
Fast Instruction Cache Analysis via Static Cache Simulation �Frank Mueller and David B. WhalleyDept. of Computer Science, Florida State University, Tallahassee, FL 32306-4019AbstractThis paper introduces a new method for instructioncache analysis that outperforms conventional trace-driven methods. The new method, static cache sim-ulation, analyzes a program for a given cache con-�guration and determines prior to execution time ifan instruction reference will always result in a cachehit or miss. At run time, counters are incrementedto provide the execution frequency of portions of code.In addition, the cache behavior is simulated for refer-ences that could not be predicted statically. The dy-namic simulation employs a novel view of the cache byupdating local state information associated with codeportions. The total number of cache hits and missescan be inferred from the frequency counters at programexit. Measurements taken from a variety of programsshow that this new method speeds up cache analysisover conventional trace-driven methods by almost anorder of a magnitude. Thus, cache analysis with staticcache simulation makes it possible to analyze the in-struction cache behavior of longer and more realisticprogram executions.1 IntroductionCache memories have become a major factor tobridge the bottleneck between the relatively slow ac-cess time to main memory and the faster clock rate oftoday's processors. The simulation of cache memoriesis common practice to determine the best con�gura-tion of caches during the design of computer archi-tectures. It has also been used to evaluate compileroptimizations with respect to cache performance.Unfortunately, the cache analysis of a program cansigni�cantly increase the program's execution time, of-ten by two orders of a magnitude. Thus, cache sim-ulation has been limited to the analysis of programswith a small or moderate execution time and still re-quires considerable experimentation time before yield-ing results. In reality, programs often execute for along time, but cache simulation simply becomes in-feasible with conventional methods. The large over-head of cache simulation is imposed by the necessity�E-mail: whalley@cs.fsu.edu, phone: (904) 644-3506. Sup-ported in part by ONR contract # N00014-94-1-0006.

of tracking the execution order of instructions.On the other hand, instruction frequency measure-ments can be obtained by inserting instructions intoa program that increment frequency counters. Thecounters are typically associated with a basic blockand are incremented each time the basic block exe-cutes. The overhead induced by frequency measure-ments is less than a factor of two in execution time.This much lower overhead can be attributed to the factthat the execution order of instructions is irrelevant.The method for instruction cache analysis discussedin this paper makes extensive use of frequency counterswhen instruction references are statically determinedto be always cache hits or always cache misses. For theremaining instruction references, state information isassociated with code portions and is updated dynam-ically. This state information represents a localizedview of the cache and is used to determine whetherthe remaining program lines of a code portion are orare not cached. These localized states are in contrastto a comprehensive global view of the cache state asemployed in conventional trace-driven simulation. Insummary, the cheaper method of frequency counters isused where the order of execution is irrelevant and theremaining references are determined by local states,which also impose less execution overhead than oneglobal cache state.Figure 1 depicts an overview of the tools and in-terfaces involved in instruction cache analysis usingstatic cache simulation. The set of source �les of aprogram are translated by a compiler. The compilergenerates assembly code with macro entries for instru-mentation and passes information about the controlow of each source �le to the static cache simulator.
source

control
flow

simulator

files

cache
static

info

cache configuration

linker
program
execut.object

files
compiler

files
assembler

assembly

cache
analysis
library

routines

cache
state table
instrumen-

tation
macrosFigure 1: Overview of Static Cache SimulationIn Proceedings of the 28th Annual Simulation Symposium, April 1995 1

The static cache simulator performs the task of deter-mining which instruction references can be predictedprior to execution time. It constructs the call graph ofthe program and the control-ow graph of each func-tion based on the information provided by the com-piler. The cache behavior is then simulated for a givencache con�guration. Furthermore, macro code for in-strumenting the executable is generated together withtables to store cache information at run time. Thisoutput of the simulator is passed to the assembler,which translates the code generated by the compilerinto instrumented object code. The linker combinesthese object �les into an executable program and linksin library routines, which produce the �nal report ofthe cache analysis at run time1.The approach taken by static cache simulation isquite di�erent from traditional methods. The simula-tor attempts to determine statically whether a givenprogram line will result in a cache hit or miss duringprogram execution. This is achieved by the analysisof both the call graph of the program and control-owgraph for each function. A set of instructions exe-cuted in sequence is called a unique path (UP) if it canbe distinguished from all other paths by at least one(unique) control-ow transition. To better predict thecache behavior, functions are further distinguished byfunction instances that depend on the call site and callsequence. If the simulator cannot determine staticallyif a line results in a hit or miss, then the cache behav-ior has to be determined at run time by updating localpath states. The static analysis provides the informa-tion required to instrument the generated code withshort instruction sequences. These sequences countthe frequency of executions for a state of a path andupdate the states where necessary. The total hits andmisses can be inferred from the state-dependent fre-quency counts after running the program.2 Related WorkEvaluating cache performance has long been rec-ognized as a challenging task to be performed in ane�cient manner. Traces of the actual addresses ref-erenced during the execution of programs have to beused to perform a realistic evaluation. The problemis that a realistic trace typically consists of millionsof references. Evaluation of these traces can requireexcessive amounts of space and time when using sim-ple approaches. For instance, a traditional approach isto generate the trace via trapping or simulation, write1When the cache con�guration changes, no recompilation isneeded; only the static cache simulator, assembler, and linkerhave to be reinvoked.

