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This paper describes a general code-improving transformation that can coalesce conditional branches
into an indirect jump from a table. Applying this transformation allows an optimizer to exploit
indirect jumps for many other coalescing opportunities besides the translation of multiway branch
statements. First, dataflow analysis is performed to detect a set of coalescent conditional branches,
which are often separated by blocks of intervening instructions. Second, several techniques are
applied to reduce the cost of performing an indirect jump operation, often requiring the execution
of only two instructions on a SPARC. Finally, the control flow is restructured using code dupli-
cation to replace the set of branches with an indirect jump. Thus, the transformation essentially
provides early resolution of conditional branches that may originally have been some distance from
the point where the indirect jump is inserted. The transformation can be frequently applied with
often significant reductions in the number of instructions executed, total cache work, and execu-
tion time. In addition, we show that with branch target buffer support, indirect jumps improve
branch prediction since they cause fewer mispredictions than the set of branches they replaced.
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1. INTRODUCTION

Most high-level languages provide multiway branch statements to allow program-
mers to write more readable code. The characteristic feature of a multiway state-
ment is the ability to select an action based on the value of a control expression.
Without performing any optimization, a compiler would translate each case label
of the multiway statement into a conditional branch. Because of the widespread
usage of multiway statements, instruction sets commonly support an indirect jump
from a table in order to reduce the cost of such sequences of conditional branches.
As a result, compiler front-ends typically generate an indirect jump from a table as
one translation alternative! for multiway statements [Sale 1981; Spuler 1994].
This traditional approach for using indirect jumps poses two problems. First,
it is difficult to determine when the indirect jump can be effectively used in a
machine-independent fashion since an accurate cost-benefit estimate can only be
made after generating machine code. Second, many code-improving opportunities

IThe other popular alternatives include linear search, binary search, and hashing.
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suitable for the indirect jump may be missed when only considering this operation
for the translation of a multiway statement.

This paper describes a general code-improving transformation that exploits indi-
rect jumps after code generation. As the instruction issue rate and pipeline depth
of processors increase, efficient handling of branches becomes more vital. Our im-
proving transformation reduces the number of branches and mispredictions by coa-
lescing several conditional branches into an indirect jump. First, dataflow analysis
is performed to detect a set of possibly noncontiguous conditional branches that can
be potentially coalesced into a single indirect jump. Second, control-flow analysis
is used to determine how the control flow should be restructured to perform the
coalescing. Third, analysis is accomplished to determine how to most efficiently
generate the indirect jump operation. The cost of the original branches is also
estimated and the indirect jump transformation is applied when deemed worth-
while. Finally, the original control flow is modified by duplicating basic blocks
when necessary.

1.1 Motivation

Exploiting indirect jumps after code generation can be quite beneficial since ad-
ditional branches from other control statements besides multiway statements can
be coalesced into a single indirect jump. The examples in this section are given
in C to more concisely depict branches that can be coalesced into indirect jumps.
The control flow of the restructured C code segments would be comparable to a
restructured flow graph of basic blocks with an indirect jump from a table.

I.  Indirect Jumps with Branches (Figure 1)

Cousider the Original code segment from ctags (C tag generator). A typical C
compiler would translate the switch statement into an indirect jump from a table
and would generate a conditional branch for the for statement. Yet, the conditional
branch comparing *sp with zero would immediately precede the indirect jump. An
optimizer could recognize this sequence of branches and be able to coalesce the extra
conditional branch that compares the variable with zero into the indirect jump.
Note that one can view this branch as another case for the switch statement as
shown in the Restructured code segment.

Ori gi nal Restruct ured
for (sp = line; *sp; sp++) { for (sp =1line; ; sp++) {
switch (*sp) { switch (*sp) {
case 'p’: case '\0":
C goto out;
case 'k': case 'p':
.. case 'k':
}
} }
out:

Fig. 1. Code Fragment from UNIX utility ctags
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II.  Sequence of Contiguous Branches (Figure 2)

Other common instances may occur due to programming style. The Original code
segment from grep (pattern search utility) shows a series of if statements comparing
the same variable to different constants. A typical C compiler would translate these
if statements as a sequence of conditional branches. However, the code could have
been equivalently written as a single switch statement as shown in the Restruc-
tured code segment. An optimizer could detect the original sequence of conditional
branches and could coalesce such contiguous branches into a single indirect jump.
Use of multiple macros may also result in several consecutive comparisons being
performed. Thus, branch coalescing is appealing since performance is less affected
by program style (whether or not multiway branches are used).

Oigi nal Restructured
if ((c = *sp++) == 0) C = *sp++
goto cerror; switch (c) {

if (c='<){ ...} case O: goto cerror;

if (c="'>){ ...} case '<':

if (c=="(C){ ...} case ' >':

if (e==")"){...1} case ' (':

if (c>"'1 &&c<="'9) { ...} case ')
case '1’': case '2': case '3 :
case '4’: case '5 : case '6':
case '7': case '8 : case '9':
defaul t:
}

Fig. 2. Code fragment from UNIX utility grep

lll.  Set of Contiguous and Noncontiguous Branches (Figure 3)

Often there are paths in which intervening instructions exist between branches
that compare the same variable to constants and these intervening instructions
do not update this variable. Consider the following Original code segment from
we (word count utility). A typical C compiler would translate each if statement
into conditional branch(es). At first, it may appear that only the sequence of
conditional branches shown in the shaded boxes can be coalesced into an indirect
jump. However, the statement charct++; does not affect the branch variable c. An
optimizer could determine the existence of path(s) between branches comparing the
same variable to constants where the variable is unaffected. The optimizer could
modify the original control flow by duplicating code to allow the branch for the
EQF check to also be coalescent. As shown in the Duplicated code segment, all of
the branches in the shaded boxes can be effectively considered as being contiguous
and coalescent for a single indirect jump. The Restructured code segment shows
equivalent code written with a switch statement.
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Oiginal Dupl i cat ed Restructured
for (; ) { for (5 ;) { for (; ;) {
c = getc(fp) c = getc(fp) c = getc(fp);
if (c == EOF) if (c == EOF) switch (c) {
br eak; br eak; case ECF: goto out;
char ct ++; if (7 '<c&&c<0177) { case 041:
if (7 ’<c&&e<0177) { charct ++; C
if ('token) { if (!token) { case 0176:  charct ++;
wor dct ++; wor dct ++; if (!token){
t oken++; t oken++; wor dct ++;
} } t oken++,
conti nue; conti nue;
} } conti nue;
if (c=="\n") if (c=="\n") { case '\n': charct++
li nect ++; charct ++; i nect ++;
else if (cl= ’'&& l'i nect ++; goto end;
cl="\t") } . ++;
conti nue: else if (cl= '&& defaul t: zgi: iC:me;
token = 0; ct="\t") {
} charct ++; case ’
conti nue; case '\t': charct ++;
}
el se end: token = 0;
charct ++; }
token = 0;
} out :

Fig. 3. Code fragment from UNIX utility wc

1.2 Organization of Paper

The paper is organized in the following manner. Section 2 gives a description of
the compiler that has been used and modified to exploit indirect jumps after code
generation. Section 3 briefly describes related compiler optimizations to reduce the
cost of conditional branches. In order to detect and replace more branches into a
single indirect jump than would be done in the traditional way, several detection and
restructuring algorithms are introduced in Section 4 that can allow a compiler to
detect a set of potentially noncontiguous coalescent conditional branches, which are
often separated by blocks of intervening instructions, and to restructure the control
flow by code duplication when necessary. Section 5 presents several techniques
that reduce the cost of performing an indirect jump operation, often requiring the
execution of only two instructions on a SPARC. The task of filling delay slots for
indirect jumps is also dealt with in this section. Section 6 shows execution time
results from performing dual loop tests [Clapp et al. 1986; Altman and Weiderman
1987] on SPARCstations to estimate the impact on pipeline stalls when the branch
coalescing transformation was applied as another code improving transformation.
Furthermore, the benefits of target buffer support for indirect jumps are discussed in
this section. Various performance measurements are given in Section 7 that justify
the validity of applying the code-improving transformation that is described in this
paper. Section 8 suggests topics for future research. Finally, Section 9 concludes
the paper.
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2. MODIFICATIONS TO THE COMPILER

Figure 4 shows the overall structure of the vpo (Very Portable Optimizer [Benitez
and Davidson 1988]) compiler system. The front-end of the compiler, cfe [David-
son and Whalley 1989], produces intermediate code from a given C preprocessed
file. The code expander translates the intermediate code into unoptimized lists of
machine-dependent effects, called RTLs (Register Transfer Lists). RTLs have the
form of conventional expressions and assignments over the hardware’s storage cells.
For example, the RTLs

IC=r[8]1710; ! SPARC assembly: cmp %10,10
PC=IC:0,L001; ! SPARC assembly: be LOO1

represent two machine instructions, where IC denotes condition code and PC denotes
program counter, respectively.?

The first RTL depicts the effect of setting a condition code by comparing a
register (r[8]) to constant 10. The second RTL describes the effect of transfering
the control to the address LOO1 when r[8] is equal to 10. While any particular
RTL is machine specific, the general form of the RTL is machine-independent. This
allows general machine-independent algorithms to be written that implement code
improving transformations on machine-dependent code.

C preprocessed
Sour ce
Code

I
CFE :
(C Front - End) . RTLs
(Regi ster

Transfer Lists)

I nternmedi ate
Representation VPO

(Very Portable
Opti m zer)

SPARC
ASSEMBLY CCDE

Fig. 4. VPCC (Very Portable C Compiler)

2These instructions are generated by cfe when translating high level control statements, such as
if or if-then-else statements.
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All phases of the back-end of the compiler, vpo (Very Portable Optimizer), manip-
ulate RTLs. The RTLs are stored in a data structure that also contains information
about the order and control flow of the RTLs within a function. By manipulating
RTLs as the sole intermediate representation, the following benefits can be achieved.

(1) Most optimizations can be invoked in any order and can be allowed to iterate
until no further improvement can be found. Therefore, many phase ordering
problems are eliminated.?

(2) The effect of a modification to the set of RTLs comprising a function is relatively
simple to grasp.*

In order to exploit the indirect jump operation the following modifications were
made to the compiler. The front-end of the compiler, cfe, was modified to always
produce a linear sequence of conditional branches when translating a C switch
statement instead of sometimes producing an indirect jump.?

