
FSU DEPARTMENT OF COMPUTER SCIENCE

Fast Instruction Cache Analysis via StaticCache SimulationFrank Mueller David WhalleyHumboldt-Universit�at zu Berlin Florida State UniversityFachbereich Informatik Department of Computer ScienceUnter den Linden 6 Tallahassee, FL 32304-401910099 Berlin (Germany) U.S.A.e-mail: whalley@cs.fsu.edu
Fast Instruction Cache Analysis via Static Cache Simulation SS'95 1

FSU DEPARTMENT OF COMPUTER SCIENCE

Overview

� caches bridge bottleneck between CPU and MM speed� traditional (trace-driven) methods slow (about 100x overhead)� new, e�cient method for instruction cache simulation:- provides faster instruction cache performance evaluation- determine number of hits and misses of a program execution- used to evaluate new cache designs- used to analyze new optimization techniques

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 2

FSU DEPARTMENT OF COMPUTER SCIENCE

Methods in Contrast� Goal: faster instruction cache performance evaluation� traditional approach: inline tracing- instrument program on complement of min. spanning tree- generate trace addresses- simulate caches based on trace� our approach: on-the-
y analysis- analyze program statically (static cache simulation)- instrument program on \unique paths"- do NOT generate trace addresses- simulate remaining cache behavior within program execution

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 3

FSU DEPARTMENT OF COMPUTER SCIENCE

Static Cache Simulation

� address of instructions known statically� predicts large portion of instruction cache references� uses iterative analysis of call graph and control
ow� categorizes each instruction� assumes:- direct-mapped caches- currently no recursion allowed

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 4

FSU DEPARTMENT OF COMPUTER SCIENCE

Overview of Static Cache Simulation

source

control
flow

simulator

files

cache
static

info

cache configuration

linker
program
execut.object

files
compiler

files
assembler

assembly

cache
analysis
library

routines

cache
state table
instrumen-

tation
macros

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 5

FSU DEPARTMENT OF COMPUTER SCIENCE

Instruction Categorization� transforms call graph into function-instance graph (FIG)� performs analysis on FIG and control-
ow graph� uses data-
ow analysis algorithms for prediction� abstract cache state: potentially cached program lines� reaching state: reachable program lines� categories based on these states:- always hit- always miss- �rst miss: miss on �rst reference, hit on consecutive ones- con
ict: either hit or miss (dynamic)

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 6

FSU DEPARTMENT OF COMPUTER SCIENCE

Algorithm to Calculate Cache Statesinput state(main):= all invalid lines;WHILE any change DOFOR each instance of a UP in the program DOinput state(UP):= �;FOR each immediate predecessor P of UP DOinput state(UP):= input state(UP) [output state(P);output state(UP):=[input state(UP) [prog lines(UP)] n conf lines(UP);

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 7

FSUDEPARTMENT OF COMPUTER SCIENCE

return

return
pgm

 line 5

478 3

pgm
 line 3

a-hit
a-hit

a-hit

a-hit
a-hit

a-hit
a-hit

a-hit
a-hit

a-hit

a-hit

a-m
iss

a-m
iss

foo()
(a)

(b)

pgm
 line 1

pgm
 line 2

pgm
 line 4

f-m
iss

m
ain()

1
a-m

iss

a-m
iss

conflict

a-hit

a-m
iss

2

call foo()
a-hit

pgm
 line 0

a-hit

a-hit

5
f-m

iss
a-hit

f-m
iss

6

call foo()

FastInstructionCacheAnalysisviaStaticCacheSimulationSS'958

Frank Mueller David Whalley SS'95

� 4 cache lines� 16 bytes per line (4 instructions)� instances foo (a) block 8a and (b) block 8b� 7(1): always hit, spacial locality� 8b(1): always hit, temporal locality� 3(3): �rst miss� 5(1) and 6(1): group �rst miss� 3(1): con
ict with 8b(2) conditionally executed
Fast Instruction Cache Analysis via Static Cache Simulation (notes) 8-1

FSU DEPARTMENT OF COMPUTER SCIENCE

Abstract Cache States for Example"I" = invalidcache 0 1 2 3 0 1 2 3 0 1 cache ln. 0 1 2 3 0 1 2 3 0 1program I I I I 0 1 2 3 4 5 prog. ln. I I I I 0 1 2 3 4 5PASS 1------in(1)=[I I I I] out(1)=[I I I 0]in(8a)=[I I I 0] out(8a)=[I I 4 5]in(2)=[I I 4 5] out(2)=[I I 1 4]in(3)=[I I 1 4] out(3)=[I 1 2 4]in(4)=[I 1 2 4] out(4)=[I 1 2 4]in(5)=[I 1 2 4] out(5)=[1 2 3 4]in(8b)=[1 2 3 4] out(8b)=[2 3 4 5]in(6)=[I 1 2 3 4 5] out(6)=[1 2 3 4 5]in(7)=[1 2 3 4 5] out(7)=[1 2 3 4 5]PASS 2------in(1)=[I I I I] out(1)=[I I I 0]in(8a)=[I I I 0] out(8a)=[I I 4 5]in(2)=[I I 4 5] out(2)=[I I 1 4]in(3)=[I I 1 2 3 4 5] out(3)=[I 1 2 3 4]in(4)=[I 1 2 3 4] out(4)=[I 1 2 3 4]in(5)=[I 1 2 3 4] out(5)=[1 2 3 4]in(8b)=[1 2 3 4] out(8b)=[2 3 4 5]in(6)=[I 1 2 3 4 5] out(6)=[1 2 3 4 5]in(7)=[1 2 3 4 5] out(7)=[1 2 3 4 5]Fast Instruction Cache Analysis via Static Cache Simulation SS'95 9