each generated address in the trace on disk, and ana-lyze the trace via a separate program that reads thetrace from disk and simulates the cache. Such an ap-proach can easily slow the execution by a factor of a1000 or more [14, 17, 9].A technique called inline tracing can be used to gen-erate the trace of addresses with much less overheadthan trapping or simulation. Measurement instruc-tions are inserted in the program to record the ad-dresses that are referenced during the execution. Borg,Kessler, and Wall [5] modi�ed programs at link time towrite addresses to a trace bu�er, and these addresseswere analyzed by a separate higher priority process.The time required to generate the trace of addresseswas reduced by reserving �ve of the general purposeregisters to avoid memory references in the trace gen-eration code. Overhead rates of 8x to 12x normal ex-ecution time were reported for the trace generation.Analysis of the trace was stated to require at least 10xthe overhead of the generation of the trace (or about100x slower than normal execution time).Eggers et. al. [6] also used the technique of in-line tracing to generate a trace of addresses in a tracebu�er, which was copied to disk by a separate process.They used several strategies for minimizing the over-head of generating the trace. First, they produced asubset of the addresses from which the other addressescould be inferred during a postprocessing pass. Forinstance, they only stored the �rst address in a se-quence of contiguous basic blocks with a single entrypoint and multiple exit points. Rather than reserv-ing a set of registers to be used for the trace genera-tion code, they identi�ed which registers were availableand thus avoided executing many save and restore in-structions. The trace generation overhead was accom-plished in less than 3x the normal execution time. Inaddition, writing the bu�ers to disk required a fac-tor of 10x normal execution time. The postprocessingpass, which generates the complete trace from the sub-set of addresses stored, was much slower (about 3,000addresses/sec). No information was given on the over-head required to analyze the cache performance.Ball and Larus [3, 10] also reduced the overhead ofthe trace generation by storing a portion of the tracefromwhich the complete trace can be generated. Theyoptimized the placement of the instrumentation codeto produce the reduced trace with respect to a weight-ing of the control-ow graph. They showed that theplacements are optimal for a large class of graphs. Theoverhead for the trace generation was less than a fac-tor of 5. However, the postprocessing pass generatinga full trace required 19-60x the normal execution time.Whalley [15, 16] evaluated a set of techniques toIn Proceedings of the 28th Annual Simulation Symposium, April 1995 2

reduce the time required to evaluate instruction cacheperformance. He linked a cache simulator to the pro-grams instrumented with measurement code to eval-uate the instruction cache performance during theprogram's execution. The techniques he evaluatedavoided making calls to the cache simulator when itcould be determined in a less expensive manner thatthe reference was a hit. The overhead time for thefaster techniques was highly dependent upon the hitratio of the programs. He reported 15x normal execu-tion time for average hit ratios of 96% and 2x normalexecution time for hit ratios exceeding 99%. Thesefaster techniques also required recompilation of theprogram when the cache con�guration was altered.3 Compiler InteractionTo perform instruction cache analysis via staticcache simulation on a program with our tools, the pro-gram is �rst compiled by a compiler speci�cally mod-i�ed for this task. During the compilation the controlow of the functions of a program is partitioned intounique paths (UPs). Informally, a UP is a set of basicblocks [1] (vertices) connected by control-ow transi-tions (edges) that contain at least one unique transi-tion, i.e. a transition that does not occur in any otherUP. In this study, UPs were restricted to not cross loopboundaries, function boundaries, or calls. The notionof UPs allows one to identify and reduce the locationsfor code instrumentation (rather than inserting mea-surement code in every basic block). The resultingdirected graph of UPs represents the control ow ofthe program in such a form that it can be easily pro-cessed later by the static cache simulator. A formalde�nition of UPs is given in [11, 12].A path macro invocation is generated on a uniquetransition of each UP in the assembly code. The corre-sponding body of the macro, which provides the mea-surement code for the UP, is de�ned by the static cachesimulator. Similarly, a call macro invocation is gener-ated for each call to a function. The parameters forthe call and path macros are a register containing thebase address of the counter table for the current func-tion instance and two other registers that the compilerdetermines to be unused. The compiler generates spillcode to free registers if none are available.4 Static Cache SimulationThe method of static cache simulation can be usedto statically predict the behavior of a large portion ofthe instruction cache references for a given programwith a speci�c cache con�guration. Unlike many datareferences, the address of each instruction is known

