Fast Instruction Cache Analysis via Static Cache Simulation *

Frank Mueller and David B. Whalley
Dept. of Computer Science, Florida State University, Tallahassee, FL. 32306-4019

Abstract

This paper introduces a new method for instruction
cache analysis that outperforms conventional trace-
driven methods. The new method, static cache sim-
ulation, analyzes a program for a given cache con-
figuration and determines prior to execution time if
an instruction reference will always result in a cache
hit or miss. At run time, counters are incremented
to provide the execution frequency of portions of code.
In addition, the cache behavior s simulated for refer-
ences that could not be predicted statically. The dy-
namic stmulation employs a novel view of the cache by
updating local state information associated with code
portions. The total number of cache hits and misses
can be inferred from the frequency counters at program
exit. Measurements taken from a variety of programs
show that this new method speeds up cache analysis
over conventional trace-driven methods by almost an
order of a magnitude. Thus, cache analysis with static
cache simulation makes it possible to analyze the in-
struction cache behavior of longer and more realistic
program executions.

1 Introduction

Cache memories have become a major factor to
bridge the bottleneck between the relatively slow ac-
cess time to main memory and the faster clock rate of
today’s processors. The simulation of cache memories
1s common practice to determine the best configura-
tion of caches during the design of computer archi-
tectures. It has also been used to evaluate compiler
optimizations with respect to cache performance.

Unfortunately, the cache analysis of a program can
significantly increase the program’s execution time, of-
ten by two orders of a magnitude. Thus, cache sim-
ulation has been limited to the analysis of programs
with a small or moderate execution time and still re-
quires considerable experimentation time before yield-
ing results. In reality, programs often execute for a
long time, but cache simulation simply becomes in-
feasible with conventional methods. The large over-
head of cache simulation 1s imposed by the necessity

*E-mail: whalley@cs.fsu.edu, phone: (904) 644-3506. Sup-
ported in part by ONR contract # N00014-94-1-0006.

of tracking the execution order of instructions.

On the other hand, instruction frequency measure-
ments can be obtained by inserting instructions into
a program that increment frequency counters. The
counters are typically associated with a basic block
and are incremented each time the basic block exe-
cutes. The overhead induced by frequency measure-
ments is less than a factor of two in execution time.
This much lower overhead can be attributed to the fact
that the execution order of instructions is irrelevant.

The method for instruction cache analysis discussed
in this paper makes extensive use of frequency counters
when instruction references are statically determined
to be always cache hits or always cache misses. For the
remaining instruction references, state information is
associated with code portions and is updated dynam-
ically. This state information represents a localized
view of the cache and is used to determine whether
the remaining program lines of a code portion are or
are not cached. These localized states are in contrast
to a comprehensive global view of the cache state as
employed in conventional trace-driven simulation. In
summary, the cheaper method of frequency counters is
used where the order of execution is irrelevant and the
remaining references are determined by local states,
which also 1impose less execution overhead than one
global cache state.

Figure 1 depicts an overview of the tools and in-
terfaces involved in instruction cache analysis using
static cache simulation. The set of source files of a
program are translated by a compiler. The compiler
generates assembly code with macro entries for instru-
mentation and passes information about the control
flow of each source file to the static cache simulator.

execut.
program

source
files

cache cache
control state table analysis
flow : R
) instrumen- library
info tation routines
macros

Figure 1: Overview of Static Cache Simulation

In Proceedings of the 28th Annual Simulation Symposium, April 1995 1

The static cache simulator performs the task of deter-
mining which instruction references can be predicted
prior to execution time. It constructs the call graph of
the program and the control-flow graph of each func-
tion based on the information provided by the com-
piler. The cache behavior 1s then simulated for a given
cache configuration. Furthermore, macro code for in-
strumenting the executable is generated together with
tables to store cache information at run time. This
output of the simulator is passed to the assembler,
which translates the code generated by the compiler
into instrumented object code. The linker combines
these object files into an executable program and links
in library routines, which produce the final report of
the cache analysis at run time!.

The approach taken by static cache simulation is
quite different from traditional methods. The simula-
tor attempts to determine statically whether a given
program line will result in a cache hit or miss during
program execution. This is achieved by the analysis
of both the call graph of the program and control-flow
graph for each function. A set of instructions exe-
cuted in sequence is called a unique path (UP) if it can
be distinguished from all other paths by at least one
(unique) control-flow transition. To better predict the
cache behavior, functions are further distinguished by
function instances that depend on the call site and call
sequence. If the simulator cannot determine statically
if a line results in a hit or miss, then the cache behav-
ior has to be determined at run time by updating local
path states. The static analysis provides the informa-
tion required to instrument the generated code with
short instruction sequences. These sequences count
the frequency of executions for a state of a path and
update the states where necessary. The total hits and
misses can be inferred from the state-dependent fre-
quency counts after running the program.

