
E�ectively Exploiting Indirect JumpsGANG-RYUNG UHLucent Technologies, Allentown, PA 18103tel: 610-712-2447, email:uh@lucent.comandDAVID B. WHALLEYDepartment of Computer Science,Florida State University,tel: 850-644-3506, email:whalley@cs.fsu.eduThis paper describes a general code-improving transformation that can coalesce conditional branchesinto an indirect jump from a table. Applying this transformation allows an optimizer to exploitindirect jumps for many other coalescing opportunities besides the translation of multiway branchstatements. First, data
ow analysis is performed to detect a set of coalescent conditional branches,which are often separated by blocks of intervening instructions. Second, several techniques areapplied to reduce the cost of performing an indirect jump operation, often requiring the executionof only two instructions on a SPARC. Finally, the control
ow is restructured using code dupli-cation to replace the set of branches with an indirect jump. Thus, the transformation essentiallyprovides early resolution of conditional branches that may originally have been some distance fromthe point where the indirect jump is inserted. The transformation can be frequently applied withoften signi�cant reductions in the number of instructions executed, total cache work, and execu-tion time. In addition, we show that with branch target bu�er support, indirect jumps improvebranch prediction since they cause fewer mispredictions than the set of branches they replaced.Categories and Subject Descriptors: Programming Languages [Compilers]: Optimization|Lan-guagesGeneral Terms: Compiler, Code improving transformation, MeasurementsKey Words: Indirect jump, branch prediction, branch target bu�er1. INTRODUCTIONMost high-level languages provide multiway branch statements to allow program-mers to write more readable code. The characteristic feature of a multiway state-ment is the ability to select an action based on the value of a control expression.Without performing any optimization, a compiler would translate each case labelof the multiway statement into a conditional branch. Because of the widespreadusage of multiway statements, instruction sets commonly support an indirect jumpfrom a table in order to reduce the cost of such sequences of conditional branches.As a result, compiler front-ends typically generate an indirect jump from a table asone translation alternative1 for multiway statements [Sale 1981; Spuler 1994].This traditional approach for using indirect jumps poses two problems. First,it is di�cult to determine when the indirect jump can be e�ectively used in amachine-independent fashion since an accurate cost-bene�t estimate can only bemade after generating machine code. Second, many code-improving opportunities1The other popular alternatives include linear search, binary search, and hashing.

2 � Gang-Ryung Uh and David Whalleysuitable for the indirect jump may be missed when only considering this operationfor the translation of a multiway statement.This paper describes a general code-improving transformation that exploits indi-rect jumps after code generation. As the instruction issue rate and pipeline depthof processors increase, e�cient handling of branches becomes more vital. Our im-proving transformation reduces the number of branches and mispredictions by coa-lescing several conditional branches into an indirect jump. First, data
ow analysisis performed to detect a set of possibly noncontiguous conditional branches that canbe potentially coalesced into a single indirect jump. Second, control-
ow analysisis used to determine how the control
ow should be restructured to perform thecoalescing. Third, analysis is accomplished to determine how to most e�cientlygenerate the indirect jump operation. The cost of the original branches is alsoestimated and the indirect jump transformation is applied when deemed worth-while. Finally, the original control
ow is modi�ed by duplicating basic blockswhen necessary.1.1 MotivationExploiting indirect jumps after code generation can be quite bene�cial since ad-ditional branches from other control statements besides multiway statements canbe coalesced into a single indirect jump. The examples in this section are givenin C to more concisely depict branches that can be coalesced into indirect jumps.The control
ow of the restructured C code segments would be comparable to arestructured
ow graph of basic blocks with an indirect jump from a table.I. Indirect Jumps with Branches (Figure 1)Consider the Original code segment from ctags (C tag generator). A typical Ccompiler would translate the switch statement into an indirect jump from a tableand would generate a conditional branch for the for statement. Yet, the conditionalbranch comparing *sp with zero would immediately precede the indirect jump. Anoptimizer could recognize this sequence of branches and be able to coalesce the extraconditional branch that compares the variable with zero into the indirect jump.Note that one can view this branch as another case for the switch statement asshown in the Restructured code segment.
 case ’p’:

 ...

 case ’k’:

 ...

 ...

 }

}

 case ’\0’:

 goto out;

 case ’p’:

 ...

 case ’k’:

 ...

}

out:

Original Restructured

for (sp = line; *sp; sp++) { for (sp = line; ; sp++) {

 switch (*sp) { switch (*sp) {

Fig. 1. Code Fragment from UNIX utility ctags

E�ectively Exploiting Indirect Jumps � 3II. Sequence of Contiguous Branches (Figure 2)Other common instances may occur due to programming style. The Original codesegment from grep (pattern search utility) shows a series of if statements comparingthe same variable to di�erent constants. A typical C compiler would translate theseif statements as a sequence of conditional branches. However, the code could havebeen equivalently written as a single switch statement as shown in the Restruc-tured code segment. An optimizer could detect the original sequence of conditionalbranches and could coalesce such contiguous branches into a single indirect jump.Use of multiple macros may also result in several consecutive comparisons beingperformed. Thus, branch coalescing is appealing since performance is less a�ectedby program style (whether or not multiway branches are used).
c = *sp++;

switch (c) {

Restructured

 goto cerror;

Original

if ((c = *sp++) == 0)

case 0: goto cerror;

}

if (c == ’>’) { ... }

if (c == ’(’) { ... }

if (c == ’)’) { ... }

case ’<’: ...

case ’>’: ...

case ’(’: ...

case ’)’: ...

case ’1’: case ’2’: case ’3’:

case ’7’: case ’8’: case ’9’:

if (c == ’<’) { ... }

default: ...

 ...

if (c >= ’1’ && c <= ’9’) { ... }

...

case ’4’: case ’5’: case ’6’:

Fig. 2. Code fragment from UNIX utility grepIII. Set of Contiguous and Noncontiguous Branches (Figure 3)Often there are paths in which intervening instructions exist between branchesthat compare the same variable to constants and these intervening instructionsdo not update this variable. Consider the following Original code segment fromwc (word count utility). A typical C compiler would translate each if statementinto conditional branch(es). At �rst, it may appear that only the sequence ofconditional branches shown in the shaded boxes can be coalesced into an indirectjump. However, the statement charct++; does not a�ect the branch variable c. Anoptimizer could determine the existence of path(s) between branches comparing thesame variable to constants where the variable is una�ected. The optimizer couldmodify the original control
ow by duplicating code to allow the branch for theEOF check to also be coalescent. As shown in the Duplicated code segment, all ofthe branches in the shaded boxes can be e�ectively considered as being contiguousand coalescent for a single indirect jump. The Restructured code segment showsequivalent code written with a switch statement.

4 � Gang-Ryung Uh and David Whalley
for (; ;) {

}

 c = getc(fp)

 if (!token) {

 wordct++;

 token++;

 }

 continue;

 }

 linect++;

 continue;

 if (c == EOF)

 if (c==’\n’)

 c!=’\t’)

 else if (c!=’ ’&&

 if (’ ’<c&&c<0177) {

for (; ;) {

 c = getc(fp)

 if (c == EOF)

 if (’ ’<c&&c<0177) {

 token = 0;

for (; ;) {

 c = getc(fp);

 switch (c) {

 case EOF:

 charct++;

Original Restructured

 break; break;

 charct++;

 }

 else if (c!=’ ’&&

 c!=’\t’) {

 continue;

 }

 charct++;

 linect++;

 }

 charct++;

 if (c==’\n’) {

 if (!token) {

 wordct++;

 token++;

 }

 continue;

 else
 charct++;

 token = 0;
}

 goto out;

Duplicated

 case 0176:

 wordct++;
 token++;

 if (!token){

 }
 continue;

 charct++;

 case ’\n’:

 linect++;
 goto end;

 charct++;

 default:
 continue;

 charct++;

 case ’ ’:

 case ’\t’: charct++;

 }

 end: token = 0;

}

out:

 ...

 case 041:

Fig. 3. Code fragment from UNIX utility wc1.2 Organization of PaperThe paper is organized in the following manner. Section 2 gives a description ofthe compiler that has been used and modi�ed to exploit indirect jumps after codegeneration. Section 3 brie
y describes related compiler optimizations to reduce thecost of conditional branches. In order to detect and replace more branches into asingle indirect jump than would be done in the traditional way, several detection andrestructuring algorithms are introduced in Section 4 that can allow a compiler todetect a set of potentially noncontiguous coalescent conditional branches, which areoften separated by blocks of intervening instructions, and to restructure the control
ow by code duplication when necessary. Section 5 presents several techniquesthat reduce the cost of performing an indirect jump operation, often requiring theexecution of only two instructions on a SPARC. The task of �lling delay slots forindirect jumps is also dealt with in this section. Section 6 shows execution timeresults from performing dual loop tests [Clapp et al. 1986; Altman and Weiderman1987] on SPARCstations to estimate the impact on pipeline stalls when the branchcoalescing transformation was applied as another code improving transformation.Furthermore, the bene�ts of target bu�er support for indirect jumps are discussed inthis section. Various performance measurements are given in Section 7 that justifythe validity of applying the code-improving transformation that is described in thispaper. Section 8 suggests topics for future research. Finally, Section 9 concludesthe paper.

E�ectively Exploiting Indirect Jumps � 52. MODIFICATIONS TO THE COMPILERFigure 4 shows the overall structure of the vpo (Very Portable Optimizer [Benitezand Davidson 1988]) compiler system. The front-end of the compiler, cfe [David-son and Whalley 1989], produces intermediate code from a given C preprocessed�le. The code expander translates the intermediate code into unoptimized lists ofmachine-dependent e�ects, called RTLs (Register Transfer Lists). RTLs have theform of conventional expressions and assignments over the hardware's storage cells.For example, the RTLsIC=r[8]?10; ! SPARC assembly: cmp %l0,10PC=IC:0,L001; ! SPARC assembly: be L001represent two machine instructions, where IC denotes condition code and PC denotesprogram counter, respectively.2The �rst RTL depicts the e�ect of setting a condition code by comparing aregister (r[8]) to constant 10. The second RTL describes the e�ect of transferingthe control to the address L001 when r[8] is equal to 10. While any particularRTL is machine speci�c, the general form of the RTL is machine-independent. Thisallows general machine-independent algorithms to be written that implement codeimproving transformations on machine-dependent code.

ASSEMBLY CODE

Source

 Code

(Register

 Transfer Lists)

C preprocessed

(C Front-End)

Intermediate

Representation
(Very Portable

 Optimizer)

 CFE
 RTLs

 VPO

 Expander
 Code

 SPARCFig. 4. VPCC (Very Portable C Compiler)2These instructions are generated by cfe when translating high level control statements, such asif or if-then-else statements.