statically. This is certainly true for code which is phys-ically locked into memory. It also holds for virtualmemory mapping, if and only if the page size is aninteger multiple of the instruction cache size, which istypical for many systems [7]. In this case, the reloca-tion of a virtual page would not a�ect the mapping ofprogram lines into cache lines.By analyzing the call graph and the control owof each function, static cache simulation attempts todetermine if each instruction reference will result ina cache hit or miss during program execution. Sinceit is not always possible to determine if a referencewill be a hit or miss, instructions are classi�ed to bein the categories of always-hit, always-miss, �rst-miss,or conict. If an instruction is always (never) in cache,then it is denoted as an always-hit (always-miss). If anaccess to an instruction results in a miss on the �rstaccess and in hits for any subsequent accesses, then itis classi�ed as a �rst-miss. If an access to a programline results in either hits or misses depending on theow of control, then it is referred to as a conict.4.1 DecompositionTo statically determine a program's cache behavioras accurately as possible, the program is decomposedinto smaller components. A program may be com-posed of a number of functions. The possible sequenceof calls between these functions is depicted in a callgraph. The control ow of each function can be rep-resented by a control-ow graph where nodes are UPsand edges denote legal transitions of the control owbetween UPs. The static simulator obtains this infor-mation from the compiler.Functions are further distinguished by function in-stances. An instance depends on the call sequence,that is, it depends on the immediate call site withinits caller as well as the caller's call site, etc. The in-stance i of a function corresponds to the ith occurrenceof the function within a depth-�rst traversal of the callgraph. Thus, the directed acyclic call graph is trans-formed into a tree of function instances.4.2 Instruction CategorizationStatic cache simulation calculates the abstractcache states associated with the UPs. Such an ab-stract cache state speci�es the possible cache contentsbefore the UP is executed. First, formal de�nitionsare provided. Then, the caching behavior of each in-struction is categorized based on these de�nitions. Anexample is discussed in section 4.3 (see [11] for moredetails).In Proceedings of the 28th Annual Simulation Symposium, April 1995 3

De�nition 1 A program line can potentially becached if there exists a sequence of transitions inthe combined control-ow graphs and call graph (withfunction instances) such that the program line iscached when the UP is entered.De�nition 2 An abstract cache state of a UP ina function instance is the subset of all program linesthat can potentially be cached prior to the execution ofthe UP for that function instance.The notion of an abstract cache state is a compromisebetween the choice of an exhaustive set of all cachestates that may occur at execution time and the expo-nential growth of such an exhaustive set during sim-ulation. The next de�nition introduces the reachingstate, which is used for the categorization of instruc-tions following thereafter.De�nition 3 A reaching state of a UP in a func-tion instance is the subset of all program lines thatcan be reached through control-ow transitions fromthe UP of the function instance.For a given function instance, each instruction iwithin a UP is categorized based on its position in thecorresponding program line l = i0::in�1, on the corre-sponding abstract cache state s, and on the reachingstate r. The program line l maps into cache line c,denoted by l ! c. The UP containing line l is referredto simply as UP .always-miss: A cache miss is predicted if� i = i0: instruction i is the �rst reference to pro-gram line l in UP and� l 62 s: l is not in the abstract cache state.always-hit: A cache hit is predicted if� i 2 fi1::in�1g: instruction i is a consecutive ref-erence to program line l in UP . Or all of thefollowing conditions hold:� i = i0: instruction i is the �rst reference to pro-gram line l in UP ,� l 2 s: l is in the abstract cache state, and� 69k 6=l k 2 s ^ k! c:no other line k (which maps into the same cacheline as l) is in the abstract cache state.�rst-miss: The �rst reference to an instruction willresult in a cache miss and all subsequent references incache hits if� i = i0: instruction i is the �rst reference to pro-gram line l in UP ,� l 2 s: l is in the abstract cache state,

� 9k!c;k 6=l k 2 s:another line k (which maps into the same cacheline as l) is also in the abstract cache state,� 8k!c;k 6=l k 2 s) k 62 r:if any line k (which maps into the same cache lineas l) is also in the abstract cache state, then theline is not in the reaching state of UP , and� 8i2fi1::in�1gcategory(i) 2 falways-hit; first-missg:all other instructions within the same programline are always-hits or �rst-misses.conict: All other instructions are conicts.4.3 ImplementationThe iterative algorithm in Figure 2 was used to cal-culate the abstract cache states. Each UP has an inputand output state of program lines that can potentiallybe in cache at that point. Initially, the input states ofthe top paths (entry paths of the main function) areset to all invalid lines. The input state of a path is cal-culated by taking the union of the output states of itsimmediate predecessors. The output state of a path iscalculated by taking the union of its input state andthe program lines accessed by the path and subtract-ing the program lines with which the path conicts.This calculation includes the interprocedural propaga-tion of abstract cache states (not explicitly shown inthe algorithm): At a path p with a call to functionf as the last instruction, the output state of the UPis propagated to the input states of the entry pathsof the corresponding function instance f(i). Similarly,the union of the output states of f(i)'s exit paths pro-vides the input state for p's successor paths.Input: Function-Instance Graph of the program andUPPA for each function.Output: Abstract Cache State for each UP.Algorithm: Let conf lines(UP) be the set of programlines (excl. the program lines of UP) mapping into thesame cache line as any program line within the UP.input state(main):= all invalid lines;WHILE any change DOFOR each instance of a UP in the program DOinput state(UP):= �;FOR each immediate predecessor P of UP DOinput state(UP):=input state(UP) [output state(P);output state(UP):= [input state(UP) [prog lines(UP)] n conf lines(UP);Figure 2: Algorithm to Calculate Cache StatesIn Proceedings of the 28th Annual Simulation Symposium, April 1995 4

return

returnprogram line 5

4

7

8

3

program line 3

a-hit
a-hit

a-hit

a-hit
a-hit

a-hit a-hit

a-hit
a-hit

a-hit

a-hit

a-miss
a-missfoo()
(a) (b)

program line 1

program line 2

program line 4

f-miss

main() 1 a-miss

a-miss

conflict

a-hit

a-miss

2

call foo() a-hit

program line 0

a-hit

a-hit

5 f-miss
a-hit

f-miss6

call foo()