2 Related Work

Evaluating cache performance has long been rec-
ognized as a challenging task to be performed in an
efficient manner. Traces of the actual addresses ref-
erenced during the execution of programs have to be
used to perform a realistic evaluation. The problem
is that a realistic trace typically consists of millions
of references. Evaluation of these traces can require
excessive amounts of space and time when using sim-
ple approaches. For instance, a traditional approach 1s
to generate the trace via trapping or simulation, write

1When the cache configuration changes, no recompilation is
needed; only the static cache simulator, assembler, and linker
have to be reinvoked.

each generated address in the trace on disk, and ana-
lyze the trace via a separate program that reads the
trace from disk and simulates the cache. Such an ap-
proach can easily slow the execution by a factor of a
1000 or more [14, 17, 9].

A technique called inline tracing can be used to gen-
erate the trace of addresses with much less overhead
than trapping or simulation. Measurement instruc-
tions are inserted in the program to record the ad-
dresses that are referenced during the execution. Borg,
Kessler, and Wall [5] modified programs at link time to
write addresses to a trace buffer, and these addresses
were analyzed by a separate higher priority process.
The time required to generate the trace of addresses
was reduced by reserving five of the general purpose
registers to avoid memory references in the trace gen-
eration code. Overhead rates of 8x to 12x normal ex-
ecution time were reported for the trace generation.
Analysis of the trace was stated to require at least 10x
the overhead of the generation of the trace (or about
100x slower than normal execution time).

FEggers et. al. [6] also used the technique of in-
line tracing to generate a trace of addresses in a trace
buffer, which was copied to disk by a separate process.
They used several strategies for minimizing the over-
head of generating the trace. First, they produced a
subset of the addresses from which the other addresses
could be inferred during a postprocessing pass. For
instance, they only stored the first address in a se-
quence of contiguous basic blocks with a single entry
point and multiple exit points. Rather than reserv-
ing a set of registers to be used for the trace genera-
tion code, they identified which registers were available
and thus avoided executing many save and restore in-
structions. The trace generation overhead was accom-
plished in less than 3x the normal execution time. In
addition, writing the buffers to disk required a fac-
tor of 10x normal execution time. The postprocessing
pass, which generates the complete trace from the sub-
set of addresses stored, was much slower (about 3,000
addresses/sec). No information was given on the over-
head required to analyze the cache performance.

Ball and Larus [3, 10] also reduced the overhead of
the trace generation by storing a portion of the trace
from which the complete trace can be generated. They
optimized the placement of the instrumentation code
to produce the reduced trace with respect to a weight-
ing of the control-flow graph. They showed that the
placements are optimal for a large class of graphs. The
overhead for the trace generation was less than a fac-
tor of 5. However, the postprocessing pass generating
a full trace required 19-60x the normal execution time.

Whalley [15, 16] evaluated a set of techniques to

In Proceedings of the 28th Annual Simulation Symposium, April 1995 2

reduce the time required to evaluate instruction cache
performance. He linked a cache simulator to the pro-
grams instrumented with measurement code to eval-
uate the instruction cache performance during the
program’s execution. The techniques he evaluated
avoided making calls to the cache simulator when it
could be determined in a less expensive manner that
the reference was a hit. The overhead time for the
faster techniques was highly dependent upon the hit
ratio of the programs. He reported 15x normal execu-
tion time for average hit ratios of 96% and 2x normal
execution time for hit ratios exceeding 99%. These
faster techniques also required recompilation of the
program when the cache configuration was altered.

3 Compiler Interaction

To perform instruction cache analysis via static
cache simulation on a program with our tools, the pro-
gram 1s first compiled by a compiler specifically mod-
ified for this task. During the compilation the control
flow of the functions of a program is partitioned into
unique paths (UPs). Informally, a UP is a set of basic
blocks [1] (vertices) connected by control-flow transi-
tions (edges) that contain at least one unique transi-
tion, 7.e. a transition that does not occur in any other
UP. In this study, UPs were restricted to not cross loop
boundaries, function boundaries, or calls. The notion
of UPs allows one to identify and reduce the locations
for code instrumentation (rather than inserting mea-
surement code in every basic block). The resulting
directed graph of UPs represents the control flow of
the program in such a form that it can be easily pro-
cessed later by the static cache simulator. A formal
definition of UPs is given in [11, 12].

A path macro invocation is generated on a unique
transition of each UP in the assembly code. The corre-
sponding body of the macro, which provides the mea-
surement code for the UP, 1s defined by the static cache
simulator. Similarly, a call macro invocation is gener-
ated for each call to a function. The parameters for
the call and path macros are a register containing the
base address of the counter table for the current func-
tion instance and two other registers that the compiler
determines to be unused. The compiler generates spill
code to free registers if none are available.

4 Static Cache Simulation

The method of static cache simulation can be used
to statically predict the behavior of a large portion of
the instruction cache references for a given program
with a specific cache configuration. Unlike many data
references, the address of each instruction is known

statically. This is certainly true for code which i1s phys-
ically locked into memory. It also holds for virtual
memory mapping, if and only if the page size 1s an
integer multiple of the instruction cache size, which is
typical for many systems [7]. In this case, the reloca-
tion of a virtual page would not affect the mapping of
program lines into cache lines.

By analyzing the call graph and the control flow
of each function, static cache simulation attempts to
determine if each instruction reference will result in
a cache hit or miss during program execution. Since
it 1s not always possible to determine if a reference
will be a hit or miss, instructions are classified to be
in the categories of always-hit, always-miss, first-mass,
or conflict. If an instruction is always (never) in cache,
then it is denoted as an always-hit (always-miss). If an
access to an instruction results in a miss on the first
access and 1n hits for any subsequent accesses, then it
is classified as a first-miss. If an access to a program
line results in either hits or misses depending on the
flow of control, then it is referred to as a conflict.