6 � Gang-Ryung Uh and David WhalleyAll phases of the back-end of the compiler, vpo (Very Portable Optimizer), manip-ulate RTLs. The RTLs are stored in a data structure that also contains informationabout the order and control
ow of the RTLs within a function. By manipulatingRTLs as the sole intermediate representation, the following bene�ts can be achieved.(1) Most optimizations can be invoked in any order and can be allowed to iterateuntil no further improvement can be found. Therefore, many phase orderingproblems are eliminated.3(2) The e�ect of a modi�cation to the set of RTLs comprising a function is relativelysimple to grasp.4In order to exploit the indirect jump operation the following modi�cations weremade to the compiler. The front-end of the compiler, cfe, was modi�ed to alwaysproduce a linear sequence of conditional branches when translating a C switchstatement instead of sometimes producing an indirect jump.5An additional code-improving transformation phase to coalesce branches into anindirect jump from a table was added to the back-end of the compiler, vpo. Afterbranches were coalesced into an indirect jump in a loop, loop invariant code motionwas reinvoked to move the instructions that calculate the address of the jump tableout of that loop before coalescing branches at an outer loop level. Most compileroptimizers perform these transformations starting with the innermost loops �rst tosecure registers for the most frequently executed code segments. When an indirectjump occurs inside a loop, performing code motion on the loop-invariant instruc-tions for calculating the jump table address requires a register. Thus, as depicted inFigure 5, the authors coalesced branches from the innermost loop outward after allother transformations for a given loop have been initially attempted. Afterwards,branch coalescing was also attempted on the outermost level of an entire function.3. RELATED WORKThere has been some research on other techniques for avoiding conditional branches.Loop unrolling has been used to avoid executions of the conditional branch asso-ciated with a loop termination condition [Davidson and Jinturkar 1996]. Loopunswitching moves a conditional branch with a loop-invariant condition before theloop and duplicates the loop in each of the two destinations of the branch [Allenand Cocke 1971]. Conditional branches have also been avoided by code duplication3In contrast, a more traditional compiler system will perform optimizations on various di�erentrepresentations. For instance, machine-independent transformations are often performed on inter-mediate code and machine-dependent transformations, such as peephole optimizations, are oftenperformed on assembly code.4In contrast, most traditional compiler systems generate code after optimizations. Thus, theoptimizations are actually performed on intermediate code. Since there is typically not a one-to-one mapping between an intermediate code operation and a machine instruction, the e�ect of amodi�cation on the �nal code that will be generated may not be obvious in these systems.5cfe originally translates a C switch statement into one of the following three alternative forms:(1) indirect jump using a jump table,(2) binary search, or(3) linear search.

E�ectively Exploiting Indirect Jumps � 7

 Branch Coalescing

Branch Chaining
Useless Jump Elimination
Dead Code Elimination
Eliminate Unconditional Jumps by Reordering Code
Instruction Selection
Evaluation Order Determination
Global Instruction Selection
Register Assignment
Jump Minimization
Instruction Selection

DO {
 Register Allocation
 Instruction Selection
 Common Subexpression Elimination
 Dead Variable Elimination
 Loop Optimizations:
 Code Motion
 Recurrences
 Loop Strength Reduction
 Induction Variable Elimination
 If (First Pass)

 Useless Jump Elimination
 Cheaper Instruction Replacement

} While (change)

Setup Entry and Exit
Instruction Scheduling
Fill Slots
Useless Jumps

 Instruction Selection

Branch CoalescingFig. 5. Modi�ed vpo[Mueller and Whalley 1995]. This method determines if there are paths where theresult of a conditional branch will be known and duplicates code to avoid executionof the branch. The method of avoiding conditional branches using code duplica-tion has been extended using interprocedural analysis [Bodik et al. 1997]. Finally,sequences of branches have been reordered using pro�le data to reduce the numberof branches executed [Yang et al. 1998].Our approach in this paper is similar to the above techniques in that it improvesperformance despite the penalty of increasing code size. However, there are oftensituations where several branches can be coalesced into a single indirect jump toavoid the execution of branches that these other techniques could not. Our approachessentially provides early resolution of branches that may originally have been somedistance away in the control
ow from the point where the indirect jump is inserted.4. COALESCING A SET OF NONCONTIGUOUS CONDITIONAL BRANCHESSome de�nitions are now presented before describing how a set of branches to becoalesced is found.De�nition 4.0.1. A branch variable is the register or variable associated with aconditional branch that is being compared to a constant.De�nition 4.0.2. A basic block will have an e�ect on a branch variable if the

8 � Gang-Ryung Uh and David Whalleyblock has an instruction that updates the branch variable.De�nition 4.0.3. A conditional branch is considered reachable from a point inthe given control
ow if there exists a path from that point to the conditionalbranch with no e�ect on the branch variable.De�nition 4.0.4. A related set of branches for basic block B are those branchesthat are reachable from B and have the same branch variable as B.The task for coalescing a set of conditional branches into an indirect jump is ac-complished in the following manner. First, a set of coalescent conditional branches,which may or may not have intervening instructions, is identi�ed. Second, a graphfor the projected control
ow is built to coalesce this set of conditional branchesinto an indirect jump. When the transformation is deemed bene�cial, the originalcontrol
ow is tranformed according to the graph by duplicating basic blocks whennecessary.4.1 Finding A Set of Branches to CoalesceIn order to �nd the largest set of coalescent branches, analysis is performed asfollows. For each basic block B, the reachable branches from the exit point of B aredetermined. When B contains a conditional branch, the optimizer calculates thereachable branches that depend on the same branch variable as that of B. We denotesuch branches as being related and denote B as the root block of these branches.After detecting all sets of related branches, the optimizer selects the set with thelargest number of branches. The largest set should be chosen �rst since branchcoalescing requires the allocation of registers.The desired reachability information is collected by calculating the following stateinformation for each basic block B.in[B]: Set of blocks containing a reachable branch from the entry of B.out[B]: Set of blocks containing a reachable branch from the exit of B. Thisincludes the conditional branch in B, if one exists.effect[B]: Set of blocks containing a branch instruction whose branch variableis updated by some instructions in B.The above state information can be calculated with an iterative algorithm de-scribed in Figure 6. When the algorithm terminates, the out[B] of each basicblock B contains the reachable branches from the exit point of B. This algorithm isguaranteed to terminate since, for any given control
ow, (1) there exists a �nitenumber of conditional branches, and (2) the in[B] and out[B] of each block Bmonotonically increase.Applying the iterative algorithm described in Figure 6 to the example control
ow in Figure 7 produces the data
ow information as indicated by Table I. Sinceblock 1 has the largest set of related branches, the compiler will �rst attempt tocoalesce these branches by placing instructions to perform an indirect jump at theroot block 1. However, it is possible that related branch sets of two or more blockshave the same cardinality. In this case the optimizer will choose the block thatdominates the most blocks having branches in the same related set.

E�ectively Exploiting Indirect Jumps � 9DO FOR each basic block B DO/* Calculate out[B] from the successors of B *//* and its own branch */out[B] = NULLFOR each immediate successor block S of B DOout[B] = out[B] [in[S]IF (B contains a branch instruction) THENout[B] = out[B] [fBg/* Calculate in[B] using out[B] */in[B] = out[B] � effect[B]WHILE (any changes)Fig. 6. An Algorithm Calculating Reachable Branches For Each Basic Block

 that is potentially coalesced

F

1.

2.

3.

4.

Exit of the loop

i > 5

F

i > 7

F T

5.

F

i < 10

k > 0

T

F

6.

7.

T

j < 3
9.

F

8.

T

k > 9
T

T

update "j"

update "k"

update "i"

update "i"

update "k"

update "j"

(Light Grey): Block containing the conditional branch

(White): Block containing no conditional branch

(Dark Grey): Block containing the conditional branch

 that won’t be coalescedFig. 7. An Example Control Flow

10 � Gang-Ryung Uh and David WhalleyTable I. Data
ow Information for the Example Control FlowBlock No. effect After The Algorithm Related Branchesin outblock 1 f1,3,6g null f1,3,6g f1,3,6gblock 2 f1,3,6g null f3,6g nullblock 3 f5,7g f3,6g f3,5,6,7g f3,6gblock 4 f9g null f9g nullblock 5 null f5,6,7g f5,6,7g f5,7gblock 6 null f6,7g f6,7g f6gblock 7 f9g f7g f7,9g f7gblock 8 f5,7g null null nullblock 9 null f9g f9g f9g4.2 Projecting the Restructured Control FlowOnce a set of related branches has been selected, the optimizer projects the revisedcontrol
ow to coalesce these branches into a single indirect jump. The restructuredcontrol
ow is calculated by recording states in each block for these related branches.The state associated with each related branch is de�ned to be a set of triples, whereeach triple consists of the following three components,(1) basic block number containing that branch variable,(2) whether the conditional branch will be taken (T) or not taken (F), and(3) the value range of the branch variable to satisfy the condition that is speci�edby the second component.The projected control
ow is calculated in the following manner. For a givenset of related branches and its associated root block, the optimizer propagates thestate (triples) of each related branch backward through the control
ow (towardits root block). When the propagation completes, the optimizer determines thesequence of related branches that would be executed starting from the root block foreach nonoverlapping value range of the branch variable. At this point, cost-bene�tanalysis is performed to determine whether or not coalescing the set of relatedbranches into an indirect jump is worthwhile. If it is deemed bene�cial, then agraph is incrementally built to project the desired restructuring at the root block.If the optimizer determines that there will be no signi�cant code-size increase, thenthe graph will later be used to modify the actual control
ow.Table II. Initial States for Related Branches of Block 1Related Branches Initial States (Triples)related branch in block 1 (1,T,[6..255]), (1,F,[0..5])related branch in block 3 (3,T,[8..255]), (3,F,[0..7])related branch in block 6 (6,T,[0..9]),(6,F,[10..255])As an illustration, consider the example control
ow in Figure 7 with one addi-tional assumption that the branch variable i was detected to contain an unsignedcharacter value [0..255]. For the set of related branches at the root block 1, Ta-ble II shows the initial states associated with these branches. In order to propagatethe triples for branch 6 toward the root block 1, this state information should be

E�ectively Exploiting Indirect Jumps � 11

(a) After Propagating for Branch
 in Block 6

i < 10
(6,T,[0..9])

(6,F,[10..255])

6.
i < 10

(6,T,[0..9])

(6,F,[10..255])

6.

(b) After Propagating for Branches
 in Blocks 1, 3, and 6

update "i"
1.

update "k"
3.

update "i"
1.

update "k"
3.

T [6..255]

T [8..255]

T [6..255]

T [8..255]

(3,F,[0..7])

(3,T,[8..255])

(3,T,[8..255])
(3,F,[6..7])

i > 5

i > 7

i > 5

i > 7

(1,T,[6..255])
(1,F,[0..5])

(6,T,[8..9])

(6,F,[10..255])

(6,T,[8..9])

(6,F,[10..255])

(6,T,[8..9])

(6,F,[10..255])

(6,T,[8..9])

(6,F,[10..255])

(6,T,[0..9])

(6,F,[10..255])

5. (6,T,[0..9])

(6,F,[10..255])

5.
k > 9 k > 9

Fig. 8. Propagating Triples toward Root Block 1propagated through block 3. The transition from block 3 to block 6 can occur onlywhen the value of branch variable i is in the range [8..255]. Similarly, the transitionfrom block 1 to block 3 can occur only when the value of branch variable i is inthe range [6..255]. Therefore, the value ranges of the triples for branch 6 shouldbe properly adjusted during the propagation to re
ect these two transitions. Asshown in Figure 8(a), the value ranges of the triples for branch 6 are intersectedwith [8..255] at block 3, and the adjusted value ranges are intersected with [6..255]at the root block 1. Figure 8(b) illustrates how other triples, associated with branch1 and 3, are propagated. Table III shows the �nal state information available atthe root block 1 after the above value range propagation process completes.Table III. States of Related Branches Associated with Nonoverlapping Value Ranges of i at RootBlock 1 Value Range of i States of Related Branches[0..5] 1,F[6..7] 1,T and 3,F[8..9] 1,T and 3,T and 6,T[10..255] 1,T and 3,T and 6,F4.3 Cost-Bene�t Analysis and Control-Flow RestructuringCost-bene�t analysis is performed to determine at this point whether or not it isbene�cial to coalesce the related branches of the root block into an indirect jump.The optimizer �rst checks if the values being compared are characters (representedin a byte). The optimizer weights the character values according to an estimatedfrequency of common use. For instance, values representing ASCII letters wereassigned a higher weight than values representing control characters. The cost ofexecuting the branches was calculated as a sum of products, where each productwas obtained by multiplying the weights of the characters in each value range andthe number of branches associated with that range. If the optimizer could not