An additional code-improving transformation phase to coalesce branches into an
indirect jump from a table was added to the back-end of the compiler, vpo. After
branches were coalesced into an indirect jump in a loop, loop invariant code motion
was reinvoked to move the instructions that calculate the address of the jump table
out of that loop before coalescing branches at an outer loop level. Most compiler
optimizers perform these transformations starting with the innermost loops first to
secure registers for the most frequently executed code segments. When an indirect
jump occurs inside a loop, performing code motion on the loop-invariant instruc-
tions for calculating the jump table address requires a register. Thus, as depicted in
Figure 5, the authors coalesced branches from the innermost loop outward after all
other transformations for a given loop have been initially attempted. Afterwards,
branch coalescing was also attempted on the outermost level of an entire function.

3. RELATED WORK

There has been some research on other techniques for avoiding conditional branches.
Loop unrolling has been used to avoid executions of the conditional branch asso-
ciated with a loop termination condition [Davidson and Jinturkar 1996]. Loop
unswitching moves a conditional branch with a loop-invariant condition before the
loop and duplicates the loop in each of the two destinations of the branch [Allen
and Cocke 1971]. Conditional branches have also been avoided by code duplication

3In contrast, a more traditional compiler system will perform optimizations on various different
representations. For instance, machine-independent transformations are often performed on inter-
mediate code and machine-dependent transformations, such as peephole optimizations, are often
performed on assembly code.

4In contrast, most traditional compiler systems generate code after optimizations. Thus, the
optimizations are actually performed on intermediate code. Since there is typically not a one-to-
one mapping between an intermediate code operation and a machine instruction, the effect of a
modification on the final code that will be generated may not be obvious in these systems.

5¢fe originally translates a C switch statement into one of the following three alternative forms:

(1) indirect jump using a jump table,
(2) binary search, or
(3) linear search.
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Branch Chai ni ng

Usel ess Junp Elim nation

Dead Code Elim nation

El i mi nate Unconditional Junps by Reordering Code
Instruction Selection

Eval uati on Order Determ nation

d obal Instruction Selection

Regi st er Assi gnnent

Junp M nim zation

Instruction Sel ection

DO {
Regi ster Allocation
Instruction Sel ection
Common Subexpressi on Eli m nation
Dead Variable Elimnation
Loop Optim zations:
Code Motion
Recurrences
Loop Strength Reduction
I nduction Variable Elimnation
I1f (First Pass)
\ Branch Coal esci ng \
Usel ess Junp Elim nation
Cheaper Instruction Replacenent
Instruction Sel ection
} Wile (change)

\ Branch Coal esci ng \
Setup Entry and Exit
Instruction Scheduling
Fill Slots
Usel ess Junps

Fig. 5. Modified vpo

[Mueller and Whalley 1995]. This method determines if there are paths where the
result of a conditional branch will be known and duplicates code to avoid execution
of the branch. The method of avoiding conditional branches using code duplica-
tion has been extended using interprocedural analysis [Bodik et al. 1997]. Finally,
sequences of branches have been reordered using profile data to reduce the number
of branches executed [Yang et al. 1998].

Our approach in this paper is similar to the above techniques in that it improves
performance despite the penalty of increasing code size. However, there are often
situations where several branches can be coalesced into a single indirect jump to
avoid the execution of branches that these other techniques could not. Our approach
essentially provides early resolution of branches that may originally have been some
distance away in the control flow from the point where the indirect jump is inserted.

4. COALESCING A SET OF NONCONTIGUOUS CONDITIONAL BRANCHES

Some definitions are now presented before describing how a set of branches to be
coalesced is found.

Definition 4.0.1. A branch variable is the register or variable associated with a
conditional branch that is being compared to a constant.

Definition 4.0.2. A basic block will have an effect on a branch variable if the
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block has an instruction that updates the branch variable.

Definition 4.0.3. A conditional branch is considered reachable from a point in
the given control flow if there exists a path from that point to the conditional
branch with no effect on the branch variable.

Definition 4.0.4. A related set of branches for basic block B are those branches
that are reachable from B and have the same branch variable as B.

The task for coalescing a set of conditional branches into an indirect jump is ac-
complished in the following manner. First, a set of coalescent conditional branches,
which may or may not have intervening instructions, is identified. Second, a graph
for the projected control flow is built to coalesce this set of conditional branches
into an indirect jump. When the transformation is deemed beneficial, the original
control flow is tranformed according to the graph by duplicating basic blocks when
necessary.

4.1 Finding A Set of Branches to Coalesce

In order to find the largest set of coalescent branches, analysis is performed as
follows. For each basic block B, the reachable branches from the exit point of B are
determined. When B contains a conditional branch, the optimizer calculates the
reachable branches that depend on the same branch variable as that of B. We denote
such branches as being related and denote B as the root block of these branches.
After detecting all sets of related branches, the optimizer selects the set with the
largest number of branches. The largest set should be chosen first since branch
coalescing requires the allocation of registers.

The desired reachability information is collected by calculating the following state
information for each basic block B.

in[B]: Set of blocks containing a reachable branch from the entry of B.

out [B]: Set, of blocks containing a reachable branch from the exit of B. This
includes the conditional branch in B, if one exists.

effect[B]: Set, of blocks containing a branch instruction whose branch variable
is updated by some instructions in B.

The above state information can be calculated with an iterative algorithm de-
scribed in Figure 6. When the algorithm terminates, the out[B] of each basic
block B contains the reachable branches from the exit point of B. This algorithm is
guaranteed to terminate since, for any given control flow, (1) there exists a finite
number of conditional branches, and (2) the in[B] and out[B] of each block B
monotonically increase.

Applying the iterative algorithm described in Figure 6 to the example control
flow in Figure 7 produces the dataflow information as indicated by Table I. Since
block 1 has the largest set of related branches, the compiler will first attempt to
coalesce these branches by placing instructions to perform an indirect jump at the
root block 1. However, it is possible that related branch sets of two or more blocks
have the same cardinality. In this case the optimizer will choose the block that
dominates the most blocks having branches in the same related set.



Effectively Exploiting Indirect Jumps

DO
FOR each basic block B DO
/* Calculate out[B] from the successors of B */
/* and its own branch */
out [B] = NULL
FOR each immediate successor block S of B DO
out[B] = out[B] U in[S]
IF (B contains a branch instruction) THEN
out[B] = out[B] U {B}
/* Calculate in[B] using out[B] */
in[B] = out[B] — effect[B]
WHILE (any changes)

Fig. 6. An Algorithm Calculating Reachable Branches For Each Basic Block

C] (Dark Grey): Block containing the conditional branch
that is potentially coalesced

C] (Light Grey): Block containing the conditional branch
that won't be coal esced
Cj (White): Block containing no conditional branch

Fig. 7. An Example Control Flow
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Table I. Dataflow Information for the Example Control Flow

Block No. effect After .The Algorithm Related Branches
in | out
block 1 (13,6} null 1,36} (13,6}
block 2 {1,3,6} null {3,6} null
block 3 (5,7} (3,6F | {3,5,6,7} (3.6}
block 4 {9} null {9} null
block 5 null {5,6,7} {5,6,7} {5,7}
block 6 null 16,7} 16,7} {6}
block 7 {9} {7} {7,9} {7}
block 8 {5,7} null null null
block 9 null {9} {9} {9}

4.2 Projecting the Restructured Control Flow

Once a set of related branches has been selected, the optimizer projects the revised
control flow to coalesce these branches into a single indirect jump. The restructured
control flow is calculated by recording states in each block for these related branches.
The state associated with each related branch is defined to be a set of triples, where
each triple consists of the following three components,

(1) basic block number containing that branch variable,
(2) whether the conditional branch will be taken (T) or not taken (F), and

(3) the value range of the branch variable to satisfy the condition that is specified
by the second component.

The projected control flow is calculated in the following manner. For a given
set of related branches and its associated root block, the optimizer propagates the
state (triples) of each related branch backward through the control flow (toward
its root block). When the propagation completes, the optimizer determines the
sequence of related branches that would be executed starting from the root block for
each nonoverlapping value range of the branch variable. At this point, cost-benefit
analysis is performed to determine whether or not coalescing the set of related
branches into an indirect jump is worthwhile. If it is deemed beneficial, then a
graph is incrementally built to project the desired restructuring at the root block.
If the optimizer determines that there will be no significant code-size increase, then
the graph will later be used to modify the actual control flow.

Table II. Initial States for Related Branches of Block 1
| Related Branches [[ Initial States (Triples) |
related branch in block 1 (1,T,[6..255)]), (1,F,[0..5])
related branch in block 3 (3,T,[8..255]), (3,F,[0..7])
related branch in block 6 || (6,T,[0..9]),(6,F,[10..255])

As an illustration, consider the example control flow in Figure 7 with one addi-
tional assumption that the branch variable i was detected to contain an unsigned
character value [0..255]. For the set of related branches at the root block 1, Ta-
ble II shows the initial states associated with these branches. In order to propagate
the triples for branch 6 toward the root block 1, this state information should be
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(1,F [0..5])
(1,T,[6..255])
(6.7 110, 2 (6.5 110, 2 (7[5 25
1 =5 (6, F, [10..255]) =5 (6,F [10..255]) (3, T,[8..255])
T [6..255] /T\ T [6..255] /T\ 4\
(6, T.[8..9]) (6, T.[8..9]) (3,F[0..7])
(6, F, [10..255]) | =7 (6,F, [10..255]) (3, T,[8..255])
T[8..255] \ T[8..255] \

(6, T,[0..9]) (6, T,[0..9])
(6, F, [10..255]) (6, F,[10..255])
(6, T,[0..9]) (6, T,[0..9])
(6, F, [10..255]) (6, F, [10..255])
(a) After Propagating for Branch (b) After Propagating for Branches
in Block 6 in Blocks 1, 3, and 6

Fig. 8. Propagating Triples toward Root Block 1

propagated through block 3. The transition from block 3 to block 6 can occur only
when the value of branch variable i is in the range [8..255]. Similarly, the transition
from block 1 to block 3 can occur only when the value of branch variable i is in
the range [6..255]. Therefore, the value ranges of the triples for branch 6 should
be properly adjusted during the propagation to reflect these two transitions. As
shown in Figure 8(a), the value ranges of the triples for branch 6 are intersected
with [8..255] at block 3, and the adjusted value ranges are intersected with [6..255]
at the root block 1. Figure 8(b) illustrates how other triples, associated with branch
1 and 3, are propagated. Table III shows the final state information available at
the root block 1 after the above value range propagation process completes.