4.1 Decomposition

To statically determine a program’s cache behavior
as accurately as possible, the program is decomposed
into smaller components. A program may be com-
posed of a number of functions. The possible sequence
of calls between these functions is depicted in a call
graph. The control flow of each function can be rep-
resented by a control-flow graph where nodes are UPs
and edges denote legal transitions of the control flow
between UPs. The static simulator obtains this infor-
mation from the compiler.

Functions are further distinguished by function in-
stances. An instance depends on the call sequence,
that is, it depends on the immediate call site within
its caller as well as the caller’s call site, etc. The in-
stance ¢ of a function corresponds to the ith occurrence
of the function within a depth-first traversal of the call
graph. Thus, the directed acyclic call graph is trans-
formed into a tree of function instances.

4.2 Instruction Categorization

Static cache simulation calculates the abstract
cache states associated with the UPs. Such an ab-
stract cache state specifies the possible cache contents
before the UP is executed. First, formal definitions
are provided. Then, the caching behavior of each in-
struction 1is categorized based on these definitions. An
example is discussed in section 4.3 (see [11] for more
details).

In Proceedings of the 28th Annual Simulation Symposium, April 1995 3

Definition 1 A program line can potentially be
cached if there exists a sequence of transitions in
the combined control-flow graphs and call graph (with
function instances) such that the program line is
cached when the UP s entered.

Definition 2 An abstract cache state of ¢ UP in
a function instance is the subset of all program lines
that can potentially be cached prior to the execution of
the UP for that function instance.

The notion of an abstract cache state is a compromise
between the choice of an exhaustive set of all cache
states that may occur at execution time and the expo-
nential growth of such an exhaustive set during sim-
ulation. The next definition introduces the reaching
state, which is used for the categorization of instruc-
tions following thereafter.

Definition 3 A reaching state of ¢ UP in a func-
tion instance is the subset of all program lines that
can be reached through control-flow transitions from
the UP of the function instance.

For a given function instance, each instruction
within a UP is categorized based on its position in the
corresponding program line [= #y..4,,_1, on the corre-
sponding abstract cache state s, and on the reaching
state 7. The program line ! maps into cache line ¢,
denoted by [— ¢. The UP containing line [is referred
to simply as U P.
always-miss: A cache miss is predicted if

e ¢ = ig: instruction 7 is the first reference to pro-
gram line [in U P and
e [& s: lis not in the abstract cache state.

always-hit: A cache hit is predicted if

e i € {i1..ip—1}: instruction 7 is a consecutive ref-
erence to program line ! in UP. Or all of the
following conditions hold:

e ¢ = ig: instruction 7 is the first reference to pro-
gram line [in U P,

e [€ s: [1sin the abstract cache state, and

o A kesnk—c
k#l
no other line k (which maps into the same cache
line as {) is in the abstract cache state.

first-miss: The first reference to an instruction will
result in a cache miss and all subsequent references in
cache hits if

e ¢ = ig: instruction 7 is the first reference to pro-
gram line [in U P,

e [€ s: [1s In the abstract cache state,

. 3 k€ s:
E—e,k#l
another line & (which maps into the same cache
line as) is also in the abstract cache state,

° v
k—c,k#l
if any line & (which maps into the same cache line
as [) is also in the abstract cache state, then the
line is not in the reaching state of U P, and

kes=>k¢gnr

° V category(i) € {always-hit, first-miss}:
i€{i1.in_1}
all other instructions within the same program
line are always-hits or first-misses.

conflict: All other instructions are conflicts.
4.3 Implementation

The iterative algorithm in Figure 2 was used to cal-
culate the abstract cache states. Fach UP has an input
and output state of program lines that can potentially
be in cache at that point. Initially, the input states of
the top paths (entry paths of the main function) are
set to all invalid lines. The input state of a path is cal-
culated by taking the union of the output states of its
immediate predecessors. The output state of a path 1s
calculated by taking the union of its input state and
the program lines accessed by the path and subtract-
ing the program lines with which the path conflicts.
This calculation includes the interprocedural propaga-
tion of abstract cache states (not explicitly shown in
the algorithm): At a path p with a call to function
f as the last instruction, the output state of the UP
is propagated to the input states of the entry paths
of the corresponding function instance f(7). Similarly,
the union of the output states of f(¢)’s exit paths pro-
vides the input state for p’s successor paths.

Input: Function-Instance Graph of the program and
UPPA for each function.