"I" = invalidcache 0 1 2 3 0 1 2 3 0 1 cache ln. 0 1 2 3 0 1 2 3 0 1program I I I I 0 1 2 3 4 5 prog. ln. I I I I 0 1 2 3 4 5PASS 1------in(1)=[I I I I] out(1)=[I I I 0]in(8a)=[I I I 0] out(8a)=[I I 4 5]in(2)=[I I 4 5] out(2)=[I I 1 4]in(3)=[I I 1 4] out(3)=[I 1 2 4]in(4)=[I 1 2 4] out(4)=[I 1 2 4]in(5)=[I 1 2 4] out(5)=[1 2 3 4]in(8b)=[1 2 3 4] out(8b)=[2 3 4 5]in(6)=[I 1 2 3 4 5] out(6)=[1 2 3 4 5]in(7)=[1 2 3 4 5] out(7)=[1 2 3 4 5]PASS 2------in(1)=[I I I I] out(1)=[I I I 0]in(8a)=[I I I 0] out(8a)=[I I 4 5]in(2)=[I I 4 5] out(2)=[I I 1 4]in(3)=[I I 1 2 3 4 5] out(3)=[I 1 2 3 4]in(4)=[I 1 2 3 4] out(4)=[I 1 2 3 4]in(5)=[I 1 2 3 4] out(5)=[1 2 3 4]in(8b)=[1 2 3 4] out(8b)=[2 3 4 5]in(6)=[I 1 2 3 4 5] out(6)=[1 2 3 4 5]in(7)=[1 2 3 4 5] out(7)=[1 2 3 4 5]Figure 3: Example with Flow GraphThe algorithm is a variation of an iterative data-ow analysis algorithm commonly used in optimizingcompilers. Thus, the time overhead of the algorithm iscomparable to that of data-ow analysis and the spaceoverhead is O(pl � UPs � fi), where pl is the numberof program lines, UPs is the number of paths, andfi the number of function instances. The correctnessof the algorithm for data-ow analysis is discussed in[1]. The calculation can be performed for an arbitrarycontrol-ow graph, even if it is irreducible. In addition,the order of processing basic blocks is irrelevant forthe correctness of the algorithm. The reaching statescan be calculated using the same base algorithm withinput state(main) = conf lines(UP) = �.Figure 3 depicts the calculation of input and out-put states. The paths are restricted to basic blocksto simplify the example. In the example, there are 4cache lines and the line size is 16 bytes (4 instructions).Thus, program line 0 and 4 map into cache line 0, pro-gram line 1 and 5 map into cache line 1, program line2 maps into cache line 2, and program line 3 maps intocache line 3. The immediate successor of a block witha call is the �rst block in that instance of the calledfunction. Block 8a corresponds to the �rst instance offoo() called from block 1 and block 8b corresponds tothe second instance of foo() called from block 5. Twopasses are required to calculate the input and outputstates of the blocks, given that the blocks are processedin the order shown in Figure 3. Only the states of some

blocks inside the loop change on the second pass. Pass3 results in no more changes.After determining the input states of all blocks,each instruction is categorized based on its abstractcache state (derived from the input state) and thereaching state.2 By inspecting the input states of eachblock, one can make some observations that may nothave been detected by a naive inspection of only physi-cally contiguous sequences of references. For instance,the static simulation determined that the �rst instruc-tion in block 7 will always be in cache (always hit) dueto spatial locality. This can be determined by observ-ing that line 4 is in in(7) and no conicting programline is in in(7). It was also determined that the �rstinstruction in basic block 8b will always be in cache(always hit) due to temporal locality. The static sim-ulation determined that the last instruction in block 3will not be in cache on its �rst reference, but will al-ways be in cache on subsequent references (�rst miss).This is indicated by in(3), which includes programline 2 but also a conicting program line \invalid" forcache line 3. Yet, the conicting program line cannotbe reached. This is also true for the �rst instructionsof block 5 and 6, though a miss will only occur on the�rst reference of either one of the instructions. This istermed a group �rst miss. Finally, the �rst instructionin block 3 is classi�ed as a conict since it could either2The reaching state for all paths contains line 1{5, except forreach(7) which is empty.In Proceedings of the 28th Annual Simulation Symposium, April 1995 5