Table III. States of Related Branches Associated with Nonoverlapping Value Ranges of i at Root
Block 1

| Value Range of i || States of Related Branches

0..5 IF

6.7 L,T and 3,F

8..9 1,T and 3,T and 6,T
[10..255] 1,T and 3,T and 6,F

4.3 Cost-Benefit Analysis and Control-Flow Restructuring

Cost-benefit analysis is performed to determine at this point whether or not it is
beneficial to coalesce the related branches of the root block into an indirect jump.
The optimizer first checks if the values being compared are characters (represented
in a byte). The optimizer weights the character values according to an estimated
frequency of common use. For instance, values representing ASCII letters were
assigned a higher weight than values representing control characters. The cost of
executing the branches was calculated as a sum of products, where each product
was obtained by multiplying the weights of the characters in each value range and
the number of branches associated with that range. If the optimizer could not
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determine that the comparisons were with characters, then each value was given
the same weight. The cost of executing the branches is compared to the cost of
performing the indirect jump, which is described in the next section.

If the analysis determines that branch coalescing is worthwhile, then the restruc-
turing algorithm shown in Figure 9 will produce a graph to efficiently represent the
revised control flow to coalesce these related branches into an indirect jump at the
root block. The central idea is that a new node will be added when no current node
for that block exists with the same states for the related branches. The projected
graph of the restructured control flow for Figure 7 is shown in Figure 10. The re-
lated branch in root block 1 will be replaced in the restructured code by instructions
to perform an indirect jump. Note that a basic block represented with a dashed
box indicates that the related branch is unnecessary and will not be placed in the
restructured code.

5. EFFICIENTLY PERFORMING THE INDIRECT JUMP OPERATION

Compiler writers have long considered performing an indirect jump from a jump
table as a very expensive operation. The tasks associated with performing an
indirect jump includes the following:

(1) checking if the value being compared is within a bounded range,
(2)

(3) calculating the offset used to index into the table,
(4) loading the target address from the table, and

()

calculating the address of the jump table,

performing the indirect jump.

The number of instructions required to perform an indirect jump from a jump
table can vary depending upon a number of factors. For the C switch statement
shown in Figure 11(a), Figure 11(b) depicts SPARC instructions represented as
RTLs that are used to implement a corresponding indirect jump (disregarding the
instruction in the delay slot of the indirect jump).® Similar instructions are avail-
able on most RISC machines. It would appear that at least 5 pairs of conditional
branches must be executed to make coalescing branches into an indirect jump op-
eration worthwhile on the SPARC since 8 instructions are used to implement an
indirect jump.

By statically analyzing the code surrounding an indirect jump operation, the
optimizer can significantly reduce the cost of performing an indirect jump. Many
optimizers can detect that instructions 4 and 5 in Figure 11(b) are loop invariant
and therefore can move these instructions out of a loop. The authors implemented
techniques that often avoid the execution of instructions 1-3 and 6 in Figure 11(b)
as well.

5.1 Padding the Front of the Table

Instructions 1-3 in Figure 11(b) are used to check if the expression is in the range of
possible case values. Instruction 1 can be avoided when the lowest case value is pos-
itive and relatively close to zero. The jump table can be padded with the addresses

6These SPARC instructions are generated by the pcc [Johnson 1979], gcc [Stallman 1990], and
vpce [Benitez and Davidson 1988] compilers.
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PROCEDURE Build_Graph_From_Root(root_node,root_block)

{
root_node = NewNode (NULL,root_block,NULL);
FOR each non-overlapping value range VRANGE of
the branch variable DO {
current_states = related branch states associated with VRANGE;
IF (current_states indicate related branch in root_block is taken)
Build_Graph(root_node,root_block—>taken,current_states,root_block);
ELSE
Build_Graph(root_node,root_block->not_taken,current_states,root_block);
}
}

PROCEDURE Build_Graph(pred_node,successor_block,
current_states,root_block)

{
/* Do not allow a cycle back to root_block */
IF (successor_block == root_block)
RETURN;
/* Calculate new states */
new_states = intersection between current_states and related
branch states associated with successor block;
IF (successor_block with new_states already
exists in the graph) {
Connect pred_node to the existing node;
RETURN;
}
/* Create a new node for successor_block and
append it to pred_node */
new_node = NewNode(pred_node,successor_block,new_states);
IF (successor_block contains related branch) {
Mark new_node that the branch can be eliminated;
IF (new_states indicate that successor of new node will be
the branch target)
Build_Graph(new_node,successor_block->taken, new_states,root_block);
ELSE
Build_Graph(new_node,successor_block->not_taken,new_states,root_block);
}
ELSE
FOR each immediate successor block SUCC of successor_block DO {
Build_Graph (new_node,SUCC,new_states,root_block) ;
}

Fig. 9. Restructuring Algorithm



14 . Gang-Ryung Uh and David Whalley

[10. . 255]
1T, 3T, 6F

Exit of the |oop

Go back to the Block 1

Fig. 10. Graph Representing Restructured Control Flow for Figure 2

(a)

(b)

switch (c) {

case 'a
case 'b’':
case 'c’:
case 'd:
case 'e’
defaul t:

r[8]=r[8]-97; # 1. Subtract the lowest case value
| C=r[ 8] ?4; # 2. Compare with (highest-lowest)
PC=I ChO, L27; # 3. Perform unsigned > branch to

ensure the value is within range
(L27 is the default address)

r[20] =HI[LO1]; # 4. Get High portion of address of
jump table

r[20] =r[20] | LO LO1]; # 5. Get Low portion of the address

r[8]=r[8]<<2; # 6. Align value on a word boundary

so can index into jump table
r[81=Mr[8]+r[20]]; #7.Load target destination out of

jump table

PC=r[8]; # 8. Perform an indirect jump
LO1:

.MORD L22 # Target address for case 'a’
.WORD L23 # Target address for case 'b’
.WORD L24 # Target address for case 'c’
.WORD L25 # Target address for case 'd’
.VWORD L26 # Target address for case 'e’
L27:

Fig. 11. RTLs to Perform an Indirect Jump from a Jump Table
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corresponding to the default target. This technique is illustrated in Figure 12,
which contains the instructions of Figure 11(b) with the modifications resulting
from padding the front of the jump table. Instruction 2 in Figure 12 uses the
highest case value in the comparison when padding is applied. Note also that in-
structions 4 and 5 in Figure 11(b) were removed in Figure 12 since it was assumed
they are loop invariant for this example.

IC=r[8]17103; # 2. Compare with (highest-lowest)

PC=IChO,L27; # 3. Perform unsigned > branch to
ensure the value is within range
(L27 is the default address)

r[8]=r[8]<<2; # 6. Align value on a word boundary
so can index into jump table

r[81=M[r[8]+r[20]1]; # 7. Load target destination out of
jump table

PC=r[8]; # 8. Perform an indirect jump

LO1:

.word L27 # Target Address for 0

.word L27 # Target Address for 1

.word L27 # Target Address for 96 (’a’-1)

.word L22 # Target Address for ’a’

.word L23 # Target Address for ’b’

.word L24 # Target Address for ’c’

.word L25 # Target Address for ’d’

.word L26 # Target Address for ’e’

L27:

Fig. 12. RTLs after Padding the Front of the Table

5.2 Using Value-Range Analysis to Avoid the Initial Range Check

The initial range check (instructions 1-3 in Figure 11(b)) can be completely avoided
if a bounded range of case values is known and an entry can be stored in the table
for each value [Spuler 1994]. Assume that the value range of the variable c in
Figure 11(a) is [0..255]. The indirect jump operation associated with the known
value range of the branch variable is depicted in Figure 13.7

Once a set of related branches has been selected, the optimizer vpo uses demand-
driven analysis to recursively search all the possible paths backward from the root
block to determine if the range of case values is bounded. In the following sub-
sections, a general algorithm for such range determination is depicted, and several
cases that can be handled by the algorithm are illustrated.

"Note that 256 targets are listed in the table. Often this space is reduced by a factor of four as
described in the next section.



16 . Gang-Ryung Uh and David Whalley

r[8]=r[8]1<<2; # 6. Align value on a word boundary
so can index into jump table

r[81=M[r[8]+r[20]1]; # 7. Load target destination out of
jump table

PC=r[8]; # 8. Perform an indirect jump

LO1:

.word L27 # Target Address for O

.word L27 # Target Address for 1

.word L27 # Target Address for 96 (’a’-1)

.word L22 # Target Address for ’a’

.word L23 # Target Address for ’b’

.word L24 # Target Address for ’c’

.word L25 # Target Address for ’d’

.word L26 # Target Address for ’e’

.word L27 # Target Address for 102 (’e’+1)

.word L27 # Target Address for 103

.word L27 # Target Address for 255

L27:

Fig. 13. SPARC Instructions with a Bounded Range of Values

5.2.1 General Algorithm to Determine Bounded Value Ranges:

A general algorithm for determining if the range of case values is bounded is
shown in Figure 14. The essence of this algorithm is as follows.

(1) Expand a branch variable using previous effects on the variable by recursively
searching all the possible paths backward from the root block.

(2) Whenever an expansion occurs, parse and evaluate the expanded expression to
determine whether or not the range of case values can be determined.

The algorithm returns a state with a detected range of case values if one of the
following conditions exists.

—bounded: The value ranges of a branch variable can be enumerated in a jump
table.

—unbounded: The value ranges of the branch variable cannot be enumerated in
a jump table.

—duplicated: The value ranges of the branch variable can be enumerated in a
certain execution path. This state provides an extra opportunity for the optimizer
to perform an indirect jump more efficiently in the bounded execution path by
duplicating some blocks of instructions.

5.3 Analyzing Effects

For a given root block, a bounded value range of the branch variable can often
be determined by examining each effect backward from the root. Consider the C
code depicted in the left column of Figure 15 with an assumption that the block
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PROCEDURE Bounded_Path(RTL_pointer, Register)

{

current_block = basic block containing RTL_pointer.

expanded_expr = Register.

Value_Range_State = None.

Set_of_value_range = NULL.

Set_of_duplicated_block = NULL.

/* Ezpand and evaluate expanded_ezpr within current_block
If the expanded_expr is determined to be BOUNDED, add
the bounded value range to Set_of value_range and return */

WHILE (RTL_pointer = previous_rtl(RTL_pointer)) {
Expand_and_Evaluate(RTL_pointer, expanded_expr,

Set_of_value_range,
Value_Range_State) .

IF (expanded_expr is either BOUNDED or UNBOUNDED)
RETURN Value_Range_State.

/¥ Alias effect such as r[9]=r[8] */

ELSE IF (expanded_expr == Register &&

RTL_pointer points to the instruction
that assigns Register to New_Register)
expanded_expr = Register = New_Register.

}

/* Neither BOUNDED nor UNBOUNDED state can be determined by
evaluating expanded_expr. Ezpand and evaluate the expression
by recursively looking back all predecessor blocks */

FOR each predecessor block of current_block DO {
temp_expr = expanded_expr.