QOutput: Abstract Cache State for each UP.
Algorithm: Let conf _lines(UP) be the set of program
lines (excl. the program lines of UP) mapping into the
same cache line as any program line within the UP.

input_state(main):= all invalid lines;
WHILE any change DO
FOR each instance of a UP in the program DO
input_state(UP):= ¢;
FOR each immediate predecessor P of UP DO
input_state(UP):=
input_state(UP) U output_state(P);
output_state(UP):= [input_state(UP) U
prog_lines(UP)] \ conf lines(UP);

Figure 2: Algorithm to Calculate Cache States

In Proceedings of the 28th Annual Simulation Symposium, April 1995 4

main() 1) amiss "I

invalid

. a-hit

program line 0 ahit cache 012301230 1cacheln. 0123012301
call foo() | a-hit program I I T I 012345prog. In. ITITIO012345

PASS 1
program line 1 in(D=[ITITITI 1 out()=f I ITIO]
in(8a)=[I I10 1 out(8a)=[I1 4 5]
,,,,,,,,,,,,, in(2)=[I1I 4 5] out(2)=[IT 1 4]
in(3)=[II 1 4 1 out(3)=[I 12 4 1]
in(4)=[I 12 4 1 out(d)=[I 12 4 1]
program line 2 in(5)=[I 12 4 1 out(s)=[1234 1]
in(8b)=[1234 1] out(8b)=[234 5]
in(6)=[I 12345] out(é6)=[123 45]
—————————————————— in(7)=[123 45] out(7)=[12345]

PASS 2

programline3 @ —A—me . ———=—=
in(D=[ITITITI] out()=[I ITIO]
7777777777777777777777777777777777777 in(8a)=[I I I 0 1 out(8a)=[I1I 4 5]
in(2)=[I1 4 5] out(2)=[II 1 4]
in(3)=[II 12345] out(3)=[I 1234 1]
: in(4)=[I 1234 1 out(4)=[I 1234 1]
program line 4 @ (b in(5)=[T 1234 1 out(s)=[1234]
f00() g @ 0. in(8b)=[1234 1 out(sb)=[234 5]
Sk R amiss amiss in(6)=[I 12345] out(6)=[12345]
program line 5 v ahit ahit in(7)=[123451 out(7)=[12345]

Figure 3: Example with Flow Graph

The algorithm is a variation of an iterative data-
flow analysis algorithm commonly used in optimizing
compilers. Thus, the time overhead of the algorithm is
comparable to that of data-flow analysis and the space
overhead is O(pl * UPs # fi), where pl is the number
of program lines; U Ps is the number of paths, and
fi the number of function instances. The correctness
of the algorithm for data-flow analysis is discussed in
[1]. The calculation can be performed for an arbitrary
control-flow graph, even if it is irreducible. In addition,
the order of processing basic blocks is irrelevant for
the correctness of the algorithm. The reaching states
can be calculated using the same base algorithm with
input_state(main) = conf lines(UP) = ¢.

Figure 3 depicts the calculation of input and out-
put states. The paths are restricted to basic blocks
to simplify the example. In the example, there are 4
cache lines and the line size is 16 bytes (4 instructions).
Thus, program line 0 and 4 map into cache line 0, pro-
gram line 1 and 5 map into cache line 1, program line
2 maps into cache line 2, and program line 3 maps into
cache line 3. The immediate successor of a block with
a call is the first block in that instance of the called
function. Block 8a corresponds to the first instance of
foo() called from block 1 and block 8b corresponds to
the second instance of foo() called from block 5. Two
passes are required to calculate the input and output
states of the blocks, given that the blocks are processed
in the order shown in Figure 3. Only the states of some

blocks inside the loop change on the second pass. Pass
3 results in no more changes.

After determining the input states of all blocks,
each instruction 1s categorized based on its abstract
cache state (derived from the input state) and the
reaching state.? By inspecting the input states of each
block, one can make some observations that may not
have been detected by a naive inspection of only physi-
cally contiguous sequences of references. For instance,
the static simulation determined that the first instruc-
tion in block 7 will always be in cache (always hit) due
to spatial locality. This can be determined by observ-
ing that line 4 is in in(7) and no conflicting program
line 18 in in(7). It was also determined that the first
instruction in basic block 8b will always be in cache
(always hit) due to temporal locality. The static sim-
ulation determined that the last instruction in block 3
will not be in cache on its first reference, but will al-
ways be in cache on subsequent references (first miss).
This is indicated by in(3), which includes program
line 2 but also a conflicting program line “invalid” for
cache line 3. Yet, the conflicting program line cannot
be reached. This is also true for the first instructions
of block 5 and 6, though a miss will only occur on the
first reference of either one of the instructions. This is
termed a group first miss. Finally, the first instruction
in block 3 is classified as a conflict since it could either

2The reaching state for all paths contains line 1-5, except for
reach(7) which is empty.

In Proceedings of the 28th Annual Simulation Symposium, April 1995 5

be a hit or a miss (due to the conditional call to foo).
This is indicated by in(3), which includes program
line 1 and a conflicting program line 5 that can still be
reached.

The current implementation of the static cache sim-
ulator imposes some restrictions. First, only direct-
mapped cache configurations are supported. Recent
results have shown that direct-mapped caches have a
faster access time for hits, which outweighs the ben-
efit of a higher hit ratio in set-associative caches for
large cache sizes [8]. Second, context switches can-
not be simulated using this method. Third, recursive
programs currently are not allowed since cycles in the
call graph would complicate the generation of unique
function instances. Finally, indirect calls are not han-
dled since the static cache simulator must be able to
generate an explicit call graph.

