrieve the desired way from this 16-way, fully associative
structure. In addition, way cache accesses lie on the critical path as this structure is accessed
between the time the effective address is calculated and the L1 DC is accessed.

Using the proposed approach (BRS) alone fails to beat way caching (45% vs 60.4%) due to way
caching’s high hit rate. By requiring the LO DC to be accessed only for loads and stores that are
able to retrieve their base register value from the basereg structure or for loads and stores with
displacements of zero so the effective address can be calculated a cycle earlier, the LO DC service
rate is lowered. However, this approach is complementary to way prediction. In the case that a
load or store is either unable to calculate its address early and thus cannot access the LO DC in
time or because it misses in the L0 DC, the L1 DC is accessed using way prediction techniques.
Using this approach in conjunction with way prediction (WP+BRS) is able to reduce energy usage
of the L1 DC by 69.3%. Note that way caching and way prediction are not complementary as both
structures are accessed between the calculation of the effective address. Further, way caching has a
very high hit rate (96%), and thus adding way prediction will not reduce L1 DC read energy further.
In addition, there is no method to avoid both way caching’s high energy overhead for accessing the
way cache and way prediction’s overhead of accessing the DTLB and L1 DC tag array to verify

predictions.

4.6 Related Work

There have been numerous techniques that have been explored to reduce data access energy

within a processor. This section only considers techniques that do not require any changes to

43

an executable or the operating system. Most of these techniques include various compromises
that affect the benefits they can achieve and/or the feasibility of their implementation. Some of
these techniques can be used in combination with the proposed L0 DC design. Table 4.7 provides
acronyms for various data access techniques. Table 4.8 provides acronyms for the characteristics of
these data access techniques. Table 4.9 provides an overview of the characteristics of these various

techniques.

Table 4.7: Data Access Technique Acronyms
LB Line Buffer
FC Filter Cache

PDFC Practical DFC
ZCL Zero Cycle Loads
WC Way Caching
WH Way Halting

TLC TagLess Cache

TCE | Tag Check Elision

Table 4.8: Data Access Characteristic Acronyms
MS More Space
MD Miss Delays
CP Critical Path
HC | Higher Complexity
CS Custom Sram
TD | Tag/DTLB access
ME More Energy
FA Fast Access
CM CoMplementary

Table 4.9: Characteristics of Various Data Access Techniques

MS|MD | CP |HC|CS|TD | ME | FA | CM
LB X X X
FC X X X
ZCL X X X
PDFC | X X X X
WC X X X X
WH X X X X
TLC X X X
TCE X X X

Other small structures have been suggested to reduce L1 DC energy usage. A line buffer (LB)
can be used to hold the last line accessed in the L1 DC [26]. The buffer must however be checked

44

before accessing the L1 DC, placing it on the critical path, which can degrade performance (CP). A
line buffer also has a high miss rate, which may increase the L1 DC energy usage due to continuously
fetching full lines from the L1 DC memory (MD).

The original proposed filter cache (FC) accessed before the L1 DC has been proposed to reduce
the power dissipation of data accesses [15]. However, FCs reduce energy usage comes at the expense
of a significant performance penalty due to their high miss rate (MD), which mitigates some of their
energy benefits and has likely discouraged its use in industry. Small alterations to the FC design
have been explored [7], where these designs assume that L0 DC tag comparison is performed within
the execute stage after the effective address has been computed. This approach requires a very small
L0 DC and/or a slow clock rate to be feasible. Probably the most similar technique to the proposed
design is the practical DFC (PDFC) [3]. This approach speculatively performs an L0 DC tag check
in parallel with the effective address generation. The speculative LO DC access is only attempted
when the load or store displacement is small so that the L0 index field is unlikely to be updated
and sometimes the speculative access fails due to the index field getting updated. In contrast, the
L0 DC in the proposed design is accessed after the effective address generation, so more accesses
can be obtained from the L0 DC. This PDFC design also assumed that the LO DC data could be
accessed in the same cycle as the effective address generation, but after the computation of the L0
offset field. Thus, a very small LO DC and/or an LO DC implementation in flip-flops is required to
make this design feasible. The PDFC approach also has a more complicated LLO DC line fill strategy.
In contrast to these various FC approaches, the proposed design can support a much larger LO DC
due to timing issues since the address calculation is performed before the L0 DC access. A larger
L0 DC can significantly improve the LO DC hit rate.

A zero-cycle load (ZCL) approach has been used to improve performance by reducing the average
latency of loads [2]. Associated with the instruction address is a cache that contains the predicted
base register value and either an index register value or a displacement, which are all accessed
during the IF stage. Fast address calculation (FA) is used during the ID stage to speculatively
access the L1 DC [1]. This approach increases data access energy as the L1 DC is accessed twice
when the speculative address calculation fails. Also, the pipeline becomes more complicated as the

L1 DC is accessed both during the ID stage and the MEM stage.

45

Multiple techniques have been proposed to make L1 DC accesses more energy efficient. Nico-
laescu et al. propose to save the L1 DC way of the last 16 cache accesses in a table (WC), and each
memory access speculatively performs a fully associative tag search on this table (CP, CS). If there
is a match, then only the corresponding way is activated [20]. Way halting (WH) is another method
for reducing the number of tag comparisons [31], where partial tags are stored in a fully associative
memory (the halt tag array) with as many ways as there are sets in the cache. In parallel with
decoding the word line address the partial tag is searched in the halt tag array. Only for the set
where a partial tag match is detected can the word line be enabled by the word line decoder. This
halts access to ways that cannot contain the data as determined by the partial tag comparison.
Way halting requires a specialized SRAM implementation that might have a negative impact on
the maximum operational frequency (CS). WH for an L1 DC could be combined with the L0 DC
in the proposed design to reduce energy usage even further (CM).

A tagless cache (TLC) design has been proposed that uses an extended TLB (ETLB) to avoid
tag checks [24]. While the TLC approach can significantly reduce energy usage, the authors assume
the ETLB is accessed first to subsequently allow accessing a single L1 DC data array, which could
either increase the cycle time or require an additional cycle to service an L1 DC access (CP). Our
L0 DC approach could be used in conjunction with the TLC approach as the ETLB can be avoided
when there is an L0 DC hit or the L0 DC detects that the L1 DC way is already known (COM).
The TLC approach does not avoid TLB accesses (TD). Finally, the use of a TLC requires dealing
with synonyms, homonyms, and other problems associated with virtually addressed data accesses,
which is more difficult in an L1 DC.

The tag check elision (TCE) approach stores an L1 DC way with each integer register [34].
TCE stores a bound with every register to memoize L1 DC ways, which in their evaluation was
a 29-bit value (MS). The TCE approach requires two comparisons and an addition to verify that
the effective address of the memory reference is within the bounds of the cache line as well as an
extra addition and a bound read and write each time an integer register is incremented by a value
(CP, HC). Our memoization of L1 DC ways in L0 DC lines requires much less space and is much

simpler.

46

4.7 Conclusions

This chapter shows that an LO DC can be effectively utilized. L0 DC accesses without a
performance penalty on misses is possible by detecting instructions that update a register whose
value will be dereferenced by a load or store and storing that base register in a small structure
that is accessed earlier in the pipeline. Likewise, a large fraction of memory references use a zero
displacement, which also allows LO DC references to occur earlier in the pipeline. Utilizing an
L0 DC is appropriate as the base register value for a memory reference is not always available and
an L1 DC can always be directly accessed without a delay compared to a conventional processor
in these cases. This chapter also showed that the data access energy savings are significant and
that unlike the traditional use of an L0 DC, performance can be improved as opposed to being
degraded. Furthermore, the proposed design for utilizing an LO DC requires no ISA changes or

compiler support.

47

CHAPTER 5

DECREASING THE MISS RATE AND
ELIMINATING THE PERFORMANCE PENALTY
OF A DATA FILTER CACHE

While data filter caches (DFCs) have been shown to be effective at reducing data access energy,
they have not been adopted in processors due to the associated performance penalty caused by
high DFC miss rates. In this chapter, a new DFC design is presented that both decreases the DFC
miss rate and completely eliminates the DFC performance penalty. First, this chapter shows that
a DFC that lazily fills each word in a DFC line from a level-one data cache (L1 DC) only when
the word is referenced is more energy efficient than eagerly filling the entire DFC line. Second, this
chapter demonstrates that a lazily word filled DFC line can effectively share and pack data words
from multiple L1 DC lines to lower the DFC miss rate. Finally, this chapter presents a method
that completely eliminates the DFC performance penalty by only accessing the DFC when a hit
is guaranteed. Using these DFC techniques this chapter then shows that data access energy usage

can be significantly improved with no performance degradation.

5.1 Introduction

It has been estimated that 28% of embedded processor energy is due to data supply [6]. Thus,
reducing data access energy on such processors is a reasonable goal. A data filter cache (DFC),
sometimes also known as a level-zero data cache (L0 DC), has been shown to be effective at reducing
energy usage since it requires much less energy to access than a level-one data cache (L1 DC) and
can still service a reasonable fraction of the memory references [14,15]. However, a conventional
DFC has disadvantages that have prohibited its use in contemporary embedded or high performance
processors. First, a DFC has a relatively high miss rate due to its small size. A conventional DFC
is accessed before the L1 DC causing the L1 DC to be accessed later than it would traditionally be
accessed within the instruction pipeline, resulting in degradation of performance on DFC misses.

Second, a single cycle filter cache (FC) line fill as proposed in many prior studies [7,9,10,14,15,27]

48

has been claimed to be unrealistic as it can adversely affect L1 DC area and significantly increase
the energy usage for each L1 DC access [3]. A multicycle DFC line fill is also problematic when it
interferes with subsequent accesses to the DFC or L1 DC. These issues must be resolved for a DFC
to be a practical alternative in a processor design.

In this chapter a new design is proposed that utilizes a DFC without the aforementioned prob-
lems. The proposed design for effectively using a DFC makes the following contributions. (1) The
design shows that it is more energy efficient on a DFC miss to lazily fill only a single word into
a DFC line when the word is referenced and not resident than to eagerly fill every word of an
entire DFC line. (2) This design provides the first data compression technique for a DFC or for
any first-level cache that shares and packs data words in a single cache line at the granularity of
individual words from different lines or sublines in the next level of the memory hierarchy without
increasing the cache access time. (3) A method is presented that completely eliminates the DFC

miss performance penalty by only accessing DFC data when a hit is guaranteed.

5.2 Evaluation Environment

This section describes the experimental environment used in the following three sections of this
chapter. The design is evaluated using the 9 C benchmarks from the SPECint 2006 benchmark
suite compiled using gce with the -03 option. The ADL simulator [21] was used to simulate
both a conventional MIPS processor as the baseline and a modified processor as described in this
chapter. Table 5.1 shows other details regarding the processor configuration that are utilized in the
following simulations. The ADL simulator was used in combination with CACTI [17, 18] for the
energy evaluation to model processor energy. CACTI was used assuming a 32-nm CMOS process
technology with low standby power (LSTP) cells and power gating. Table 5.2 shows the energy for
accessing various components in the L1 DC and DTLB. Table 5.3 shows the energy for accessing
various components of the DFC. CACTTI does not provide energy values for very small caches.
Thus, the energy is estimated for accessing the smaller DFCs by using the same rate of decrease in
energy usage going from a 2KB L1 DC to a 1KB L1 DC with the same associativity and line size.
Likewise, similar estimations are made of the energy usage for accessing DFC word metadata. The

DFC metadata in the table includes the tag comparison along with accessing the word metadata.

49

Leakage energy was gathered assuming a 1 GHZ clock rate. DFC line sharing (LS), DFC data
packing (DP), and DFC word metadata will be described in Section 5.4.

Table 5.1: Processor Configuration

page size | 8KB

L1 DC 32KB, 64B line size, 4-way associative

DTLB 32 entries, fully associative

DFC direct mapped, 32B line size, 128B to 1KB cache size

Table 5.2: Energy for L1 DC and DTLB Components

[Component | Energy |

Read L1 DC Tags - All Ways 0.782 pJ
Read L1 DC Data 4 Bytes - All Ways 8.192 pJ
Read L1 DC Data 32 Bytes - All Ways | 70.355 pJ
Write L1 DC Data 4 Bytes - One Way 3.564 pJ
Read L1 DC Data 4 Bytes - One Way 1.616 pJ
Read DTLB - Fully Associative 0.880 pJ

Table 5.3: Energy for DFC Components

Compo- LS+4+DP Energy for Different DFC Sizes
nent Config 128B [256B | 512B | 1024B
1 0.036 pJ | 0.060 pJ | 0.098 pj | 0.162 pJ
Read 2xLS 0.039 pJ | 0.065 pJ | 0.109 pj | 0.183 pJ
DFC 2xLS+DP | 0.040 pJ | 0.068 pJ | 0.116 pj | 0.199 pJ
Metadata 4xLS 0.062 pJ | 0.109 pJ | 0.190 pj | 0.332 pJ
4xLS+DP | 0.069 pJ | 0.120 pJ | 0.210 pj | 0.367 pJ
1 0.143 pJ | 0.169 pJ | 0.199 pj | 0.236 pJ
Write 2xLS 0.234 pJ | 0271 pJ | 0.314 pj | 0.363 pJ
DFC 2xLS+DP | 0.276 pJ | 0.311 pJ | 0.352 pj | 0.397 pJ
Metadata 4xLS 0.395 pJ | 0.471 pJ | 0.561 pj | 0.669 pJ
4xLS+DP | 0.405 pJ | 0.485 pJ | 0.582 pj | 0.697 pJ
Read DFC Data 0.046 pJ | 0.097 pJ | 0.205 pj | 0.434 pJ
Write DFC Data 0.126 pJ | 0.240 pJ | 0.455 pj | 0.866 pJ

5.3 Lazily Filling Data Words into a DFC Line

In most caches, an eager line fill strategy is used where an entire cache line is filled with data
from the next level of the memory hierarchy when there is a cache miss. Eagerly filling cache lines
on a cache miss can improve performance as it increases the cache’s hit rate, thus avoiding accessing
the next level of the memory hierarchy to retrieve the data. However, a single cycle is required to
load a word from an L1 DC in many embedded processors, meaning that introducing a DFC that

is always accessed before the L1 DC can only degrade performance due to DFC misses. Section 5.5

50

shows that the performance degradation associated with DFC misses can be completely eliminated
by only loading a value from the DFC when a hit is guaranteed. In this context, eagerly filling
words into a DFC line on a DFC miss should only be performed if it can improve energy efficiency.