Recursively expand and evaluate temp_expr starting from
the predecessor until temp_expr is determined to be
either BOUNDED or UNBOUNDED.

IF (temp_expr is determined to be BOUNDED)

Add the associated value range to Set_of_value_range.

}

IF (Value_Range_State is both BOUNDED and UNBOUNDED &&

there exists a single execution path along which

the value range is BOUNDED) {

Calculate Set_of_duplicated_block by taking intersection
among sets of blocks along all possible execution
paths to the root block.

RETURN REPLICATED.

}

ELSE IF (Value_Range_State == BOUNDED)

RETURN BOUNDED.

ELSE

RETURN UNBOUNDED.

Fig. 14. Detection Algorithm for Bounded Value Ranges
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containing the condition “c == a” has been selected as the root. The bounded
value range of the condition variable ¢ was detected by expanding register r[8],
which contains the temporary value of ¢, with previous effects on that register. The
right column of Figure 15 depicts the RTLs when the branch coalescing analysis
was about to be performed. The expansion of r [8] was accomplished as follow.

1. r[8] # register containing values of ’c’
2. r[8]1}24 # instruction 2: right shift(’}’) by 24 bits
3. (b[16]1{24)}24 # instruction 1: left shift(’{’) by 24 bits

After the above expansion, the value range of r [8] was determined as bounded to
the interval [-128..127], since the resulted effect from 24 bit left-shift followed by
24 bit right-shift is to mask the signed 8 bit value from r[8]. In a similar manner,
the value range of a branch variable is determined as bounded to [0..255] when the
variable can be expanded as the effect of unsigned byte load or conversion to an
unsigned character value. Some other useful bounds were obtainable from the C
mask operation, ’&’.

[ Example C source [ RTLs
r[8]=b[16]1{24; # 1. s11 %10,24,%00
r[8]=r[8]1}24; # 2. sra %00,24,%00
# Block for ¢ == ’a’
IC=r[8]797; # 3. cmp %00,97
PC=IC!0,L18; # 4. bne L18
char c; # Block for A()
if (c == ’a”) # Block for ¢ == b’
AQ; .
else if (c == ’b?) L18:
BO; IC=r[8]798; # 5. cmp %00,98
22 PC=IC'!0,L22; # 6. bne L22
else if (c == ’¢c’)
€0 # Block for B()
# Block for ¢ == ’c’
L22:
IC=r[8]1799; # 7. cmp %00,99
PC=IC!0,L25; # 8. bne L25
# Block for C()

Fig. 15. Example Case for Bounding Value Range

5.4 Analyzing Effects for All Possible Paths

For a given root block, a bounded value range of the branch variable was often
determined by recursively searching all the possible paths backward from the root.
Consider the C code segment shown in Figure 16 with an assumption that the
block containing the condition “flag == 0” has been selected as the root. The
value range of the variable flag was determined by recursively searching all the
possible paths backward from the root block. The optimizer determines that the
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value of flag is bounded by the interval [0..4], since the value of flag is set to a
certain constant in that interval for every possible path reaching the root.

int flag;
switch (*s) {

case 'f’': case 'e’: case '@ :
flag =1l

br eak;
case '0': case 'X':

flag = *(s-1) =='1" ? [2:
br eak;

E}

case 's’:
flag =

br eak;

defaul t:
flag =@

br eak;

o

}

Fig. 16. Code Segment from format() in awk

5.5 Code Duplication for Bounded Value Range Path

Often a path of blocks is detected where the range of values is bounded and one or
more paths are detected where the range is unbounded. Code is duplicated when
deemed worthwhile to allow coalescing of branches to occur on the path with the
bounded range. For example, Figure 17(a) shows a C code segment in we, and the
effects of the C statements in the shaded area are represented as RTLs with the
control flow in Figure 17(b). The reaching algorithm in Figure 6 determined block
20 as the most beneficial root block. Note that the conditional branches in block
20 and block 24 were considered to be related since r[10] is an alias of r[8] by the
RTL r[10]=r[8].

Blocks 17 to 19 contain RTLs generated from invoking the getc () macro. Block
18 contains an RTL (r[8]1=B[r[9]1&255;) that loads an unsigned character from
a buffer and bounds the range of values from 0..255. Block 19 contains a call
to _filbuf, which results in the value associated with r[10] being unbounded
since no interprocedural analysis was performed. The optimizer recursively searches
backwards and finds that blocks 20 and 18 are within a path back to the point
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where the range of values is bounded. Likewise, the compiler finds that blocks 20
and 19 are within a path where the range of values is unbounded. The intersection
between the blocks in a bounded path and the blocks within any unbounded paths
results in the block(s) that must be duplicated to distinguish the bounded path.
Figures 17(c) shows the RTLs with the modified control flow after duplication of
the block 20 and coalescing of the set of related branches. Coalescing can occur
at the duplicated root (block 20’) without an initial range check since the range of
values is now bounded. Limits were placed on the amount of code allowed to be

duplicated to prevent large code size increases.

(©

! block 17

(a) (b)
for (;;) { ! block 17
c = getc(fp);
if
br eak;
char ct ++; ! block 18
if (' <c & r[ 9] =R r[16] +4];
c < 0177) { r[10] =r[ 9] +1;

Rl r[16] +4] =r[ 10] ;
r[8]=B[r[9]]&255;
PC=L64;

! block 18 (no unconditional jump)
r[9] =R[r[16] +4] ;
r[10] =r[ 9] +1;
R r[16] +4] =r[10];
r[ 8] =B[r[9]] &55;

! block 19
r[8]=r[16];
CALL _filbuf();

! block 20
L64:
r[10]=r[8];
IC=r[8]?-1,
PC=I C! 0, L65;
! block 24
I C=r[10] ?32;
PC=I C<=0, L66;

i

! block 20" (duplicated block)
r[10]=r[8];
r[10] =r[ 10] <<2;
r[10] =M r[10] +r[20]];
PC=r[ 10];

AN

Bounded Path = bl ock 18,
bl ock 20
Unbounded Pat h = bl ock 19,
bl ock 20
Dupl i cated Bl ock = bl ock 20

! block 19
! block 20
! block 24

Fig. 17. Using Duplication to Distinguish Paths for Coalescing
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5.6 Efficiently Indexing into the Jump Table

Instruction 6 in Figure 13 left shifts the value by 2 since each element of the jump
table contains a complete target address requiring 4 bytes. Consider tables contain-
ing byte displacements instead of complete word addresses. For instance, Figure 18
shows how the code in Figure 13 can be transformed to use byte displacements.
There are two advantages for using byte displacements. First, the left shift will
no longer be necessary. Second, the table only requires one fourth the amount of
space. Thus, a jump table for a value range associated with a character can be
compressed from 256 to 64 words.

# r[20] is the jump table address (LO1)
# r[22] is the base address (L02) for the displacement

r[81=M[r[8]+r[20]1]; # 7. Load target destination out of jump table
PC=r[8]+r[22]; # 8. Perform an indirect jump

.seg ‘‘data’’

LO1:

.byte L27-L02 # Target Address for O

.byte L27-L02

**

Target Address for 1

.byte L27-L02 Target Address for 96 (’a’-1)

#
.byte L22-1L02 # Target Address for ’a’
.byte L23-L02 # Target Address for ’b’
.byte L24-L02 # Target Address for ’c’
.byte L25-L02 # Target Address for ’d’
.byte L26-L02 # Target Address for ’e’
.byte L27-L02 # Target Address for 102 (’e’+1)
.byte L27-L02 # Target Address for 103
.byte L27-L02 # Target Address for 255
.align 4
.seg ‘‘text’’
L27:

Fig. 18. SPARC Instructions with Byte Displacements in the Jump Table

The disadvantages include requiring an additional register to calculate the base
address for the displacements and not always having displacements small enough to
fit within a byte. There are two approaches that were used to help ensure that the
displacements are not too large. First, a label for the base of the displacements was
placed at the instruction that was the midpoint between the first and last indirect
jump targets. The jump table is always placed in the data segment so it will not
cause the distance between indirect jump targets to be increased. Note this requires
the calculation of the addresses of two labels (the one at the beginning of the jump
table and the one used for the base address of the displacements). Before applying
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this approach, the compiler first ensures that the indirect jump would be in a loop
and registers are available to move the calculation of both addresses out of the loop.

Second, the targets of the indirect jump may be moved to reduce the distance
between targets. The instructions within a program may be divided into relocatable
segments. Each segment starts with a basic block that is not fallen into from another
block and ends with a block containing an unconditional transfer of control. An
example of relocatable code segments is given in Figure 19. Assume each of the
labels in the figure are potential targets of one indirect jump. There are three ways
segments can be moved to reduce the distance between targets.

(1) A segment that does not contain any targets for a specific indirect jump can
be moved when it is between segments containing such targets. For example,
segment D can be moved to follow segment A since both segments contain no
targets for the indirect jump.

(2) The segment containing the most instructions preceding the first target label in
a segment can be moved so it will be the first segment containing targets. For
example, segment C has blocks of instructions preceding the block containing
its first target label (L2). By moving segment C to follow segment D, these
instructions preceding L2 will be outside the indirect jump target range.

(3) Likewise, the segment containing the most instructions following the last target
label in its own segment can be moved so it will be the last positional segment
containing targets. For example, segment B has the most instructions following
its last target label (L1) and is moved to follow segment E. Jump tables are
only converted to tables containing byte displacements when all targets of the
indirect jump will be within the range of a byte displacement after relocating
segments of code.

5.7 Filling Delay Slots for Indirect Jumps

The optimizer vpo previous to this work only filled delay slots of indirect jumps with
instructions that precede the jump. This approach was reasonable since indirect
jumps with tables occurred infrequently and filling the delay slot from one of several
targets is more complicated than filling the delay slot of a branch instruction. After
implementing the transformation to coalesce branches, indirect jumps occurred
much more frequently. The compiler has been modified to fill the delay slot of
an indirect jump with an instruction from one of the targets if it could not be filled
with an instruction that preceded the jump. An instruction from a target block
could only be used to fill the delay slot if it did not affect any of the live variables
or registers entering any of the other target blocks.