be a hit or a miss (due to the conditional call to foo).This is indicated by in(3), which includes programline 1 and a conicting program line 5 that can still bereached.The current implementation of the static cache sim-ulator imposes some restrictions. First, only direct-mapped cache con�gurations are supported. Recentresults have shown that direct-mapped caches have afaster access time for hits, which outweighs the ben-e�t of a higher hit ratio in set-associative caches forlarge cache sizes [8]. Second, context switches can-not be simulated using this method. Third, recursiveprograms currently are not allowed since cycles in thecall graph would complicate the generation of uniquefunction instances. Finally, indirect calls are not han-dled since the static cache simulator must be able togenerate an explicit call graph.5 Code InstrumentationAfter decomposing the program into function in-stances and UPs, there still remain lines that are an-alyzed to be in conict with another line. It is in-evitable to maintain information at run time to deter-mine which program line is currently cached and toupdate this information dynamically. This is achievedby maintaining a path state at execution time. A pathstate only reects the conicts local to the current path(in contrast to a cache state that comprises the globalstate of a cache memory). Consider the example inFigure 4, which will be discussed step-by-step in thefollowing. Path 1 contains program line a which con-icts with program line x since both map into cacheline c and line x can be reached from path 1. Thus,the shared path state (SPS) for path 1 keeps trackof whether or not program line a is in cache. Moredetailed examples are given in [11].Naively, a path state may be kept on the most spe-cialized level (for each function instance and path).But this would require a considerable amount of inter-action between UPs. In the worst case, the executionof a UP of some function instance would not only haveto update its path state but every other path stateconicting with a line of this path and any functioninstance. Cache state information is therefore mergedafter simulation in two stages to comprise path states.First, the conicts of the cache states of a UP of allinstances of a function are merged into one local pathstate (LPS). Second, local path states of neighboringUPs that share at least one instruction are merged intoone shared path state (SPS). The latter is illustratedin Figure 4. The LPS of path 1 contains the conict-ing program line a while the LPS of path 2 contains

SPS (path 1 and 2)

0 1 : hit a, miss b

1 1 : miss a, miss b
1 0 : miss a, hit b

0 0 : hit a, hit b1

4

5

2

3

6

I-Cache

cache line c

7

path 4

cache line d

sps&=~0x3

path 1

pgm line a
pgm line b

pgm line x
pgm line y

path 3

path 2

sps|=0x3
freq[sps]++

freq[sps]++
sps|=0x2

sps&=~0x1Figure 4: Frequency Counters Indexed by the SPSboth conicting program lines a and b. The two pathsoverlap in block 1 and 4. Thus, the SPS for paths 1and 2 contains the program lines a and b. LPSs allowuniform instrumentation of code rather than distin-guishing instances dynamically at every instrumenta-tion point or replicating code for each instance. Bothmerging operations greatly reduce the overhead of dy-namic simulation for conicts. While a SPS only needsto maintain one state to keep track of conicts dynam-ically, the state may comprise a wider range of valuesto combine all possible conicts of overlapping paths.Generated code is instrumented by inserting in-structions at the unique transition of each UP to keeptrack of the SPSs and record the frequency of executedinstructions for this path and state. At the exit pointsof the program, an epilogue is inserted to call a libraryroutine, which calculates the total hits and misses fromthe gathered state-dependent frequencies.The code emitted by the compiler back end includesmacro calls for each UP and for each call site. Thesimulator generates the corresponding macros bodies,produces tables to store SPSs and frequency countersat run time, and provides other constant data struc-tures for the �nal calculation of hits and misses.5.1 Updating Shared Path StatesFor each SPS, a state �eld is generated in the statetable. These states are modi�ed at run time by themacro code of UPs. The value of such a state denoteswhich lines are cached out of a set of conicting lines.The initial value denotes the set of lines cached prior toIn Proceedings of the 28th Annual Simulation Symposium, April 1995 6

the �rst execution of any corresponding UP. The valuecan be used as an index into the frequency counterarray of the current UP. Thus, state-dependent fre-quency counting can be performed by using the SPSas an index into the counter array and incrementingthe corresponding counter. Furthermore, if an SPS isconstant at run time (no conicting lines), then thestate �eld is omitted from the state table.Consider Figure 4 again. The SPS of paths 1 and 2is used to simulate the hits and misses of program linesa and b. This SPS has two bits (due to two conictingprogram lines) to hold the possible encoding of cachedprogram lines of the SPS (as shown in the �gure). Thestate is updated on the execution of path 1 to includeprogram line a. The execution of path 2 includes botha and b in the state, the execution of path 3 excludesb, and the execution of path 4 excludes both a and b.Simple bit manipulations su�ce for these updates, asindicted by the pseudo code in the �gure. The separatecounter array for path 2 is incremented in the samemanner. The SPSs for paths 3 and 4 are not shown tosimplify the example.5.2 Frequency CountersFor each UP of every function instance, an arrayof frequency counters is used to keep track of the ex-ecution frequency of the UP. The size of the array isdetermined by the number of permutations of conict-ing lines for a SPS. Since the size is growing exponen-tially with the number of conicting lines, an alternatecounter array with a constant size of two entries is pro-vided for large numbers of conicting lines in the SPS.There is a time/space trade-o� between the two alter-natives (discussed in the context of the path macros).Figure 4 shows the frequency counter, indexed bythe SPS of path 1 and 2, which is incremented. Path 2has an array of four frequency counters, correspondingto each possible value of the SPS. An increment of the�rst counter element corresponds to hits on line a andb, an increment of the second counter element indicatesa hit on a and a miss on b, etc. The frequency counterincrements for paths 3 and 4 are not shown.5.3 Macros for CallsMacro code is generated at call sites to pass thebase address of the counter table for the callee's func-tion instance as an additional parameter. The functioninstance can thereby be identi�ed by path macros.5.4 Macros for PathsThe code emitted for path macros increments thefrequency counter indexed by the SPS, updates the