12 � Gang-Ryung Uh and David Whalleydetermine that the comparisons were with characters, then each value was giventhe same weight. The cost of executing the branches is compared to the cost ofperforming the indirect jump, which is described in the next section.If the analysis determines that branch coalescing is worthwhile, then the restruc-turing algorithm shown in Figure 9 will produce a graph to e�ciently represent therevised control
ow to coalesce these related branches into an indirect jump at theroot block. The central idea is that a new node will be added when no current nodefor that block exists with the same states for the related branches. The projectedgraph of the restructured control
ow for Figure 7 is shown in Figure 10. The re-lated branch in root block 1 will be replaced in the restructured code by instructionsto perform an indirect jump. Note that a basic block represented with a dashedbox indicates that the related branch is unnecessary and will not be placed in therestructured code.5. EFFICIENTLY PERFORMING THE INDIRECT JUMP OPERATIONCompiler writers have long considered performing an indirect jump from a jumptable as a very expensive operation. The tasks associated with performing anindirect jump includes the following:(1) checking if the value being compared is within a bounded range,(2) calculating the address of the jump table,(3) calculating the o�set used to index into the table,(4) loading the target address from the table, and(5) performing the indirect jump.The number of instructions required to perform an indirect jump from a jumptable can vary depending upon a number of factors. For the C switch statementshown in Figure 11(a), Figure 11(b) depicts SPARC instructions represented asRTLs that are used to implement a corresponding indirect jump (disregarding theinstruction in the delay slot of the indirect jump).6 Similar instructions are avail-able on most RISC machines. It would appear that at least 5 pairs of conditionalbranches must be executed to make coalescing branches into an indirect jump op-eration worthwhile on the SPARC since 8 instructions are used to implement anindirect jump.By statically analyzing the code surrounding an indirect jump operation, theoptimizer can signi�cantly reduce the cost of performing an indirect jump. Manyoptimizers can detect that instructions 4 and 5 in Figure 11(b) are loop invariantand therefore can move these instructions out of a loop. The authors implementedtechniques that often avoid the execution of instructions 1-3 and 6 in Figure 11(b)as well.5.1 Padding the Front of the TableInstructions 1-3 in Figure 11(b) are used to check if the expression is in the range ofpossible case values. Instruction 1 can be avoided when the lowest case value is pos-itive and relatively close to zero. The jump table can be padded with the addresses6These SPARC instructions are generated by the pcc [Johnson 1979], gcc [Stallman 1990], andvpcc [Benitez and Davidson 1988] compilers.

E�ectively Exploiting Indirect Jumps � 13PROCEDURE Build_Graph_From_Root(root_node,root_block){ root_node = NewNode(NULL,root_block,NULL);FOR each non-overlapping value range VRANGE ofthe branch variable DO {current_states = related branch states associated with VRANGE;IF (current_states indicate related branch in root_block is taken)Build_Graph(root_node,root_block->taken,current_states,root_block);ELSEBuild_Graph(root_node,root_block->not_taken,current_states,root_block);}}PROCEDURE Build_Graph(pred_node,successor_block,current_states,root_block){ /* Do not allow a cycle back to root block */IF (successor_block == root_block)RETURN;/* Calculate new states */new_states = intersection between current_states and relatedbranch states associated with successor block;IF (successor_block with new_states alreadyexists in the graph) {Connect pred_node to the existing node;RETURN;}/* Create a new node for successor block andappend it to pred node */new_node = NewNode(pred_node,successor_block,new_states);IF (successor_block contains related branch) {Mark new_node that the branch can be eliminated;IF (new_states indicate that successor of new node will bethe branch target)Build_Graph(new_node,successor_block->taken, new_states,root_block);ELSEBuild_Graph(new_node,successor_block->not_taken,new_states,root_block);}ELSEFOR each immediate successor block SUCC of successor_block DO {Build_Graph(new_node,SUCC,new_states,root_block);}} Fig. 9. Restructuring Algorithm

14 � Gang-Ryung Uh and David Whalley
[6..7]
1T,3F

[8..9]
1T,3T,6T

 2

[0..5]
1F

[10..255]
1T,3T,6F

1

3b 3T,6T

5a 6T

 6T6a

3c 3T,6F

5b 6F

 6F6b

3a 3F

3

4 5

6

7

8

9

Exit of the loop

Go back to the Block 1Fig. 10. Graph Representing Restructured Control Flow for Figure 2
(a) (b)

r[8]=r[8]-97;

IC=r[8]?4;

PC=ICh0,L27;

r[20]=HI[L01];

r[20]=r[20]|LO[L01];

r[8]=r[8]<<2;

r[8]=M[r[8]+r[20]];

PC=r[8];

L01:

.WORD L22

.WORD L23

.WORD L24

.WORD L25

.WORD L26

L27:

switch (c) {

 case ’a’:

 ...

 case ’b’:

 ...

 case ’c’:

 ...

 case ’d’:
 ...

 case ’e’:

 ...

 default:
 ...

}

1. Subtract the lowest case value
2. Compare with (highest-lowest)
3. Perform unsigned > branch to

 ensure the value is within range
 (L27 is the default address)
4. Get High portion of address of
 jump table
5. Get Low portion of the address
6. Align value on a word boundary
 so can index into jump table
7. Load target destination out of
 jump table
8. Perform an indirect jump

Target address for case ’a’
Target address for case ’b’
Target address for case ’c’
Target address for case ’d’
Target address for case ’e’Fig. 11. RTLs to Perform an Indirect Jump from a Jump Table

E�ectively Exploiting Indirect Jumps � 15corresponding to the default target. This technique is illustrated in Figure 12,which contains the instructions of Figure 11(b) with the modi�cations resultingfrom padding the front of the jump table. Instruction 2 in Figure 12 uses thehighest case value in the comparison when padding is applied. Note also that in-structions 4 and 5 in Figure 11(b) were removed in Figure 12 since it was assumedthey are loop invariant for this example.IC=r[8]?103; # 2. Compare with (highest-lowest)PC=ICh0,L27; # 3. Perform unsigned > branch toensure the value is within range(L27 is the default address)r[8]=r[8]<<2; # 6. Align value on a word boundaryso can index into jump tabler[8]=M[r[8]+r[20]]; # 7. Load target destination out ofjump tablePC=r[8]; # 8. Perform an indirect jumpL01:.word L27 # Target Address for 0.word L27 # Target Address for 1...word L27 # Target Address for 96 ('a'-1).word L22 # Target Address for 'a'.word L23 # Target Address for 'b'.word L24 # Target Address for 'c'.word L25 # Target Address for 'd'.word L26 # Target Address for 'e'L27: Fig. 12. RTLs after Padding the Front of the Table5.2 Using Value-Range Analysis to Avoid the Initial Range CheckThe initial range check (instructions 1-3 in Figure 11(b)) can be completely avoidedif a bounded range of case values is known and an entry can be stored in the tablefor each value [Spuler 1994]. Assume that the value range of the variable c inFigure 11(a) is [0..255]. The indirect jump operation associated with the knownvalue range of the branch variable is depicted in Figure 13.7Once a set of related branches has been selected, the optimizer vpo uses demand-driven analysis to recursively search all the possible paths backward from the rootblock to determine if the range of case values is bounded. In the following sub-sections, a general algorithm for such range determination is depicted, and severalcases that can be handled by the algorithm are illustrated.7Note that 256 targets are listed in the table. Often this space is reduced by a factor of four asdescribed in the next section.

16 � Gang-Ryung Uh and David Whalleyr[8]=r[8]<<2; # 6. Align value on a word boundaryso can index into jump tabler[8]=M[r[8]+r[20]]; # 7. Load target destination out ofjump tablePC=r[8]; # 8. Perform an indirect jumpL01:.word L27 # Target Address for 0.word L27 # Target Address for 1...word L27 # Target Address for 96 ('a'-1).word L22 # Target Address for 'a'.word L23 # Target Address for 'b'.word L24 # Target Address for 'c'.word L25 # Target Address for 'd'.word L26 # Target Address for 'e'.word L27 # Target Address for 102 ('e'+1).word L27 # Target Address for 103...word L27 # Target Address for 255L27: Fig. 13. SPARC Instructions with a Bounded Range of Values5.2.1 General Algorithm to Determine Bounded Value Ranges:A general algorithm for determining if the range of case values is bounded isshown in Figure 14. The essence of this algorithm is as follows.(1) Expand a branch variable using previous e�ects on the variable by recursivelysearching all the possible paths backward from the root block.(2) Whenever an expansion occurs, parse and evaluate the expanded expression todetermine whether or not the range of case values can be determined.The algorithm returns a state with a detected range of case values if one of thefollowing conditions exists.|bounded: The value ranges of a branch variable can be enumerated in a jumptable.|unbounded: The value ranges of the branch variable cannot be enumerated ina jump table.|duplicated: The value ranges of the branch variable can be enumerated in acertain execution path. This state provides an extra opportunity for the optimizerto perform an indirect jump more e�ciently in the bounded execution path byduplicating some blocks of instructions.5.3 Analyzing E�ectsFor a given root block, a bounded value range of the branch variable can oftenbe determined by examining each e�ect backward from the root. Consider the Ccode depicted in the left column of Figure 15 with an assumption that the block

E�ectively Exploiting Indirect Jumps � 17PROCEDURE Bounded_Path(RTL_pointer, Register){ current_block = basic block containing RTL_pointer.expanded_expr = Register.Value_Range_State = None.Set_of_value_range = NULL.Set_of_duplicated_block = NULL./* Expand and evaluate expanded expr within current blockIf the expanded expr is determined to be BOUNDED, addthe bounded value range to Set of value range and return */WHILE (RTL_pointer = previous_rtl(RTL_pointer)) {Expand_and_Evaluate(RTL_pointer, expanded_expr,Set_of_value_range,Value_Range_State).IF (expanded_expr is either BOUNDED or UNBOUNDED)RETURN Value_Range_State./* Alias e�ect such as r[9]=r[8] */ELSE IF (expanded_expr == Register &&RTL_pointer points to the instructionthat assigns Register to New_Register)expanded_expr = Register = New_Register.}/* Neither BOUNDED nor UNBOUNDED state can be determined byevaluating expanded expr. Expand and evaluate the expressionby recursively looking back all predecessor blocks */FOR each predecessor block of current_block DO {temp_expr = expanded_expr.Recursively expand and evaluate temp_expr starting fromthe predecessor until temp_expr is determined to beeither BOUNDED or UNBOUNDED.IF (temp_expr is determined to be BOUNDED)Add the associated value range to Set_of_value_range.}IF (Value_Range_State is both BOUNDED and UNBOUNDED &&there exists a single execution path along whichthe value range is BOUNDED) {Calculate Set_of_duplicated_block by taking intersectionamong sets of blocks along all possible executionpaths to the root block.RETURN REPLICATED.}ELSE IF (Value_Range_State == BOUNDED)RETURN BOUNDED.ELSERETURN UNBOUNDED.} Fig. 14. Detection Algorithm for Bounded Value Ranges