Filling a slot for an indirect jump is less advantageous than that for a conditional
branch (or unconditional jump) since more targets are associated with an indirect
jump. Therefore, the optimizer vpo tried the following method to usefully fill slots
for indirect jumps. Since each target of an indirect jump has been associated with
certain range(s) of case values, the probability of the transition from an indirect
jump to a certain target can be statically estimated. The optimizer vpo ranks the
indirect jump targets based upon such estimation, and attempts to fill its slot with
the instruction from the most probable target.
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Fig. 19. Relocating Segments of Code

When a set of branches that are originally separated by some intervening instruc-
tions is selected for branch coalescing, the actual transformation is accomplished
by duplicating these intervening instructions. In such a case, the usefulness of fill-
ing slots for indirect jumps can be significantly improved. For example, consider
the following C code in Figure 20(a). The detection and restructuring algorithms
in Chapter 4 allow the optimizer to detect all the branches in the shaded area as
coalescent and transform these branches into an indirect jump by duplicating the
effects of wd++ to several destinations of the coalescent branches. The restructured
code in Figure 20(b) shows the comparable C code after the transformation.

After coalescing with code duplication, most of targets of the indirect jump have
identical effects of wd++ as depicted in Figure 20(b). Thus, the code duplication
from branch coalescing potentially provides extra opportunities to fill the delay
slot of the indirect jump with a useful instruction. However, there is one more
complication that should be resolved for successfully filling an instruction of wd++
for the delay slot of the indirect jump. The RTLs shown in Figure 21(a) depict the
restructured code after branch coalescing transformation occurs for the example C
code. Note that hardware register r[24] contains the temporary value of wd. It
appears that r [24]=r[24]+1 cannot be filled for the delay slot, since r[24] is both
set and referenced among targets of the indirect jump. However, r[24]=r[24]+1
can be filled for the following reasons:

—r[24]=r[24]1+1 has no dependency with other instructions within the indirect
jump target block containing the same instruction.

—r [24]1=r[24]+1 has no set-and-reference conflict when the analysis is performed
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(a) Original Code

(b) Restructured Code
after Duplicating "wd++"

whi | e agai n:
switch (*wd++) { switch (*wd) {
case '\0':
ipr(linect); br eak;
br eak; case "I’
we++;
i pr(wordct); ipr(linect);
br eak; got o agai n;
case 'W:
i pr(charct); wd++;
br eak; i pr(wordct);
} goto agai n;
case 'Cc’:
wd++;
ipr(charct);
goto agai n;
defaul t:
wd++;
goto agai n;
}

Fig. 20. Code Segment from wep() in we

by considering the targets containing that instruction as one conceptual target.

In order to fill such an indirect jump delay slot as described in the situation
above, the following extra steps were added to wvpo.

(1)

For each target of the indirect jump, evaluate the probability that the target
may be taken using the associated case values in the jump table. When the
range of case values is bound to values representing ASCII letters, the prob-
ability is further weighted using estimated character frequency distribution of
common use.

Sort the indirect jump targets based on the evaluated probabilities.

Starting from the most probable jump target to the least, make a list of all

the instructions that can be potentially filled for the indirect jump without

considering effects from other jump targets. Whenever an identical instruction
is found in an other target block, add the associated probability to that of the
instruction.

(a) If an instruction does not exist in the list, then insert the RTL with its
associated block address and probability.

(b) else (the same RTL already found on other target block), add the associated
probability to that of the existing RTL in the list and add the associated
block address to the block address list of the existing RTL.

Starting from the most probable instruction, determine if this instruction sets

any variables or registers that could be live when entering any of the target

blocks that do not have this instruction. If there is no conflict, then fill the
delay slot with this instruction and delete it from the appropriate target blocks.
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(b) After filling delay
slot for indirect junp

r[8]1=(B[r[24]]{24)}24;
r[9]=(B[r8] +r[20]]{24)}24;
PC=r[9] +r[21];

‘ del ay sl ot ‘

.seg "data"
. byte L0019-L0017

L0020:

.byte L82-L0017
.byte LO016- L0017
.byte LO017-L0017
.byte LO018-L0017
.align 4

.seg "text"

L0019:
r[24] =r[24] +1,
PC=L83,;

L0018:
r[24] =r[24] +1;
r[8]=r[26];

L0017:
r[24] =r[ 24] +1;
PC=L87;

L0016:
r[24] =r[24] +1,
r[8]=r[25];

L82:
PC=RT;
NL=RS[ ] ;

r[8]1=(B[r[24]]{24)}24;
r[9]=(B[r8]+r[20]]1{24)}24;
PC=r[9] +r[21];

r[ 24] =r[ 24] +1; |

.seg "data"
. byte L0019-L0017

L0020:

.byte L82-L0017
.byte LO016- L0017
.byte LO017-L0017
.byte LO018-L0017
.align 4

.seg "text"

L0019:
! filled for the indirect junp
PC=L83;

L0018:
! filled for the indirect junp
r[8]=r[26];

L0017:
! filled for the indirect junp
PC=L87;

L0016:
! filled for the indirect junp
r[8]=r[25];

L82:
PC=RT;
NL=RS[] ;

25

Fig. 21. RTLs after Filling Delay Slot of the Indirect Jump for Example C Code in Figure 6.10(a)
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6. OTHER ARCHITECTURAL ISSUES FOR COALESCING BRANCHES

The cost of performing an indirect jump from a jump table can vary on different
machines. Not only can the number of instructions required to perform this opera-
tion vary, but indirect jump instructions (as well as conditional branches) can also
result in pipeline stalls on many machines.

6.1 Dual Loop Test

To realistically estimate the pipeline impact on RISC architectures from replacing
several conditional branches into an indirect jump, a dual loop test [Clapp et al.
1986; Altman and Weiderman 1987] has been conducted on a SPARCstation-IPC,
SPARCstation-5, SPARCstation-20, and UltraSPARCstation-1.

—First, an optimized executable with a linear sequence of branches and with an
indirect jump from a table, were generated for the C code shown in Figure 23.
Let Ejinear and Eipgirect denote such executables, respectively. Note that Ej;peqr
requires the execution of 2.5 branches on average for each loop iteration. Note
that Ejpqirect has been generated such that all the conditions in the loop body
have been coalesced into an indirect jump operation requiring only two SPARC
instructions as shown in Figure 18.

—Second, the authors ran each executable 20 times, and chose the shortest execu-
tion time for each executable. Let 7x,,.., TEyranenes» a0d T, 4., TEPTEsent such
shortest execution times respectively. (7g,;,.., - TE.,.,) gives a relative estimate
of the total time required to execute the the conditional branches over all itera-
tions. (TE;, 4 e - TEioo,) 8ives a relative estimate of the time that is required to
perform an indirect jump operation as shown in Figure 18, over all iterations.

—Finally, by varying the number of conditions in the loop, the relative impact of
conditional branches versus an indirect jump has been measured as shown in
Table IV.

Table IV. Dual-Loop Test (10,000,000 iterations)

) Linear Search Indirect Jump
Machine Type | Loop Cost |5 ey 1 5 br | 8.5 br || 25 br | 4.5 br | 85 br
SPARCstation-IPC 3.65s 3.82s 5.53s 8.82s 2.61s 2.71s 2.76s
SPARCstation-5 0.88s 1.03s 1.65s 2.74s 0.63s 0.76s 0.76s
SPARCstation-20 0.51s 0.93s 1.60s 2.65s 0.87s 0.93s 0.93s
UltraSPARC-1 0.40s 0.50s 1.16s 1.56 1.50s 1.51s 1.51s

From the dual loop test as described above, the authors found that an indi-
rect jump as depicted in Figure 11(c) required about the same execution time as
two pairs of compare and branch instructions for most SPARCstations except the
UltraSPARC-1. Therefore, the indirect jump transformation is only applied when
it is estimated that more than two coalescent branches in the set will on average
be executed. For the UltraSPARC-1, an indirect jump as depicted in Figure 11
required about the same execution time as eight pairs of compare and branch in-
structions. The major reason is that the UltraSPARC-1 (a Superscalar architecture)
provides the hardware branch target/prediction buffer support for branches, but no
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int i;
main()
{
long int j, k, 1;
struct timeval before,after;

gettimeofday (&before, (struct timezone *)NULL) ;

k = 0;
1= 0;
for (j=0; j<10000000; j++) {
i=3j&3;
}
gettimeofday(&after, (struct timezone #*)NULL);
after.tv_sec —-= before.tv_sec;
after.tv_usec -= before.tv_usec;

if (after.tv_usec < 0)
after.tv_usec--, after.tv_usec += 1000000;

printf(‘ ‘The elapsed time: %91d.%021ld\n’’,
after.tv_sec, after.tv_usec/10000);

Fig. 22. Code to Measure the Execution Time for Loop Overhead

hardware support for indirect jumps. In the following section, the authors argue
that, with a comparable hardware branch prediction/target buffer support, such
unbalanced execution time discrepency can be eliminated.

6.2 Branch Target Buffer (BTB) Support for Branches and Indirect Jumps

One characteristic feature of RISC machines is pipelining. Pipelining divides the
execution of each instruction into several stages. Different stages can be overlapped
in execution to increase processor throughput. However, there are several obstacles
that limit the full exploitation of pipelining. One of the most serious obstacles
is branch instructions. If the current instruction turns out to be a branch, then
the CPU should predict in advance whether or not the branch is taken and what
the target address will be in order to preserve a steady flow through the pipeline.
However, the execution path of a branch cannot be easily resolved in advance.
Thus, branches typically cause delays in the pipeline [Wall 1991; Perleberg and
Smith 1993; Chang et al. 1997; Hennessy and Patterson 1996].

A Branch Target Buffer (BTB) can reduce these pipeline disruptions by predict-
ing the path of the branch and caching information used by the branch. Various
pieces of information can be kept in the BTB, including tags associated with the
branch address, the branch target address, and branch prediction information [Per-
leberg and Smith 1993]. However, it has been reported that BTB-based prediction
schemes perform poorly for indirect jumps, since the target of an indirect jump can
change with every dynamic instance of that branch [Chang et al. 1997; Wall 1991].
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gettimeofday (&before, (struct timezone *)NULL);

k = 0;
1=0;
for (j=0; j<10000000; j++) {
i=j&3;
/* 2.5 DYNAMIC NUMBER OF BRANCHES x/
if (1 == 0) {
k =k + 4;
1= 4;
}
else if (i == 1) {
k=k +1;
1=1;
}
else if (i == 2) {
k =k + 2;
1 =2;
}
else if (i == 3) {
k =k - 3;
1=3;
}

}
gettimeofday(&after, (struct timezone *)NULL);

printf(‘‘The elapsed time: %91d.%021ld\n’’,
after.tv_sec, after.tv_usec/10000);
}

Fig. 23. Code to Measuring the Execution Time for Loop Overhead and Loop Body

In fact, some compilers provide techniques that insert extra conditional branches
that check for likely targets to avoid the execution of indirect jumps from a table
[Holler 1996] or indirect calls [Calder and Grunwald 1994].