5 Code Instrumentation

After decomposing the program into function in-
stances and UPs, there still remain lines that are an-
alyzed to be in conflict with another line. It is in-
evitable to maintain information at run time to deter-
mine which program line is currently cached and to
update this information dynamically. This is achieved
by maintaining a path state at execution time. A path
state only reflects the conflicts local to the current path
(in contrast to a cache state that comprises the global
state of a cache memory). Consider the example in
Figure 4, which will be discussed step-by-step in the
following. Path 1 contains program line a which con-
flicts with program line z since both map into cache
line ¢ and line x can be reached from path 1. Thus,
the shared path state (SPS) for path 1 keeps track
of whether or not program line a is in cache. More
detailed examples are given in [11].

Naively, a path state may be kept on the most spe-
cialized level (for each function instance and path).
But this would require a considerable amount of inter-
action between UPs. In the worst case, the execution
of a UP of some function instance would not only have
to update 1ts path state but every other path state
conflicting with a line of this path and any function
instance. Cache state information is therefore merged
after simulation in two stages to comprise path states.
First, the conflicts of the cache states of a UP of all
instances of a function are merged into one local path
state (LPS). Second, local path states of neighboring
UPs that share at least one instruction are merged into
one shared path state (SPS). The latter is illustrated
in Figure 4. The LPS of path 1 contains the conflict-
ing program line a while the LPS of path 2 contains

SPS (path 1 and 2)
00: hit ahit b
01: hit a missb
10: missa hit b
11: missa missh

“path 1\ [-Cache
freq[spé] ++ 4
sps| =0x2 I S N
achelinec
S pafh-..4
path 3 [

sps&=—~0x1 ||

pgm nex
pgmliney

Figure 4: Frequency Counters Indexed by the SPS

both conflicting program lines a and b. The two paths
overlap in block 1 and 4. Thus, the SPS for paths 1
and 2 contains the program lines @ and 6. LPSs allow
uniform instrumentation of code rather than distin-
guishing instances dynamically at every instrumenta-
tion point or replicating code for each instance. Both
merging operations greatly reduce the overhead of dy-
namic simulation for conflicts. While a SPS only needs
to maintain one state to keep track of conflicts dynam-
ically, the state may comprise a wider range of values
to combine all possible conflicts of overlapping paths.

Generated code is instrumented by inserting in-
structions at the unique transition of each UP to keep
track of the SPSs and record the frequency of executed
instructions for this path and state. At the exit points
of the program, an epilogue is inserted to call a library
routine, which calculates the total hits and misses from
the gathered state-dependent frequencies.

The code emitted by the compiler back end includes
macro calls for each UP and for each call site. The
simulator generates the corresponding macros bodies,
produces tables to store SPSs and frequency counters
at run time, and provides other constant data struc-
tures for the final calculation of hits and misses.

5.1 TUpdating Shared Path States

For each SPS, a state field is generated in the state
table. These states are modified at run time by the
macro code of UPs. The value of such a state denotes
which lines are cached out of a set of conflicting lines.
The initial value denotes the set of lines cached prior to

In Proceedings of the 28th Annual Simulation Symposium, April 1995 6

the first execution of any corresponding UP. The value
can be used as an index into the frequency counter
array of the current UP. Thus, state-dependent fre-
quency counting can be performed by using the SPS
as an index into the counter array and incrementing
the corresponding counter. Furthermore, if an SPS is
constant at run time (no conflicting lines), then the
state field is omitted from the state table.

Consider Figure 4 again. The SPS of paths 1 and 2
1s used to simulate the hits and misses of program lines
a and b. This SPS has two bits (due to two conflicting
program lines) to hold the possible encoding of cached
program lines of the SPS (as shown in the figure). The
state i1s updated on the execution of path 1 to include
program line a. The execution of path 2 includes both
a and b in the state, the execution of path 3 excludes
b, and the execution of path 4 excludes both a and b.
Simple bit manipulations suffice for these updates, as
indicted by the pseudo code in the figure. The separate
counter array for path 2 is incremented in the same
manner. The SPSs for paths 3 and 4 are not shown to
simplify the example.

5.2 Frequency Counters

For each UP of every function instance, an array
of frequency counters is used to keep track of the ex-
ecution frequency of the UP. The size of the array is
determined by the number of permutations of conflict-
ing lines for a SPS. Since the size is growing exponen-
tially with the number of conflicting lines, an alternate
counter array with a constant size of two entries is pro-
vided for large numbers of conflicting lines in the SPS.
There is a time/space trade-off between the two alter-
natives (discussed in the context of the path macros).

Figure 4 shows the frequency counter, indexed by
the SPS of path 1 and 2, which is incremented. Path 2
has an array of four frequency counters, corresponding
to each possible value of the SPS. An increment of the
first counter element corresponds to hits on line a and
b, an increment of the second counter element indicates
a hit on « and a miss on b, etc. The frequency counter
increments for paths 3 and 4 are not shown.

5.3 Macros for Calls

Macro code is generated at call sites to pass the
base address of the counter table for the callee’s func-
tion instance as an additional parameter. The function
instance can thereby be identified by path macros.

