FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Humboldt-Universitat zu Berlin

Fast Instruction Cache Analysis via Static

Cache Simulation

Frank Mueller

Fachbereich Informatik
Unter den Linden 6
10099 Berlin (Germany)

-

e-mail: whalley@cs.fsu.edu

David Whalley

Florida State University

~

Department of Computer Science

Tallahassee, FL 32304-4019
U.S.A.

Fast Instruction Cache Analysis via Static Cache Simulation

5595

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Overview

e caches bridge bottleneck between CPU and MM speed

e traditional (trace-driven) methods slow (about 100x overhead)
e new, efficient method for instruction cache simulation:
provides faster instruction cache performance evaluation
determine number of hits and misses of a program execution
used to evaluate new cache designs

used to analyze new optimization techniques

N /

Fast Instruction Cache Analysis via Static Cache Simulation 5595 2

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Methods in Contrast

e Goal: faster instruction cache performance evaluation
e traditional approach: inline tracing
- Instrument program on complement of min. spanning tree
- generate trace addresses
- simulate caches based on trace
e our approach: on-the-fly analysis
- analyze program statically (static cache simulation)
instrument program on “unique paths”
- do NO'T generate trace addresses
simulate remaining cache behavior within program execution

N /

Fast Instruction Cache Analysis via Static Cache Simulation 5595 3

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Static Cache Simulation

e address of instructions known statically
e predicts large portion of instruction cache references
e uses iterative analysis of call graph and control flow
e categorizes each instruction
e assumes:

- direct-mapped caches

- currently no recursion allowed

N /

Fast Instruction Cache Analysis via Static Cache Simulation 5595 4

FSU

DEPARTMENT OF COMPUTER SCIENCE

source
files

-

Overview of Static Cache Simulation

[——L

assembly
files

assembler

cache configuration

object
files

execut.
program

~

—
: cache cache
control static state table analysis

flow cache . :

_ _ instrumen- library

info simulator tation routines

- macros

Fast Instruction Cache Analysis via Static Cache Simulation 5595 5

FSU DEPARTMENT OF COMPUTER SCIENCE

-

Instruction Categorization

transforms call graph into function-instance graph (FIG)
performs analysis on FIG and control-flow graph

uses data-flow analysis algorithms for prediction

abstract cache state: potentially cached program lines
reaching state: reachable program lines

categories based on these states:

- always hit

- always miss

- first miss: miss on first reference, hit on consecutive ones
conflict: either hit or miss (dynamic)

~

/

Fast Instruction Cache Analysis via Static Cache Simulation 5595 6

FSU DEPARTMENT OF COMPUTER SCIENCE

-

-

Algorithm to Calculate Cache States

input_state(main):= all invalid lines;
WHILE any change DO
FOR each instance of a UP in the program DO
input_state(UP):= ¢;
FOR each immediate predecessor P of UP DO
input_state(UP):= input_state(UP) U output_state(P);
output_state(UP):=
[input_state(UP) U prog_lines(UP)] \ conf_lines(UP);

~

/

Fast Instruction Cache Analysis via Static Cache Simulation 5595

uolle|nWIS Yde7) 2I1e1G BIA SISAjeuy SydeY) uol1dniisu| 1se

46.SS

4 N

main() 1 a-miss

pgmline0 e

call foo() | a-hit

o f-miss

-----.ﬁ.%.o----------.m-%._m@._m---

mline5 = = | amiss a-miss
P return | a-hit a-hit

. /

NS4

40ON3I0S d391NdNOD 40 LNIN1dVvd3d

Frank Mueller

Fast Instruction Cache Analysis via Static Cache Simulation

David Whalley

4 cache lines

16 bytes per line (4 instructions

instances foo (a) block 8a and (b) block 8b
7(1): always hit, spacial locality

8b(1): always hit, temporal locality

3(3): first miss

5(1) and 6(1): group first miss

3(1): conflict with 8b(2) conditionally executed

(notes)

5595

8-1

FSU

DEPARTMENT OF COMPUTER SCIENCE

Abstract Cache States for Example

~

"I" = invalid
cache 0123012301 cache 1n. 123012301
program I I I I 012345 prog. In. ITI I IO012345
PASS 1
in(1)=[I T I I] out(1)=[I ITIO]
in(8a)=[I I IO] out(8a)=[I1I 4 5]
in(2)=[I1I 4 5] out(2)=[II 1 4]
in(3)=[IT 1 4 1 out(3)=[I 12 4]
in(4)=[I 12 4] out(4)=[I 12 4]
in(5)=[I 12 4] out(5)=[1234 |
in(8b)=[1234] out(8b)=[2 3 4 5]
in(6)=[I 12345] out(e)=[1234 5]
in(7)=[1 23 4 5] out(7)=[1234 5]
PASS 2
in(1)=[I T I I] out(1)=[I ITIO]
in(8a)=[I I I O] out(8a)=[I1I 4 5]
in(2)=[11 4 5] out(2)=[IT 1 4]
in(3)=[I1I 1 234 5] out(3)=[I 1234
in(4)=[I 1234] out(4)=[I 1234 |
in(5)=[I 1234] out(5)=[1234 |
in(8b)=[1234] out(8b)=[2 3 4 5]
in(6)=[I 12345] out(e)=[1234 5]
\\\¥ in(7)=[1 23 4 5] out(7)=[1234 5]
Fast Instruction Cache Analysis via Static Cache Simulation 5595 9