Many prior FC studies have proposed to fill an FC line in a single cycle to minimize the FC miss
penalty [7,9,10,14,15,27]. Fetching an entire DFC line of data in a single cycle has been asserted to
be unrealistic as a large bitwidth to transfer data between the CPU and the L1 DC can adversely
affect L1 DC area and significantly increase the energy usage for each L1 DC access [3]. Given that
a sizeable fraction of the data memory references will access the L1 DC due to a typically high
DFC miss rate, it is best to utilize an L1 DC configuration that is efficient for L1 DC accesses.

In this chapter DFC lazy word fill strategy is used where each word is only filled when the word
is referenced and is not resident in the DFC. This design assumes a uniform L1 DC bus width of 4
bytes. So when a load byte or load halfword instruction is performed and the word is not resident,
the entire word from the L1 DC is copied into the DFC and the appropriate portion of the word
is extended and sent to the CPU. Figure 5.1 shows the information in the DFC line that is used
for the DFC' lazy word fill strategy. An f (filled) bit is associated with each word in the DFC line
indicating if the word is resident. A DFC word hit requires both a DFC tag match and the f bit
to be set. This cache organization can be viewed as an extreme instance of subblocking, where
each subblock is the size of one word. The design uses a DFC write through and write allocate
policy for a DFC line miss (DFC line is not resident) or for a DFC line hit+word miss (DFC line
is resident, but the referenced word within the line is not resident) as only a single word is written
to the line at a time. However, a word is not allocated on a line hit+word miss when there is a
byte or halfword store as the processor would have to read the word from the L1 DC first in order

to ensure that the entire word is resident in the DFC.

L1DC f data . £ data

v tag way word word

Figure 5.1: Components of a DFC Lazy Word Filled Line

One advantage of eagerly filling an entire DFC line is that only a single L1 DC tag check is
required for the entire DFC line fill. With the lazy fill approach, DFC line hits+word misses are

common where the DFC line corresponding to the L1 DC (sub)line that holds the data is resident,

o1

but the desired word is not. In order to still provide a benefit for these cases, the L1 DC way
corresponding to the L1 DC (sub)line that holds the data is stored along with the DFC line, as
shown in Figure 5.1. When there is a DFC' line hit+word miss, the L1 DC way field is used to access
the L1 DC without an L1 DC tag check. In addition, only a single L1 DC data array is accessed
to load the word from the L1 DC into the DFC line. Only a DFC line miss will require an L1 DC
tag check and a set-associative L1 DC data access. Note the DFC in this design is inclusive, where
the data in each DFC line is guaranteed to be resident in the L1 DC. Thus, both DFC eagerly and
lazily filled line approaches can avoid redundant L1 DC tag checks and set associative L1 DC data
accesses.

Each data word filled in a DFC line will require a read from the L1 DC and a write to the
DFC. Placing a data word in a DFC line will only be beneficial for reducing energy usage when the
data word is subsequently referenced due to temporal locality or when multiple individual portions
(e.g. bytes) of the word are referenced due to spatial locality within the word. Energy usage will
be reduced when n L1 DC accesses are replaced by a single L1 DC access and n-1 DFC accesses
requiring less energy, where n is greater than one.

DFC lines are also more frequently evicted than L.1 DC lines due to more capacity misses, which
can result in words never being referenced that were eagerly filled in a DFC line. In contrast, each
word in a lazily filled DFC line is referenced at least once. Figure 5.2 shows the fraction of words
within eagerly filled lines in a direct-mapped DFC with a 32B line size that are referenced before
the line was evicted. The fraction is quite small due to frequent conflicts between DFC lines even
though the initial referenced word that caused the line to be filled is counted as being referenced.
Thus, even a 1024B DFC with eager line filling has about 74% of the words within a line not

referenced before the line is evicted.

C
coT O
o O 0.3
=00
8D> 0.25
Ll
Lco 02
U)_IO
S
<o ® 0.15
m © © I\ <
Y re} — Q
— [a\} Te} o

DFC Size in Bytes

Figure 5.2: Fraction of Eagerly Filled DFC Lines
Referenced before Eviction

52

Figure 5.3 shows the ratio of DFC lazy fill word hits and the ratio of DFC lazy fill line hits+word
misses. Note that the height of each stacked bar is equal to the ratio of DFC word hits if a one-cycle
eager line fill strategy was used. The space above the bar is the ratio of DFC lazy line misses. As
the DFC size increases, the ratio of DFC lazy fill hits increases since there are fewer capacity miss
evictions of DFC lines. The results show that a large fraction of the memory references do not need
to access the L1 DC at all (word hits) and do not need to perform an L1 DC tag check and can
access a single L1 DC data array when accessing the L1 DC (line hits+word misses).

0.8
0.7

m lazy fill word hits @ lazy fill line hits+word misses

DFC Accesses
o
~

© a\]
Te] —
8V o]

DFC Size in Bytes

128
1024

Figure 5.3: Taxonomy of DFC Accesses

Figure 5.4 shows the data access energy when eagerly filling an entire DFC line in a single cycle
versus lazily filling the demanded word when the word is not resident in the DFC. Data access
energy is the energy used for accessing the DTLB, L1 DC, and DFC. The baseline at 1.0 is for a
processor without a DFC. Different L1 DC bitwidths were simulated using the energy associated
with a DFC eager line fill strategy (32-byte access that fills an entire DFC line in a single cycle)
and a DFC lazy word fill strategy (4-byte access that fills a word in the DFC line only when the
word is first referenced after the line is allocated). When eagerly filling an entire DFC line in a
single cycle, the entire line from each L1 DC way must be read, resulting in more energy usage, as
shown in Table 5.2. The height of the eager fill bars are labeled rather than showing the entire bar
since a DFC eager one-cycle filled line strategy uses significantly more data access energy than a
processor without a DFC. For the lazy fill bar in the figure, an L1 DC tag check and associative
L1 DC data array is accessed for each DFC line hit+word miss. For the lazy fill + memoize L1
DC way bar in the figure, no L1 DC tag check is performed and a single L1 DC array is accessed
for each DFC line hit+word miss. For a 1024B DFC, using lazy fill and memoizing the L1 DC way

reduces data access energy by about 42%.

53

O eager fill 1 cycle m lazy fill m lazy fill + memoize L1DC way

—_
|

>
> & 2 @ 8 o
Q) [ep] (a\] (V] (aV] —
[
w 0.8
n
wn
[}
8
S 06-
©
©
Q 0.4
0] O [aV] <
x Q o S

DFC Size in Bytes

Figure 5.4: Data Access Energy with Eager vs Lazy Filling

Another DFC eager line fill strategy is to fill the entire DFC line one word at a time over multiple
cycles, which will be more energy efficient than filling a DFC line in one cycle. A multicycle DFC
line fill will be problematic as it will delay subsequent accesses to the DFC or L1 DC.

One solution is to provide separate read and write ports to the DFC so that DFC word fills
(DFC writes) can occur in parallel with servicing DFC loads (DFC reads). However, there are still
disadvantages with this solution. First, a DFC implemented with a two-port SRAM will require
more circuitry, resulting in more area and power. Second, there will still be read accesses to the
L1 DC on DFC load misses, which results in a structural hazard for the L1 DC read port during a
DFC multicycle line fill, requiring a delay of the DFC line fill for at least one cycle to service the
DFC miss. Third, DFC store hits will result in a structural hazard for the DFC write port during
DFC line fills, which will also delay a DFC line fill. Finally, dealing with multiple outstanding DFC
line fills will require even more complex logic.

After a DFC line is allocated, each word that is filled in that line using either an eager or
lazy approach will require an L1 DC read and a DFC write. However, a DFC lazy word fill
approach is much simpler and will not fill words that are never referenced before the line is evicted.
Furthermore, Figure 5.2 shows that many of the words that will be filled over multiple cycles will
not be referenced and thus needlessly loaded into the DFC, wasting energy.

Eagerly filling words into a DFC line will only improve energy efficiency if the remaining words
will be referenced and the energy for performing the entire DFC (sub)line fill, which will not require

subsequent DTLB accesses and L1 DC tag checks, will be less than referencing these words from

54

the L1 DC. However, utilizing way prediction to access the L1 DC will also reduce energy usage as

only a single L1 DC tag array and data array need to be accessed.

5.4 Decreasing the DFC Miss Rate by Line Sharing and Data
Packing

Since it was determined in Section 5.3 that a DFC lazy word filled approach is more energy
efficient than an aggressive DFC eager line fill approach when a DFC causes no performance penalty,
this section now presents optimizations to the lazy word filled DFC that improve its hit rate. Much
of the space available in a lazy word filled DFC line goes unused as some words in the line will not
be filled because they are not referenced before the DFC line is evicted. In order to make better use
of this available space in a lazy word filled DFC line, the proposed design allows multiple L1 DC
(sub)lines to share the same DFC line. As long as the L1 DC (sub)lines refer to words in different
parts of the DFC line, the DFC can simultaneously hold values from different L1 DC (sub)lines.
This approach decreases the DFC miss rate as there will be fewer DFC line evictions and increases
the amount of data the DFC will likely hold. However, if multiple L1 DC (sub)lines refer to words
corresponding to the same position in the DFC line, only the most recently referenced word is
retained.

This section assumes a direct-mapped DFC where a single DFC line is associated with each
DFC set. One, two, or four L1 DC (sub)lines are allowed to share each DFC line depending on the
hardwired DFC configuration. There must be a tag and other metadata for each L1 DC (sub)line
that shares a single DFC line. Thus, there are multiple DFC tag arrays, but only a single DFC
data array. There will be DFC metadata associated with each L1 DC (sub)line that currently
shares a DFC line denoting which words of the L1 DC (sub)line are resident. Figure 5.5 shows
that this DFC metadata for each L1 DC (sub)line will include a valid bit, a tag, an L1 DC way,
and metadata about each data word. Not shown in the figure is LRU information for the L1 DC
(sub)lines that share a DFC line, which is used to determine which L1 DC (sub)line to evict on a
DFC line miss.

Table 5.4 shows one option where different words within distinct L1 DC (sub)lines can reside in
the same DFC line at the same time. This option is referred to as DFC line sharing (LS). Only a

single bit of metadata is required for each word within each L1 DC (sub)line to indicate if the word

95

DFC metadata way 0 DFC metadata way n—1

L1DC word L1DC word

v tag way metadata V| tag way metadata

Figure 5.5: DFC Line Metadata

is resident or not, replacing the f (filled) bit in Figure 5.1. At most a single value from two (four)
corresponding words in the L1 DC (sub)lines can reside in the DFC line at one time as this design
allows two (four) L1 DC (sub)lines to share a single DFC line. This requires DFC word evictions
if two or more words are referenced from multiple L1 DC (sub)lines that correspond to the same

word in the DFC line.

Table 5.4: DFC Metadata for Sharing Data Words

’ Code \ Interpretation ‘

0 4-byte value
1 not resident

Figure 5.6 shows an example of two L1 DC lines sharing a DFC line (2xLS). These two L1 DC
lines 7 and j are depicted with the first three values shown in each line. The DFC metadata for
these two lines are also shown to the right of each L1 DC line, using the metadata codes shown
in Table 5.4. Word 0 in line i is resident and word 1 in line j is resident. Word 2 is not resident
for either L1 DC line. This type of DFC line sharing may be beneficial when different portions of

different L1 DC (sub)lines that map to the same DFC line are being accessed close in time.

Two L1 DC Lines Mapping to the Same DFC Line DFC Metadata
i ’ 7 ‘ 0xbffff024 ‘ Ox1ca24 ‘ ‘ ’ 0 ‘ 1 ‘ 1 ‘ ‘
0 X 5 oo
il o2 | o Joxamsso | .. | [1]o]1] |
0 1 2 |
| |
I\ --- - - - -"---"-""-"-""="-"-"-"-"-"-~"-~"“-~"“-~" - ‘- ‘- ‘- “-"“=-"=-"=7-7= |
i y DFCLine
g]
1 2

Figure 5.6: Example of Line Sharing

56

Table 5.5 shows an extension to line sharing where values associated with the same corresponding
words from distinct L1 DC (sub)lines can sometimes reside in the same word within a DFC line at
the same time. This option is referred to as DFC line sharing and data packing (LS+DP). Rather
than evicting words from a DFC line if multiple L1 DC (sub)lines attempt to share the same DFC
word, the design allows multiple L1 DC (sub)lines to share the same word if the multiple values
taken together can fit in four bytes. This approach will decrease the miss rate as there will be fewer

DFC word evictions and the amount of data stored inside the DFC will increase.