18 � Gang-Ryung Uh and David Whalleycontaining the condition \c == a" has been selected as the root. The boundedvalue range of the condition variable c was detected by expanding register r[8],which contains the temporary value of c, with previous e�ects on that register. Theright column of Figure 15 depicts the RTLs when the branch coalescing analysiswas about to be performed. The expansion of r[8] was accomplished as follow.1. r[8] # register containing values of 'c'2. r[8]}24 # instruction 2: right shift('}') by 24 bits3. (b[16]{24)}24 # instruction 1: left shift('{') by 24 bitsAfter the above expansion, the value range of r[8] was determined as bounded tothe interval [-128..127], since the resulted e�ect from 24 bit left-shift followed by24 bit right-shift is to mask the signed 8 bit value from r[8]. In a similar manner,the value range of a branch variable is determined as bounded to [0..255] when thevariable can be expanded as the e�ect of unsigned byte load or conversion to anunsigned character value. Some other useful bounds were obtainable from the Cmask operation, '&'.Example C source RTLs
char c;...if (c == 'a')A();else if (c == 'b')B();else if (c == 'c')C();...

r[8]=b[16]{24; # 1. sll %l0,24,%o0r[8]=r[8]}24; # 2. sra %o0,24,%o0...# Block for c == 'a'...IC=r[8]?97; # 3. cmp %o0,97PC=IC!0,L18; # 4. bne L18# Block for A()...# Block for c == 'b'L18:IC=r[8]?98; # 5. cmp %o0,98PC=IC!0,L22; # 6. bne L22# Block for B()...# Block for c == 'c'L22:IC=r[8]?99; # 7. cmp %o0,99PC=IC!0,L25; # 8. bne L25# Block for C()...Fig. 15. Example Case for Bounding Value Range5.4 Analyzing E�ects for All Possible PathsFor a given root block, a bounded value range of the branch variable was oftendetermined by recursively searching all the possible paths backward from the root.Consider the C code segment shown in Figure 16 with an assumption that theblock containing the condition \flag == 0" has been selected as the root. Thevalue range of the variable flag was determined by recursively searching all thepossible paths backward from the root block. The optimizer determines that the

E�ectively Exploiting Indirect Jumps � 19value of flag is bounded by the interval [0..4], since the value of flag is set to acertain constant in that interval for every possible path reaching the root.
...

switch (*s) {

case ’f’: case ’e’: case ’g’:

 break;

case ’d’:

 ...

 break;

case ’o’: case ’x’:

 break;

case ’s’:

 break;

default:

 break;

}

 ...

}

...

 flag = 1;

 flag = 2;

 flag = 4;

 flag = 0;

if (flag == 0) {

int flag;

 flag = *(s-1) == ’1’ ? 2 : 3;

Fig. 16. Code Segment from format() in awk5.5 Code Duplication for Bounded Value Range PathOften a path of blocks is detected where the range of values is bounded and one ormore paths are detected where the range is unbounded. Code is duplicated whendeemed worthwhile to allow coalescing of branches to occur on the path with thebounded range. For example, Figure 17(a) shows a C code segment in wc, and thee�ects of the C statements in the shaded area are represented as RTLs with thecontrol
ow in Figure 17(b). The reaching algorithm in Figure 6 determined block20 as the most bene�cial root block. Note that the conditional branches in block20 and block 24 were considered to be related since r[10] is an alias of r[8] by theRTL r[10]=r[8].Blocks 17 to 19 contain RTLs generated from invoking the getc() macro. Block18 contains an RTL (r[8]=B[r[9]]&255;) that loads an unsigned character froma bu�er and bounds the range of values from 0..255. Block 19 contains a callto filbuf, which results in the value associated with r[10] being unboundedsince no interprocedural analysis was performed. The optimizer recursively searchesbackwards and �nds that blocks 20 and 18 are within a path back to the point

20 � Gang-Ryung Uh and David Whalleywhere the range of values is bounded. Likewise, the compiler �nds that blocks 20and 19 are within a path where the range of values is unbounded. The intersectionbetween the blocks in a bounded path and the blocks within any unbounded pathsresults in the block(s) that must be duplicated to distinguish the bounded path.Figures 17(c) shows the RTLs with the modi�ed control
ow after duplication ofthe block 20 and coalescing of the set of related branches. Coalescing can occurat the duplicated root (block 20') without an initial range check since the range ofvalues is now bounded. Limits were placed on the amount of code allowed to beduplicated to prevent large code size increases.
(a)

for (;;) {
 c = getc(fp);
 if (c == EOF)
 break;
 charct++;

 if (’ ’ < c &&

 c < 0177) {

 PC=IC<=0,L66;

 ...

 IC=r[10]?32;

(b)

 ...

 ...

 r[9]=R[r[16]+4];

 r[10]=r[9]+1;

 R[r[16]+4]=r[10];

 r[8]=B[r[9]]&255;

 PC=L64;

 r[8]=r[16];

 CALL _filbuf();

 L64:

 r[10]=r[8];

 IC=r[8]?-1;

 PC=IC!0,L65;

 ...

 ...

 ...

(c)

 ...

 ...

 ...

! block 24

! block 20

! block 19

! block 17! block 17

! block 18

! block 19

! block 20

! block 24

! block 18 (no unconditional jump)
 r[9]=R[r[16]+4];

 r[10]=r[9]+1;

 R[r[16]+4]=r[10];

 r[8]=B[r[9]]&255;

 r[10]=r[10]<<2;

 r[10]=M[r[10]+r[20]];

 PC=r[10];

 r[10]=r[8];

! block 20’ (duplicated block)

 Duplicated Block = block 20

 Bounded Path = block 18,

 block 20

 Unbounded Path = block 19,

 block 20Fig. 17. Using Duplication to Distinguish Paths for Coalescing

E�ectively Exploiting Indirect Jumps � 215.6 E�ciently Indexing into the Jump TableInstruction 6 in Figure 13 left shifts the value by 2 since each element of the jumptable contains a complete target address requiring 4 bytes. Consider tables contain-ing byte displacements instead of complete word addresses. For instance, Figure 18shows how the code in Figure 13 can be transformed to use byte displacements.There are two advantages for using byte displacements. First, the left shift willno longer be necessary. Second, the table only requires one fourth the amount ofspace. Thus, a jump table for a value range associated with a character can becompressed from 256 to 64 words.# r[20] is the jump table address (L01)# r[22] is the base address (L02) for the displacementr[8]=M[r[8]+r[20]]; # 7. Load target destination out of jump tablePC=r[8]+r[22]; # 8. Perform an indirect jump.seg ``data''L01:.byte L27-L02 # Target Address for 0.byte L27-L02 # Target Address for 1...byte L27-L02 # Target Address for 96 ('a'-1).byte L22-L02 # Target Address for 'a'.byte L23-L02 # Target Address for 'b'.byte L24-L02 # Target Address for 'c'.byte L25-L02 # Target Address for 'd'.byte L26-L02 # Target Address for 'e'.byte L27-L02 # Target Address for 102 ('e'+1).byte L27-L02 # Target Address for 103...byte L27-L02 # Target Address for 255.align 4.seg ``text''L27: Fig. 18. SPARC Instructions with Byte Displacements in the Jump TableThe disadvantages include requiring an additional register to calculate the baseaddress for the displacements and not always having displacements small enough to�t within a byte. There are two approaches that were used to help ensure that thedisplacements are not too large. First, a label for the base of the displacements wasplaced at the instruction that was the midpoint between the �rst and last indirectjump targets. The jump table is always placed in the data segment so it will notcause the distance between indirect jump targets to be increased. Note this requiresthe calculation of the addresses of two labels (the one at the beginning of the jumptable and the one used for the base address of the displacements). Before applying

22 � Gang-Ryung Uh and David Whalleythis approach, the compiler �rst ensures that the indirect jump would be in a loopand registers are available to move the calculation of both addresses out of the loop.Second, the targets of the indirect jump may be moved to reduce the distancebetween targets. The instructions within a program may be divided into relocatablesegments. Each segment starts with a basic block that is not fallen into from anotherblock and ends with a block containing an unconditional transfer of control. Anexample of relocatable code segments is given in Figure 19. Assume each of thelabels in the �gure are potential targets of one indirect jump. There are three wayssegments can be moved to reduce the distance between targets.(1) A segment that does not contain any targets for a speci�c indirect jump canbe moved when it is between segments containing such targets. For example,segment D can be moved to follow segment A since both segments contain notargets for the indirect jump.(2) The segment containing the most instructions preceding the �rst target label ina segment can be moved so it will be the �rst segment containing targets. Forexample, segment C has blocks of instructions preceding the block containingits �rst target label (L2). By moving segment C to follow segment D, theseinstructions preceding L2 will be outside the indirect jump target range.(3) Likewise, the segment containing the most instructions following the last targetlabel in its own segment can be moved so it will be the last positional segmentcontaining targets. For example, segment B has the most instructions followingits last target label (L1) and is moved to follow segment E. Jump tables areonly converted to tables containing byte displacements when all targets of theindirect jump will be within the range of a byte displacement after relocatingsegments of code.5.7 Filling Delay Slots for Indirect JumpsThe optimizer vpo previous to this work only �lled delay slots of indirect jumps withinstructions that precede the jump. This approach was reasonable since indirectjumps with tables occurred infrequently and �lling the delay slot from one of severaltargets is more complicated than �lling the delay slot of a branch instruction. Afterimplementing the transformation to coalesce branches, indirect jumps occurredmuch more frequently. The compiler has been modi�ed to �ll the delay slot ofan indirect jump with an instruction from one of the targets if it could not be �lledwith an instruction that preceded the jump. An instruction from a target blockcould only be used to �ll the delay slot if it did not a�ect any of the live variablesor registers entering any of the other target blocks.Filling a slot for an indirect jump is less advantageous than that for a conditionalbranch (or unconditional jump) since more targets are associated with an indirectjump. Therefore, the optimizer vpo tried the following method to usefully �ll slotsfor indirect jumps. Since each target of an indirect jump has been associated withcertain range(s) of case values, the probability of the transition from an indirectjump to a certain target can be statically estimated. The optimizer vpo ranks theindirect jump targets based upon such estimation, and attempts to �ll its slot withthe instruction from the most probable target.