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Code Instrumentation

merging states: local path state, shared path state (SPS)
states provide DFA to simulate conflicts locally

frequency counters
macros for calls
macros for paths
first miss table

calculate hits and misses from frequencies and states

~

Fast Instruction Cache Analysis via Static Cache Simulation

5595

10

uolle|nWIS Yde7) 2I1e1G BIA SISAjeuy SydeY) uol1dniisu| 1se

46.SS

11

/) sps| =0x3

ﬁqmnﬁmcm_++

SPS (path 1 and 2)
00: hit ahit b
O01: hit a missb

10: missa hit b
11: missa missb

T I T Ygm linea
R N N N gniline b
path 1\ |-Cache
freq[sps] ++ 4 .
sps|=0x2 || " |-/ o\ o
«| cachelinec
cachelined
;2] patha
path 3 [N sps&=~0x3
7mvm®wzoxp RN

|||||||||||||||||

...... T 6 [peidinex

- — P

||||||||||||

pgm liney

NS4

40ON3I0S d391NdNOD 40 LNIN1dVvd3d

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Measurements

e Mmodified back-end of opt. compiler VPO

e performed static cache simulation

e instrumented programs for instruction cache simulation

e direct-mapped cache simulated

e uniform instruction size of 4 bytes simulated

e cache line size was 4 words (16 bytes)

e results verified by comparison against trace-driven simulation

N /

Fast Instruction Cache Analysis via Static Cache Simulation 5595 12

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Performance Evaluation

e UPPASs and function instances vs. basic block partitioning
- static savings: 24% fewer measurement points
- dynamic savings: 31% fewer measurement points
e predictability of instructions
- static: 16% conflicts, other 84% predicatble
- dynamic: 26% conflicts, other 74% predictable
e efficient in-line code instrumentation accounts for remaining
savings
e trace-driven overhead 18x, our method only 2x

N /

Fast Instruction Cache Analysis via Static Cache Simulation 5595 13

FSU

DEPARTMENT OF COMPUTER SCIENCE

Static Measurements for 1kB Direct-Mapped Cache

Name Hit Miss | Firstmiss | Conflict | Measure Pts.
cachesim 70.83% 6.99% 0.70% | 21.48% 73.38%
cb 79.03% | 2.35% 0.00% | 18.63% 89.62%
compact 70.12% | 4.96% 0.12% | 24.80% 68.89%
copt 70.89% 7.41% 7.03% | 14.67% 84.19%
dhrystone || 70.03% | 10.71% 7.30% | 11.96% 81.61%
fft 74.07% | 4.85% 16.42% 4.66% 78.43%
genreport || 70.61% | 9.95% 5.61% | 13.84% 71.58%
mincost 72.79% 9.96% 1.14% | 16.11% 83.19%
sched 67.65% 5.06% 0.09% | 27.19% 73.16%
sdiff 68.94% | 12.06% 0.89% | 18.11% 72.13%
tsp 72.61% | 13.50% 3.88% | 10.01% 64.08%
whetstone || 75.70% | 12.84% 0.24% | 11.22% 70.49%
average 71.94% | 8.39% 3.62% | 16.06% 75.90%

Fast Instruction Cache Analysis via Static Cache Simulation

5595

14

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

-

Dynamic Measurements for 1kB Direct-Mapped Cache

Name Measure Pts. | Hit Ratio | Trace | SSim | Conflict
cachesim 60.56% 77.19% 841 | 1.63 | 34.12%
cb 65.61% 93.84% | 33.56 | 3.61 | 30.67%
compact 56.56% 92.90% | 22.29 | 2.31 | 21.34%
copt 74.88% 93.64% | 16.43 | 1.58 | 30.00%
dhrystone 72.73% 83.73% | 19.89 | 1.31 | 16.01%
fft 74.08% 99.95% | 5.79 | 0.95 8.80%
genreport 81.31% 97.45% | 13.57 | 1.91 | 28.92%
mincost 76.27% 89.08% | 23.47 | 2.23 | 30.67%
sched 58.29% 96.41% | 25.90 3.62 | 42.01%
sdiff 77.82% 97.61% | 32.10 | 3.99 | 28.40%
tsp 58.67% 86.98% | 5.70 | 1.19 | 17.63%
whetstone 68.25% | 100.00% | 13.44 | 1.36 | 23.56%
average 68.75% 92.40% | 18.38 | 2.12 | 26.01%

Fast Instruction Cache Analysis via Static Cache Simulation

5595

15

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

Average Simulation Overhead

25 . |
@ R SSsim ——
g 20 ¢ *““‘*~——+\\\+\;Tr ace -+~ |
) e
5 15 B o
c
2 10 |
5
o 5t
L>Ij M
0

64 128 256 512 1k 2k 4k 8k

Cache Si ze [Byt es]

~

Fast Instruction Cache Analysis via Static Cache Simulation

5595

16

FSU

DEPARTMENT OF COMPUTER SCIENCE

-

recursion
set-associative caches
data caching

integrate with timing tool to tightly predict WET /BET

other applications

Future Work

~

Fast Instruction Cache Analysis via Static Cache Simulation

5595

17

FSU DEPARTMENT OF COMPUTER SCIENCE

4 N

Summary

e uses efficient on-the-fly analysis

e performs static instruction cache simulation

e instruments program

e provides accurate cache performance measurements

e instrumented program has only about 2x execution overhead
e faster than any other cache analysis method published so far

N /

Fast Instruction Cache Analysis via Static Cache Simulation 5595 18