Most modern architectures seldom support indirect jumps with a BTB due to
poor misprediction ratios for indirect jumps. However, consider the results shown
in Table IV. An UltraSPARC-1 could execute about eight pairs of compare and
branch instructions in the time required to perform an indirect jump operation. One
reason for the lower relative performance for indirect jumps on the UltraSPARC-1
was that this machine uses a BTB to provide architectural support for branches.
There was no target buffer support on the UltraSPARC-1 for indirect jumps, which
resulted in all indirect jumps being treated as mispredictions.

In the following sections, the authors claim that, with comparable BTB support
for indirect jumps, the branch coalescing transformation can be beneficial in re-
ducing the total number of dynamic branch mispredictions.® First, a conceptual
design of BTBs is proposed that can provide comparable target buffer support for
indirect jumps. Second, various branch prediction approaches will be described.
Using more sophisticated branch prediction approaches as well as increasing the
number of entries in BTBs is known to improve BTB performance [Perleberg and
Smith 1993]. Third, issues will be presented about how to manage BTBs that
support branches and indirect jumps. Finally, with comparable BTB support for

8We are not aware of any machines that use this exact model of BTB support for indirect jumps.
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indirect jumps, the authors will provide arguments describing why the total number
of branch mispredictions can be reduced by the branch coalescing transformation.
In addition, another compiler technique will be introduced that can potentially
reduce the number of dynamic indirect jump mispredictions.

6.2.1 A Conceptual BTB Supporting Branches and Indirect Jumps:

Branch Target buffers are available to reduce the cost of indirect jumps on some
machines. These buffers are typically specialized to support indirect jumps gener-
ated from return statements since indirect jumps from tables are not generated fre-
quently by most compilers [Hennessy and Patterson 1996](see page 276). However,
BTBs can be easily extended to support indirect jumps from tables by considering
an indirect jump as another PC-relative branch instruction [Hennessy and Patter-
son 1996](see page 274). For instance, Figure 24 shows one conceptual view of a
BTB, which, like a cache, can have several alternative designs. If the appropriate
tag is not found in the buffer, then the hardware predicts that the branch will
not be taken. If the appropriate tag is found in the buffer and a branch predictor
indicates the branch as taken, then the hardware predicts that the branch will be
taken. Otherwise, the branch is predicted as not taken.

PC of instruction to fetch

Tag look up Predicted PC Valid bit  Branch Predictor

Number of
entries

in branch-

target

buffer.

Instruction is not predicted to
be a branch. Proceed normally.

Instruction is a branch and the predicted
PC should be used as the next PC.

Fig. 24. A Branch Target Buffer

6.2.2 Branch Predictors:

The n-bit predictor scheme predicts the outcome of the branch using 2" state
diagram. When n is equal to one, the predictor predicts the next execution path
of a branch based upon the previous outcome of the branch. This predictor has
a performance drawback such that, when a loop branch is almost taken, the same
branch will likely be predicted incorrectly twice, rather than once. As an illustra-
tion for such a mispredicted branch, consider the example code fragment shown in
Figure 25. Assume that one-bit prediction information is in the BTB for branch
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i=1;

while (i < 10) { /* branch 1 */
i=1
while (j < 10) { /* branch 2 */

j++;
}

it+;

Fig. 25. An Example for a Mispredicted Branch

2. Mispredicting the tenth iteration of branch 2 is inevitable since one-bit predic-
tion information indicates that branch 2 will be taken. However, when branch 2
is accessed again after entering the inner loop for the second time, branch 2 will
be mispredicted as not taken. Thus, the prediction accuracy for branch 2 that is
taken in 90% of the iterations turns out to be only 80%.

In order to remedy this, two-bit predictor are often used. Consider the two-
bit state diagram shown in Figure 26. By having intermediate branch prediction
states, such as State 1 and State 2, the above performance shortcoming of one-
bit predictor can be resolved. The two-bit predictor approach has been reported
to do almost as well as the more general n-bit predictors [Hennessy and Patterson
1996](see page 263), and most machines rely on the two-bit predictor instead of the
more general n-bit predictor.

.- Taken
State 3 Not taken State 2
Predict taken | . an | Predi ct taken
Taken Not taken
State 1 Not taken State 0
Predict not taken | T.ipan | Predict not taken

Not taken

Fig. 26. The states in a two-bit predicton scheme

In many cases, the execution path of a branch can be easily determined by ob-
serving the outcomes of the previous branch executions [Pan et al. 1992]. Consider
the code fragment in Figure 27. If the branch 1 and 2 are taken, then the execution
path of branch 3 can be easily predicted as not taken. The n-bit predictors can be
further improved to make a prediction by using the outcomes of other branches.
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if (aa == 2) /* branch 1 */
aa = 0;

if (bb == 2) /* branch 2 */
bb = 0;

if (aa !'= bb) { /* branch 3 */

¥

Fig. 27. An Example Code Fragment for Branch Correlation

Such predictors are known as (m,n) correlation predictors. They use the outcome
of the previous m branches to choose from 2™ branch predictors, each of which is
a n-bit predictor for a single branch. The (m,n) predictors require one m-bit shift
register to store the outcomes of the last m branch execution (0 for not taken, 1 for
taken). This shift register can identify 2™ different contexts of a branch. Studies
reported that (m,n) correlation predictors provide more accuracy than that of n-bit
predictors [Pan et al. 1992; Hennessy and Patterson 1996].

6.2.3 BTB Management:

The target address for a branch is only placed in the buffer once the branch is
taken. An indirect jump can be considered not taken (and therefore not placed
in the buffer) if the target is the instruction following the indirect jump. If a
branch or indirect jump is not in the buffer and it was not taken, then no delay
is necessary since the not taken address is already calculated by the CPU. If the
actual target of the indirect jump does not match the target in the buffer, then
the branch target buffer is updated to contain the last target of the jump unless
the same target is still predicted as taken. To maximize the performance of BTB,
a branch, which is not in the BTB and is not taken, never replaces an entry in
the buffeion of a branch in the BTB turns out to be not taken , the associated
entry is immediately invalidated [Perleberg and Smith 1993]. This approach has
the effect of never replacing an entry in the buffer with a branch that is not taken.
Remember that a branch is predicted as not taken if it is not found in the buffer.
Note that, when the BTB uses correlating information from a (m,n) correlation
predictor, the m-bit shift register does not reflect the outcome of previous indirect
jump executions. The major reason is that there are several targets of the indirect
jump that can be considered as taken addresses [Wall 1991]. However, indirect
jumps still use correlating information from the previous m executed branches.

6.2.4 Expected Benefits from Branch Coalescing Transformation with BTBs:

Indirect jumps typically have higher misprediction rates than conditional branches
since an indirect jump may have many possible targets [Chang et al. 1997]. It is
the authors’ contention that higher misprediction rates do not necessarily mean
worse performance. One must remember that several branches are being coalesced
into a single indirect jump. Thus, the total number of mispredictions instead of
the misprediction rate should be used when trying to measure branch target buffer
performance with and without branch coalescing.
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The authors argue that with comparable branch target buffer support, an indirect
jump will cause no more mispredictions than the set of conditional branches it
replaced. If the target of an indirect jump is mispredicted, then the target of the
indirect jump changed from the last time it was executed. Likewise, at least one of
the conditional branches that would have been executed instead of the indirect jump
must have had different behavior and would also likely result in a misprediction.
There are actually two reasons why fewer mispredictions would occur after branch
coalescing. First, an indirect jump can cause at most one misprediction when
executed. The execution of a sequence of the replaced conditional branches may
cause multiple mispredictions. Second, there should be less contention for entries
in the branch target buffer since there will be only one indirect jump as compared
to the set of branches the indirect jump replaced.

indirect
-~ jump

most
-7 like
7 e
R
L

]
g

Fig. 28. Placing the Most Likely Target

Architectural and compiler support can be used to further reduce the number
of mispredictions from indirect jumps. Indirect jump history and a target cache
containing the targets of the indirect jump that have been encountered have been
used to improve prediction accuracy [Chang et al. 1997]. The authors used com-
piler support to reduce the number of mispredictions. Often targets of an indirect
jump have the block containing the indirect jump as their only predecessor. Value
range analysis was performed to predict the most likely target for each indirect
jump, which was placed immediately following the indirect jump block as shown in
Figure 28. Thus, jumps to this target will result in no delay when the tag for the
indirect jump is not found in the buffer since this address will be treated as the not
taken address. Note that the authors do not suggest that the described approach
is the best BTB design and configuration to support indirect jumps. Instead, the
authors are simply showing that, with comparable BTB support for indirect jumps,
aggressively coalescing branches into indirect jumps can result in improved branch
prediction performance. The branch prediction simulation results from various
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configurations will be shown in Chapter 8.1.3. With specialized BTB support for
indirect jumps [Chang et al. 1997], even better results should be obtained.

Some machines provide other special architectural support for speculative exe-
cution of instructions dependent on branches, such as boosting [Smith et al. 1990]
and predicted execution [Pnevmatikatos and Sohi 1994; Mahlke et al. 1994]. The
relative cost of an indirect jump versus the set of branches it replaces will be af-
fected by such support. The compiler writer must use appropriate cost estimates
based on the architectural support available for branches and indirect jumps on
the target machine. An optimizer could also later convert indirect jumps into a
sequence of conditional branches to exploit such architectural support.

7. RESULTS

Various measurements are given in this chapter that shows the benefits of applying
the branch coalescing transformation. Several common Unix utilities were selected
as benchmarks since non-numerical applications tend to have complex conditional
control flow.

7.1 Dynamic Measurements by Instrumenting Code

The following measurements were collected on code generated by vpce (Very Portable
C Compiler)?using ease (Environment for Architectural Study and Experimenta-
tion [Davidson and Whalley 1991]) on the SPARC architecture for the selected
benchmark Unix utilities. In order to isolate the benefits from the source of the
branch coalescing transformation, each measurement was gathered using three dif-
ferent versions of wvpce.

1. None:  cfe (C front-end) strictly translates every C switch statement into
only the form of linear search.

2. Original: cfe translates a C switch statement into one of the following three
alternative forms.
(1) indirect jump using hashing (jump) tables,
(2) binary search, or
(3) linear search.

Table V shows the heuristics used for the translation decision. [Yang
et al. 1998; Sale 1981; Spuler 1994],

Table V. Heuristics Used for Translating C switch Statements

Term Definition
n Number of cases in a switch statement
m Number of possible values between the first and last case
Indirect Jump Binary Search Linear Search
n >4 && lindirect_jump && | lindirect_jump &&
m < 3n n> 8 !binary_search

9The overall structure of the compiler system is described in Figure 4 (Section 2).
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3. Coalesce: cfe strictly translates every C switch statement into only the form
of linear search. vpo (Very Portable Optimizer) is modified to coalese
conditional branches into indirect jumps as described in Sections 4 and
5.