E�ectively Exploiting Indirect Jumps � 23
target range

Before After

L2
L3

A

B

C

D

F

E

A

D

C

E

B

F

jump

target range

L1

L3

jump

jump

jump

jump

jump

jump

jump

jump

jump

L1

L2

Fig. 19. Relocating Segments of CodeWhen a set of branches that are originally separated by some intervening instruc-tions is selected for branch coalescing, the actual transformation is accomplishedby duplicating these intervening instructions. In such a case, the usefulness of �ll-ing slots for indirect jumps can be signi�cantly improved. For example, considerthe following C code in Figure 20(a). The detection and restructuring algorithmsin Chapter 4 allow the optimizer to detect all the branches in the shaded area ascoalescent and transform these branches into an indirect jump by duplicating thee�ects of wd++ to several destinations of the coalescent branches. The restructuredcode in Figure 20(b) shows the comparable C code after the transformation.After coalescing with code duplication, most of targets of the indirect jump haveidentical e�ects of wd++ as depicted in Figure 20(b). Thus, the code duplicationfrom branch coalescing potentially provides extra opportunities to �ll the delayslot of the indirect jump with a useful instruction. However, there is one morecomplication that should be resolved for successfully �lling an instruction of wd++for the delay slot of the indirect jump. The RTLs shown in Figure 21(a) depict therestructured code after branch coalescing transformation occurs for the example Ccode. Note that hardware register r[24] contains the temporary value of wd. Itappears that r[24]=r[24]+1 cannot be �lled for the delay slot, since r[24] is bothset and referenced among targets of the indirect jump. However, r[24]=r[24]+1can be �lled for the following reasons:|r[24]=r[24]+1 has no dependency with other instructions within the indirectjump target block containing the same instruction.|r[24]=r[24]+1 has no set-and-reference con
ict when the analysis is performed

24 � Gang-Ryung Uh and David Whalley

}

(a) Original Code (b) Restructured Code

 after Duplicating "wd++"

 wd++;

 wd++;

 wd++;

 wd++;

while (*wd)

 switch (*wd++) {

 case ’l’:

 ipr(linect);

 break;

 case ’w’:

 ipr(wordct);

 break;

 case ’c’:

 ipr(charct);

 break;

 }

again:

switch (*wd) {

case ’\0’:

case ’l’:

 break;

 ipr(linect);

 goto again;

case ’w’:

 ipr(wordct);

 goto again;

 ipr(charct);

 goto again;

case ’c’:

default:

 goto again;Fig. 20. Code Segment from wcp() in wcby considering the targets containing that instruction as one conceptual target.In order to �ll such an indirect jump delay slot as described in the situationabove, the following extra steps were added to vpo.(1) For each target of the indirect jump, evaluate the probability that the targetmay be taken using the associated case values in the jump table. When therange of case values is bound to values representing ASCII letters, the prob-ability is further weighted using estimated character frequency distribution ofcommon use.(2) Sort the indirect jump targets based on the evaluated probabilities.(3) Starting from the most probable jump target to the least, make a list of allthe instructions that can be potentially �lled for the indirect jump withoutconsidering e�ects from other jump targets. Whenever an identical instructionis found in an other target block, add the associated probability to that of theinstruction.(a) If an instruction does not exist in the list, then insert the RTL with itsassociated block address and probability.(b) else (the same RTL already found on other target block), add the associatedprobability to that of the existing RTL in the list and add the associatedblock address to the block address list of the existing RTL.(4) Starting from the most probable instruction, determine if this instruction setsany variables or registers that could be live when entering any of the targetblocks that do not have this instruction. If there is no con
ict, then �ll thedelay slot with this instruction and delete it from the appropriate target blocks.

E�ectively Exploiting Indirect Jumps � 25

NL=RS[];

r[8]=(B[r[24]]{24)}24;

r[9]=(B[r8]+r[20]]{24)}24;

PC=r[9]+r[21];

.byte L0019-L0017

...

L0020:

.byte L82-L0017

...

.byte L0016-L0017

...

.byte L0017-L0017

...

.byte L0018-L0017

...

.align 4

.seg "text"

L0019:

L0018:

L0017:

L0016:

L82:

PC=RT;

PC=L83;

r[8]=r[26];

PC=L87;

r[8]=r[25];

! filled for the indirect jump

! filled for the indirect jump

! filled for the indirect jump

! filled for the indirect jump

(a) Before filling delay

 slot for indirect jump

(b) After filling delay

 slot for indirect jump

r[8]=(B[r[24]]{24)}24;

r[9]=(B[r8]+r[20]]{24)}24;

PC=r[9]+r[21];

.seg "data"

.byte L0019-L0017

...

L0020:

.byte L82-L0017

...

.byte L0016-L0017

...

.byte L0017-L0017

...

.byte L0018-L0017

...

.align 4

.seg "text"

L0019:

L0018:

L0017:

L0016:

L82:

PC=RT;

PC=L83;

r[8]=r[26];

PC=L87;

r[8]=r[25];

r[24]=r[24]+1;

r[24]=r[24]+1;

r[24]=r[24]+1;

r[24]=r[24]+1;

.seg "data"

delay slot r[24]=r[24]+1;

NL=RS[];Fig. 21. RTLs after Filling Delay Slot of the Indirect Jump for Example C Code in Figure 6.10(a)

26 � Gang-Ryung Uh and David Whalley6. OTHER ARCHITECTURAL ISSUES FOR COALESCING BRANCHESThe cost of performing an indirect jump from a jump table can vary on di�erentmachines. Not only can the number of instructions required to perform this opera-tion vary, but indirect jump instructions (as well as conditional branches) can alsoresult in pipeline stalls on many machines.6.1 Dual Loop TestTo realistically estimate the pipeline impact on RISC architectures from replacingseveral conditional branches into an indirect jump, a dual loop test [Clapp et al.1986; Altman and Weiderman 1987] has been conducted on a SPARCstation-IPC,SPARCstation-5, SPARCstation-20, and UltraSPARCstation-1.|First, an optimized executable with a linear sequence of branches and with anindirect jump from a table, were generated for the C code shown in Figure 23.Let Elinear and Eindirect denote such executables, respectively. Note that Elinearrequires the execution of 2.5 branches on average for each loop iteration. Notethat Eindirect has been generated such that all the conditions in the loop bodyhave been coalesced into an indirect jump operation requiring only two SPARCinstructions as shown in Figure 18.|Second, the authors ran each executable 20 times, and chose the shortest execu-tion time for each executable. Let �Eloop , �Ebranches , and �Eindirect represent suchshortest execution times respectively. (�Elinear - �Eloop) gives a relative estimateof the total time required to execute the the conditional branches over all itera-tions. (�Eindirect - �Eloop) gives a relative estimate of the time that is required toperform an indirect jump operation as shown in Figure 18, over all iterations.|Finally, by varying the number of conditions in the loop, the relative impact ofconditional branches versus an indirect jump has been measured as shown inTable IV. Table IV. Dual-Loop Test (10,000,000 iterations)Machine Type Loop Cost Linear Search Indirect Jump2.5 br 4.5 br 8.5 br 2.5 br 4.5 br 8.5 brSPARCstation-IPC 3.65s 3.82s 5.53s 8.82s 2.61s 2.71s 2.76sSPARCstation-5 0.88s 1.03s 1.65s 2.74s 0.63s 0.76s 0.76sSPARCstation-20 0.51s 0.93s 1.60s 2.65s 0.87s 0.93s 0.93sUltraSPARC-1 0.40s 0.50s 1.16s 1.56 1.50s 1.51s 1.51sFrom the dual loop test as described above, the authors found that an indi-rect jump as depicted in Figure 11(c) required about the same execution time astwo pairs of compare and branch instructions for most SPARCstations except theUltraSPARC-1. Therefore, the indirect jump transformation is only applied whenit is estimated that more than two coalescent branches in the set will on averagebe executed. For the UltraSPARC-1, an indirect jump as depicted in Figure 11required about the same execution time as eight pairs of compare and branch in-structions. The major reason is that the UltraSPARC-1 (a Superscalar architecture)provides the hardware branch target/prediction bu�er support for branches, but no

E�ectively Exploiting Indirect Jumps � 27int i;main(){ long int j, k, l;struct timeval before,after;gettimeofday(&before, (struct timezone *)NULL);k = 0;l = 0;for (j=0; j<10000000; j++) {i = j & 3;}gettimeofday(&after, (struct timezone *)NULL);after.tv_sec -= before.tv_sec;after.tv_usec -= before.tv_usec;if (after.tv_usec < 0)after.tv_usec--, after.tv_usec += 1000000;......printf(``The elapsed time: %9ld.%02ld\n'',after.tv_sec, after.tv_usec/10000);}Fig. 22. Code to Measure the Execution Time for Loop Overheadhardware support for indirect jumps. In the following section, the authors arguethat, with a comparable hardware branch prediction/target bu�er support, suchunbalanced execution time discrepency can be eliminated.6.2 Branch Target Bu�er (BTB) Support for Branches and Indirect JumpsOne characteristic feature of RISC machines is pipelining. Pipelining divides theexecution of each instruction into several stages. Di�erent stages can be overlappedin execution to increase processor throughput. However, there are several obstaclesthat limit the full exploitation of pipelining. One of the most serious obstaclesis branch instructions. If the current instruction turns out to be a branch, thenthe CPU should predict in advance whether or not the branch is taken and whatthe target address will be in order to preserve a steady
ow through the pipeline.However, the execution path of a branch cannot be easily resolved in advance.Thus, branches typically cause delays in the pipeline [Wall 1991; Perleberg andSmith 1993; Chang et al. 1997; Hennessy and Patterson 1996].A Branch Target Bu�er (BTB) can reduce these pipeline disruptions by predict-ing the path of the branch and caching information used by the branch. Variouspieces of information can be kept in the BTB, including tags associated with thebranch address, the branch target address, and branch prediction information [Per-leberg and Smith 1993]. However, it has been reported that BTB-based predictionschemes perform poorly for indirect jumps, since the target of an indirect jump canchange with every dynamic instance of that branch [Chang et al. 1997; Wall 1991].

28 � Gang-Ryung Uh and David Whalley...gettimeofday(&before, (struct timezone *)NULL);k = 0;l = 0;for (j=0; j<10000000; j++) {i = j & 3;/* 2.5 DYNAMIC NUMBER OF BRANCHES */if (i == 0) {k = k + 4;l = 4;}else if (i == 1) {k = k + 1;l = 1;}else if (i == 2) {k = k + 2;l = 2;}else if (i == 3) {k = k - 3;l = 3;}}gettimeofday(&after, (struct timezone *)NULL);...printf(``The elapsed time: %9ld.%02ld\n'',after.tv_sec, after.tv_usec/10000);}Fig. 23. Code to Measuring the Execution Time for Loop Overhead and Loop BodyIn fact, some compilers provide techniques that insert extra conditional branchesthat check for likely targets to avoid the execution of indirect jumps from a table[Holler 1996] or indirect calls [Calder and Grunwald 1994].Most modern architectures seldom support indirect jumps with a BTB due topoor misprediction ratios for indirect jumps. However, consider the results shownin Table IV. An UltraSPARC-1 could execute about eight pairs of compare andbranch instructions in the time required to perform an indirect jump operation. Onereason for the lower relative performance for indirect jumps on the UltraSPARC-1was that this machine uses a BTB to provide architectural support for branches.There was no target bu�er support on the UltraSPARC-1 for indirect jumps, whichresulted in all indirect jumps being treated as mispredictions.In the following sections, the authors claim that, with comparable BTB supportfor indirect jumps, the branch coalescing transformation can be bene�cial in re-ducing the total number of dynamic branch mispredictions.8 First, a conceptualdesign of BTBs is proposed that can provide comparable target bu�er support forindirect jumps. Second, various branch prediction approaches will be described.Using more sophisticated branch prediction approaches as well as increasing thenumber of entries in BTBs is known to improve BTB performance [Perleberg andSmith 1993]. Third, issues will be presented about how to manage BTBs thatsupport branches and indirect jumps. Finally, with comparable BTB support for8We are not aware of any machines that use this exact model of BTB support for indirect jumps.

E�ectively Exploiting Indirect Jumps � 29indirect jumps, the authors will provide arguments describing why the total numberof branch mispredictions can be reduced by the branch coalescing transformation.In addition, another compiler technique will be introduced that can potentiallyreduce the number of dynamic indirect jump mispredictions.6.2.1 A Conceptual BTB Supporting Branches and Indirect Jumps:Branch Target bu�ers are available to reduce the cost of indirect jumps on somemachines. These bu�ers are typically specialized to support indirect jumps gener-ated from return statements since indirect jumps from tables are not generated fre-quently by most compilers [Hennessy and Patterson 1996](see page 276). However,BTBs can be easily extended to support indirect jumps from tables by consideringan indirect jump as another PC-relative branch instruction [Hennessy and Patter-son 1996](see page 274). For instance, Figure 24 shows one conceptual view of aBTB, which, like a cache, can have several alternative designs. If the appropriatetag is not found in the bu�er, then the hardware predicts that the branch willnot be taken. If the appropriate tag is found in the bu�er and a branch predictorindicates the branch as taken, then the hardware predicts that the branch will betaken. Otherwise, the branch is predicted as not taken.
Number of

entries

in branch-

target

buffer.