5.4 Macros for Paths

The code emitted for path macros increments the
frequency counter indexed by the SPS, updates the

SPS to reflect that the lines of the current path are
now cached, and updates any other SPS of conflict-
ing paths. If a different path shares a line (but not
the SPS) with the current path, the line is marked as
cached in the SPS of the conflicting path. Conversely,
if a different path conflicts with the current SPS in a
line, the line 1s marked as uncached in the SPS of the
conflicting path, as discussed before in Figure 4.
Alternately, code is emitted to increment a general
frequency counter for large SPSs. Since no counter ar-
ray is generated for large SPSs, indexing into an array
becomes obsolete. Rather, the SPS is first combined
with an AND mask to single out the conflict lines of
only the current path. Then, the number of remain-
ing on-bits is counted and added to a second counter,
which accumulates references to conflicting lines re-
sulting in misses. This alternate method requires less
counter space but increases execution time by deter-
mining the number of set bits in a loop3. In general,
alternate methods of code instrumentation optimize
special cases to reduce the instrumentation overhead.

5.5 First Miss Table

If a path of a function instance contains a line that
is classified as a first miss, an entry for this line is
created in the first miss table. If another path shares
the same line and also counts this line as a first miss,
this path’s instance is also included in the same table
entry. This table is used to adjust the total number of
hits and misses as explained in the next section.

6 Calculation of Hits and Misses

The total number of hits and misses can be inferred
from the state-dependent frequency counters and from
the first miss table. This calculation is performed after
running the instrumented program as part of its exit
code. The calculation is independent from the number
of SPSs or any other code generation parameters and
can thus be hidden in a library routine, which is linked
with the instrumented program.

6.1 Hits/Misses based on Frequencies

For each path of each function instance, the product
of a frequency count and the number of always hits
(misses) is added to the total number of hits (misses).
First misses, weighted by the frequency, are also added
to the total number of hits at this point.

The index into the counter array indicates the num-
ber of hits and misses for conflicting lines; which are

3RISC architectures as well as most CISC architectures do
not provide a special bit-counting instruction.

In Proceedings of the 28th Annual Simulation Symposium, April 1995 7

then also multiplied by the corresponding frequency.
A zero index indicates that all conflicting lines are
cached while the last index corresponds to misses of
all conflicting lines (see SPS bit encoding in Figure 4).

Not all cache line configurations may be valid dur-
ing the execution of the program for a given path and
instance. In other words, the frequency count for some
indices should be zero. But to minimize the amount
of state changes during run time, a conflicting SPS
is not updated if it can be determined at simulation
time that the corresponding cache state cannot occur.
Therefore, only a subset of counter indices may ac-
tually correspond to a valid cache configuration for a
given path and instance. The number of conflicting
lines is thus inferred from the array index combined
with an AND mask with bits set in the position of
valid cache lines. Consider path 1 in Figure 4. The
AND mask for this path is 022 since only bit 2 (cor-
responding to program line a in the encoding of the
SPS) is referenced when executing path 1.

If the number of states in the SPS was large and
the alternate counting method was applied, then the
always hits (misses) and first misses are still counted
based on the frequency counter. The number of misses
due to conflicts is readily available in one counter. The
number of hits can be calculated as the total frequency
times the number of conflict lines less the number of
misses due to conflicts.

6.2 First Miss Adjustment

Since first misses were exclusively counted as hits
with respect to the frequency, the hits and misses have
to be adjusted. For each entry in the first miss table,
the counters of corresponding paths (and instances)
are checked. If the frequency of at least one paths is
greater than zero, the total number of hits is decre-
mented while misses are incremented by one.

7 Measurements

This section evaluates the benefits of instruction
cache analysis via static cache simulation. Cache mea-
surements were obtained for user programs, bench-
marks, and UNIX utilities. The measurements were
produced by modifying the back-end of the optimiz-
ing compiler VPO (Very Portable Optimizer) [4] and
by performing static cache simulation. The simulation
was performed for the Sun SPARC instruction set, a
RISC architecture with a uniform instruction size of
one word (four bytes).

The parameters for cache simulation included
direct-mapped caches with sizes of 64B to 8kB. The
cache line size was fixed at 4 words. No context

switches were simulated. The size of the programs
varied between 2kB and 18kB. This provided a range
of measurements from capacity misses dominating for
small cache sizes to some programs entirely fitting in
cache for large cache sizes. The number of instructions
executed for each program comprised a range of 1 to
19 million using realistic input data for each program.

Table 1 shows the measurements of each test pro-
gram for a 1kB cache. The static measurements re-
flect the percentage of always hits, always misses, first
misses, and conflicts out of the total number of in-
structions in the function instance tree. It can be seen
that a large number of hits and misses can be pre-
dicted statically. The number of always hits is slightly
above 70% in average and does not change significantly
with varying cache sizes. The number of first misses
increases for larger caches while conflicts and misses
decrease at the same time. This can be explained as
follows. First misses occur when a program line with-
out any conflicts is placed in cache on 1its first reference
and remains in cache thereafter. For very small caches,
always misses dominate due to capacity misses. For
medium-sized caches, program lines tend to conflict
with one another more frequently resulting in more
conflict instructions. As the programs begin to fit into
cache, fewer program lines are in conflict and more ref-
erences become first misses due to the increased cache
capacity. In the worst case, only every sixth instruc-
tion is statically predicted as a conflict and will have
to be simulated at execution time. At best, there are
virtually no conflicts and almost the entire runtime
simulation can be performed using efficient frequency
counters.