SPS to reect that the lines of the current path arenow cached, and updates any other SPS of conict-ing paths. If a di�erent path shares a line (but notthe SPS) with the current path, the line is marked ascached in the SPS of the conicting path. Conversely,if a di�erent path conicts with the current SPS in aline, the line is marked as uncached in the SPS of theconicting path, as discussed before in Figure 4.Alternately, code is emitted to increment a generalfrequency counter for large SPSs. Since no counter ar-ray is generated for large SPSs, indexing into an arraybecomes obsolete. Rather, the SPS is �rst combinedwith an AND mask to single out the conict lines ofonly the current path. Then, the number of remain-ing on-bits is counted and added to a second counter,which accumulates references to conicting lines re-sulting in misses. This alternate method requires lesscounter space but increases execution time by deter-mining the number of set bits in a loop3. In general,alternate methods of code instrumentation optimizespecial cases to reduce the instrumentation overhead.5.5 First Miss TableIf a path of a function instance contains a line thatis classi�ed as a �rst miss, an entry for this line iscreated in the �rst miss table. If another path sharesthe same line and also counts this line as a �rst miss,this path's instance is also included in the same tableentry. This table is used to adjust the total number ofhits and misses as explained in the next section.6 Calculation of Hits and MissesThe total number of hits and misses can be inferredfrom the state-dependent frequency counters and fromthe �rst miss table. This calculation is performed afterrunning the instrumented program as part of its exitcode. The calculation is independent from the numberof SPSs or any other code generation parameters andcan thus be hidden in a library routine, which is linkedwith the instrumented program.6.1 Hits/Misses based on FrequenciesFor each path of each function instance, the productof a frequency count and the number of always hits(misses) is added to the total number of hits (misses).First misses, weighted by the frequency, are also addedto the total number of hits at this point.The index into the counter array indicates the num-ber of hits and misses for conicting lines, which are3RISC architectures as well as most CISC architectures donot provide a special bit-counting instruction.In Proceedings of the 28th Annual Simulation Symposium, April 1995 7

then also multiplied by the corresponding frequency.A zero index indicates that all conicting lines arecached while the last index corresponds to misses ofall conicting lines (see SPS bit encoding in Figure 4).Not all cache line con�gurations may be valid dur-ing the execution of the program for a given path andinstance. In other words, the frequency count for someindices should be zero. But to minimize the amountof state changes during run time, a conicting SPSis not updated if it can be determined at simulationtime that the corresponding cache state cannot occur.Therefore, only a subset of counter indices may ac-tually correspond to a valid cache con�guration for agiven path and instance. The number of conictinglines is thus inferred from the array index combinedwith an AND mask with bits set in the position ofvalid cache lines. Consider path 1 in Figure 4. TheAND mask for this path is 0x2 since only bit 2 (cor-responding to program line a in the encoding of theSPS) is referenced when executing path 1.If the number of states in the SPS was large andthe alternate counting method was applied, then thealways hits (misses) and �rst misses are still countedbased on the frequency counter. The number of missesdue to conicts is readily available in one counter. Thenumber of hits can be calculated as the total frequencytimes the number of conict lines less the number ofmisses due to conicts.6.2 First Miss AdjustmentSince �rst misses were exclusively counted as hitswith respect to the frequency, the hits and misses haveto be adjusted. For each entry in the �rst miss table,the counters of corresponding paths (and instances)are checked. If the frequency of at least one paths isgreater than zero, the total number of hits is decre-mented while misses are incremented by one.7 MeasurementsThis section evaluates the bene�ts of instructioncache analysis via static cache simulation. Cache mea-surements were obtained for user programs, bench-marks, and UNIX utilities. The measurements wereproduced by modifying the back-end of the optimiz-ing compiler VPO (Very Portable Optimizer) [4] andby performing static cache simulation. The simulationwas performed for the Sun SPARC instruction set, aRISC architecture with a uniform instruction size ofone word (four bytes).The parameters for cache simulation includeddirect-mapped caches with sizes of 64B to 8kB. Thecache line size was �xed at 4 words. No context

switches were simulated. The size of the programsvaried between 2kB and 18kB. This provided a rangeof measurements from capacity misses dominating forsmall cache sizes to some programs entirely �tting incache for large cache sizes. The number of instructionsexecuted for each program comprised a range of 1 to19 million using realistic input data for each program.Table 1 shows the measurements of each test pro-gram for a 1kB cache. The static measurements re-ect the percentage of always hits, always misses, �rstmisses, and conicts out of the total number of in-structions in the function instance tree. It can be seenthat a large number of hits and misses can be pre-dicted statically. The number of always hits is slightlyabove 70% in average and does not change signi�cantlywith varying cache sizes. The number of �rst missesincreases for larger caches while conicts and missesdecrease at the same time. This can be explained asfollows. First misses occur when a program line with-out any conicts is placed in cache on its �rst referenceand remains in cache thereafter. For very small caches,always misses dominate due to capacity misses. Formedium-sized caches, program lines tend to conictwith one another more frequently resulting in moreconict instructions. As the programs begin to �t intocache, fewer program lines are in conict and more ref-erences become �rst misses due to the increased cachecapacity. In the worst case, only every sixth instruc-tion is statically predicted as a conict and will haveto be simulated at execution time. At best, there arevirtually no conicts and almost the entire runtimesimulation can be performed using e�cient frequencycounters.Column 6 indicates the percentage of measurementpoints required for our method versus the number ofmeasurement points inserted in a conventional cachesimulation (i.e., one measurement point per basicblock). Our method requires only 76% of the measure-ment points required for the traditional trace-drivenmethods, i.e. about 24% fewer measurement pointsstatically. The run-time savings (column 7) are evenhigher, requiring only about 69% of the measurementpoints executed under traditional trace-driven cachesimulation. The additional dynamic savings are dueto reducing sequences of basic blocks inside loops tofewer UPs, sometimes just to a single UP.The static cache simulation results were veri�ed (foreach program execution and cache size) by ensuringthat the exact same number of hits and misses wereproduced as obtained by traditional trace-driven cacheanalysis. As the cache size increases, the hit ratio (col-umn 8) increases as well. Column 9 and 10 representthe quotient of the execution time of a program withIn Proceedings of the 28th Annual Simulation Symposium, April 1995 8

