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Overview

� caches bridge bottleneck between CPU and MM speed� traditional (trace-driven) methods slow (about 100x overhead)� new, e�cient method for instruction cache simulation:- provides faster instruction cache performance evaluation- determine number of hits and misses of a program execution- used to evaluate new cache designs- used to analyze new optimization techniques
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Methods in Contrast� Goal: faster instruction cache performance evaluation� traditional approach: inline tracing- instrument program on complement of min. spanning tree- generate trace addresses- simulate caches based on trace� our approach: on-the-
y analysis- analyze program statically (static cache simulation)- instrument program on \unique paths"- do NOT generate trace addresses- simulate remaining cache behavior within program execution
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Static Cache Simulation

� address of instructions known statically� predicts large portion of instruction cache references� uses iterative analysis of call graph and control 
ow� categorizes each instruction� assumes:- direct-mapped caches- currently no recursion allowed
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Overview of Static Cache Simulation
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Instruction Categorization� transforms call graph into function-instance graph (FIG)� performs analysis on FIG and control-
ow graph� uses data-
ow analysis algorithms for prediction� abstract cache state: potentially cached program lines� reaching state: reachable program lines� categories based on these states:- always hit- always miss- �rst miss: miss on �rst reference, hit on consecutive ones- con
ict: either hit or miss (dynamic)
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Algorithm to Calculate Cache Statesinput state(main):= all invalid lines;WHILE any change DOFOR each instance of a UP in the program DOinput state(UP):= �;FOR each immediate predecessor P of UP DOinput state(UP):= input state(UP) [ output state(P);output state(UP):=[input state(UP) [ prog lines(UP)] n conf lines(UP);
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� 4 cache lines� 16 bytes per line (4 instructions)� instances foo (a) block 8a and (b) block 8b� 7(1): always hit, spacial locality� 8b(1): always hit, temporal locality� 3(3): �rst miss� 5(1) and 6(1): group �rst miss� 3(1): con
ict with 8b(2) conditionally executed
Fast Instruction Cache Analysis via Static Cache Simulation (notes) 8-1
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Abstract Cache States for Example"I" = invalidcache 0 1 2 3 0 1 2 3 0 1 cache ln. 0 1 2 3 0 1 2 3 0 1program I I I I 0 1 2 3 4 5 prog. ln. I I I I 0 1 2 3 4 5PASS 1------in(1)=[I I I I ] out(1)=[ I I I 0 ]in(8a)=[ I I I 0 ] out(8a)=[ I I 4 5]in(2)=[ I I 4 5] out(2)=[ I I 1 4 ]in(3)=[ I I 1 4 ] out(3)=[ I 1 2 4 ]in(4)=[ I 1 2 4 ] out(4)=[ I 1 2 4 ]in(5)=[ I 1 2 4 ] out(5)=[ 1 2 3 4 ]in(8b)=[ 1 2 3 4 ] out(8b)=[ 2 3 4 5]in(6)=[ I 1 2 3 4 5] out(6)=[ 1 2 3 4 5]in(7)=[ 1 2 3 4 5] out(7)=[ 1 2 3 4 5]PASS 2------in(1)=[I I I I ] out(1)=[ I I I 0 ]in(8a)=[ I I I 0 ] out(8a)=[ I I 4 5]in(2)=[ I I 4 5] out(2)=[ I I 1 4 ]in(3)=[ I I 1 2 3 4 5] out(3)=[ I 1 2 3 4 ]in(4)=[ I 1 2 3 4 ] out(4)=[ I 1 2 3 4 ]in(5)=[ I 1 2 3 4 ] out(5)=[ 1 2 3 4 ]in(8b)=[ 1 2 3 4 ] out(8b)=[ 2 3 4 5]in(6)=[ I 1 2 3 4 5] out(6)=[ 1 2 3 4 5]in(7)=[ 1 2 3 4 5] out(7)=[ 1 2 3 4 5]Fast Instruction Cache Analysis via Static Cache Simulation SS'95 9
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Code Instrumentation� merging states: local path state, shared path state (SPS)� states provide DFA to simulate con
icts locally� frequency counters� macros for calls� macros for paths� �rst miss table� calculate hits and misses from frequencies and states
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Measurements

� modi�ed back-end of opt. compiler VPO� performed static cache simulation� instrumented programs for instruction cache simulation� direct-mapped cache simulated� uniform instruction size of 4 bytes simulated� cache line size was 4 words (16 bytes)� results veri�ed by comparison against trace-driven simulation
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Performance Evaluation� UPPAs and function instances vs. basic block partitioning- static savings: 24% fewer measurement points- dynamic savings: 31% fewer measurement points� predictability of instructions- static: 16% con
icts, other 84% predicatble- dynamic: 26% con
icts, other 74% predictable� e�cient in-line code instrumentation accounts for remainingsavings� trace-driven overhead 18x, our method only 2xFast Instruction Cache Analysis via Static Cache Simulation SS'95 13
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Static Measurements for 1kB Direct-Mapped CacheName Hit Miss Firstmiss Con
ict Measure Pts.cachesim 70.83% 6.99% 0.70% 21.48% 73.38%cb 79.03% 2.35% 0.00% 18.63% 89.62%compact 70.12% 4.96% 0.12% 24.80% 68.89%copt 70.89% 7.41% 7.03% 14.67% 84.19%dhrystone 70.03% 10.71% 7.30% 11.96% 81.61%�t 74.07% 4.85% 16.42% 4.66% 78.43%genreport 70.61% 9.95% 5.61% 13.84% 71.58%mincost 72.79% 9.96% 1.14% 16.11% 83.19%sched 67.65% 5.06% 0.09% 27.19% 73.16%sdi� 68.94% 12.06% 0.89% 18.11% 72.13%tsp 72.61% 13.50% 3.88% 10.01% 64.08%whetstone 75.70% 12.84% 0.24% 11.22% 70.49%average 71.94% 8.39% 3.62% 16.06% 75.90%
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Dynamic Measurements for 1kB Direct-Mapped CacheName Measure Pts. Hit Ratio Trace SSim Con
ictcachesim 60.56% 77.19% 8.41 1.53 34.12%cb 65.61% 93.84% 33.56 3.51 30.67%compact 56.56% 92.90% 22.29 2.31 21.34%copt 74.88% 93.64% 16.43 1.58 30.00%dhrystone 72.73% 83.73% 19.89 1.31 16.01%�t 74.08% 99.95% 5.79 0.95 8.80%genreport 81.31% 97.45% 13.57 1.91 28.92%mincost 76.27% 89.08% 23.47 2.23 30.67%sched 58.29% 96.41% 25.90 3.62 42.01%sdi� 77.82% 97.61% 32.10 3.99 28.40%tsp 58.67% 86.98% 5.70 1.19 17.63%whetstone 68.25% 100.00% 13.44 1.36 23.56%average 68.75% 92.40% 18.38 2.12 26.01%
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Average Simulation Overhead
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Future Work

� recursion� set-associative caches� data caching� integrate with timing tool to tightly predict WET/BET� other applications
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Summary

� uses e�cient on-the-
y analysis� performs static instruction cache simulation� instruments program� provides accurate cache performance measurements� instrumented program has only about 2x execution overhead� faster than any other cache analysis method published so far
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