Column 6 indicates the percentage of measurement
points required for our method versus the number of
measurement points inserted in a conventional cache
simulation (i.e., one measurement point per basic
block). Our method requires only 76% of the measure-
ment points required for the traditional trace-driven
methods, i.e. about 24% fewer measurement points
statically. The run-time savings (column 7) are even
higher, requiring only about 69% of the measurement
points executed under traditional trace-driven cache
simulation. The additional dynamic savings are due
to reducing sequences of basic blocks inside loops to
fewer UPs, sometimes just to a single UP.

The static cache simulation results were verified (for
each program execution and cache size) by ensuring
that the exact same number of hits and misses were
produced as obtained by traditional trace-driven cache
analysis. As the cache size increases, the hit ratio (col-
umn 8) increases as well. Column 9 and 10 represent
the quotient of the execution time of a program with

In Proceedings of the 28th Annual Simulation Symposium, April 1995 8

Static Dynamic
Name Hit Miss | Firstmiss | Conflict Measure Pts. Hit Ratio | Trace | SSim | Conflict
cachesim 70.83% 6.99% 0.70% 21.48% | 73.38% 60.56% 77.19% 8.41 1.53 34.12%
cb 79.03% 2.35% 0.00% 18.63% | 89.62% 65.61% 93.84% 33.56 3.51 30.67%
compact 70.12% 4.96% 0.12% 24.80% | 68.89% 56.56% 92.90% 22.29 2.31 21.34%
copt 70.89% 7.41% 7.03% 14.67% | 84.19% 74.88% 93.64% 16.43 1.58 30.00%
dhrystone 70.03% | 10.71% 7.30% 11.96% | 81.61% 72.73% 83.73% 19.89 1.31 16.01%
It 74.07% 4.85% 16.42% 4.66% | 78.43% 74.08% 99.95% 5.79 0.95 8.80%
genreport 70.61% 9.95% 5.61% 13.84% | 71.58% 81.31% 97.45% 13.57 1.91 28.92%
mincost 72.79% 9.96% 1.14% 16.11% | 83.19% 76.27% 89.08% 23.47 2.23 30.67%
sched 67.65% 5.06% 0.09% 27.19% | 73.16% 58.29% 96.41% 25.90 3.62 42.01%
sdiff 68.94% | 12.06% 0.89% 18.11% | 72.13% 77.82% 97.61% 32.10 3.99 28.40%
tsp 72.61% | 13.50% 3.88% 10.01% | 64.08% 58.67% 86.98% 5.70 1.19 17.63%
whetstone 75.70% | 12.84% 0.24% 11.22% | 70.49% 68.25% 100.00% 13.44 1.36 23.56%
average 71.94% 8.39% 3.62% 16.06% | 75.90% 68.75% 92.40% 18.38 2.12 26.01%

Table 1: Measurements for 1kB Direct-Mapped Cache

instrumentation over the execution time for the same
program without instrumentation. Column 9 refers to
a trace-driven method that has been optimized such
that the cache simulator is only called once per ba-
sic block?. Column 10 shows that cache simulation
via static cache simulation is more efficient than the
trace-driven method.® Column 11 refers to the anal-
ysis via static cache simulation. The percentage of
conflicts (out of all instruction references) simulated
at execution time is shown in the last column.

Figure 5 shows the overhead for different cache
sizes. With the traditional trace-driven method, the
execution time of instrumented programs is 14x to 24x
slower than the execution time of regular programs
without instrumentation. The overhead for the new
method using static cache simulation 1s much lower,
only a factor of 1.1 to 2.8. This overhead depends
slightly on the ratio of program size and cache size.
The variation can be explained as follows.

Let the conflict degree be the number of program
lines that map into the same cache line. This is a
useful term to characterize the size of shared path
states (SPSs) and the execution overhead due to order-
dependent simulation. For small caches, the conflict
degree 1s relatively small. Many references will result
in always misses due to a lack of cache capacity, which
require only efficient frequency counting. For medium-
sized caches, the conflict degree increases, peaking at
a b12B cache for this test set, while always misses

decrease. This requires an increased number of dy-

4We used a traditional trace-driven method similar to “Tech-
nique B” in [16] but our version was probably finer tuned.

5For tsp in column 10, the instrumented code ran faster than
the uninstrumented program, i.e. the ratio was smaller than 1.
These results were reproducible. They may be caused by the
different placement of code due to instrumentation, resulting in
fewer misses for frequently executed loops.

namically simulated state transitions for conflicts. For
larger caches, capacity misses and the conflict degree
of program lines decrease. They are replaced by first
misses. With a diminishing number of conflicts for
large caches, the size of SPSs decreases as the cache
size increases. In other words, fewer and fewer con-
flicting program lines map into the same cache lines
so that less instrumentation code to update conflict-
ing SPSs is needed since hardly any conflicts remain.
Thus, the cache simulation at execution time can be
reduced to simple frequency counting, which imposes
a much lower overhead than conventional cache sim-
ulation. To summarize this discussion, it is observed
that the new method requires slightly more execution
overhead for small caches than for large caches since
more SPSs have to be updated dynamically.