Table 5.5: DFC Metadata for Sharing+Packing Data Words

’ Code \ Interpretation \ Can Pack with ‘
00 zero value 00, 01, 10, 11
01 1-byte (4xLS) or 2-byte (2xLS) value 00, 01, 11
10 4-byte value 00, 11
11 not resident 00, 01, 10, 11

Two bits of metadata are required for each word within each L1 DC (sub)line sharing the same
DFC line to support data packing, as shown in Table 5.5. When a word is loaded from the L1 DC,
the processor checks if the value is narrow width, meaning that the value can be represented in fewer
bytes than a full data word. If only two distinct L1 DC (sub)lines are allowed to share the same
DFC line (2xL.S+DP), then narrow width means that the value can be represented in two bytes. If
four distinct L1 DC (sub)lines are allowed to share the same DFC line (4xLS+DP), then narrow
width means that the value can be represented in one byte. Otherwise, the value is considered full
width (code 10). Zero can be viewed as a special narrow-width value, where the data value is not
actually stored in the DFC line. Thus, a zero value (code 00) can be packed in the same word with
any other value. A nonzero narrow width value (code 01) can be packed into the same word with
any value that is not full width.

The placement within the word of nonzero narrow-width values for a given L1 DC (sub)line will
be based on the DFC metadata way of the L1 DC (sub)line as shown in Figure 5.5. When only
two L1 DC (sub)lines can share the DFC line, a nonzero narrow width value will be placed in the
lower halfword if the DFC metadata way was zero and the upper halfword if the DFC metadata

way was one. Likewise, a nonzero narrow width value would be placed in the corresponding byte

57

based on the DFC metadata way of the L1 DC (sub)line that is sharing that DFC line when four
L1 DC (sub)lines can share the DFC line.

Figure 5.7 shows an example of line sharing and data packing with two L1 DC lines sharing a
DFC line (2xLS+DP). These two L1 DC lines have the same values as in Figure 5.6. The DFC
metadata for these two lines use the metadata codes shown in Table 5.5. Word 0 in each of the two
L1 DC lines can be packed into word 0 of the DFC line as both values are narrow width (can be
represented in 2 bytes). Word 1 in each of the two L1 DC lines can be packed into word 1 of the
DFC line as word 1 of L1 DC line j is zero and is not stored in the DFC line. At most one value
for word 2 can be stored as the values in word 2 for both L1 DC lines ¢ and j are full width. It
may be the case that the value from word 2 in L1 DC line ¢ has not yet been referenced from the

time the L1 DC line i was allocated in the DFC and thus has not yet been filled.

Two L1 DC Lines Mapping to the Same DFC Line DFC Metadata
il 7 | o4 | oxdeas | L] lot]10]1] .. |
0 1 2 "”i:‘L,J
i | 32 \ 0 | oxatnierso [. |0 1 {oi]oolio] .|
0 1 2 i ‘
|

T
|
|
|
|
|
|

. DFC Line ‘
Y Y

32 | oxoffto2a | oxattigso | |
0 1 2

Figure 5.7: Example of Line Sharing and Data Packing

Figure 5.8 shows the taxonomy of the data values stored in a DFC. On average, 18.5% were
zero values, which do not require an access to the DFC data. 23.6% could be represented in a
single byte and 13.7% required two bytes. 44.1% of the values required three or four bytes to be
represented. Thus, 55.9% of the values can be potentially packed into a word with a value from a
different L1 DC line.

The DFC word metadata is organized into arrays, where there is a separate array for each set
of corresponding words of DFC metadata from the L1 DC (sub)lines. The specific array to be
accessed is determined by the DFC word offset value. The specific DFC word metadata within

58

m Zero-Value m One-byte Width m Two-byte Width o Four-byte Width

1 - S
O |
Q o9
D 08 -
9 -
8 0.7 4
§ 0.6 ||
N 054
8 041
g o L
= 034 =
S o2
L 014 I
o -
(s Q X “5 = € “5 Ny (o] C
o > £ 5 £ 3 £ 2 5 3
n & & = § S ° £
< o @ £
o) o =
= ©
Benchmarks

Figure 5.8: DFC Data Value Taxonomy

the set of corresponding DFC words is selected by which DFC tag matches and this metadata will
indicate if the word is resident.

Figure 5.9 shows the average utilization of words in the DFC for the different line sharing (LS)
and data packing (DP) techniques. Utilization indicates the average number of resident words that
are in the DFC after each 1000 cycles. The results are compared to a baseline at 1.0 in the graph
that represents a lazy word filled DFC with no line sharing or data packing. Line sharing and
data packing are both shown to be quite effective for increasing the DFC utilization. However, as
the DFC size increases, the relative utilization improvement decreases as compared to the baseline
since more of each application’s working set fits into the DFC.

Figure 5.10 shows the fraction of memory references that are word hits and line hits+word
misses in the DFC with different sizes and configurations. The space above the bars represent line
misses. Data packing increases the number of word hits within the line, but does not change the
number of line misses. Thus, the height of the bars with and without data packing are the same
when sharing the same number of L1 DC (sub)lines. As the DFC size increases, the sum of the DFC
word hits and line hits+word misses also increases. The figure also shows how valuable line sharing
and packing is for improving the DFC hit rate. For instance, a 256 byte DFC that shares 4 L1 DC
sublines with data packing (4xLS+DP) provides about the same DFC word hit rate (42%) as a
1024 byte DFC with no line sharing (43%). These results show that line sharing and data packing

provide more flexibility so that the DFC can often better adapt to the data reference patterns in

59

A 2xLS = 2xLS+DP v 4xLS ¢ 4xLS+DP

nxLS = n lines shared, DP = data packing

Ratio of DFC Resident Words
Relative to Baseline

I I
<o} A
Lo —
A Te}

1024 -

DFC Size in Bytes
Figure 5.9: DFC Data Utilization

'] DFC = no line sharing, nxLS = n lines shared, DP = data packing
| O word hits M line hits+word misses

DFC Accesses
o
()]

4xLS+DP

o
a

T
(%]
p}

=
[

4xLS+DP
4xLS+DP
4xLS+DP

o
a

™
2]
s

=
[

2xLS
2xLS

51 2 —12xLS+DP.
2xLS

—12xLS+DP

128 -
256
1024 -

DFC Size in Bytes
Figure 5.10: DFC Data Hit Rates

an application. Compressing cache data has a greater opportunity to decrease the DFC miss rate
compared to decreasing the miss rates of larger caches since an application’s working set is less
likely to fit in a smaller uncompressed DFC.

Figure 5.11 shows the average data access energy usage for the different combinations of line
sharing and data packing techniques varied for different DFC sizes. The baseline at 1.0 is for a
processor without a DFC. The figure shows that with smaller DFC sizes, energy usage is reduced
when sharing more L1 DC lines and packing more data words as the DFC miss rate is more

effectively lowered due to reducing contention for DFC lines. With larger DFC sizes, there is less

60

® DFC 4 2xLS m 2xLS+DP ¥ 4xLS ¢ 4xLS+DP

DFC = no line sharing, nxLS = n lines shared, DP = data packing

> 0.7
[O)
(T
U065
(7]
3
S os
<
©
B 0.55
0.5 ‘ ‘ ‘
e8] © Al <
N Q o S

DFC Size in Bytes
Figure 5.11: Data Access Energy

contention for DFC lines and the extra overhead of additional DFC tag comparisons and word
metadata accesses outweighs a smaller improvement in the DFC miss rate. The best data access
energy usage is with sharing four lines (4xLS or 4xLS+DP) for a DFC size of 512 bytes. While
Figures 5.9 and 5.10 showed that data packing improved both DFC utilization and hit rates, the
energy used to access the word metadata mitigates most of those benefits. So the total energy
usage with data packing was only slightly less than without data packing.

Figure 5.12 shows the average data access energy usage for each component for the best con-
figuration of line sharing and data packing with each DFC size, as shown in Figure 5.11. A DFC
size of zero indicates no DFC was used. Using a DFC significantly reduces L1 DC read energy.
Note that L1 DC write energy stays constant due to using a DFC write-through policy. Likewise
the DTLB energy stays constant as the DTLB is accessed for each memory reference. The DFC
energy grows as the DFC size increases. One can see that the increase in DFC energy surpasses
the decrease in L1 DC read energy when moving from a 512 byte to a 1024 byte DFC. Thus, the
512 byte DFC has slightly lower total data access energy.

61

—
|

o L1 DC Read m L1 DC Write m DTLB m DFC

>

S 0.8-

L5

) 06 N

»n

3

Qo 0.4

<<

©

c 0.2

(]

0 ' ' '
o o0 O (Q\] <
Al LO — Al
— Al o o
DFC Size in Bytes
Figure 5.12: Component Data Access Energy
IF D EX MEM WB
DFC ind
control - ex> lt)al;S ™ L1DC

DFC index | DEC word

L11IC > metadata
DFC word offset >
L
reg - >
file E

- ALU DFC

» data
o

Figure 5.13: Modified Datapath to Support Guaranteed DFC Hits

Y

5.5 Eliminating the DFC Miss Penalty by Only Accessing DFC
Data on Guaranteed Hits

It is desirable to not degrade performance when a value is not resident in the DFC as DFC miss
rates can be fairly high. A traditional instruction pipeline was revised to only load data from a
DFC when a DFC word hit is guaranteed. DFC word hits are guaranteed by speculatively accessing
the DFC metadata using the upper bits of the base register when the offset is small. If the addition
of the base register and the offset does not cause these upper bits to change, then the speculation is

successful and the processor can use the LO DC data if the metadata shows the word is resident or

62

the processor can use the L1 DC way if the metadata shows that the line is resident but the word
is not. Otherwise, if the processor 1) is not able to speculate because the offset was too large, 2)
speculatively accesses the metadata, but the calculation of the effective address modifies the bits
used to access the metadata, or 3) has a line miss in the metadata, then the processor must access
the L1 DC, but now with no performance penalty. Figure 5.13 shows a classical five stage pipeline
modified to support access to a DFC with no performance penalty. Only the datapath for ALU
and load instructions is shown with no forwarding to simplify the figure.

Assume a load instruction is being processed in the pipeline. The virtual page number (VPN)
field (see Figure 6.1) of the base register value is used to speculatively access the DTLB during
the EX stage. Unless the VPN is modified when calculating the effective address by adding the
displacement, the physical page number that is output from the DTLB will be valid. The DFC
indez field (see Figure 6.1) of the base register value is used in the EX stage to speculatively access
the DFC tag arrays so that a DFC tag check can be performed. The processor will check that the
DFC indezx field of the address is unaffected by the effective address addition by ensuring that the
displacement is less than the DFC block size and inspecting the carry out of the DFC offset field.
The DFC index field is also used to access the DFC word metadata. The processor will access the
L1 DC during the MEM stage when the DFC' block number field (see Figure 6.1) is affected by the
effective address calcuation, a DFC line miss occurs, or the specified word is not resident in the
DFC line. If there is a DFC line hit+word miss, then only a single L1 DC data array is accessed
with no L1 DC tag check as the L1 DC way field in the DFC line indicates which L1 DC way
to access. If the DFC word metadata indicates that the value is zero, then the DFC data is not
accessed. Otherwise, a DFC word hit for a nonzero value occurred, the DFC data will be accessed
in the MEM stage, and the word metadata obtained during the EX stage will be used to determine
how to extract the value from the word in the DFC line.

For DFC word hits that load a value of zero, the value is obtained after the EX stage instead of
the MEM stage. Although this feature could be used to provide a small performance improvement,
it was not evaluated in this study.

The DFC in the proposed design will not be able to service every load due to DFC line misses,
DFC line hits+word misses, and when the DFC block number field is affected by the effective
address calculation. Thus, it would be desirable to load the data from the L1 DC in the MEM

63

stage when the data cannot be supplied by the DFC in the EX stage. An inclusive cache policy and
a DFC write-through policy are used to ensure that the L1 DC always has the most recent data. A
write-through policy is much simpler to implement than a write-back policy in this proposed DFC
design as the processor does not have to deal with writing back dirty DFC lines over multiple cycles
when a DFC line is replaced. Eviction of DFC lines due to L1 DC line evictions is also simpler as
the evicted DFC lines simply need to be invalidated.

Although not shown in Figure 5.13, the DFC tag comparison and DFC word metadata access
is performed again in the MEM stage when the effective address calculation affects the DFC' block
number. If there is not a DFC tag match (DFC line miss), then the appropriate L1 DC (sub)line
is allocated in the DFC line. The word loaded from the L1 DC is placed in the DFC line if there
is either a DFC line miss or DFC line hit+word miss. If there is a DFC tag match and the word
is resident on a store instruction, then both the DFC and L1 DC are updated in the MEM stage.

Figure 5.14 shows the taxonomy of loads accessing the DFC for different sizes. The word hits
indicate how often the value was obtained from the DFC, which ranged from 14.3% for a 128B DFC
to 29.5% for a 1024B DFC. The line hits+word misses indicate how often the line was resident in
the DFC, but the word was not resident. Note that a line hit+word miss means that the value can
be obtained from the L1 DC during the MEM stage without an .1 DC tag check and with accessing
only a single L1 DC data array. A lazy fill line hit+word miss is equivalent to a first reference to a
word that is a hit in an eagerly filled DFC line. The line misses indicate that the DFC was accessed
and that either the entire line was not resident or the speculative address generation caused the
DFC block number to change so that the wrong DFC set was accessed. The sum of the three
portions of the bar are the same regardless of the DFC size. This sum represents the fraction of
loads when a speculative DTLB tag access occurred. The space above each bar indicates that the
DFC was not accessed due to the displacement of the load instruction being larger than the DFC
line size.

Figure 5.15 shows the data access energy when accessing DFC data only on guaranteed hits
and without speculation (accessing DFC metadata after address generation) for each DFC size
with its best configuration. All configurations shown share 4 L1 DC (sub)lines per DFC line and
include data packing (4xLS+DP). Results are shown for both a 32 byte and 64 byte line size.