7.1.1 Number of Instructions Executed:

Table VI shows the number of instructions executed for each benchmark with
three different versions of wpcce as described above. The None column in Table VI
contains the dynamic number of instructions, which was obtained by using the
None version. The Original and Coalesce columns respectively show the percent-
age changes as compared to None column when the Original and Coalesce versions
are used in this measurement. The Original column'®quantifies the benefits when
indirect jumps from tables were only generated by the compiler front-end. The mea-
surements show that a substantial benefit was obtained by conventional translation
of multiway selection statements into jump tables. The Coalesce column quantifies
the benefits when coalescing a set of branches using the techniques described in Sec-
tions 4 and 5. These frequency measurements indicate that our branch coalescing
techniques ( Coalesce column) can significantly outperform the conventional transla-
tion techniques (Original column) in reducing the number of instructions executed.
The variance between different programs in the Original and Coalesce columns in-
dicates that the benefit will depend on number of branches in a sequence. Note
that coalescing had a negative impact on performance when performance estimates
were overly optimistic or pessimistic, which occurred for join and nroff.

Table VI. Dynamic Instruction Frequency Measurements

Program None Original Coalesce
awk 13,666,952 -0.294% -3.118%
cb 19,739,127 | —12.976% | —21.204%
cpp 30,985,306 | —37.421% | —38.538%
ctags 81,040,455 —0.545% | —24.160%
deroff 15,511,056 -0.193% -1.153%
grep 11,810,070 | —21.620% | —24.370%
hyphen 19,535,372 0.000% | —2.187%
join 3,552,801 0.000% 0.325%
lex 10,052,031 -0.230% —0.689%
nroff 25,118,855 —0.155% -0.017%
pr 78,106,755 0.000% | —7.760%
ptx 20,059,920 0.000% | —10.196%
sdiff 17,582,760 0.000% | —0.017%
sed 17,321,920 —6.578% —7.600%
sort 18,921,766 0.000% | —33.053%
we 17,860,086 0.000% | —27.590%
yacc 25,658,688 -0.194% -0.307%
average 25,036,387 -4.718% | —11.861%

10Note that the Original measurements included filling delay slots for indirect jumps from target
blocks specified in jump tables to fairly compare the impact f branch coalescing.
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7.1.2 Total Cache Work:

The branch coalescing impact on caching was a concern since misses from jump
table loads could potentially have negative impact on performance. Table VII
shows the average effect Coalesce had on instruction caching, data caching, and
total cache work as compared to the Original cache measurements. The cache work
cycles were calculated using the following formula, where a cache hit and a cache
miss are counted as one cycle and ten cycles respectively [Smith 1982]. Note that
it was assumed that data cache accesses could be performed simultaneously with
instruction cache accesses.

TOTAL CACHE WORK = Instruction Cache Hits +
10 * (Instruction Cache Misses) +
9 * (Data Cache Misses)

The instruction cache work of Coalesce was reduced since the number of instruc-
tions referenced were diminished as compared to the Original measurements. As
expected, the data cache work of Coalesce increased since jump table loads after
branch coalescing are more frequently performed as compared to the Original com-
piler. The total cache work decreased since instruction cache accesses are more
frequent than data cache accesses.

Table VII. Cache Work Improvement with a Direct-Mapped Cache with 32 Byte Line Size

CACHE SIZE | Instruction Data TOTAL CACHE WORK
1K —-7.095% +6.680% -5.125%
2K —7.220% +7.162% -5.614%
4K —4.909% +5.066% —4.288%
8K -7.930% +2.598% —7.460%
16K -8.231% +3.995% —7.289%
32K —7.947% +4.290% —7.328%

7.1.3 Other Measurements:

Some other measurements not given in the tables provide useful information.
There were on average about 0.901 more instructions executed between branches
after Coalesce as compared to the Original measurements. Thus, the opportunities
for scheduling on superscalar and superpipelined machines may be improved. In
addition, coalescing only caused a 2.566% code size increase.

7.2 Execution Time Measurements

Execution time measurements were also collected on the following three models of
SPARC processors.

—SPARCstation-IPC,

—SPARCstation-20, and

—Ultra-SPARC.

The first two machines did not provide any branch target/prediction buffer support.

The third machine only provides target/prediction buffer support for branches, but
no support for indirect jumps.
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The time measurements were collected using the C run-time library function
times() that uses the unit of time as a tick (1 second = 60 ticks). The execution
times were obtained from the sum of reported user times of ten executions of each
program.

7.2.1 Measurements on SPARCstation-IPC and SPARCstation-20:

The measurement results on these two machines are shown in Tables VIII and
IX. There are a couple of reasons why the execution time decrease probably was not
as significant as the reduction obtained from the number of instructions executed
and total cache work. First, the execution time of an indirect jump operation
required about the same time as two conditional branches. The authors anticipate
that the relative cost of an indirect jump would decrease with target buffer support
for branches and indirect jumps since the load delay for fetching the indirect jump
target address could be avoided and fewer mispredictions would occur. Second, our
compiler did not compile the C run-time library code. However, Tables VIII and
IX show the execution time measurements, which included the execution of the
C run-time library code. The authors anticipate that the execution time benefits
can be further improved if our branch coalescing techniques were applied to the C
run-time library code.

Table VIII. Execution Time Measurements for SPARCstation IPC
Program None SPARCstation IPC

Original | Change Coalesce | Change
awk 2121 ts 2113 ts -0.38% 2254 ts 5.90%
cb 1442 ts 1364 ts -5.41% 1320 ts -8.46%
cpp 1484 ts 1004 ts -32.35% 1010 ts -31.94%
ctags 4392 ts 4374 ts -0.41% 4058 ts -7.61%
deroff 917 ts 912 ts —0.55% 911 ts —0.65%
grep 442 ts 357 ts | —-19.23% 340 ts | —23.08%
hyphen 741 ts 737 ts -0.54% 736 ts —-0.68%
join 296 ts 296 ts 0.00% 303 ts 2.31%
lex 504 ts 503 ts -0.20% 496 ts -1.59%
nroff 1097 ts 1100 ts 0.27% 1118 ts 1.88%
pr 2854 ts 2857 ts 0.11% 2702 ts -5.33%
ptx 3015 ts 3027 ts 0.40% 2962 ts -1.76%
sdiff 9263 ts 9454 ts 2.01% 9280 ts 0.22%
sed 4670 ts 4449 ts —4.76% 4403 ts -5.72%
sort 680 ts 683 ts 0.44% 574 ts | —15.59%
we 777 ts 778 ts 0.13% 678 ts | —12.74%
yacc 1163 ts 1281 ts 9.21% 1295 ts 10.19%
average -3.01% -5.57%

7.2.2 Measurements on UltraSPARC-1:

The same execution time measurements were also conducted on a UltraSPARC-
1. As shown in Table X, the executables from Coalesce version compared to those
from None version resulted in worse performance (even for the Original version).
The authors strongly suspect that such disimprovement stems from no comparable
target /prediction buffer support for indirect jumps. In order to properly estimate



Effectively Exploiting Indirect Jumps . 37

Table IX. Execution Time Measurements for SPARCstation-20

Program None SPARCstation-20

Original | Change Coalesce | Change
awk 617 ts 622 ts 0.80% 611 ts -0.97%
cb 375 ts 363 ts -3.20% 341 ts -9.07%
cpp 493 ts 349 ts | -29.21% 372 ts | —29.41%
ctags 1267 ts 1208 ts -4.66% 1109 ts | -12.47%
deroff 275 ts 274 ts -0.36% 272 ts -1.09%
grep 182 ts 162 ts -10.99% 157 ts -13.74%
hyphen 289 ts 289 ts 0.00% 282 ts —2.42%
join 141 ts 142 ts 0.70% 144 ts 2.08%
lex 209 ts 206 ts -1.44% 201 ts -3.83%
nroff 381 ts 384 ts 0.78% 385 ts 1.04%
pr 874 ts 878 ts 0.46% 830 ts -5.03%
ptx 1429 ts 1425 ts —0.28% 1385 ts -3.08%
sdiff 7520 ts 7479 ts -0.55% 7475 ts -0.60%
sed 1401 ts 1332 ts —4.93% 1320 ts —5.78%
sort 259 ts 258 ts —0.39% 256 ts -1.16%
we 252 ts 250 ts -0.79% 246 ts -2.38%
yacc 414 ts 436 ts 5.05% 428 ts 3.27%
average —2.88% —4.98%

the execution time impact on this machine from the coalescing transformation,
EASE (Environment for Architectural Study and Experimentation [Davidson and
Whalley 1991]) was extended to be able to simulate branch prediction with BTB
support as shown in Figure 24.

Indirect jumps from tables are generally considered to cause poorer branch pre-
diction performance. The reason for this view is that indirect jumps typically have
higher misprediction rates than conditional branches since an indirect jump may
have many possible targets. However, the essence of branch coalescing transforma-
tion is to replace several conditional branches into an indirect jump. Thus, it was
contended that the total number of mispredictions instead of the misprediction rate
should be used when trying to measure branch target/prediction buffer performace
with and without branch coalescing transformation.

Tables XI, XII, and XIII show the results from such branch simulation. As
contended by the authors, even though the misprediction ratio went up after per-
forming the branch coalescing transformation, the total number of mispredictions
was decreased. Note that both the Original and the Coalesce measurements were
obtained with the assumption of comparable hardware prediction support for indi-
rect jumps.

7.3 Compile-Time Overhead

Initially, the compile-time overhead of branch coalescing was quite excessive. Two
improvements were made to increase compile-time efficiency for the branch coa-
lescing transformation. These improvements were decreasing the number of basic
blocks used to represent jump tables and avoiding unnecessary attempts to coalesce
branches.