The new method outperforms conventional trace-
driven cache simulation by almost an order of a mag-
nitude without compromising the accuracy of measure-
ments. Even the best results published in [16] required
an overhead factor of 2-15 over uninstrumented code
for hit ratios between 96% and 99%. This highly tuned

traditional method required a recompilation pass for

25 :
2 e SSsi m ——
= 20 t T Trace -+ .
3 T
3 15 | ey
c
2 10 | f
5
3 5 1]
a L |

0 L L L L L L
64 128 256 512 1k 2k 4k 8k
Cache Size [Bytes]

Figure 5: Average Overhead for varying Cache Sizes

In Proceedings of the 28th Annual Simulation Symposium, April 1995 9

better instrumentation. Under all conditions, the new
method using static cache simulation outperforms the
best traditional trace-driven methods published.

8 Future Work

The static simulator could be extended in several
ways. First, recursive functions could be handled by
applying the described algorithm to calculate abstract
cache states repeatedly on a function instance. Second,
a modified algorithm and data structure could be de-
signed to handle set-associative caches. Finally, data
cache behavior could be analyzed statically as well un-
der certain restrictive conditions, such as absence of
heap allocation and pointers. There are several other
applications of static cache simulation. For example,
the worst-case execution time of real-time programs
can be predicted more precisely for architectures with
caches [2]. Other applications include detailed pro-
filing and tracking of execution time for a real-time

debugger[13].
9 Conclusion

A new method to evaluate instruction cache perfor-
mance was designed and implemented. The cache per-
formance of programs for various cache configurations
can be obtained without recompiling the analyzed pro-
gram. No special operating system support or dedi-
cated registers are required. The new method outper-
forms conventional trace-driven cache simulation by
almost an order of a magnitude without any loss of
accuracy of the measurements. By making extensive
use of static cache simulation and reducing code in-
strumentation to simple frequency counting in many
places, this method reduces the execution overhead of
analyzed programs to a factor of 2 on average. In
addition, different cache sizes and resulting hit ratios
have little influence on the overhead. Therefore, one
can conclude that instruction cache analysis via static
cache simulation is a general method to quickly ob-
tain accurate measurements outperforming any other
published methods.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers
— Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] R. Arnold, F. Mueller, D. B. Whalley, and M. Har-
mon. Bounding worst-case instruction cache perfor-
mance. In IEEFE Symposium on Real-Time Systems,
pages 172-181, December 1994.

[3] T. Ball and J. R. Larus. Optimally profiling and trac-
ing programs. In ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages, pages
59-70, January 1992.

[4] M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. In ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 329-338, June 1988.

[5] A. Borg, R. E. Kessler, and D. W. Wall. Generation
and analysis of very long address traces. In Inter-
national Symposium on Computer Architecture, pages
270-279, May 1990.

[6] S. J. Eggers, D. R. Keppel, E. J. Koldinge, and
H. M. Levy. Techniques for efficient inline tracing on
a shared-memory multiprocessor. In SIGMETRICS
Conference on Measurement and Modeling of Com-
puter Systems, pages 37-47, 1990.

[7] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1990.

[8] M. Hill. A case for direct-mapped caches. IEEE Com-
puter, 21(11):25-40, December 1988.

[9] M. Huguet, T. Lang, and Y. Tamir. A block-and-
actions generator as an alternative to a simulator for
collecting architecture measurement. In ACM SIG-
PLAN Symposium on Interpreters and Interpretive
Techniques, pages 1425, June 1987.

[10] J. R. Larus. Abstract execution: A technique for ef-
ficiently tracing programs. Software Practice & FEzxpe-
rience, 13(8):671-685, August 1983.

[11] F. Mueller. Static Cache Simulation and its Applica-
tions. PhD thesis, Dept. of CS, Florida State Univer-
sity, July 1994.

[12] F. Mueller and D. B. Whalley. Efficient on-the-fly
analysis of program behavior and static cache simula-
tion. In B. Le Charlier, editor, Static Analysis Sympo-
stum, volume 864 of Lecture Notes in Computer Sci-
ence, pages 101-115. Springer, September 1994.

[13] F. Mueller and D. B. Whalley. On debugging real-
time applications. In ACM SIGPLAN Workshop on
Language, Compiler, and Tool Support for Real-Time
Systems, June 1994.

[14] B. L. Peuto and L. J. Shustek. An instruction tim-
ing model of CPU performance. In International

Symposium on Computer Architecture, pages 165-178,
March 1977.

[15] D. B. Whalley. Fast instruction cache performance
evaluation using compile-time analysis. In SIGMET-
RICS Conference on Measurement and Modeling of
Computer Systems, pages 13-22, June 1992.

[16] D. B. Whalley. Techniques for fast instruction cache
performance evaluation. Software Practice & Experi-
ence, 19(1):195-203, January 1993.

[17] C. A. Wiecek. A case study of VAX-11 instruction set
usage for compiler execution. In Architectural Support
for Programming Languages and Operating Systems,
pages 177-184, March 1982.

In Proceedings of the 28th Annual Simulation Symposium, April 1995 10