The energy usage is higher with speculation, which is due to two reasons. First, useless DFC

64

0.9 -
0.8
0.7
0.6
0.5
0.4
0.3 -
0.2
0.1

m word hits m line hits+word misses O line misses

© Al
Te) ~—
[QV o

DFC Size in Bytes

Figure 5.14: Taxonomy of Load Accesses

Load Accesses

o

L
126 |
1024 - I |

accesses occur due to speculation failures when the DFC block number was affected by the effective
address calculation. Second, loading data that resides in the DFC cannot be exploited when the
displacement is larger than the DFC block size or when speculation failures occur. The data access
energy using guaranteed hits is much less for a 64 byte line size as there are fewer speculation
failures and fewer displacements larger than 64 as opposed to 32. The data access energy reduction
using guaranteed DFC hits is still significant. For a 64 byte line size, the energy reduction ranges
from 31.2% for a 128B DFC to 36.4% for a 512B DFC. Note that a DFC without speculation
will cause a performance degradation due to a one cycle miss penalty on DFC misses. A longer

execution time will require more energy, which is not shown in Figure 5.15.

5.6 Related Work

There has been a number of prior studies on compressing data in first-level data caches or using
common values to avoid data accesses in a first-level data cache. A small frequent value cache
(FVC) has been proposed that is accessed in parallel to the L1 DC and is used to improve the miss
rate as the FVC effectively functions as a victim cache [33]. The FVC is very compact as it uses
3 bits to represent codes for seven frequent word values and an eighth code is used to represent
that the value is nonfrequent and not resident in the FVC. The FVC was later adapted so that
a separate frequent value L1 DC data array was accessed first to avoid the regular L1 DC data
array if the value was frequent [30]. This approach reduced L1 DC energy usage at the expense

of delaying access to a nonfrequent value by a cycle. A compression cache (CC) that serves as a

65

m 32Bguar ¢ 64Bguar 4 32B ® 64B

nB = n byte line size, guar = guaranteed hits

Data Access Energy

0.4 | |
(o] Al
0 ~—
Al Te}

128
1024

DFC Size in Bytes
Figure 5.15: Data Access Energy with Guaranteed DFC Hits

replacement for an L1 DC has also been designed to hold frequent values [32]. Each CC line holds
either a single uncompressed line or two compressed lines when half or more of the words in the line
are frequent values. A separate bit mask is used to indicate if a word value is frequent or not, which
then indicates where the word is located within the line. This cache design will result in a more
complicated access and likely a longer access time. It appears in both the FVC and CC designs
that a separate profiling run was performed to acquire the frequent values for each benchmark that
was simulated, which will limit the automatic utilization of these designs. An approach similar to
the CC was developed that allows two lines to be compressed into the size of one line, but does
not increase the L1 DC access latency [23]. One proposed technique was to require that all words
be representable in two bytes (narrow width) and another technique allows a couple of words in
the two lines to not be narrow width where additional halfwords in the line are used to store the
upper portions. Dynamic zero compression adds a zero indicator bit (ZIB) to every byte in a
cache [28]. This ZIB is checked and the access to the byte is disabled when the ZIB is set. This
approach requires more space overhead and may possibly increase the cache access time, but was
shown to reduce energy from data cache accesses. The zero-value cache (ZVC) contains a bit vector
of the entire block, where each bit indicates if the corresponding byte or word contains the value
zero [12]. Blocks are placed in the ZVC (exclusive of the L1 DC) when a threshold of zero values
for bytes/words within a block is met. The ZVC allows the access for loads and stores to the L1 DC

66

to be completely avoided. ZVC misses may result in execution time penalties, though the authors
claim the ZVC is small enough to be accessed before the L1 DC with no execution time penalty.
The same authors later developed the narrow-width cache (NWC) containing 8-bit values to reduce
the miss rate [13]. The NWC is accessed in parallel to the L1 DC cache and blocks are placed in
the NWC if a threshold of narrow values within the block is met. The NWC is used to reduce the
miss rate. While all of these cache techniques either decrease the cache miss rate or reduce energy
usage, no prior DFC or first-level cache technique shares and packs data from different lines in the
next level of the memory hierarchy into the same line at the current level of the memory hierarchy
at the granularity of individual words without increasing the access time.

The speculative tag access approach is used to reduce the energy for accessing the L1 DC [4]. It
speculatively performs an L1 DC tag check and DTLB access during the address generation stage
using the inder and tag fields from the base register value. If adding the displacement does not
affect the index and tag fields, then only a single L1 DC data way is accessed during the MEM
stage. This design uses a similar speculative tag access approach, but instead accesses the DFC
tag and word metadata during the address generation stage to only access the DFC data during
the MEM stage when a hit is guaranteed.

There have been a few DFC designs that have been proposed to eliminate the DFC miss penalty.
Small alterations to the original FC design have been explored, where these new designs assume
that DFC tag comparison is performed within the execute stage after the effective address has
been computed [7]. This approach requires a very small DFC and/or a slow clock rate to be
feasible. The practical DFC (PDFC) speculatively performs an DFC tag check in parallel with the
effective address generation [3]. The speculative DFC access is only attempted when the load or
store displacement is small so that the DFC index field is unlikely to be updated. The PDFC also
assumed the DFC data could be accessed in the address generation stage, but after the computation
of the DFC offset field. In contrast to these approaches, our design can support a much larger DFC
due to timing issues since the DFC data access occurs in the MEM pipeline stage only after a DFC
hit has been guaranteed in the EX stage.

A prior work speculatively accesses the DFC in the MEM stage when a reference is predicted
to hit in the DFC by performing a partial tag comparison [16]. This approach is similar to our

approach of guaranteeing a hit in the DFC, though their approach may occasionally result in a

67

performance delay when the prediction is incorrect. Performance can also be potentially affected
due to write backs of dirty DFC lines in their approach. Their approach also did not lazily fill DFC

lines or use line sharing or data packing to decrease the miss rate.

5.7 Conclusions

This chapter described a design that allows a DFC to reduce energy usage and not degrade
performance. This chapter showed that a DFC lazy word fill approach is more energy efficient than
a DFC eager line fill approach. This chapter also demonstrated that it is possible to share and pack
multiple L1 DC lines into a single DFC line at the granularity of individual words to improve the
DFC hit rate. Finally, a method was presented to eliminate the DFC miss performance penalty by
only accessing DFC data when a DFC hit is guaranteed. This design should allow a DFC to be

efficiently utilized in embedded processors.

68

CHAPTER 6

DECREASING THE MISS RATE AND THE MISS
PENALTY OF A L1 DC

Level-one data caches (L1 DCs) need to be small to match the speed of processors and to reduce
L1 DC energy usage. However, smaller cache sizes result in higher L1 DC miss rates, which can
degrade performance. We introduce an L1 DC line sharing technique at the granularity of individual
words that attempts to retain data values longer in an L1 DC by compressing values in an efficient
manner that has a minimal impact on the L1 DC access time. This technique reduces the L1 DC
miss rate by increasing the effective L1 DC capacity. We also show that our technique decreases
the number of words fetched between the L1 DC and the level-two cache (L2C), which reduces both
L1 DC stall cycles and L1 DC bus contention. When sharing four L2 sublines in each L1 DC line, a
processor with a direct-mapped 16KB L1 DC has its average miss rate percentage decreased from

10.3% to 5.5% and the average number of data words fetched from the L2C decreased by 49%.

6.1 Introduction

In order to maintain fast level-one data cache (L1 DC) access times on contemporary processors,
L1 DC sizes in recent years have largely remained the same. LL1 DC misses incur stalls as the data
must be retrieved from higher levels of the memory hierarchy, such as the shared level-two cache
(L2C). Non-blocking caches in out-of-order processors attempt to hide this delay by allowing the
L1 DC to continue servicing loads while outstanding load misses are still being completed. Factors
such as the complexity of the circuitry as well as bus contention means that this approach can be
extended to allow only a limited number of outstanding L1 DC misses to remain in flight before the
L1 DC must be stalled. In addition, as the instruction issue width for OoO processors increases,

loads often become the bottleneck for performance.

69

We introduce an L1 DC line sharing technique that allows multiple level-two (L2) cache sublines
to share a single L1 DC line at a word-level granularity.! This technique allows a single L1 DC line
to simultaneously hold data values from the same corresponding word in multiple L2 sublines by
compressing these values into a single word. Furthermore, a subblocked L1 DC line can simultane-
ously hold values from multiple L2 sublines even if values cannot be compressed when they belong
to separate subblocks in the same L1 DC line. By using sign-extension, we allow multiple values
to be placed together inside a single word if they can be represented in halfword-width values,
byte-width values, or zero-width values (a value of zero). Our compression technique has minimal
impact on the L1 DC access time as the L1 DC line offset of the address doesn’t change, which
allows the same word to be loaded from an L1 DC line regardless of the L2 subline to which it
belongs. In effect, a load from a direct-mapped L1 DC using our line sharing approach would access
a single word of data, but would access multiple L1 DC tags that are associated with that 1.1 DC
line to determine if the accessed L2 subline is resident within the .1 DC line and would access word
metadata to determine how to extract the value from the word. We show that this line sharing
technique increases the effective capacity of an 16KB, direct-mapped L1 DC by as much as 60%
(160%) when sharing two (four) L2 sublines. By allowing multiple L2 sublines to share words in a
single L1 DC line, we retain values longer as an existing word value in a resident metaline doesn’t
need to be evicted if it can be stored together with a word value from the same corresponding word
in the incoming L2 subline. By retaining values longer, not only do we decrease the miss rate, but
we also decrease the miss penalty associated with L1 DC line fills as fewer words need to be filled
from an L2 subline when some of the words in that L2 subline already reside in the L1 DC line. On
average, we reduce the number of data words needed to be fetched from the L2C and placed inside
the L1 DC by 41% (48%) for a direct-mapped 16KB L1 DC that shares two (four) L2 sublines in
each L1 DC line. Although our approach requires two (four) times the number of L1 DC tag bits
to be accessed when we allow two (four) L2 sublines to share the same L1 DC line, our approach
reduces data access energy usage as the L1 DC tag memory requires less power to access than the

much larger L1 DC data memory and the number of L2 accesses is also decreased.

We define an L2 subline as the portion of an L2C line that maps to an L1 DC line. Our L1 DC line sharing
technique does not imply that the L2C line size must be larger than the L1 DC line size and does not imply that
L2C lines are subblocked.

70

This paper makes the following contributions. (1) To the best of our knowledge, we present
the first cache line compression technique that shares lines at the granularity of individual words
that has a minimal impact on the cache access time. Sharing corresponding data words between
multiple cache lines and allowing arbitrary words from these cache lines to be nonresident provides
more flexibility for compressing values. Hence, line sharing is more effective than attempting to
compress entire cache lines. (2) We outline novel L2 subline replacement and fill policies within a
shared L1 DC line that significantly reduces unnecessary fetches of words from the L2C. (3) We
provide an extensive empirical evaluation of our L1 DC line sharing technique.

The remainder of this paper is organized as follows. In Section 6.2 we describe how multiple
L2 sublines can be shared within each L1 DC line. We illustrate in Section 6.3 how multiple word
values can be compressed into a single word within an L1 DC line and how the word value can
be efficiently decompressed when accessed. In Section 6.4 we outline when we fill the nonresident
words in a L2 subline. We detail in Section 6.6 the processor design and parameters used to evaluate
our approach. In Section 6.5 we illustrate the L2 subline replacement and line fill policies within
the L1 DC. Section 6.7 presents the results of our analysis. We contrast in Section 6.8 our approach
with other techniques that compress data in the L1 DC. We propose future evaluations of how line
sharing affects other L1 DC parameters or techniques in Section 6.9. Finally in Section 6.10 we

provide the conclusions of the paper.

6.2 Sharing Words between Multiple L2 Sublines

A data value in an L1 DC is accessed by using the set index and line offset portions of the
address (see Figure 6.1) to index into the data line array and retrieve the data within the line,
respectively. For a load from an m-way set associative cache, the data in all m ways are accessed
and if there is a matching tag in the tag array, then only the data word associated with the matched
tag is forwarded to the processor. In order to not affect the L1 DC access time, it’s imperative
that the location of the data word within the L1 DC line not be affected by accessing a compressed
value so that the L1 DC data word can be accessed in parallel with performing the L1 DC tag
check. To accomplish this, we restrict the scope of compression to a set of predetermined categories
that allows a data word to be uniformly accessed from the L1 DC and only affects the logic for

extracting the value from the data word. In this section we assume a direct-mapped L1 DC where

71

a single L1 DC line is associated with each L1 DC set for ease of explanation. Our line sharing
approach can be easily extended to set-associative L1 DCs and we show results for 1-way, 2-way,

and 4-way set-associative line-shared L1 DCs in Section 6.7.

set line
tag

index offset

Figure 6.1: Partitioning of Address to Access the L1 DC

Assume an L2 subline is the portion of an L2 line that corresponds to an L1 DC line. During
an L1 DC line fill, the L2 subline where the data resides is fetched from the L2C and placed inside
the corresponding L1 DC line. An L1 DC line contains m word slots, where m is the L1 DC line
size in words. Upon an L1 DC line fill, word 0 of the L2 subline is placed inside word slot 0 of the
L1 DC line, word 1 of the L2 subline is placed inside word slot 1 of the L1 DC line, and so forth.
We allow two or four L2 sublines to share each L1 DC line depending on the hardwired L1 DC
configuration.

Figure 6.2 shows the organization of a direct-mapped line-shared .1 DC with n lines and m L2
sublines that can be placed in each L1 DC line. We refer to each L2 subline that can reside in an
L1 DC line as a metaline. A conventional L1 DC line has a single valid bit and tag associated with
it. In contrast, a line-shared L1 DC cache has a valid bit and tag associated with each metaline
(L2 subline) that can simultaneously reside within the same L1 DC line. In addition, there are
word metadata for each metaline, where a few bits are associated with each data word to describe
whether or not a data value is resident and how it is compressed within the word when it is resident.
Not shown in the figure is least recently used (LRU) information for the metalines that share an
L1 DC line, which is used to determine which metaline to evict on an L1 DC line miss.