Tag look up

PC of instruction to fetch

 =
No

Yes

Instruction is not predicted to

be a branch. Proceed normally.

Instruction is a branch and the predicted

PC should be used as the next PC.

...

Predicted PC

..

Branch PredictorValid bit

Fig. 24. A Branch Target Bu�er6.2.2 Branch Predictors:The n-bit predictor scheme predicts the outcome of the branch using 2n statediagram. When n is equal to one, the predictor predicts the next execution pathof a branch based upon the previous outcome of the branch. This predictor hasa performance drawback such that, when a loop branch is almost taken, the samebranch will likely be predicted incorrectly twice, rather than once. As an illustra-tion for such a mispredicted branch, consider the example code fragment shown inFigure 25. Assume that one-bit prediction information is in the BTB for branch

30 � Gang-Ryung Uh and David Whalleyi = 1;while (i < 10) { /* branch 1 */j = 1;while (j < 10) { /* branch 2 */...j++;}i++;}... Fig. 25. An Example for a Mispredicted Branch2. Mispredicting the tenth iteration of branch 2 is inevitable since one-bit predic-tion information indicates that branch 2 will be taken. However, when branch 2is accessed again after entering the inner loop for the second time, branch 2 willbe mispredicted as not taken. Thus, the prediction accuracy for branch 2 that istaken in 90% of the iterations turns out to be only 80%.In order to remedy this, two-bit predictor are often used. Consider the two-bit state diagram shown in Figure 26. By having intermediate branch predictionstates, such as State 1 and State 2, the above performance shortcoming of one-bit predictor can be resolved. The two-bit predictor approach has been reportedto do almost as well as the more general n-bit predictors [Hennessy and Patterson1996](see page 263), and most machines rely on the two-bit predictor instead of themore general n-bit predictor.
Not taken

Taken

Taken Not taken

Taken

Not taken

Taken

Not taken

Predict not taken

Predict taken Predict taken

Predict not taken

State 3 State 2

State 1 State 0

Fig. 26. The states in a two-bit predicton schemeIn many cases, the execution path of a branch can be easily determined by ob-serving the outcomes of the previous branch executions [Pan et al. 1992]. Considerthe code fragment in Figure 27. If the branch 1 and 2 are taken, then the executionpath of branch 3 can be easily predicted as not taken. The n-bit predictors can befurther improved to make a prediction by using the outcomes of other branches.

E�ectively Exploiting Indirect Jumps � 31if (aa == 2) /* branch 1 */aa = 0;if (bb == 2) /* branch 2 */bb = 0;if (aa != bb) { /* branch 3 */....} Fig. 27. An Example Code Fragment for Branch CorrelationSuch predictors are known as (m,n) correlation predictors. They use the outcomeof the previous m branches to choose from 2m branch predictors, each of which isa n-bit predictor for a single branch. The (m,n) predictors require one m-bit shiftregister to store the outcomes of the last m branch execution (0 for not taken, 1 fortaken). This shift register can identify 2m di�erent contexts of a branch. Studiesreported that (m,n) correlation predictors provide more accuracy than that of n-bitpredictors [Pan et al. 1992; Hennessy and Patterson 1996].6.2.3 BTB Management:The target address for a branch is only placed in the bu�er once the branch istaken. An indirect jump can be considered not taken (and therefore not placedin the bu�er) if the target is the instruction following the indirect jump. If abranch or indirect jump is not in the bu�er and it was not taken, then no delayis necessary since the not taken address is already calculated by the CPU. If theactual target of the indirect jump does not match the target in the bu�er, thenthe branch target bu�er is updated to contain the last target of the jump unlessthe same target is still predicted as taken. To maximize the performance of BTB,a branch, which is not in the BTB and is not taken, never replaces an entry inthe bu�eion of a branch in the BTB turns out to be not taken , the associatedentry is immediately invalidated [Perleberg and Smith 1993]. This approach hasthe e�ect of never replacing an entry in the bu�er with a branch that is not taken.Remember that a branch is predicted as not taken if it is not found in the bu�er.Note that, when the BTB uses correlating information from a (m,n) correlationpredictor, the m-bit shift register does not re
ect the outcome of previous indirectjump executions. The major reason is that there are several targets of the indirectjump that can be considered as taken addresses [Wall 1991]. However, indirectjumps still use correlating information from the previous m executed branches.6.2.4 Expected Bene�ts from Branch Coalescing Transformation with BTBs:Indirect jumps typically have higher misprediction rates than conditional branchessince an indirect jump may have many possible targets [Chang et al. 1997]. It isthe authors' contention that higher misprediction rates do not necessarily meanworse performance. One must remember that several branches are being coalescedinto a single indirect jump. Thus, the total number of mispredictions instead ofthe misprediction rate should be used when trying to measure branch target bu�erperformance with and without branch coalescing.

32 � Gang-Ryung Uh and David WhalleyThe authors argue that with comparable branch target bu�er support, an indirectjump will cause no more mispredictions than the set of conditional branches itreplaced. If the target of an indirect jump is mispredicted, then the target of theindirect jump changed from the last time it was executed. Likewise, at least one ofthe conditional branches that would have been executed instead of the indirect jumpmust have had di�erent behavior and would also likely result in a misprediction.There are actually two reasons why fewer mispredictions would occur after branchcoalescing. First, an indirect jump can cause at most one misprediction whenexecuted. The execution of a sequence of the replaced conditional branches maycause multiple mispredictions. Second, there should be less contention for entriesin the branch target bu�er since there will be only one indirect jump as comparedto the set of branches the indirect jump replaced.
likely
target

most

indirect
jump

...
...

......Fig. 28. Placing the Most Likely TargetArchitectural and compiler support can be used to further reduce the numberof mispredictions from indirect jumps. Indirect jump history and a target cachecontaining the targets of the indirect jump that have been encountered have beenused to improve prediction accuracy [Chang et al. 1997]. The authors used com-piler support to reduce the number of mispredictions. Often targets of an indirectjump have the block containing the indirect jump as their only predecessor. Valuerange analysis was performed to predict the most likely target for each indirectjump, which was placed immediately following the indirect jump block as shown inFigure 28. Thus, jumps to this target will result in no delay when the tag for theindirect jump is not found in the bu�er since this address will be treated as the nottaken address. Note that the authors do not suggest that the described approachis the best BTB design and con�guration to support indirect jumps. Instead, theauthors are simply showing that, with comparable BTB support for indirect jumps,aggressively coalescing branches into indirect jumps can result in improved branchprediction performance. The branch prediction simulation results from various

E�ectively Exploiting Indirect Jumps � 33con�gurations will be shown in Chapter 8.1.3. With specialized BTB support forindirect jumps [Chang et al. 1997], even better results should be obtained.Some machines provide other special architectural support for speculative exe-cution of instructions dependent on branches, such as boosting [Smith et al. 1990]and predicted execution [Pnevmatikatos and Sohi 1994; Mahlke et al. 1994]. Therelative cost of an indirect jump versus the set of branches it replaces will be af-fected by such support. The compiler writer must use appropriate cost estimatesbased on the architectural support available for branches and indirect jumps onthe target machine. An optimizer could also later convert indirect jumps into asequence of conditional branches to exploit such architectural support.7. RESULTSVarious measurements are given in this chapter that shows the bene�ts of applyingthe branch coalescing transformation. Several common Unix utilities were selectedas benchmarks since non-numerical applications tend to have complex conditionalcontrol
ow.7.1 Dynamic Measurements by Instrumenting CodeThe following measurements were collected on code generated by vpcc (Very PortableC Compiler)9using ease (Environment for Architectural Study and Experimenta-tion [Davidson and Whalley 1991]) on the SPARC architecture for the selectedbenchmark Unix utilities. In order to isolate the bene�ts from the source of thebranch coalescing transformation, each measurement was gathered using three dif-ferent versions of vpcc.1. None: cfe (C front-end) strictly translates every C switch statement intoonly the form of linear search.2. Original : cfe translates a C switch statement into one of the following threealternative forms.(1) indirect jump using hashing (jump) tables,(2) binary search, or(3) linear search.Table V shows the heuristics used for the translation decision. [Yanget al. 1998; Sale 1981; Spuler 1994],Table V. Heuristics Used for Translating C switch StatementsTerm De�nitionn Number of cases in a switch statementm Number of possible values between the �rst and last caseIndirect Jump Binary Search Linear Searchn � 4 && !indirect jump && !indirect jump &&m � 3n n � 8 !binary search9The overall structure of the compiler system is described in Figure 4 (Section 2).

34 � Gang-Ryung Uh and David Whalley3. Coalesce: cfe strictly translates every C switch statement into only the formof linear search. vpo (Very Portable Optimizer) is modi�ed to coaleseconditional branches into indirect jumps as described in Sections 4 and5.7.1.1 Number of Instructions Executed:Table VI shows the number of instructions executed for each benchmark withthree di�erent versions of vpcc as described above. The None column in Table VIcontains the dynamic number of instructions, which was obtained by using theNone version. The Original and Coalesce columns respectively show the percent-age changes as compared to None column when the Original and Coalesce versionsare used in this measurement. The Original column10quanti�es the bene�ts whenindirect jumps from tables were only generated by the compiler front-end. The mea-surements show that a substantial bene�t was obtained by conventional translationof multiway selection statements into jump tables. The Coalesce column quanti�esthe bene�ts when coalescing a set of branches using the techniques described in Sec-tions 4 and 5. These frequency measurements indicate that our branch coalescingtechniques (Coalesce column) can signi�cantly outperform the conventional transla-tion techniques (Original column) in reducing the number of instructions executed.The variance between di�erent programs in the Original and Coalesce columns in-dicates that the bene�t will depend on number of branches in a sequence. Notethat coalescing had a negative impact on performance when performance estimateswere overly optimistic or pessimistic, which occurred for join and nro�.Table VI. Dynamic Instruction Frequency MeasurementsProgram None Original Coalesceawk 13,666,952 {0.294% {3.118%cb 19,739,127 {12.976% {21.204%cpp 30,985,306 {37.421% {38.538%ctags 81,040,455 {0.545% {24.160%dero� 15,511,056 {0.193% {1.153%grep 11,810,070 {21.620% {24.370%hyphen 19,535,372 0.000% {2.187%join 3,552,801 0.000% 0.325%lex 10,052,031 {0.230% {0.689%nro� 25,118,855 {0.155% {0.017%pr 78,106,755 0.000% {7.760%ptx 20,059,920 0.000% {10.196%sdi� 17,582,760 0.000% {0.017%sed 17,321,920 {6.578% {7.600%sort 18,921,766 0.000% {33.053%wc 17,860,086 0.000% {27.590%yacc 25,658,688 {0.194% {0.307%average 25,036,387 {4.718% {11.861%10Note that the Original measurements included �lling delay slots for indirect jumps from targetblocks speci�ed in jump tables to fairly compare the impact f branch coalescing.