Static DynamicName Hit Miss Firstmiss Conict Measure Pts. Hit Ratio Trace SSim Conictcachesim 70.83% 6.99% 0.70% 21.48% 73.38% 60.56% 77.19% 8.41 1.53 34.12%cb 79.03% 2.35% 0.00% 18.63% 89.62% 65.61% 93.84% 33.56 3.51 30.67%compact 70.12% 4.96% 0.12% 24.80% 68.89% 56.56% 92.90% 22.29 2.31 21.34%copt 70.89% 7.41% 7.03% 14.67% 84.19% 74.88% 93.64% 16.43 1.58 30.00%dhrystone 70.03% 10.71% 7.30% 11.96% 81.61% 72.73% 83.73% 19.89 1.31 16.01%�t 74.07% 4.85% 16.42% 4.66% 78.43% 74.08% 99.95% 5.79 0.95 8.80%genreport 70.61% 9.95% 5.61% 13.84% 71.58% 81.31% 97.45% 13.57 1.91 28.92%mincost 72.79% 9.96% 1.14% 16.11% 83.19% 76.27% 89.08% 23.47 2.23 30.67%sched 67.65% 5.06% 0.09% 27.19% 73.16% 58.29% 96.41% 25.90 3.62 42.01%sdi� 68.94% 12.06% 0.89% 18.11% 72.13% 77.82% 97.61% 32.10 3.99 28.40%tsp 72.61% 13.50% 3.88% 10.01% 64.08% 58.67% 86.98% 5.70 1.19 17.63%whetstone 75.70% 12.84% 0.24% 11.22% 70.49% 68.25% 100.00% 13.44 1.36 23.56%average 71.94% 8.39% 3.62% 16.06% 75.90% 68.75% 92.40% 18.38 2.12 26.01%Table 1: Measurements for 1kB Direct-Mapped Cacheinstrumentation over the execution time for the sameprogram without instrumentation. Column 9 refers toa trace-driven method that has been optimized suchthat the cache simulator is only called once per ba-sic block4. Column 10 shows that cache simulationvia static cache simulation is more e�cient than thetrace-driven method.5 Column 11 refers to the anal-ysis via static cache simulation. The percentage ofconicts (out of all instruction references) simulatedat execution time is shown in the last column.Figure 5 shows the overhead for di�erent cachesizes. With the traditional trace-driven method, theexecution time of instrumented programs is 14x to 24xslower than the execution time of regular programswithout instrumentation. The overhead for the newmethod using static cache simulation is much lower,only a factor of 1.1 to 2.8. This overhead dependsslightly on the ratio of program size and cache size.The variation can be explained as follows.Let the conict degree be the number of programlines that map into the same cache line. This is auseful term to characterize the size of shared pathstates (SPSs) and the execution overhead due to order-dependent simulation. For small caches, the conictdegree is relatively small. Many references will resultin always misses due to a lack of cache capacity, whichrequire only e�cient frequency counting. For medium-sized caches, the conict degree increases, peaking ata 512B cache for this test set, while always missesdecrease. This requires an increased number of dy-4We used a traditional trace-drivenmethod similar to \Tech-nique B" in [16] but our version was probably �ner tuned.5For tsp in column 10, the instrumented code ran faster thanthe uninstrumented program, i.e. the ratio was smaller than 1.These results were reproducible. They may be caused by thedi�erent placement of code due to instrumentation, resulting infewer misses for frequently executed loops.

namically simulated state transitions for conicts. Forlarger caches, capacity misses and the conict degreeof program lines decrease. They are replaced by �rstmisses. With a diminishing number of conicts forlarge caches, the size of SPSs decreases as the cachesize increases. In other words, fewer and fewer con-icting program lines map into the same cache linesso that less instrumentation code to update conict-ing SPSs is needed since hardly any conicts remain.Thus, the cache simulation at execution time can bereduced to simple frequency counting, which imposesa much lower overhead than conventional cache sim-ulation. To summarize this discussion, it is observedthat the new method requires slightly more executionoverhead for small caches than for large caches sincemore SPSs have to be updated dynamically.The new method outperforms conventional trace-driven cache simulation by almost an order of a mag-nitude without compromising the accuracy of measure-ments. Even the best results published in [16] requiredan overhead factor of 2-15 over uninstrumented codefor hit ratios between 96% and 99%. This highly tunedtraditional method required a recompilation pass for
0