If the tag comparison on a data reference indicates that the referenced L2 subline is not currently
sharing the L1 DC line, we evict one of the metalines according to the policy specified in Section 6.5
and mark all of the words associated with that evicted metaline as not resident. Likewise, the tag
comparison may indicate that the referenced L2 subline is currently sharing the L1 DC line, but the
referenced word within the L2 subline may not be resident within the L1 DC line. In this case the
processor loads not only the nonresident word in the L2 subline, but all other nonresident words

associated with the same L2 subline. Rather than evicting the values associated with the other

72

metaline 0 metaline m-1

data

n-1 n-1 n-1

Figure 6.2: L1 DC with m Metalines for Each L1 DC Line

metalines currently sharing the L1 DC line, we allow these other metalines to share the L.L1 DC line
with the words associated with the incoming L2 subline when possible. When placing the values
of the words comprising the incoming L2 subline into the L1 DC line, we check for each word slot
to see if the resident values and the incoming L2 subline can share the word slot. This approach
decreases the miss rate as there are fewer L1 DC word evictions and the amount of data stored
inside the L1 DC increases.

The L1 DC word metadata is organized into arrays, where there is a separate array for each set
of corresponding words of L1 DC metadata from the L2 sublines. The specific array element to be
accessed is determined by the L1 DC word offset value. The specific L1 DC word metadata within
the set of corresponding .1 DC words is selected by which L.1 DC tag matches and this metadata

will indicate if the word is resident and how to extract the value from that word.

6.3 Compressing and Decompressing L1 DC Data

Our line-shared L1 DC attempts to compress a data value within a word during a store instruc-
tion or when an L1 DC word is being filled from the L2C. Note that a store instruction requires
an L1 DC tag check before the value is actually stored. Thus, how other values are stored in the
word is known before storing the new value as word metadata associated with the corresponding
word from all of the metalines sharing the L1 DC line is checked in parallel with the tag compar-
isons. The type of encoding for the value to be stored is determined after the value to be stored
is available. The word metadata with the corresponding data word for each metaline associated
with an L1 DC line may need to be updated depending upon the new value to be stored as values

from other metalines will be marked as nonresident when they cannot be compressed with the new

73

value. Note that we do not attempt to compress a value if we are storing a byte or a halfword to
the upper halfword of a word.

Table 6.1 shows that when using only two metadata bits for each data word, values associated
with the same word slot from distinct L2 sublines can sometimes be compressed to reside within
an L1 DC word slot at the same time. When a word is loaded from the L2C, the processor checks
if the value is narrow width, meaning that the value can be represented in fewer bytes than a full
data word through sign extension. Otherwise, the value is considered full width (code 10). Zero
can be viewed as a special narrow-width value, where the data value is not actually stored in the
L1 DC line. The third column of Table 6.1 indicates when each value can be shared with other
values in the same word. A nonzero narrow width (2-byte) value (code 01) can be shared in the
same word with any value that is not full width (code 10). In other words, a 2-byte value (code
01) can share a word with a zero value (code 00), a 2-byte value (code 01), or a nonresident value

(11). A zero value (code 00) can be shared in the same word with any other value.

Table 6.1: L1 DC 2-Bit Word Metadata Encoding

’ Code \ Interpretation \ Can Share a Data Word with ‘

00 zero value 00, 01, 10, 11
01 2-byte value 00, 01, 11
10 4-byte value 00, 11

11 not resident 00, 01, 10, 11

The placement within the word of nonzero narrow-width values for a given L2 subline will be
based on the L1 DC metaline way of the L2 subline as shown in Figure 6.2. When two L2 sublines
can share the same L1 DC line (2xLS), a nonzero narrow width value will be placed in the lower
halfword if the L1 DC metadata way was zero and the upper halfword if the L1 DC metadata way
was one. When four L2 sublines can share the same L1 DC line (4xLS), a nonzero narrow width
value will be placed in the lower halfword if L1 DC metaline way was zero or one and the upper
halfword if the L1 DC metaline way was two or three.

Figure 6.3 shows an example of line sharing with two L2 lines sharing an L1 DC line (2xLS).
The L1 DC metadata for these two lines use the metadata codes shown in Table 6.1. Word 0 in each
of the two L2 sublines can be compressed into word 0 of the L1 DC line as both values are narrow

width (can be represented in 2 bytes). Word 1 in each of the two L2 sublines can be compressed

74

into word 1 of the LL1 DC line as word 1 of L.2 subline j is zero and is not stored in the L1 DC line.

At most one value for word 2 can be stored as the value in word 2 for L2 subline j is full width.

Two L2 Sublines Mapping to the Same L1 DC Line 2-Bit Word Metadata
i 7 0xbffff024 13 01|10 11
0 1 2 ."".'_'_'_'I____:
j 32 0 Oxal11ff80 1 lo1]oo|10
0 1 2 B |
! N Lo |
l l . L1DCLine . YT
Y Y Y
7 32 0xbffff024 0xal11ff80
0 1 2

Figure 6.3: Line Sharing Example with 2-Bit Word Metadata

Figure 6.4 shows the taxonomy of the data values stored in an L1 DC for the SPECint 2006
benchmark suite. On average, 18.5% were zero values, which do not require an access to the L1 DC
data to store the data. 23.6% could be represented in a single byte and 13.7% required two bytes.
44.1% of the values required three or four bytes to be represented. Thus, 55.9% of the values can
be potentially compressed into a word with a value from a different L2 subline.

Table 6.2 shows an extended set of ways that data values can be compressed into a single
word by using 3 bits for each word encoding. Code 001 allows a 1-byte sign-extended value to
be represented, which has the advantage of allowing up to four byte values to share a single data
word. If only two L2 sublines can share an .1 DC line, then this encoding would still reduce energy
usage as the number of bytes being updated in the cache will be reduced. Code 011 indicates
that the upper halfword will come from the upper half of the address used to access the L1 DC,
which is comprised from the tag field and possibly a portion of the set index field (see Figure 6.1).
The motivation for this encoding is that sometimes a word can contain a pointer to a value that
is nearby to the address where the pointer itself is stored (within the same lower 16-bit or 64KB

offset). Code 100 indicates that a common upper halfword is to be used. The idea is that often

75

m Zero-Value m One-byte Width @ Two-byte Width o Four-byte Width

1 —
(@) _
Q o9
O 08
8 L
B 0.7 -
§ 0.6 i H
0 05
S 0.4-
g ©
= 0.3+ —
S 02
L 01 I
0 -
Al [&] X “G_J = E “5 ey (@)] C
£ > E 3 £ 3 £ g o 8
e % 8 E % S 7 E
< o> @ £
O o =
= ©
Benchmarks

Figure 6.4: L1 DC Data Value Taxonomy

the same upper halfword value is used in different words in the same L2 subline (e.g. high half
of pointer address). One common upper halfword value is stored with each metaline. If the valid
bit for the common upper halfword is not set, then the upper halfword of a 4-byte value (code
110) being stored or filled will be placed in the common upper halfword. When there is a store
word instruction or word fill, the L1 DC compares the upper halfword of the current value to be
stored with this common halfword value associated with the entire metaline. If the current upper
halfword matches this common upper halfword value, then only the lower halfword is stored in the
data word. A valid bit is not set for the common upper halfword until a match is found indicating
that the upper halfword value is the same as another word in the line. A counter for the common
upper halfword is incremented on each match and the counter is decremented when a new value is
stored that does not match the current upper halfword associated with the previous value or the
current value using the common upper halfword becomes no longer resident. The common upper
halfword can only be replaced when the counter is zero, which simplifies replacement since other
word values within the same L1 DC line do not have to be updated. Code 101 contains the upper
half of the $gp register, whose value is used to access global variables and is obtained at the start

of the execution. If a global address is stored within this 64KB offset, then only the lower halfword

76

of the value needs to be stored.

Table 6.2: L1 DC 3-Bit Word Metadata Encoding

| Code | Interpretation [Can Share a Data Word with |
000 Z6r0 value 000,001,010,011,100,101,110 111
001 -byte value 000,001,010,011,100,101, 111
010 2byte value 000,001,010,011,100,101, 111

011 upper half address 000,001,010,011,100,101,111
100 | common upper half 000,001,010,011,100,101,111

101 $gp upper half 000,001,010,011,100,101,111
110 4-byte value 000,111
111 not resident 000,001,010,011,100,101,110,111

Figure 6.5 shows an example of line sharing with two L2 lines sharing an L1 DC line (2xLS)
using the 3-bit word metadata codes shown in Table 6.2. Word 0 in each of the two L2 sublines
can be compressed into word 0 of the L1 DC line as word 0 of L2 subline 7 has an upper halfword
that is the same as the common upper halfword that is stored with this metaline and word 0 of
L2 subline j is the upper halfword of the $gp value. Word 1 in each of the two L2 sublines can
be compressed into word 1 of the L1 DC line as word 1 of L2 subline 4 also has the same upper
halfword value as the common upper halfword and word 1 of L2 subline j has an upper halfword
that has the same bits as the upper halfword of the address of the L1 DC line. Finally, word 2 in
each of the two metalines can be stored in word 2 of the L1 DC line as word 2 of L2 subline 7 is
Zero.

A value is decompressed from a word in the L1 DC line when it is loaded from the cache
due to a load instruction being executed. The word is loaded in parallel with performing the tag
comparisons and checking the word metadata. Thus, accessing the data word is not delayed as the
same set index and line offset of the address (see Figure 6.1) is used to access the word within the
L1 DC line. The loading of a value from a conventional cache goes through a multiplexor as only a
portion of the loaded word is used when a load byte (signed or unsigned) or load halfword (signed
or unsigned) instruction is performed. The only change we require is that there is a greater number
of values that will be fed into this multiplexor, which will now not only be controlled by the type of
load instruction, but also by the word metadata encoding associated with that word value. Thus,
loading a value using line sharing will increase the logic depth by at most one or two gates due to

the use of a larger multiplexor to extract the value from the loaded word.

77

Two L2 Sublines Mapping to the Same L1 DC Line 3-Bit Word Metadata

i Oxbfff12e0 Oxbffff024 0 100|100|000| .. Oxbfff
0 1 2 P
j 0x6c07a140 Oxalelff80 Ox1ca24 © 1|10t |o11 | 110 ?
: 1 : o common
3 ! 1 1 1 upper
! e halfword
! ! == o mmmmmmmmmmmmmmssssssssssmees ' X X for each
! ! ! CTTTTTTTTTTTTTTTTmmmomTommmm e ! . metaline
vy v vy v Y
0x12e0 : 0xal40 | 0xf024 : Oxff80 Ox1ca24 0x6c07
0 1 2 upper half

L1 DC Line at address 0Oxalel1ff00 $gp value

Figure 6.5: Line Sharing Example with 3-Bit Word Metadata

6.4 L1 DC Metaline Fill Policy

We define metaline thrashing as repeatedly fetching data words associated with metalines where
most of the data words are not referenced before they are replaced. We selectively choose not to
fill L1 DC lines if they could potentially evict useful data. There are three possible L1 DC access
results: word hit (the accessed word is resident and other words in the same metaline may or
may not be resident), word miss+line hit (the accessed metaline is resident within the L1 DC
line, but the word in the metaline is not resident), and line miss (the accessed metaline is not
resident within any of the L1 DC lines within the indexed L1 DC set). During an L1 DC access,
it’s possible that some words of the metaline are not resident for a word hit or word miss+line
hit. An eager metaline fill approach would always fetch the missing words in a metaline from the
L2C as this can potentially increase the L1 DC hit rate due to spatial locality. However, an eager
metaline fill approach can result in metaline thrashing when two metalines in the same L1 DC line
are alternatively referenced, as they would continuously replace the other metaline’s data when the
two data values cannot be compressed into the same word. We avoid this thrashing behavior in
the following manner. If the L1 DC detects a word hit to a metaline that isn’t the MRU metaline
within the L1 DC line, then the L1 DC does not fetch the missing data words in that metaline

from the L2C and updates the LRU information. Hence, the L1 DC doesn’t evict data words from

78

the MRU metaline within the L1 DC line. If the L1 DC detects a word hit to a metaline that is
the MRU, then the L1 DC does fetch the missing data words in that metaline from the L2C. Thus,
it takes two word hit references to a resident L1 DC metaline to trigger a fill of the nonresident

values within that metaline.

6.5 L1 DC Metaline Replacement Policy for Set-Associative
Organizations

The L1 DC metaline (L2 subline) replacement decisions become more complex as we move from
a direct-mapped cache to a set-associative cache. Ideally, the most recently used (MRU) metalines
will be mapped to separate L1 DC lines so they are not competing for a single line within an
L1 DC set. For example, for a 4-way L1 DC using 4xLS (four metalines sharing a single L1 DC
line), there are 16 metalines per set. It would be best if the four MRU metalines map to separate
L1 DC lines in the set. Metaline thrashing can occur when the two MRU metalines map to the
same L1 DC line within the L1 DC set, which will decrease the L1 DC hit rate and increase the
number of words fetched from the L2C. In addition, maintaining LRU information for up to sixteen
metalines is unnecessary complex in terms of circuitry. In our initial experiments we found that
line sharing caused an increase in the miss rate and/or the number of words fetched from the L2C
for some benchmarks in some configurations. Thus, we refined the L1 DC metaline replacement
policy in a set-associative L1 DC (as well as the L1 DC metaline fill policy) to decrease thrashing
and we refined the LRU information stored with each metaline to reduce the complexity of the LRU
circuitry. After much experimentation, there are three metaline replacement policy refinements we
found that eliminates most of the metaline thrashing and improves the overall L1 DC miss rate.
The pseudocode for processing an L.1 DC access with line sharing in a set-associative cache is shown

in Figure 6.6.