E�ectively Exploiting Indirect Jumps � 357.1.2 Total Cache Work:The branch coalescing impact on caching was a concern since misses from jumptable loads could potentially have negative impact on performance. Table VIIshows the average e�ect Coalesce had on instruction caching, data caching, andtotal cache work as compared to the Original cache measurements. The cache workcycles were calculated using the following formula, where a cache hit and a cachemiss are counted as one cycle and ten cycles respectively [Smith 1982]. Note thatit was assumed that data cache accesses could be performed simultaneously withinstruction cache accesses.TOTAL CACHE WORK = Instruction Cache Hits +10 * (Instruction Cache Misses) +9 * (Data Cache Misses)The instruction cache work of Coalesce was reduced since the number of instruc-tions referenced were diminished as compared to the Original measurements. Asexpected, the data cache work of Coalesce increased since jump table loads afterbranch coalescing are more frequently performed as compared to the Original com-piler. The total cache work decreased since instruction cache accesses are morefrequent than data cache accesses.Table VII. Cache Work Improvement with a Direct-Mapped Cache with 32 Byte Line SizeCACHE SIZE Instruction Data TOTAL CACHE WORK1K {7.095% +6.680% {5.125%2K {7.220% +7.162% {5.614%4K {4.909% +5.066% {4.288%8K {7.930% +2.598% {7.460%16K {8.231% +3.995% {7.289%32K {7.947% +4.290% {7.328%7.1.3 Other Measurements:Some other measurements not given in the tables provide useful information.There were on average about 0.901 more instructions executed between branchesafter Coalesce as compared to the Original measurements. Thus, the opportunitiesfor scheduling on superscalar and superpipelined machines may be improved. Inaddition, coalescing only caused a 2.566% code size increase.7.2 Execution Time MeasurementsExecution time measurements were also collected on the following three models ofSPARC processors.|SPARCstation-IPC,|SPARCstation-20, and|Ultra-SPARC.The �rst two machines did not provide any branch target/prediction bu�er support.The third machine only provides target/prediction bu�er support for branches, butno support for indirect jumps.

36 � Gang-Ryung Uh and David WhalleyThe time measurements were collected using the C run-time library functiontimes() that uses the unit of time as a tick (1 second = 60 ticks). The executiontimes were obtained from the sum of reported user times of ten executions of eachprogram.7.2.1 Measurements on SPARCstation-IPC and SPARCstation-20:The measurement results on these two machines are shown in Tables VIII andIX. There are a couple of reasons why the execution time decrease probably was notas signi�cant as the reduction obtained from the number of instructions executedand total cache work. First, the execution time of an indirect jump operationrequired about the same time as two conditional branches. The authors anticipatethat the relative cost of an indirect jump would decrease with target bu�er supportfor branches and indirect jumps since the load delay for fetching the indirect jumptarget address could be avoided and fewer mispredictions would occur. Second, ourcompiler did not compile the C run-time library code. However, Tables VIII andIX show the execution time measurements, which included the execution of theC run-time library code. The authors anticipate that the execution time bene�tscan be further improved if our branch coalescing techniques were applied to the Crun-time library code.Table VIII. Execution Time Measurements for SPARCstation IPCProgram None SPARCstation IPCOriginal Change Coalesce Changeawk 2121 ts 2113 ts {0.38% 2254 ts 5.90%cb 1442 ts 1364 ts {5.41% 1320 ts {8.46%cpp 1484 ts 1004 ts {32.35% 1010 ts {31.94%ctags 4392 ts 4374 ts {0.41% 4058 ts {7.61%dero� 917 ts 912 ts {0.55% 911 ts {0.65%grep 442 ts 357 ts {19.23% 340 ts {23.08%hyphen 741 ts 737 ts {0.54% 736 ts {0.68%join 296 ts 296 ts 0.00% 303 ts 2.31%lex 504 ts 503 ts {0.20% 496 ts {1.59%nro� 1097 ts 1100 ts 0.27% 1118 ts 1.88%pr 2854 ts 2857 ts 0.11% 2702 ts {5.33%ptx 3015 ts 3027 ts 0.40% 2962 ts {1.76%sdi� 9263 ts 9454 ts 2.01% 9280 ts 0.22%sed 4670 ts 4449 ts {4.76% 4403 ts {5.72%sort 680 ts 683 ts 0.44% 574 ts {15.59%wc 777 ts 778 ts 0.13% 678 ts {12.74%yacc 1163 ts 1281 ts 9.21% 1295 ts 10.19%average {3.01% {5.57%7.2.2 Measurements on UltraSPARC-1:The same execution time measurements were also conducted on a UltraSPARC-1. As shown in Table X, the executables from Coalesce version compared to thosefrom None version resulted in worse performance (even for the Original version).The authors strongly suspect that such disimprovement stems from no comparabletarget/prediction bu�er support for indirect jumps. In order to properly estimate

E�ectively Exploiting Indirect Jumps � 37Table IX. Execution Time Measurements for SPARCstation-20Program None SPARCstation-20Original Change Coalesce Changeawk 617 ts 622 ts 0.80% 611 ts {0.97%cb 375 ts 363 ts {3.20% 341 ts {9.07%cpp 493 ts 349 ts {29.21% 372 ts {29.41%ctags 1267 ts 1208 ts {4.66% 1109 ts {12.47%dero� 275 ts 274 ts {0.36% 272 ts {1.09%grep 182 ts 162 ts {10.99% 157 ts {13.74%hyphen 289 ts 289 ts 0.00% 282 ts |2.42%join 141 ts 142 ts 0.70% 144 ts 2.08%lex 209 ts 206 ts {1.44% 201 ts {3.83%nro� 381 ts 384 ts 0.78% 385 ts 1.04%pr 874 ts 878 ts 0.46% 830 ts {5.03%ptx 1429 ts 1425 ts {0.28% 1385 ts {3.08%sdi� 7520 ts 7479 ts {0.55% 7475 ts {0.60%sed 1401 ts 1332 ts {4.93% 1320 ts {5.78%sort 259 ts 258 ts {0.39% 256 ts {1.16%wc 252 ts 250 ts {0.79% 246 ts {2.38%yacc 414 ts 436 ts 5.05% 428 ts 3.27%average {2.88% {4.98%the execution time impact on this machine from the coalescing transformation,EASE (Environment for Architectural Study and Experimentation [Davidson andWhalley 1991]) was extended to be able to simulate branch prediction with BTBsupport as shown in Figure 24.Indirect jumps from tables are generally considered to cause poorer branch pre-diction performance. The reason for this view is that indirect jumps typically havehigher misprediction rates than conditional branches since an indirect jump mayhave many possible targets. However, the essence of branch coalescing transforma-tion is to replace several conditional branches into an indirect jump. Thus, it wascontended that the total number of mispredictions instead of the misprediction rateshould be used when trying to measure branch target/prediction bu�er performacewith and without branch coalescing transformation.Tables XI, XII, and XIII show the results from such branch simulation. Ascontended by the authors, even though the misprediction ratio went up after per-forming the branch coalescing transformation, the total number of mispredictionswas decreased. Note that both the Original and the Coalesce measurements wereobtained with the assumption of comparable hardware prediction support for indi-rect jumps.7.3 Compile-Time OverheadInitially, the compile-time overhead of branch coalescing was quite excessive. Twoimprovements were made to increase compile-time e�ciency for the branch coa-lescing transformation. These improvements were decreasing the number of basicblocks used to represent jump tables and avoiding unnecessary attempts to coalescebranches.7.3.1 Reducing the Number of Basic Blocks:

38 � Gang-Ryung Uh and David WhalleyTable X. Execution Time Measurements for Ultra-SPARCstationProgram None Ultra-SPARCstationOriginal Change Coalesce Changeawk 479 ts 483 ts 0.83% 488 ts 1.84%cb 261 ts 268 ts 2.61% 266 ts 1.88%cpp 305 ts 286 ts {6.23% 279 ts {8.53%ctags 936 ts 943 ts 0.74% 1008 ts 7.14%dero� 199 ts 205 ts 2.93% 200 ts 0.50%grep 123 ts 120 ts {2.44% 118 ts {4.07%hyphen 206 ts 208 ts 0.96% 225 ts 8.44%join 104 ts 104 ts 0.00% 106 ts 1.89%lex 129 ts 135 ts 4.44% 137 ts 5.84%nro� 239 ts 243 ts 1.65% 242 ts 1.24%pr 529 ts 534 ts 0.94% 581 ts 8.95%ptx 1013 ts 1016 ts 0.30% 1020 ts 0.69%sdi� 6651 ts 6676 ts 0.37% 6660 ts 0.14%sed 922 ts 900 ts 0.37% 893 ts {3.15%sort 178 ts 177 ts {0.56% 207 ts 14.01%wc 171 ts 170 ts {0.59% 208 ts 17.79%yacc 284 ts 293 ts 3.07% 285 ts 0.35%average 0.67% 3.23%The complexity for both data and control-
ow analysis for code improving trans-formations is proportional to the number of basic blocks. In fact, the authorsfound that most of the compile-time overhead was due to the detrimental e�ectthat additional basic blocks had on subsequent analysis and transformations.Originally, vpo (Very Portable Optimizer) represented each entry in the jumptable as a separate basic block. This representation scheme was a concern to theauthors since most of the techniques in Chapter 6 to make indirect jumps moree�cient were applied at the cost of duplicatig jump table entries. In order to avoidexcessive generation of basic blocks from those techniques, an alternative schemehas been designed and implemented to compactly represent the control
ow for ajump table.As an illustration, consider the RTLs shown in Figure 29(a), which is the snap-shot after eliminating the value range check instructions for the indirect jump byenumerating 256 table entries into the jump table. However, such 256 blocks forthe jump table could be e�ciently represented into fewer blocks when consecutivejump table entries that contain the same target address can be grouped into a singlebasic block. Figure 29(b) shows a compact representation of the original control
ow. Note that each basic block containing a jump table entry has another �eld toindicate the repetition count such that the jump table entries can be restored whileSPARC assembly code is being produced.7.3.2 Avoiding Unnecessary Coalescing Attempts:In vpo, several loop transformations are iteratively applied until no further im-provement (change(es)) can be made, as depicted in Figure 5. Coalescing ofbranches was treated as a transformation for a loop since the transformation typ-ically requires extra registers. The authors coalesced the branches from the inner-most loop outward after all other transformations for a given loop have been ini-

E�ectively Exploiting Indirect Jumps � 39
Table XI. Branch Misprediction Ratio and Number of Mispredicted Branches with a Direct-Mapped BTB with (0,1) Correlation PredictorEntries in BTB Branch Misprediction Ratio Percentage Reductions inOriginal Coalesce Di�erence Mispredicted Branches32 0.1182 0.1365 0.0183 {5.60%64 0.1050 0.1152 0.0102 {9.09%128 0.0935 0.1042 0.0107 {9.52%256 0.0892 0.0988 0.0096 {10.35%512 0.0871 0.0964 0.0094 {10.67%1024 0.0811 0.0961 0.0149 {4.43%Table XII. Branch Misprediction Ratio and Number of Mispredicted Branches with a Direct-Mapped BTB with (0,2) Correlation PredictorEntries in BTB Branch Misprediction Ratio Percentage Reductions inOriginal Coalesce Di�erence Mispredicted Branches32 0.1118 0.1252 0.0134 {8.11%64 0.0971 0.1014 0.0043 {12.28%128 0.0848 0.0899 0.0051 {12.81%256 0.0804 0.0841 0.0038 {14.11%512 0.0779 0.0824 0.0045 {14.10%1024 0.0720 0.0817 0.0097 {7.20%Table XIII. Branch Misprediction Ratio and Number of Mispredicted Branches with a Direct-Mapped BTB with (2,2) Correlation PredictorEntries in BTB Branch Misprediction Ratio Percentage Reductions inOriginal Coalesce Di�erence Mispredicted Branches32 0.1131 0.1271 0.0140 {8.33%64 0.0969 0.1024 0.0055 {12.07%128 0.0840 0.0902 0.0062 {12.53%256 0.0788 0.0836 0.0048 {13.56%512 0.0758 0.0817 0.0059 {13.30%1024 0.0695 0.0809 0.0114 {6.15%

40 � Gang-Ryung Uh and David Whalley

L27:

PC=r[8];

L01:

.word L27

.word L27

...

