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Overview

e caches bridge bottleneck between CPU and MM speed

e traditional (trace-driven) methods slow (about 100x overhead)
e new, efficient method for instruction cache simulation:
provides faster instruction cache performance evaluation
determine number of hits and misses of a program execution
used to evaluate new cache designs

used to analyze new optimization techniques
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Methods in Contrast

e Goal: faster instruction cache performance evaluation
e traditional approach: inline tracing
- Instrument program on complement of min. spanning tree
- generate trace addresses
- simulate caches based on trace
e our approach: on-the-fly analysis
- analyze program statically (static cache simulation)
instrument program on “unique paths”
- do NO'T generate trace addresses
simulate remaining cache behavior within program execution
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Static Cache Simulation

e address of instructions known statically
e predicts large portion of instruction cache references
e uses iterative analysis of call graph and control flow
e categorizes each instruction
e assumes:

- direct-mapped caches

- currently no recursion allowed

N /
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Instruction Categorization

transforms call graph into function-instance graph (FIG)
performs analysis on FIG and control-flow graph

uses data-flow analysis algorithms for prediction

abstract cache state: potentially cached program lines
reaching state: reachable program lines

categories based on these states:

- always hit

- always miss

- first miss: miss on first reference, hit on consecutive ones
conflict: either hit or miss (dynamic)

~
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Algorithm to Calculate Cache States

input_state(main):= all invalid lines;
WHILE any change DO
FOR each instance of a UP in the program DO
input_state(UP):= ¢;
FOR each immediate predecessor P of UP DO
input_state(UP):= input_state(UP) U output_state(P);
output_state(UP):=
[input_state(UP) U prog_lines(UP)] \ conf_lines(UP);

~
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David Whalley

4 cache lines

16 bytes per line (4 instructions

instances foo (a) block 8a and (b) block 8b
7(1): always hit, spacial locality

8b(1): always hit, temporal locality

3(3): first miss

5(1) and 6(1): group first miss

3(1): conflict with 8b(2) conditionally executed

(notes)
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"I" = invalid
cache 0123012301 cache 1n. 123012301
program I I I I 012345 prog. In. ITI I IO012345
PASS 1
in(1)=[I T I I ] out(1)=[ I ITIO ]
in(8a)=[ I I IO ] out(8a)=[ I1I 4 5]
in(2)=[ I1I 4 5] out(2)=[ II 1 4 ]
in(3)=[ IT 1 4 1 out(3)=[ I 12 4 ]
in(4)=[ I 12 4 ] out(4)=[ I 12 4 ]
in(5)=[ I 12 4 ] out(5)=[ 1234 |
in(8b)=[ 1234 ] out(8b)=[ 2 3 4 5]
in(6)=[ I 12345] out(e)=[ 1234 5]
in(7)=[ 1 23 4 5] out(7)=[ 1234 5]
PASS 2
in(1)=[I T I I ] out(1)=[ I ITIO ]
in(8a)=[ I I I O ] out(8a)=[ I1I 4 5]
in(2)=[ 11 4 5] out(2)=[ IT 1 4 ]
in(3)=[ I1I 1 234 5] out(3)=[ I 1234
in(4)=[ I 1234 ] out(4)=[ I 1234 |
in(5)=[ I 1234 ] out(5)=[ 1234 |
in(8b)=[ 1234 ] out(8b)=[ 2 3 4 5]
in(6)=[ I 12345] out(e)=[ 1234 5]
\\\¥ in(7)=[ 1 23 4 5] out(7)=[ 1234 5]
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Code Instrumentation

merging states: local path state, shared path state (SPS)
states provide DFA to simulate conflicts locally

frequency counters
macros for calls
macros for paths
first miss table

calculate hits and misses from frequencies and states
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Measurements

e Mmodified back-end of opt. compiler VPO

e performed static cache simulation

e instrumented programs for instruction cache simulation

e direct-mapped cache simulated

e uniform instruction size of 4 bytes simulated

e cache line size was 4 words (16 bytes)

e results verified by comparison against trace-driven simulation

N /
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Performance Evaluation

e UPPASs and function instances vs. basic block partitioning
- static savings: 24% fewer measurement points
- dynamic savings: 31% fewer measurement points
e predictability of instructions
- static: 16% conflicts, other 84% predicatble
- dynamic: 26% conflicts, other 74% predictable
e efficient in-line code instrumentation accounts for remaining
savings
e trace-driven overhead 18x, our method only 2x

N /
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Static Measurements for 1kB Direct-Mapped Cache

Name Hit Miss | Firstmiss | Conflict | Measure Pts.
cachesim 70.83% 6.99% 0.70% | 21.48% 73.38%
cb 79.03% | 2.35% 0.00% | 18.63% 89.62%
compact 70.12% | 4.96% 0.12% | 24.80% 68.89%
copt 70.89% 7.41% 7.03% | 14.67% 84.19%
dhrystone || 70.03% | 10.71% 7.30% | 11.96% 81.61%
fft 74.07% | 4.85% 16.42% 4.66% 78.43%
genreport || 70.61% | 9.95% 5.61% | 13.84% 71.58%
mincost 72.79% 9.96% 1.14% | 16.11% 83.19%
sched 67.65% 5.06% 0.09% | 27.19% 73.16%
sdiff 68.94% | 12.06% 0.89% | 18.11% 72.13%
tsp 72.61% | 13.50% 3.88% | 10.01% 64.08%
whetstone || 75.70% | 12.84% 0.24% | 11.22% 70.49%
average 71.94% | 8.39% 3.62% | 16.06% 75.90%
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Dynamic Measurements for 1kB Direct-Mapped Cache

Name Measure Pts. | Hit Ratio | Trace | SSim | Conflict
cachesim 60.56% 77.19% 841 | 1.63 | 34.12%
cb 65.61% 93.84% | 33.56 | 3.61 | 30.67%
compact 56.56% 92.90% | 22.29 | 2.31 | 21.34%
copt 74.88% 93.64% | 16.43 | 1.58 | 30.00%
dhrystone 72.73% 83.73% | 19.89 | 1.31 | 16.01%
fft 74.08% 99.95% | 5.79 | 0.95 8.80%
genreport 81.31% 97.45% | 13.57 | 1.91 | 28.92%
mincost 76.27% 89.08% | 23.47 | 2.23 | 30.67%
sched 58.29% 96.41% | 25.90 3.62 | 42.01%
sdiff 77.82% 97.61% | 32.10 | 3.99 | 28.40%
tsp 58.67% 86.98% | 5.70 | 1.19 | 17.63%
whetstone 68.25% | 100.00% | 13.44 | 1.36 | 23.56%
average 68.75% 92.40% | 18.38 | 2.12 | 26.01%
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Average Simulation Overhead
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recursion
set-associative caches
data caching

integrate with timing tool to tightly predict WET /BET

other applications

Future Work
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Summary

e uses efficient on-the-fly analysis

e performs static instruction cache simulation

e instruments program

e provides accurate cache performance measurements

e instrumented program has only about 2x execution overhead
e faster than any other cache analysis method published so far
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