79

select_metaline_to_replace(in set; out way, metaway) {
way = LRU_line(set);
// replacement refinement to support 2-level LRU info
if (2xLS)
metaway = LRU_metaline(set, way);
else

metaway = LRU_metaline_in_nonMRUgroup(set, way);

replace_metaline(in set; out way, metaway) {
select_metaline_to_replace(set, way, metaway);
invalidate_metaline(set, way, metaway);

fill_metaline(set, way, metaway);

process_L1DC_access(in tag, set, word_offset) {
if (line_hit(tag, set, way, metaway)) {
if (word_miss(set, way, metaway, word_offset))
// replacement refinement to separate 2 MRU metalines
if (MRU_line(set) == way &&
MRU_metaline(set, way) != metaway) {
invalidate_metaline(set, way, metaway);

replace_metaline(tag, set, way, metaway);

}
else
fill_metaline(set, way, metaway);

}

// fill refinement for word hit
else if (MRU_metaline(set, way, metaway))
fill_metaline(set, way, metaway);
}

else
replace_metaline(tag, set, way, metaway);

return extract_value(tag, set, way, metaway, word_offset);

Figure 6.6: Processing an L1 DC Access in a Set-Associative Line-Shared Cache

First, we use a two-level LRU metaline replacement policy. For 2xLS (two metalines sharing
a single L1 DC line), we find the LRU L1 DC line within the L1 DC set in the first level, and
in the second level, we find the LRU metaline within that L1 DC line. Using a two-level LRU
metaline replacement policy initally prevents the two MRU metalines within the entire L1 DC set
from mapping to the same L1 DC line. We also use two levels of LRU information for 4xLS (four
metalines sharing a single L1 DC line). In addition, we treat metalines in an L1 DC line as a
member of one of two groups: group a for metalines 0 and 1 and group b for metalines 2 and 3. A

two-byte narrow width value in a 4xLS line is placed in the lower halfword if the L1 DC metaline

80

way is zero or one and is placed in the upper halfword if the L1 DC metaline way is two or three
(see Section 6.3). We extend the two-level metaline replacement policy for 4xLS in the following
manner. In the first level, we find the LRU L1 DC line. In the second level, we select the LRU
metaline within the group that doesn’t contain the MRU metaline. For example, assume there are
four metalines 0, 1, 2, and 3 associated with a single L1 DC line. If the MRU metaline is in group a
(metaline 0 or 1), then a metaline eviction would replace the LRU metaline from group b (metaline
2 or 3) as this would allow two narrow-width values from the two MRU metalines to share the same
word in the L1 DC line. If we instead assigned the two MRU metalines of an L1 DC line to the
same group, then narrow-width values stored in the two MRU metalines would be placed in the
same halfword of the L1 DC word slot causing the first value placed within that word slot to be
evicted.

Second, we decrease metaline thrashing in set-associative caches by selectively invalidating lines
that could cause thrashing. If there is a word miss+line hit to a metaline that is not the MRU, but
shares the L1 DC line with the MRU metaline within the entire L1 DC set, we mark the accessed
metaline as invalid and return a miss. This approach decreases line thrashing as we don’t allow the
two MRU metalines to compete for a single L1 DC line. Instead, this approach forces the accessed
metaline to be reallocated to another L1 DC line.

Third, sometimes a metaline is not filled due to other issues, which is not shown in Figure 6.6. A
metaline is not filled when there is a word hit and the maximum number of outstanding L1 DC line
fill requests has been reached since the memory access can be resolved without a line fill. Likewise,
a prior outstanding line fill request is cancelled if it was a word hit, the limit on outstanding L1 DC
line fill requests is reached, and a new word miss+line hit or line miss is encountered. Finally,
a line fill associated with a word hit or word miss+line hit is not performed if there is already a

pending line fill to the same line.

81

6.6 Evaluation Environment

In this section we describe the experimental environment used in the following section of the
paper. We use the 9 C benchmarks from the SPECint 2006 benchmark suite, which are compiled
using gee with the -03 option. We use the ADL simulator [21] to simulate both a conventional MIPS
processor as the baseline and a modified processor containing a line shared L1 DC as described in
this paper. Table 6.3 shows other details regarding the processor configuration that we utilize in our
simulations. We use the ADL simulator combined with CACTTI [17,18] for the energy evaluation
to model processor energy. CACTI was used assuming a 22-nm CMOS process technology with
low-standy power (LSTP) cells and power gating. Tables 6.4 and 6.5 show the energy for accessing
various components in the 16KB and 32KB L1 DCs, respectively. Leakage energy was gathered

assuming a 1 GHZ clock rate.

Table 6.3: Processor Configuration

Single-stage MIPS processor
16/32KB, 64B line size,

1/2/4-way associative,

1-cycle hit time,

10-cycle miss penalty

512KB, 64B line size,

L2C 8-way associative, 8-byte bus width,
100 cycle miss time

Table 6.4: Energy for 16KB L1 DC Components (pJ)

L1 DC Size 16384B
Associativity 1-way
L1 DC Read 2.900

Configuration | 1xLS | 2xLS | 4xLS | 4xLS-ext
Tag Array 0.381 | 0.728 | 0.981 0.981
Meta Array 0.000 | 0.378 | 0.718 0.951
Associativity 2-way
L1 DC Read 4.129
Configuration | 1xLS | 2xLS | 4xLS | 4xLS-ext
Tag Array 0.403 | 0.782 | 1.091 1.091
Meta Array 0.000 | 0.381 | 0.725 0.961
Associativity 4-way
L1 DC Read 6.617
Configuration | 1xLS | 2xLS | 4xLS | 4xLS-ext
Tag Array 0.448 | 0.892 | 1.275 1.275
Meta Array 0.000 | 0.388 | 0.739 0.982

82

Table 6.5: Energy for 32KB L1 DC Components (pJ)

L1 DC Size 32768B
Associativity 1-way
L1 DC Read 3.444
Configuration | 1xLS | 2xLS | 4xLS | 4xLS-ext
Tag Array 0.701 | 0.927 | 1.499 1.499
Meta Array 0.000 | 0.647 | 1.226 1.823
Associativity 2-way
L1 DC Read 5.065
Configuration | 1xLS | 2xLS | 4xLS | 4xLS-ext
Tag Array 0.728 | 0.981 | 1.661 1.661
Meta Array 0.000 | 0.718 | 1.233 1.834
Associativity 4-way
L1 DC Read 8.193
Configuration | 1xLS | 2xLS | 4xLS | 4xLS-ext
Tag Array 0.782 | 1.091 | 2.019 2.019
Meta Array 0.000 | 0.725 | 1.247 1.854

6.7 Results

Table 6.6: L1 DC Hit Rates

L1 DC Configuration Line Sharing Technique
Size Assoc. Su’t;;—.block 1xLS 2xLS 2xLS-ext 4xLS 4xLS-ext
ize

16B 82.9% 90.9% 91.1% 91.7% 92.1%

1-way 32B 87.1% 92.7% 92.7% 93.2% 93.8%

64B 89.7% 93.7% 94.1% 94.1% 94.5%

16B 84.2% 91.7% 91.8% 92.5% 92.6%

16KB 2-way 32B 88.7% 93.7% 93.8% 94.1% 94.3%

64B 91.5% 94.7% 94.8% 95.0% 95.1%

16B 86.0% 91.7% 91.9% 92.8% 92.9%

4-way 32B 90.8% 93.9% 94.0% 94.5% 94.6%

64B 93.2% 94.9% 95.0% 95.3% 95.4%

16B 90.5% 92.8% 92.9% 93.3% 93.4%

1-way 32B 92.8% 94.2% 94.6% 94.6% 95.0%

64B 92.7% 95.3% 95.3% 95.4% 95.6%

16B 92.0% 93.2% 93.2% 93.8% 93.9%

32KB 2-way 32B 94.2% 95.0% 95.1% 95.4% 95.4%

64B 95.0% 95.9% 95.9% 96.1% 96.2%

16B 92.4% 93.5% 93.5% 93.9% 94.0%

4-way 32B 94.4% 95.2% 95.2% 95.5% 95.6%

64B 95.5% 96.1% 96.1% 96.2% 96.3%

83

o 2xLS m 2xXLS-ext m 4xLS m 4xLS—ext

] nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

LI

16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB: 64B

25

1.5 1

L1 DC Data
Relative to Baseline
N

—_
L

] nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

S

32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B

L1 DC Configuration

L1 DC Data
Relative to Baseline
N

Figure 6.7: Data Utilization of L1 DC

Figure 6.7 shows how well we utilize the L1 DC in terms of storage. L1 DC utilization is a
measure of the amount of data stored inside the L.L1 DC relative to the baseline. Here, the baseline
is an L1 DC of the same size, associativity, and sub-block size but without line sharing and data
packing. For 2xLS and 4xLS(-ext), the maximum amount of data we can hold relative to the
baseline is two times or four times, respectively. The L1 DC size has little effect on the amount of
data that can be stored relative to the baseline for our apporach. The difference between a 16KB,
4-way, 64 byte sub-blocked cache using 4xLS versus a 32KB cache with the same configuration is
less than two percent. However, as we increase the sub-block size the amount of data we store

relative to the baseline decreases. For a 16KB, 4-way L1 DC using 4xL.S, the amount of data stored

84

relative to the baseline decreases by roughly 24% as we move from a 16-byte sub-block size to a
64-byte sub-block size. Similarly, the amount of data stored relative to the baseline decreases as we
increase the associativity. A direct-mapped, 16KB cache with a 64-byte sub-block size using 4xLS
can store about 20% more data relative to the baseline than a 4-way associative 16KB cache with
a 64-byte sub-block size. As previously stated, there are more opportunities for line sharing with

a small sub-block size.

o 1xLS @ 2xLS m 2XLS—-ext m 4xLS m 4xLS—ext

50 ~
— nxLS = n lines shared, ext = extended bit encoding
Al
1S
I 40
© —
N
) 30 ~
O
(]
10- -
16KB 16KB 16KB 32KB 32KB 32KB
Direct 2-way 4-way Direct 2-way 4-way

L1 DC Configuration

Figure 6.8: Increase in L1 DC Size

Figure 6.8 shows how our approach increases the size of the L1 DC for different L1 DC sizes and
associativities. As we increase the associativity, the size of the cache decreases. This is because it
is inefficient in terms of space to have long, narrow data structures as the decoding logic increases.
By splitting the structure into multiple data arrays, the decoding logic decreases and the height
of the L1 DC and the structure becomes more symmetrical. For 2xLS(-ext) and 4xLS(-ext), we
increase the size of the L1 DC as we increase the number of tags per line by two and four times,
respectively. As expected, 2xLS has the smallest footprint as this requires only two tags per L1 DC
line and 32 bits (64B cache line = 16 words, 2 bits per word) per tag for the metadata array. For
a 4-way, 16KB L1 DC, 2xLS increases the size of the L1 DC by roughly 17% for a 16KB cache and
14% for a 32KB L1 DC. Using 4xLS-ext has the largest footprint as it requires four tags per L1 DC
line and 48 bits (64B cache line = 16 words, 3 bits per word) per tag for the metadata array. For

85

a 4-way, 16KB L1 DC, 4xLS-ext increases the size of the L1 DC by 55% and by 52% for a 32KB

L1 DC.
ob2xLS = 2xLS-ext wm4xLS m 4xLS-ext
0.5
(O]
IS
c
- o 0.4+
S
=
oS 0.31
8=
B9
2a 0.2
~—
—
0.1 1
0 .
16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
Subblock: 16B Subblock: 32B Subblock: 64B Subblock: 16B 32B 64B 16B Subblock: 32B Subblock: 64B
0.6
0.5
Q
T
c
p= o 0.4+
S &
pre R
oS 0.31
S=
B9
2a 0.2
~—
—
0.1 1
0 .
32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-w;
Subblock: 16B Subblock: 32B Subblock: 64B Subblock: 16B 32B 64B 16B Subblock: 32B Subblock: 64B

L1 DC Configuration

Figure 6.9: Reduction in L1 DC Miss Rate

Figure 6.9 shows the effect our approaches have on the L1 DC miss rate. Our approach allows
an L1 DC to approach the performance of a higher-associativity data cache. The benefits of our
approach rely on two key factors. The first is the taxonomy of values placed inside the L1 DC,
which determines how often data can be compressed inside our L1 DC. Compressed values can
share space with other compressed values and therefore can be retained longer as they are less
likely to evict other values and are less likely to be evicted by other values. The second factor is

how often references switch between meta-lines in a set. If all accesses are to the MRU meta-line,

86

then there would be no benefit to our approach as the performance would perform the same as the
baseline. However, if accesses switch between the lines in a set, then our approach will see benefits.

The factor that has the largest impact on the miss rate reduction is the associativity. For
example, the miss-rate reduction for a 16KB cache with a sub-block size of 64 bytes using 4xLS
decreases from 42.7% to 29.8% as we increase the associativity from 1-way to 4-way. This is because
our approach obtains some of the benefits of a higher associative L1 DC, but there are diminishing
returns to increasing the associativity. For example, the difference in reducing the miss rate is
larger as we go from a direct-mapped cache to a cache with four ways per set than when we go
from a cache with four ways per set to a cache with sixteen ways per set. However, increasing the
associativity has drawbacks, most notably the energy and time required to access the L1 DC. Our
approach can allow a processor to use a smaller, direct-mapped L1 DC with a smaller sub-block
size without affecting the hit rate and also potentially decreasing the number of cycles for an L1 DC
hit. As we vary the approach from 2xLS, 2xLS-ext, 4xLS, and 4xL.S-ext, the miss rate improves.
However, the benefits of reducing the miss rate must be compared against the cost of increasing

the L1 DC size as well as the energy required to access it.