.word L27

.word L22

.word L23

.word L24

.word L25

.word L26

.word L27

.word L27

.word L27

...

.word L27

.word L27

.word L27

L27:

PC=r[8];

L01:

.word L27

.word L27

...

.word L22

.word L23

.word L24

.word L25

.word L26

.word L27

.word L27

...

.word L27

(a) Orginal Control Flow (b) Alternative Control Flow

Fig. 29. Control Flow Representations for Indirect Jump Table shown in Figure 6.3tially attempted. Within such a loop optimization framework, unnecessary branchcoalescing analysis could be avoided. For a given loop, if the branch coalescinganalysis has been already applied without any transformation, then there is typi-cally no need to re-apply the analysis for the same loop. Most of transformationsfrom the branch coalescing are typically completed during the �rst pass of a loopoptimization process. The authors found that other improving transformationsrarely provided new opportunities for branch coalescing. Therefore, the branchcoalescing transformation was not applied during the second pass of the same loopoptimization process.7.3.3 Compilation Overhead:Compile time measurements were collected on a SPARCstation-20 using the Crun-time library function times(). The compile times were obtained from the av-erage of the sum of the reported user and system times of 10 compilations of eachbenchmark. Table XIV compares the results with None and Coalesce (that is, withand without the branch coalescing transformation.) The authors suspect that thecompilation overhead can be reduced with some additional tuning. Some portionof compilation overhead in system time is due to I/0 in producing jump table en-tries when generating SPARC assembly code. This overhead can be avoided whenan assembler supports a directive that speci�es a repetition factor for consecutivevalues that are identical (e.g. .word <value><repetition factor>).

E�ectively Exploiting Indirect Jumps � 41Table XIV. Compile Time MeasurementsProgram None Coalesce Extra Overheaduser system user systemawk 39.40 sec 7.18 sec 76.35 sec 7.88 sec +80.82%cb 4.83 sec 0.72 sec 5.48 sec 0.77 sec +12.61%cpp 23.02 sec 3.17 sec 36.28 sec 3.40 sec +51.56%ctags 9.60 sec 0.72 sec 14.07 sec 0.93 sec +45.40%dero� 33.68 sec 1.03 sec 38.17 sec 1.10 sec +13.11%grep 4.68 sec 0.67 sec 6.53 sec 0.78 sec +36.76%hyphen 1.37 sec 0.60 sec 1.53 sec 0.60 sec +9.32%join 3.58 sec 0.62 sec 4.25 sec 0.67 sec +17.06%lex 41.40 sec 3.78 sec 49.22 sec 4.08 sec +17.96%nro� 43.25 sec 6.13 sec 45.83 sec 6.32 sec +5.60%pr 6.03 sec 0.82 sec 6.52 sec 0.85 sec +7.54%ptx 6.42 sec 0.78 sec 7.13 sec 0.78 sec +9.95%sdi� 8.37 sec 0.78 sec 12.40 sec 0.98 sec +45.47%sed 20.52 sec 2.27 sec 24.65 sec 2.45 sec +18.95%sort 9.30 sec 0.68 sec 10.38 sec 0.68 sec +10.85%wc 0.95 sec 0.50 sec 1.50 sec 0.53 sec +40.23%yacc 34.87 sec 2.67 sec 43.47 sec 2.93 sec +23.62%average 17.13 sec 1.95 sec 22.57 sec 2.10 +26.28%8. FUTURE WORKThere are other areas that could be investigated to provide additional opportunitiesfor coalescing conditional branches. One factor that limited the opportunities forcoalescing branches into indirect jumps was not performing interprocedural analysisto more e�ectively determine value ranges. Often int arguments being compared toconstants in one function are loaded from memory as a byte in a di�erent function.Interprocedural analysis would allow the �rst three instructions in Figure 11(b)comprising the initial range check to be avoided more frequently.Pro�ling could also be used to help determine when coalescing was worthwhile.The authors statically estimated the average number of branches that would beexecuted through a set of related branches. Coalescing can have a negative impacton performance when these estimates are overly optimistic or pessimistic. Pro�lingwould provide more accurate estimates for coalescing decisions. In general, detect-ing bounded ranges and using an estimated frequency for character values providedgood heuristics when making coalescing decisions. This approach has promisingimplications for conventional branch prediction.9. CONCLUSIONSThis paper has described compiler support for e�ectively exploiting indirect jumps.The general improving transformation presented for coalescing branches after codegeneration provided bene�ts that otherwise would not be available.A general approach was designed and implemented to aggressively replace a set ofbranches into a single indirect jump as opposed to only considering indirect jumpswhen translating multiway statements.Various techniques were developed and implemented to e�ciently perform theindirect jump operation by analyzing the context of the given machine instructions.

42 � Gang-Ryung Uh and David WhalleyApplying these techniques often resulted in the execution of only two instructions onthe SPARC. In order to provide an e�ective branch coalescing transformation, twocost/bene�t analyses were designed and applied by estimating the average numberof branches executed for the detected set of coalescent branches. In order to coalescea set of conditional branches, which are often separated by blocks of interveninginstructions, a restructuring algorithm using code duplication was designed andimplemented. Furthermore, the original delay slot �lling scheme was extended tousefully �ll the delay slots of indirect jumps. Thus, a code-improving transformationwas designed and implemented in order to essentially provide early resolution ofconditional branches that may originally have been some distance from the pointwhere the indirect jump is inserted.BTBs (Branch Target Bu�er) are available to reduce the cost of branches onmany machines. The branch coalescing impact on branch mispredictions was aconcern to the authors. The authors' contention was that with comparable targetbu�er support for indirect jumps, the total number of branch mispredictions shouldbe reduced since several branches are being coalesced into a single indirect jump.To justify the contention, the authors accomplished the following tasks. First,the EASE environment [Davidson and Whalley 1991] was extended to be ableto simulate e�ects on branch mispredictions with BTB support for branches andindirect jumps [Hennessy and Patterson 1996](see page 276). Second, in orderto better exploit a BTB for indirect jumps, a compiler analysis technique wasimplemented to locate the most probable target of the indirect jump immediatelyafter the jump as a fall-through destination. Thus, if an indirect jump is not inthe bu�er, then no delay is necessary since the next address of the indirect jump isalready calculated by the CPU.Finally, various measurements were collected to demonstrate the bene�t of apply-ing the branch coalescing transformation. The additional bene�ts from coalescingnoncontiguous branches were contrasted with the simpler analysis required for onlycoalescing contiguous branches.The results showed reductions in the number of instructions executed and branchmispredictions, total cache work, and execution time at the cost of tolerable compile-time overhead.REFERENCESAllen, F. and Cocke, J. 1971. Design and Optimization of Compilers. Prentice-Hall, EnglewoodCli�s, NJ.Altman, N. and Weiderman, N. 1987. Timing variation in dual-loop benchmarks. Technicalreport (Oct.), Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.Benitez, M. E. and Davidson, J. W. 1988. A portable global optimizer and linker. In ACMSIGPLAN Conference on Programming Language Design and Implementation, pp. 329{338.Bodik, R., Gupta, R., and Soffa, M. L. 1997. Interprocedural conditional branch elimination.In ACM SIGPLAN Conference on Programming Language Design and Implementation.Calder, B. and Grunwald, D. 1994. Reducing indirect function call overhead in C++ programs.In Proceedings of the ACM Symposium on Principles and Practice of Programming Languages,pp. 397{408.Chang, P.-Y., Hao, E., and Patt, Y. N. 1997. Target prediction for indirect jumps. In The 24thAnnual International Symposium on Computer Architecture.Clapp, R. M., Duchesneau, L., Volz, R. A., Mudge, T. N., and Schultze, T. 1986. Towardreal-time performace benchmarks for ADA. Communications of the ACM 29, 8 (Aug.), 760{778.

E�ectively Exploiting Indirect Jumps � 43Davidson, J. W. and Jinturkar, S. 1996. Aggressive loop unrolling in a retargetable, optimizingcompiler. In Proceedings of Compiler Construction Conference, pp. 59{73.Davidson, J. W. and Whalley, D. B. 1989. Quick compilers using peephole optimizations.Software Practice & Experience 19, 1 (Jan.), 195{203.Davidson, J. W. and Whalley, D. B. 1991. A design environment for addressing architectureand compiler interactions. Microprocessors and Microsystems 15, 9 (Nov.), 459{472.Hennessy, J. and Patterson, D. 1996. Computer Architecture: A Quantitative Approach (Sec-ond ed.). Morgan Kaufmann, San Francisco, CA.Holler, A. M. 1996. Optimization for a superscalar out-of-order machine. In Proceedings of the29th International Symposium on Microarchitecture, pp. 336{348.Johnson, S. C. 1979. A Tour Through the Portable C Compiler. Unix Programmer's Manual 7thEdition Section 33.Mahlke, S. A., Hank, R. E., Bringmann, R. A., Gyllenhaal, J. C., Gallagher, D. M., andHwu, W. W. 1994. Characterizing the impact of predicated execution on branch prediction. InProceedings of the 27th International Symposium on Microarchitecture, pp. 217{227.Mueller, F. and Whalley, D. B. 1995. Avoiding conditional branches by code replication.In ACM SIGPLAN Conference on Programming Language Design and Implementation, pp.56{66.Pan, S., So, K., and Rahmeh, J. T. 1992. Improving the accuracy of dynamic branch predictionusing branch correlation. In Architectural Support for Programming Languages and OperatingSystems, pp. 76{84.Perleberg, C. H. and Smith, A. J. 1993. Branch target bu�er design and optimization. IEEETransactions on Computers 42, 4 (April), 396{412.Pnevmatikatos, D. N. and Sohi, G. S. 1994. Guarded execution and branch prediction indynamic ILP processors. In Proceedings of the 21th International Symposium on ComputuerArchitecture, pp. 120{129.Sale, A. 1981. The implementation of case statements in Pascal. Software-Practice and Experi-ence 11, 929{942.Smith, A. J. 1982. Cache memories. Computing Surveys 14, 3 (Sept.), 473{530.Smith, M. D., Lam, M. S., and Horowitz, M. A. 1990. Boosting beyond static scheduling ina superscalar processor. In Proceedings of the 17th International Symposium on ComputerArchitecture, pp. 344{353.Spuler, D. A. 1994. Compiler code generation for multiway branch statements as a static searchproblem. Technical report, Dept. of Computer Science, James Cook University, Townsville,4811, Australia.Stallman, R. M. 1990. Using and Porting GNU CC (version 1.37.1). Cambridge, MA: FreeSoftware Foundation, Inc.Wall, D. W. 1991. Limits of instruction-level parallelism. In Architectural Support for Program-ming Languages and Operating Systems, pp. 176{188.Yang, M., Uh, G.-R., and Whalley, D. B. 1998. Improving performance by branch reordering.In ACM SIGPLAN Conference on Programming Language Design and Implementation.