7.3.1 Reducing the Number of Basic Blocks:
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Table X. Execution Time Measurements for Ultra-SPARCstation

Program None Ultra-SPARCstation

Original | Change Coalesce | Change
awk 479 ts 483 ts 0.83% 488 ts 1.84%
cb 261 ts 268 ts 2.61% 266 ts 1.88%
cpp 305 ts 286 ts —6.23% 279 ts -8.53%
ctags 936 ts 943 ts 0.74% 1008 ts 7.14%
deroff 199 ts 205 ts 2.93% 200 ts 0.50%
grep 123 ts 120 ts —2.44% 118 ts —4.07%
hyphen 206 ts 208 ts 0.96% 225 ts 8.44%
join 104 ts 104 ts 0.00% 106 ts 1.89%
lex 129 ts 135 ts 4.44% 137 ts 5.84%
nroff 239 ts 243 ts 1.65% 242 ts 1.24%
pr 529 ts 534 ts 0.94% 581 ts 8.95%
ptx 1013 ts 1016 ts 0.30% 1020 ts 0.69%
sdiff 6651 ts 6676 ts 0.37% 6660 ts 0.14%
sed 922 ts 900 ts 0.37% 893 ts -3.15%
sort 178 ts 177 ts —0.56% 207 ts 14.01%
we 171 ts 170 ts -0.59% 208 ts 17.79%
yacc 284 ts 293 ts 3.07% 285 ts 0.35%
average 0.67% 3.23%

The complexity for both data and control-flow analysis for code improving trans-
formations is proportional to the number of basic blocks. In fact, the authors
found that most of the compile-time overhead was due to the detrimental effect
that additional basic blocks had on subsequent analysis and transformations.

Originally, vpo (Very Portable Optimizer) represented each entry in the jump
table as a separate basic block. This representation scheme was a concern to the
authors since most of the techniques in Chapter 6 to make indirect jumps more
efficient were applied at the cost of duplicatig jump table entries. In order to avoid
excessive generation of basic blocks from those techniques, an alternative scheme
has been designed and implemented to compactly represent the control flow for a
jump table.

As an illustration, consider the RTLs shown in Figure 29(a), which is the snap-
shot after eliminating the value range check instructions for the indirect jump by
enumerating 256 table entries into the jump table. However, such 256 blocks for
the jump table could be efficiently represented into fewer blocks when consecutive
jump table entries that contain the same target address can be grouped into a single
basic block. Figure 29(b) shows a compact representation of the original control
flow. Note that each basic block containing a jump table entry has another field to
indicate the repetition count such that the jump table entries can be restored while
SPARC assembly code is being produced.

7.3.2 Avoiding Unnecessary Coalescing Attempts:

In wpo, several loop transformations are iteratively applied until no further im-
provement (change(es)) can be made, as depicted in Figure 5. Coalescing of
branches was treated as a transformation for a loop since the transformation typ-
ically requires extra registers. The authors coalesced the branches from the inner-
most loop outward after all other transformations for a given loop have been ini-



Table XI. Branch Misprediction Ratio and Number of Mispredicted Branches with a Direct-

Mapped BTB with (0,1) Correlation Predictor
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Entries in BTB Branch Misprediction Ratio Percentage Reductions in
Original | Coalesce | Difference Mispredicted Branches
32 0.1182 0.1365 0.0183 -5.60%
64 0.1050 0.1152 0.0102 -9.09%
128 0.0935 0.1042 0.0107 -9.52%
256 0.0892 0.0988 0.0096 -10.35%
512 0.0871 0.0964 0.0094 —10.67%
1024 0.0811 0.0961 0.0149 —4.43%

Table XII. Branch Misprediction Ratio and Number of Mispredicted Branches with a Direct-

Mapped BTB with (0,2) Correlation Predictor

Entries in BTB Branch Misprediction Ratio Percentage Reductions in
Original | Coalesce | Difference Mispredicted Branches
32 0.1118 0.1252 0.0134 -8.11%
64 0.0971 0.1014 0.0043 -12.28%
128 0.0848 0.0899 0.0051 —-12.81%
256 0.0804 0.0841 0.0038 -14.11%
512 0.0779 0.0824 0.0045 —14.10%
1024 0.0720 0.0817 0.0097 —7.20%

Table XIII. Branch Misprediction Ratio and Number of Mispredicted Branches with a Direct-

Mapped BTB with (2,2) Correlation Predictor

Entries in BTB Branch Misprediction Ratio Percentage Reductions in
Original | Coalesce | Difference Mispredicted Branches
32 0.1131 0.1271 0.0140 -8.33%
64 0.0969 0.1024 0.0055 -12.07%
128 0.0840 0.0902 0.0062 -12.53%
256 0.0788 0.0836 0.0048 -13.56%
512 0.0758 0.0817 0.0059 -13.30%
1024 0.0695 0.0809 0.0114 —6.15%
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(a) Oginal Control Flow (b) Alternative Control Flow
PC=r[8]; PC=r[8];
LO1: LO1:
.word L27 .word L27
.word L27
.word L27 .
.word L27

.word L22
.word L27

.word L22
.word L24

.word L25

.word L23

B

.word L24
.word L25
.word L27
.word L26 -word L27
.word L27
.word L27 S
.word L27
.word L27
.word L27
L27:

.word L27

L27:

Fig. 29. Control Flow Representations for Indirect Jump Table shown in Figure 6.3

tially attempted. Within such a loop optimization framework, unnecessary branch
coalescing analysis could be avoided. For a given loop, if the branch coalescing
analysis has been already applied without any transformation, then there is typi-
cally no need to re-apply the analysis for the same loop. Most of transformations
from the branch coalescing are typically completed during the first pass of a loop
optimization process. The authors found that other improving transformations
rarely provided new opportunities for branch coalescing. Therefore, the branch
coalescing transformation was not applied during the second pass of the same loop
optimization process.

7.3.3 Compilation Overhead:

Compile time measurements were collected on a SPARCstation-20 using the C
run-time library function times(). The compile times were obtained from the av-
erage of the sum of the reported user and system times of 10 compilations of each
benchmark. Table XIV compares the results with None and Coalesce (that is, with
and without the branch coalescing transformation.) The authors suspect that the
compilation overhead can be reduced with some additional tuning. Some portion
of compilation overhead in system time is due to I/0 in producing jump table en-
tries when generating SPARC assembly code. This overhead can be avoided when
an assembler supports a directive that specifies a repetition factor for consecutive
values that are identical (e.g. .word <value><repetition factor>).
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Table XIV. Compile Time Measurements

Program None Coalesce Extra Overhead
user system user system
awk 39.40 sec | 7.18 sec 76.35 sec | 7.88 sec +80.82%
cb 4.83 sec | 0.72 sec 5.48 sec | 0.77 sec +12.61%
cpp 23.02 sec | 3.17 sec 36.28 sec | 3.40 sec +51.56%
ctags 9.60 sec | 0.72 sec 14.07 sec | 0.93 sec +45.40%
deroff 33.68 sec | 1.03 sec 38.17 sec | 1.10 sec +13.11%
grep 4.68 sec | 0.67 sec 6.53 sec | 0.78 sec +36.76%
hyphen 1.37 sec | 0.60 sec 1.53 sec | 0.60 sec +9.32%
join 3.58 sec | 0.62 sec 4.25 sec | 0.67 sec +17.06%
lex 41.40 sec | 3.78 sec 49.22 sec | 4.08 sec +17.96%
nroff 43.25 sec | 6.13 sec 45.83 sec | 6.32 sec +5.60%
pr 6.03 sec | 0.82 sec 6.52 sec | 0.85 sec +7.54%
ptx 6.42 sec | 0.78 sec 7.13 sec | 0.78 sec +9.95%
sdiff 8.37 sec | 0.78 sec 12.40 sec | 0.98 sec +45.47%
sed 20.52 sec | 2.27 sec 24.65 sec | 2.45 sec +18.95%
sort 9.30 sec | 0.68 sec 10.38 sec | 0.68 sec +10.85%
wce 0.95 sec | 0.50 sec 1.50 sec | 0.53 sec +40.23%
yacc 34.87 sec | 2.67 sec 43.47 sec | 2.93 sec +23.62%
average 17.13 sec | 1.95 sec 22.57 sec 2.10 +26.28%

8. FUTURE WORK

There are other areas that could be investigated to provide additional opportunities
for coalescing conditional branches. One factor that limited the opportunities for
coalescing branches into indirect jumps was not performing interprocedural analysis
to more effectively determine value ranges. Often int arguments being compared to
constants in one function are loaded from memory as a byte in a different function.
Interprocedural analysis would allow the first three instructions in Figure 11(b)
comprising the initial range check to be avoided more frequently.

Profiling could also be used to help determine when coalescing was worthwhile.
The authors statically estimated the average number of branches that would be
executed through a set of related branches. Coalescing can have a negative impact
on performance when these estimates are overly optimistic or pessimistic. Profiling
would provide more accurate estimates for coalescing decisions. In general, detect-
ing bounded ranges and using an estimated frequency for character values provided
good heuristics when making coalescing decisions. This approach has promising
implications for conventional branch prediction.

9. CONCLUSIONS

This paper has described compiler support for effectively exploiting indirect jumps.
The general improving transformation presented for coalescing branches after code
generation provided benefits that otherwise would not be available.

A general approach was designed and implemented to aggressively replace a set of
branches into a single indirect jump as opposed to only considering indirect jumps
when translating multiway statements.

Various techniques were developed and implemented to efficiently perform the
indirect jump operation by analyzing the context of the given machine instructions.
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Applying these techniques often resulted in the execution of only two instructions on
the SPARC. In order to provide an effective branch coalescing transformation, two
cost/benefit analyses were designed and applied by estimating the average number
of branches executed for the detected set of coalescent branches. In order to coalesce
a set of conditional branches, which are often separated by blocks of intervening
instructions, a restructuring algorithm using code duplication was designed and
implemented. Furthermore, the original delay slot filling scheme was extended to
usefully fill the delay slots of indirect jumps. Thus, a code-improving transformation
was designed and implemented in order to essentially provide early resolution of
conditional branches that may originally have been some distance from the point
where the indirect jump is inserted.

BTBs (Branch Target Buffer) are available to reduce the cost of branches on
many machines. The branch coalescing impact on branch mispredictions was a
concern to the authors. The authors’ contention was that with comparable target
buffer support for indirect jumps, the total number of branch mispredictions should
be reduced since several branches are being coalesced into a single indirect jump.
To justify the contention, the authors accomplished the following tasks. First,
the EASE environment [Davidson and Whalley 1991] was extended to be able
to simulate effects on branch mispredictions with BTB support for branches and
indirect jumps [Hennessy and Patterson 1996](see page 276). Second, in order
to better exploit a BTB for indirect jumps, a compiler analysis technique was
implemented to locate the most probable target of the indirect jump immediately
after the jump as a fall-through destination. Thus, if an indirect jump is not in
the buffer, then no delay is necessary since the next address of the indirect jump is
already calculated by the CPU.

Finally, various measurements were collected to demonstrate the benefit of apply-
ing the branch coalescing transformation. The additional benefits from coalescing
noncontiguous branches were contrasted with the simpler analysis required for only
coalescing contiguous branches.

The results showed reductions in the number of instructions executed and branch
mispredictions, total cache work, and execution time at the cost of tolerable compile-
time overhead.
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