87

o 2xLS m 2xXLS-ext m 4xLS m 4xLS—ext

] nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

e} .0

3 0.8

GO

= QA

O _

w— 0.7

=

°e

O e

- m mm

0.5- h
16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B
0.9 nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

o 0.8

(0]

SO

+—= QA

O_

w— 0.7

n E
o O

) =
= 06

32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B

L1 DC Configuration

Figure 6.10: Words Fetched from L2

Figure 6.10 shows the the number of words fetched from the L2 and placed in the L1 DC relative
to the baseline. As our approach can retain values longer, we don’t need to fetch words from the L2
if their values still remain in the L1 DC at the time we are filling that line. In other words, upon an
L1 DC word miss but tag hit, we only need to fill the words missing from the .1 DC meta-line. The
word-fill rate tells us how much we reduce the words needed to be filled in lines and is measured
by counting the number of words retrieved from the L2 and placed in the L1 DC compared to the
baseline. Lowering the word-fill rate impacts performance, as L1 DC line fills don’t take as long, as
well as energy, as fewer words are fetched from the L2. As we increase the associativity of the cache,

the number of words we fetch from the L2 approaches that of the baseline. For a 16KB L1 DC

88

with a 64 byte sub-block size using 4xLS, the ratio of words retrieved from L2 increases from 54.2%
to 72% as we increase the associativity from 1-way to 4-way. For a 16KB, direct-mapped L1 DC
using 4xLS, the ratio of words that need to be retrieved from L2 increases from 59% to 54%. As
we increase the size of the sub-block, the ratio of the words fetched from L2 relative to the baseline
tends to decrease. This is because the baseline fetches fewer words in total for a smaller sub-block
size. For a direct-mapped L1 DC using 2xLLS, the number of words fetched from L2 decreases from

62% to 57% as we increase the sub-block size from 16 bytes to 64 bytes.

m L1 Read m L1 Write m Tag o Metadata © L2 Read 0 L2 Write
1 . — — — —

©0.8 - \ g 3 : I 9 |t 5 £ I .
c £ E] ! 3 = |8) &
>=] 8 & & rl
99’ i | i I | II I
(0] i
chgo'G l
89
o i
<3
Co.2 -
0,
16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB: 64B
1, — — — — —
0081 |z |k B 113 £ EeEmERE SERFR SEEE
c 2 M = 3 L& 2 o (& & 119 |4
>i= & — g F | E e E PERE
=g 13 (3 | HE T BRERE i eERERER
SE°0T 1318 |, i §
%8 E]
o i
§:§0.4 ——
<g SHS
o2
0,

32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B

L1 DC Configuration

Figure 6.11: Breakdown of L1 DC Energy by Component

Figure 6.11 shows the energy consumption of our modified L1 DC relative to the baseline for

89

various L1 DC configurations. As the size of the L1 DC decreases, the energy consumed by the 1.2
begins to dominate the total energy expenditure. As we decrease the energy expended by the L2 by
decreasing the L1 DC miss rate as well as decreasing the number of words that need to be fetched
from the L2, we are able to achieve significant energy savings (over 18% for 16KB/Direct/16B
Sub-Block/4xLS). However, as we increase the size, associativity, and sub-block size of the L1 DC,
the energy expended by the L1 DC dominates as there are fewer L1 DC misses and the energy
to access the L1 DC increases. This overhead energy is offset by decreasing the energy expended
by writing to the L1 DC, as we write only the bytes necessary to be able to retrieve the data
using sign-extension and entirely avoiding writing to the L1 DC for zero values. The total energy
expended approaches the (97.7%) for a 32KB, 4-way associative, 64B sub-block size L1 DC using
4xL.S-ext. The most energy efficient of our approaches is 2xLLS, as this doubles the size of the tag
array and only requires 64 bits per cache line for the metadata array. The most expensive in terms
of energy usage is 4xL.S-ext, as this quadruples the size of the tag array and requires 192 bits per
cache line for the metadata array (3 bits per word, 16 words per meta-line, 4 meta-lines per L1 DC

line). All approaches, on average, decrease the energy usage relative to the baseline.

90

2096
39
O ®©
3 0.92-
oo
a2 0.88-
MR
& 0.84 -
0.8
14
20.96-
89
O ©
8 0.92-
3e
0 2 0.88 -
NI
& 0.84 -
0.8 -

number of words

o 2xLS m 2xLS m 4xLS m 4xLS-ext

nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB 16KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB: 64B

nxLS = n lines shared, ext = extended bit encoding, SB = subblock size

TN

32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB 32KB
Direct Direct Direct 2-way 2-way 2-way 4-way 4-way 4-way
SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B SB:16B SB:32B SB:64B

L1 DC Configuration

Figure 6.12: Performance Relative to Baseline

Figure 6.12 shows the number of cycles executed by the processor using our modified L1 DC
designs relative to a baseline 16K B, direct-mapped, 16B sub-blocked L1 DC, not the baseline for a
processor with the same size, associaitivty, and sub-block size. By using a constant baseline for all
approaches, we can compare the performance between sizes and configurations. The performance
is largely determined by the L1 DC miss rate as well as the number of words fetched from the

L2. Decreasing the L1 DC miss rate reduces the number of load-delay hazards and decreasing the

fetched from the L2 decreases the number of cycles required to fill the L1 DC

line. While the miss rates for a 16KB 4-way, 64B sub-block size L1 DC using 4xLS-ext is nearly
identical to a baseline 32KB, 4-way, 64-B sub-block size L1 DC without our approach L1 DC (95.4%

91

versus 95.5%), the performance of the 32KB is still superior (roughly 2% fewer cycles relative to
the baseline). This is the 16KB cache fetches more words from the L2, requiring more stalls due to
L1 DC line fills. Even though the L1 DC uses critical-word first, which decreases the miss penalty
for a load that misses in the L1 DC, a subsequent memory operation must stall if it tries to access
the L1 DC while the rest of the line is being filled. From Figures 6.9 and 6.10, we see that the
miss rate reduction increases and the number of words filled relative to the baseline decreases as

we decrease the L1 DC size, associativity, and sub-block size.
o1xLS = 2xLS wm2xLS-ext m4xLS m 2xLS-ext
0.9 1

0.8 1

0.7

L1 DC Hit Rate

0.6

i

perlbench gce mcf godmk hmmer sjeng libquantum h264ref bzip2 arith. mean

0.5-

16KB, 4-way set-associative Cache with 64B Sub-block
Figure 6.13: Hit Rate by Benchmark

Figure 6.13 shows the hit rates for individual benchmarks as we vary the approach for a 16KB,
direct-mapped, 16-byte sub-block size L1 DC. On average, we improve the hit rate by 8.1%, 8.25%,
8.84%, and 9.2% as we vary the approach from 2xLS, 2xLS-ext, 4xLS, and 4xLS-ext, respectively.
It should be noted that it’s impossible for our approach to perform worse than the baseline. The
largest improvement was for libquantum, which demonstrates nearly pathological cache behavior

as it iterates sequentially through two arrays, causing constant thrashing for cache lines.

6.8 Related Work

The need for maintaining a fast access time has limited the exploration of data compression
techniques in L1 DCs. This is because the overhead for loading and decompressing the data extends

the critical path for memory accesses. In order to not increase the access time, the set index and

92

line offset portions must remain unchanged during data decompression so as to not increase the
time required to load the compressed data. In addition, data decompression must be fast enough
that it does not increase the time required to forward the data to the next pipeline stage. We limit
this section to first-level data cache compression techniques, which are most relevant to this paper.

[23] is a L1 DC compression technique that compresses data inside the L1 DC at the granularity
of L1 DC lines. If each word in an L2 subline can be represented in two bytes using sign-extension,
then the L2 subline is stored in only half of the corresponding L.1 DC line. A single L.L1 DC line
can be shared by two L2 sublines if all the values in each L2 subline can be represented in two
bytes using sign extension. To increase the number of opportunities for compressing an entire L2
subline, the technique also allows an L2 subline to be compressed if it has only a small number of
values that can’t be stored in two bytes. In this case, the upper two bytes of these values are stored
in a separate cache which is read in parallel to the data access. Each word in the L1 DC line has
an additional extra storage bit indicating that the word’s upper two bytes are in this additional
half-word storage. As with our approach, [23] compresses data inside an L1 DC, increasing the
amount of data relative to an uncompressed cache. Both approaches don’t affect the access time
for the L1 DC while also improving the hit rate. However, our approach compresses data inside
an L1 DC line at the granularity of words rather than cache lines, which increases the number of
opportunities available for data compression and thus increases the amount of data held inside the
L1 DC. In addition, our approach also decreases the time required to fill L1 DC lines due to words
often already being resident.

The compression cache (CC) is another L1 DC compression technique that compresses data
inside the L1 DC at the granularity of L1 DC lines [32]. Each cache line can either hold one
uncompressed line or two cache lines compressed to half their lengths. This is done by encoding
values that appear frequently during program execution using only a few bits. If at least half the
words can be represented using an encoding for a freqently-occuring value, then the line can be
compressed to half its size and placed inside the L1 DC alongside another compressed line. A
separate bit mask is used to indicate if a word value is frequent and if not, then indicates where
the word is located within the line. This cache design will result in a more complicated access and

likely a longer access time.

93

A small frequent value cache (FVC) has been proposed that is accessed in parallel to the L1 DC
and is used to improve the miss rate as the FVC effectively functions as a victim cache [33]. The
FVC is very compact as it uses 3 bits to represent codes for seven frequent word values and an
eighth code is used to represent that the value is nonfrequent and not resident in the FVC. The
FVC was later adapted so that a separate frequent value L1 DC data array was accessed first to
avoid the regular L1 DC data array if the value was frequent [30]. This approach reduced L1 DC
energy usage at the expense of delaying access to a nonfrequent value by a cycle.

Both [23] and [32] increase cache complexity as updating a value may require decompressing a
compressed cache line. In [23], a value that could previously be stored in two-bytes could be over-
written with a 4-byte value, and, similarly, an encoded frequent value in [32] could be overwritten
with a value with no encoding. In both cases, the cache line must be decompressed potentially
causing an execution penalty. Our approach, however, updates the word in the cache and only
needs to update the metadata corresponding to L2 subline values conflicting for the same word slot
in the cache. In addition, the cache line size affects the amount of data that can be compressed
for both [23] and [32], whereas the cache line size does not affect our approach. As the cache line
size increases, the likelihood that at least half of the values in [23] can be stored in two bytes using
sign extension or that at least half of the values are frequent values [32] and thus can be encoded
using a shorter sequence drops. Finally, it appears that both [32] and [33] requires profile runs of
programs in order to identify frequently occurring values and also increases L1 DC access time as
the location of the data inside the cache can change depending on whether or not it belongs to a
compressed cache line or decompressed cache line.

Dynamic zero compression adds a zero indicator bit (ZIB) to every byte in a cache [28]. This ZIB
is checked and the access to the byte is disabled when the ZIB is set. This approach requires more
space overhead and may possibly increase the cache access time, but was shown to reduce energy
from data cache accesses. The zero-value cache (ZVC) contains a bit vector of the entire block,
where each bit indicates if the corresponding byte or word contains the value zero [12]. Blocks are
placed in the ZVC (exclusive of the L1 DC) when a threshold of zero values for bytes/words within
a block is met. The ZVC allows the access for loads and stores to the L1 DC to be completely
avoided. ZVC misses may result in execution time penalties, though the authors claim the ZVC is

small enough to be accessed before the L1 DC with no execution time penalty. The same authors

94

later developed the narrow-width cache (NWC) containing 8-bit values to reduce the miss rate [13].
The NWC is accessed in parallel to the L1 DC cache and blocks are placed in the NWC if a
threshold of narrow values within the block is met. The NWC is used to reduce the miss rate.

While all of these cache techniques either decrease the cache miss rate or reduce energy usage,
we are unaware of any prior first-level cache technique that shares data from different lines in the
next level of the memory hierarchy into the same line at the current level of the memory hierarchy
at the granularity of individual words without increasing the access time.

Way prediction techniques [11,22] are now commonly used to predict which way of the L1 DC
data array is being accessed and this prediction is verified by performing a DTLB access and an L1
DC tag comparison. Way prediction can both reduce energy usage (a single L1 DC tag array and a
single L1 DC data array are accessed) and improve L1 DC load hit time (the requested data from
one L1 DC data array can be sent to the CPU without going through a multiplexor that selects
the data word based on which tag comparison is a hit). Way prediction imposes a performance
penalty when the L1 DC way is incorrectly predicted. Newer versions of way prediction are more
accurate, but require a custom SRAM implementation to mitigate the latency of accessing way
prediction information before the regular L1 DC tag and data access by using a hash of the virtual
address. A direct-mapped line-shared L1 DC can provide the energy and access time benefits of
way prediction without its disadvantages. Way prediction could also be used in conjunction with

an associative L1 DC that supports our line sharing approach.

6.9 Future Work

The fragmentation problem occurs when not all of the block that is filled into a cache is used
before it is evicted. Subblocking is sometimes used to address the fragmentation problem with
large cache lines to reduce the fill time requiring that a subblock is only fetched when accessed and
not resident. Line sharing provides additional benefits for subblocked L1 DCs. Much of the space
available in a conventional subblocked L.1 DC line may go unused as subblocks in the line will not be
filled when they are not referenced before the line is evicted. Allowing multiple L2 sublines to share
the same L1 DC line can make better use of this available space in the presence of subblocking. As
long as distinct L2 sublines refer to subblocks in different portions of the L1 DC line, the L1 DC can

simultaneously hold entire subblocks from different L2 sublines even without compressing values.