5

10

15

20

25

64 128 256 512 1k 2k 4k 8k

E
x
e
c
u
t
i
o
n

O
v
e
r
h
e
a
d

Cache Size [Bytes]

SSsim
Trace

Figure 5: Average Overhead for varying Cache SizesIn Proceedings of the 28th Annual Simulation Symposium, April 1995 9

better instrumentation. Under all conditions, the newmethod using static cache simulation outperforms thebest traditional trace-driven methods published.8 Future WorkThe static simulator could be extended in severalways. First, recursive functions could be handled byapplying the described algorithm to calculate abstractcache states repeatedly on a function instance. Second,a modi�ed algorithm and data structure could be de-signed to handle set-associative caches. Finally, datacache behavior could be analyzed statically as well un-der certain restrictive conditions, such as absence ofheap allocation and pointers. There are several otherapplications of static cache simulation. For example,the worst-case execution time of real-time programscan be predicted more precisely for architectures withcaches [2]. Other applications include detailed pro-�ling and tracking of execution time for a real-timedebugger[13].9 ConclusionA new method to evaluate instruction cache perfor-mance was designed and implemented. The cache per-formance of programs for various cache con�gurationscan be obtained without recompiling the analyzed pro-gram. No special operating system support or dedi-cated registers are required. The new method outper-forms conventional trace-driven cache simulation byalmost an order of a magnitude without any loss ofaccuracy of the measurements. By making extensiveuse of static cache simulation and reducing code in-strumentation to simple frequency counting in manyplaces, this method reduces the execution overhead ofanalyzed programs to a factor of 2 on average. Inaddition, di�erent cache sizes and resulting hit ratioshave little inuence on the overhead. Therefore, onecan conclude that instruction cache analysis via staticcache simulation is a general method to quickly ob-tain accurate measurements outperforming any otherpublished methods.References[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers{ Principles, Techniques, and Tools. Addison-Wesley,1986.[2] R. Arnold, F. Mueller, D. B. Whalley, and M. Har-mon. Bounding worst-case instruction cache perfor-mance. In IEEE Symposium on Real-Time Systems,pages 172{181, December 1994.

[3] T. Ball and J. R. Larus. Optimally pro�ling and trac-ing programs. In ACM SIGPLAN-SIGACT Sympo-sium on Principles of Programming Languages, pages59{70, January 1992.[4] M. E. Benitez and J. W. Davidson. A portable globaloptimizer and linker. In ACM SIGPLAN Conferenceon Programming Language Design and Implementa-tion, pages 329{338, June 1988.[5] A. Borg, R. E. Kessler, and D. W. Wall. Generationand analysis of very long address traces. In Inter-national Symposium on Computer Architecture, pages270{279, May 1990.[6] S. J. Eggers, D. R. Keppel, E. J. Koldinge, andH. M. Levy. Techniques for e�cient inline tracing ona shared-memory multiprocessor. In SIGMETRICSConference on Measurement and Modeling of Com-puter Systems, pages 37{47, 1990.[7] J. Hennessy and D. Patterson. Computer Architecture:A Quantitative Approach. Morgan Kaufmann, 1990.[8] M. Hill. A case for direct-mapped caches. IEEE Com-puter, 21(11):25{40, December 1988.[9] M. Huguet, T. Lang, and Y. Tamir. A block-and-actions generator as an alternative to a simulator forcollecting architecture measurement. In ACM SIG-PLAN Symposium on Interpreters and InterpretiveTechniques, pages 14{25, June 1987.[10] J. R. Larus. Abstract execution: A technique for ef-�ciently tracing programs. Software Practice & Expe-rience, 13(8):671{685, August 1983.[11] F. Mueller. Static Cache Simulation and its Applica-tions. PhD thesis, Dept. of CS, Florida State Univer-sity, July 1994.[12] F. Mueller and D. B. Whalley. E�cient on-the-yanalysis of program behavior and static cache simula-tion. In B. Le Charlier, editor, Static Analysis Sympo-sium, volume 864 of Lecture Notes in Computer Sci-ence, pages 101{115. Springer, September 1994.[13] F. Mueller and D. B. Whalley. On debugging real-time applications. In ACM SIGPLAN Workshop onLanguage, Compiler, and Tool Support for Real-TimeSystems, June 1994.[14] B. L. Peuto and L. J. Shustek. An instruction tim-ing model of CPU performance. In InternationalSymposium on Computer Architecture, pages 165{178,March 1977.[15] D. B. Whalley. Fast instruction cache performanceevaluation using compile-time analysis. In SIGMET-RICS Conference on Measurement and Modeling ofComputer Systems, pages 13{22, June 1992.[16] D. B. Whalley. Techniques for fast instruction cacheperformance evaluation. Software Practice & Experi-ence, 19(1):195{203, January 1993.[17] C. A. Wiecek. A case study of VAX-11 instruction setusage for compiler execution. In Architectural Supportfor Programming Languages and Operating Systems,pages 177{184, March 1982.In Proceedings of the 28th Annual Simulation Symposium, April 1995 10