FSU DEPARTMENT OF COMPUTER SCIENCE

Code Instrumentation� merging states: local path state, shared path state (SPS)� states provide DFA to simulate con
icts locally� frequency counters� macros for calls� macros for paths� �rst miss table� calculate hits and misses from frequencies and states

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 10

FSUDEPARTMENT OF COMPUTER SCIENCE

S
P

S
 (path 1 and 2)

0 1 : hit a, m
iss b

1 1 : m
iss a, m

iss b
1 0 : m

iss a, hit b

0 0 : hit a, hit b
145

2

36

I-C
ache

cache line c

7

path 4

cache line d

s
p
s
&
=
~
0
x
3

path 1

pgm
 line a

pgm
 line b

pgm
 line x

pgm
 line y

path 3

path 2

s
p
s
|
=
0
x
3

f
r
e
q
[
s
p
s
]
+
+

f
r
e
q
[
s
p
s
]
+
+

s
p
s
|
=
0
x
2

s
p
s
&
=
~
0
x
1

FastInstructionCacheAnalysisviaStaticCacheSimulationSS'9511

FSU DEPARTMENT OF COMPUTER SCIENCE

Measurements

� modi�ed back-end of opt. compiler VPO� performed static cache simulation� instrumented programs for instruction cache simulation� direct-mapped cache simulated� uniform instruction size of 4 bytes simulated� cache line size was 4 words (16 bytes)� results veri�ed by comparison against trace-driven simulation

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 12

FSU DEPARTMENT OF COMPUTER SCIENCE

Performance Evaluation� UPPAs and function instances vs. basic block partitioning- static savings: 24% fewer measurement points- dynamic savings: 31% fewer measurement points� predictability of instructions- static: 16% con
icts, other 84% predicatble- dynamic: 26% con
icts, other 74% predictable� e�cient in-line code instrumentation accounts for remainingsavings� trace-driven overhead 18x, our method only 2xFast Instruction Cache Analysis via Static Cache Simulation SS'95 13

FSU DEPARTMENT OF COMPUTER SCIENCE

Static Measurements for 1kB Direct-Mapped CacheName Hit Miss Firstmiss Con
ict Measure Pts.cachesim 70.83% 6.99% 0.70% 21.48% 73.38%cb 79.03% 2.35% 0.00% 18.63% 89.62%compact 70.12% 4.96% 0.12% 24.80% 68.89%copt 70.89% 7.41% 7.03% 14.67% 84.19%dhrystone 70.03% 10.71% 7.30% 11.96% 81.61%�t 74.07% 4.85% 16.42% 4.66% 78.43%genreport 70.61% 9.95% 5.61% 13.84% 71.58%mincost 72.79% 9.96% 1.14% 16.11% 83.19%sched 67.65% 5.06% 0.09% 27.19% 73.16%sdi� 68.94% 12.06% 0.89% 18.11% 72.13%tsp 72.61% 13.50% 3.88% 10.01% 64.08%whetstone 75.70% 12.84% 0.24% 11.22% 70.49%average 71.94% 8.39% 3.62% 16.06% 75.90%

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 14

FSU DEPARTMENT OF COMPUTER SCIENCE

Dynamic Measurements for 1kB Direct-Mapped CacheName Measure Pts. Hit Ratio Trace SSim Con
ictcachesim 60.56% 77.19% 8.41 1.53 34.12%cb 65.61% 93.84% 33.56 3.51 30.67%compact 56.56% 92.90% 22.29 2.31 21.34%copt 74.88% 93.64% 16.43 1.58 30.00%dhrystone 72.73% 83.73% 19.89 1.31 16.01%�t 74.08% 99.95% 5.79 0.95 8.80%genreport 81.31% 97.45% 13.57 1.91 28.92%mincost 76.27% 89.08% 23.47 2.23 30.67%sched 58.29% 96.41% 25.90 3.62 42.01%sdi� 77.82% 97.61% 32.10 3.99 28.40%tsp 58.67% 86.98% 5.70 1.19 17.63%whetstone 68.25% 100.00% 13.44 1.36 23.56%average 68.75% 92.40% 18.38 2.12 26.01%

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 15

FSU DEPARTMENT OF COMPUTER SCIENCE

Average Simulation Overhead
0

5

10

15

20

25

64 128 256 512 1k 2k 4k 8k

E
x
e
c
u
t
i
o
n

O
v
e
r
h
e
a
d

Cache Size [Bytes]

SSsim
Trace

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 16

FSU DEPARTMENT OF COMPUTER SCIENCE

Future Work

� recursion� set-associative caches� data caching� integrate with timing tool to tightly predict WET/BET� other applications
Fast Instruction Cache Analysis via Static Cache Simulation SS'95 17

FSU DEPARTMENT OF COMPUTER SCIENCE

Summary

� uses e�cient on-the-
y analysis� performs static instruction cache simulation� instruments program� provides accurate cache performance measurements� instrumented program has only about 2x execution overhead� faster than any other cache analysis method published so far

Fast Instruction Cache Analysis via Static Cache Simulation SS'95 18