95

Thus, we are considering using subblocking with line sharing and experiment with different line
sizes. With a small subblock size, there are more opportunities for line sharing as L2 sublines values
won’t compete for words in the L1 DC line if they don’t belong to the same referenced subblock.
With a larger subblock size, line sharing can overcome some of the disadvantages of subblocking
such as a higher miss rate and also reduce the size of the L1 DC tag memory.

There are other L1 DC parameters or techniques that would be interesting to investigate to
determine the impact of line sharing. A larger line size may be beneficial to reduce L1 DC tag
storage and not suffer as much from the fragmentation problem with line sharing. Prefetching of

lines when using line sharing may be more beneficial as fewer data words may be evicted.

6.10 Conclusions

In this paper we described an L1 DC line sharing technique where multiple L2 sublines can be
shared in each L1 DC line. The technique shares data at the granularity of individual words within
each L1 DC line and uses a tag for each L2 subline to determine if it is resident and metadata
for each word to determine if the word is resident and how the word can be extracted. Metaline
fill and replacement policies were presented to decrease the amount of metaline thrashing. The
results showed reductions in L1 DC miss rates and words fetched from the L2C. These reductions
positively impacted both performance and energy usage.

L1 DC line sharing is a relatively simple technique to implement with minimal impact on the
L1 DC access time. L1 DC line sharing was shown to be beneficial over a variety of configurations
with the most benefit achieved when used with simpler (less associativity) and smaller caches. The
benefits in performance and energy usage make L1 DC line sharing applicable to a variety of types

of processors.

96

CHAPTER 7

CONCLUSIONS

This dissertation has provided techniques that both reduce the energy usage of first-level data
accesses as well as improves performance by decreasing the number of stall cycles due to load and
store hazards. We studied four different techniques that help to achieve these goals.

Chapter 3 proposed a design that memoizes L1 DC access information associated with the
register used to access the data. This allows subsequent memory accesses using the same register
to perform direct, non-speculative accesses to set-associative data caches. We also propose a small
ALU modification to preserve this access information during register updates if the cache line the
register points to doesn’t change. Furthermore, this chapter also proposed the DCAS Refresh Buffer
to retain L1 DC access information longer. This approach doesn’t require changes to binaries or
extensive pipeline modifications. By using a non-speculative approach to accessing a set-associative
cache, the DTLB access as well as the L1 DC tag array access can be avoided during the L1 DC
access. In addition, only a single way of a set is accessed during loads, avoiding accesses to the
remaining n-1 ways. The approach presented in this chapter provides significant energy savings
over traditional, set-associative L1 DCs. Using this approach alone failed to achieve energy saving
benefits over way prediction or way caching. This is because way prediction and way caching
achieve very high hit rates by accessing a small structure between the time of the effective address
calculation and accessing memory, which is not always feasible to access without increasing the cycle
time. However, this chapter also showed that this approach is complementary to way prediction, as
our non-speculative approach can be used to avoid the DTLB, tag array, and a speculative direct
L1 DC access when possible and using way prediction’s speculative approach otherwise, which
achieved the largest energy savings.

Chapter 4 proposed a method that allowed a processor to achieve the energy-saving benefits
of a LO DC while improving performance. This design introduced an additional structure, the
base register structure, which holds the base register value used during loads and stores. With this

structure, the base register value for a load or store can be accessed during the instruction decode

97

stage to calculate the effective address during the register fetch stage. Since the effective address
is available one cycle before the memory access stage, we can access the LO DC one cycle before
the memory access stage. If the access is a hit, then the data is available one cycle earlier, possibly
avoiding load-delay hazards. If the access is a miss, we can still access memory in the same stage we
normally would, avoiding the performance penalty typically associated with LO DCs. In addition,
we also introduced the load-store vector as well as the base register-index structure to reduce the
number of reads and writes to the base register structure, greatly reducing its energy consumption.

Chapter 5 presented a design for an LO DC that can both reduce data access energy and
eliminate the performance penalty normally associated with an L0 DC. We showed that a word-
filled L0 DC can achieve significant energy saving benefits over a line-filled 1O DC. This is because
fetching a L0 DC line in a single cycle from the L1 DC consumes significantly more energy than
fetching a single word. This increase in L1 DC access energy outweighs the benefits of reducing
the LO DC miss rate. This chapter also proposed a method of improving the hit rate of LO DCs by
allowing multiple L1 DC (sub)lines to share a single L0 DC line, called line sharing. If the words
of two or more L1 DC (sub)lines refer to different portions of an L0 DC line, then the values don’t
conflict and can be stored in the LO DC line simultaneously. Chapter 5 also proposed a method
that potentially allows values belonging to two different L1 DC (sub)lines referring to the same
word of an LO DC (sub)line to be stored simultaneously if both values taken together can fit within
a single word, called data packing. Using a word-filled L0 DC with line sharing and data packing,
this thesis achieved significant energy saving benefits by greatly reducing the miss rate of a L0
DC. Finally, Chapter 5 also introduced a method of removing the performance penalty typically
associated with LO DCs. This was done by speculatively accessing the metadata for the LO DC line
during the ALU stage of the processor using the base register value. If the metadata access using
the base register value shows that the data is available and the cache line associated with the base
register value and the effective address are the same, we guarantee that the LO DC access will be
a hit, removing any potential performance penalty. This comes at the cost of reducing the LO DC
service rate, defined to be the number of loads that retrieve their data from the LO DC, as only
loads with small displacements will be able to use the LO DC.

Chapter 6 uses the line sharing and data packing method as described in Chapter 5 for the L1

DC. The approach is evaluated using direct-mapped as well as set-associative L1 DCs in order to

98

provide a more thorough analysis. In addition, sub-blocked L.1 DCs are also evaluated as they can
see additional benefits when using line sharing as L2 (sub)lines can share different sub-blocks of the
same L1 DC line. Finally, Chapter 6 extensively evaluates possible data compression techniques
by adding four additional categories for compressing data values. While there are few benefits to
extending the compression categories as well as increasing the number of L2 (sub)lines that map
to a single L1 DC line past two, this paper shows that allowing two L2 (sub)lines to share a single
L1 DC line provides significant benefits with very little overhead in the space required. These
benefits include increasing the performance as well as decreasing the energy consumption of the
memory hierarchy. The performance benefits achieved were due to decreasing the number of L1 DC
misses as well as decreasing the miss cycle penalty by decreasing the number of words that need
to be fetched from the L2 cache. The energy saving benefits come from fewer L2 cache reads and
writes, as well as decreasing the energy consumed during .1 DC writes as only the bytes necessary
for decompressing the value are written to the L1 DC.

The techniques laid out in this dissertation are applicable to a wide range of processors. None
of the four techniques shown in Chapters 3-6 degrade performance while Chapters 4 and 6 discuss
techniques that can be used to improve the performance of a processor. Furthermore, all of these
techniques can be used to reduce the energy consumed by a processor. Taken together, the tech-
niques discussed in this dissertation provide realistic methods to improve the memory hierarchy by

reducing its energy usage as well as by reducing the number of stalls due to load and store hazards.

99

1]

[6]

[7]

BIBLIOGRAPHY

T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Streamlining data cache access with fast
address calculation. In Proc. Int. Symp. on Computer Architecture, pages 369-380, New York,
NY, USA, June 1995. ACM.

T. M. Austin and G. S. Sohi. Zero-cycle loads: Microarchitecture support for reducing load
latency. In Proc. Int. Symp. on Microarchitecture, pages 82-92. ACM/IEEE, 1995.

A. Bardizbanyan, M. Sjalander, D. Whalley, and P. Larsson-Edefors. Designing a practical
data filter cache to improve both energy efficiency and performance. ACM Transactions on
Architecture and Compiler Optimizations (TACO), 10(4):54:1-54:25, December 2013.

A. Bardizbanyan, M. Sjidlander, D. Whalley, and P. Larsson-Edefors. Speculative tag access
for reduced energy dissipation in set-associative 11 data caches. In Proceedings of the IEEE
International Conference on Computer Design (ICCD 2013), October 2013.

A. Basu, M. Hill, and M. Swift. Reducing memory reference energy with opportunistic virtual
caching. In Proceedings of ACM/IEEE International Symposium on Computer Architecture,
pages 297-308, June 2012.

W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh, J. Park, and
D. Sheffield. Efficient embedded computing. IEEE Computer, 41(7):27-32, July 2008.

N. Duong, T. Kim, D. Zhao, and A. Veidenbaum. Revisiting level-0 caches in embedded pro-
cessors. In Proc. Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems,
pages 171-180, New York, NY, USA, October 2012. ACM.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In Proc. Int. Work-
shop on Workload Characterization, pages 3—14, December 2001.

S. Hines, P. Gavin, Y. Peress, D. Whalley, and G. Tyson. Guaranteeing instruction fetch
behavior with a lookahead instruction fetch engine (life). In Proceedings of the ACM SIGPLAN
Conference on Languages, Compilers, and Tools for Embedded Systems, pages 119-128, June
20009.

S. Hines, D. Whalley, and G. Tyson. Guaranteeing hits to improve the efficiency of a small

instruction cache. In Proceedings of the ACM SIGMICRO International Symposium on Mi-
croarchitecture, pages 433—444, December 2007.

100

[11]

[12]

[13]

Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. Way-predicting set-associative cache for
high performance and low energy consumption. In Proc. IEEE Int. Symp. on Low Power
Design (ISLPED), pages 273-275, August 1999.

Mafijul Islam and Per Stenstrom. Zero-value caches: Cancelling loads that return zero. In
IEEFE International Conference on Parallel Architectures and Compilation Techniques, pages
237-245, 20009.

Mafijul Islam and Per Stenstrom. Characterization and exploitation of narrow-width loads:
the narrow-width cache approach. In International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems, pages 227-236, 2010.

J. Kin, M. Gupta, and W. H. Mangione-Smith. Filtering memory references to increase energy
efficiency. IEEE Trans. Computers, 49(1):1-15, January 2000.

J. Kin, M. Gupta, and W.H. Mangione-Smith. The filter cache: An energy efficient memory
structure. In Proc. Int. Symp. on Microarchitecture, pages 184-193, December 1997.

J. Lee and S. Kim. Filter data cache: An energy-efficient small 10 data cache architecture
driven by miss cost reduction. IEEE Trans. Computers, 64(7):1927-1939, July 2015.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P.
Jouppi. McPAT: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. pages 469-480, December 2009.

Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P Jouppi. CACTI-P:
Architecture-level modeling for SRAM-based structures with advanced leakage reduction tech-
niques. pages 694-701, 2011.

R. Megalingam, K. Deepu, I Joseph, and V. Vandana. Phased set associative cache design for
reduced power consumption. In Proceedings of International Conference on Computer Science
and Information Technology, pages 551-556, 2009.

D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero. Fast speculative address generation
and way caching for reducing 11 data cache energy. In Proceedings of International Conference
on Computer Design, October 2007.

Soner Onder and Rajiv Gupta. Automatic generation of microarchitecture simulators. In
IEEE International Conference on Computer Languages, pages 80-89, Chicago, May 1998.

Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi, and Kaushik Roy. Re-

ducing set-associative cache energy via way-prediction and selective direct-mapping. In Proc.
ACM/IEEE Int. Symp. on Microarchitecture (MICRO), pages 54—65, December 2001.

101

23]

[24]

[27]

[28]

[29]

32]

33]

Prateek Pujara and Aneesh. Restrictive compression techniques to increase level 1 cache
capacity. In International Conference on Computer Design, pages 327-333, 2005.

A. Sembrant, E. Hagersten, and D. Black-Shaffer. Tlc: A tag-less cache for reducing dynamic
first level cache energy. In Proc. 46th ACM/IEEE Int. Symp. on Microarchitecture (MICRO),
pages 351-356, December 2013.

Michael Stokes, Ryan Baird, Zhaoxiang Jin, David Whalley, and Soner Onder. Decoupling ad-
dress generation from loads and stores to improve data access energy efficiency. In Proceedings
of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems, LCTES 2018, pages 6575, New York, NY, USA, 2018. ACM.

C. Su and A Despain. Cache design trade-offs for power and performance optimization: A
case study. In Proc. Int. Symp. on Low Power Design (ISLPED), pages 63—-68, 1995.

W. Tang, R. Gupta, and A. Nicolau. Design of a predictive filter cache for energy savings
in high performance processor architectures. In Proc. Int. Conf. on Computer Design, pages
68-73, Washington, DC, USA, 2001. IEEE Computer Society.

L. Villa, M. Zhang, and K. Asanovic. Dynamic zero compression for cache energy reduction.
In IEEE/ACM International Symposium on Microarchitecture, pages 214-220, 2000.

Emmett Witchel, Sam Larsen, C. Scott Ananian, and Krste Asanovi¢. Direct addressed caches
for reduced power consumption. In Proc. 34th ACM/IEEE Int. Symp. on Microarchitecture
(MICRO), pages 124-133, December 2001.

Jun Yang and Rajiv Gupta. Energy efficient frequent value data cache design. In ACM/IEEE
International Symposium on Microarchitecture, pages 197-207, 2002.

C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-halting cache for low-energy high-
performance systems. ACM Transactions on Architecture and Compiler Optimizations
(TACO), 2(1):34-54, March 2005.

Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value compression in data caches. In
ACM/IEEE International Symposium on Microarchitecture, pages 258-265, 2000.

Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value locality and value-centric data
cache design. In International Symposium on Architecture Support for Programming Languages

and Operating Systems, pages 150-159, 2000.

Zhong Zheng, Zhiying Wang, and Mikko Lipasti. Tag check elision. In International Symposium
on Low Power Electronics and Design, pages 351-356, New York, NY, USA, 2014. ACM.

102

BIOGRAPHICAL SKETCH

I was born in Miami. I attended Hialeah High School and went on to Miami Dade College for my
Associates in Arts and then finished my undergraduate at Florida State University. There, I also

obtained my Masters in Computer Science and then pursued my doctorate in Computer Science.

103

