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Abstract

Real-time pogrammes have to deal with the pblem of relating timing constraints associated with seur
code to sequences of rhate instructions. This paper describes armimnment to assist usen the spec-
ification and analysis of timing conatnts. Atiming analyzer pedicts the best and worst case bounds for
these constrained portions of codé user interface for this timing analyzer was developed to depict
whether these constraints wevolated or met. A user is allowed to specify timing constraints within the
souice code of a C pgram. Theuser interface also prdes three dferent methods for intactively
selecting portions of pgrams. Aftereath selection the corresponding bounded times, source code lines,
and machine instructions atautomatically displayedUsers are prevented from only selecting portions of
the piogram for which timing bounds cannot be obtainebh addition, a technique is presented that allows
the timing analysis to scale efficiently with comgienctions and loopsThe result is a user-friendly @n
ronment that supports the user specification and analysis of timing constraints at a high (sourcesebde) le
and retains the accuracy of low (machine code) level analysis.

1. Introduction

There are adantages for performing a static timing analysis of a program. Accurate static analysis
provides a greater &l of assurance that timing constraints will be met. Therevisyd the danger that the
test case that dres the best or wrst-case times will not be applied with dynamic obatons. Determin-
ing the best and worst-case test data is particuladfigwif with contemporary architectural features, such
as a cache. Static analysis can also be perfornedbefore the actual machine igailable on which the
real-time application will eecute.

One contrgersial aspect of real-time systems is whether timing analysis should be performed at a high
(source code) or @ (machine code) l&l. An adwantage of high-kel analysis is that the results of the
timing predictions can be easily related to a .ugéming bounds are obtained for each higheléanguage
construct, which includes statements, loops, and functions. The assumption is that timing bounds for a spe-
cific machine can be associated with each of these consttlictsrtunately current architectural features,
such as pipelines and caches, preclude a single a priori time associated with aehigimggiage con-
struct. Inaddition, global compiler optimizations can affectwha gecific construct is translated and its
associated timing beti@r. While much more accurate timing bounds can be obtained by performing the
analysis at the machine codedk it is still important to relate these timing predictions in a manner that a
user can understand\ user needs to kmothe correspondence between sequences of machine instructions
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and lines of source code.

This problem is similar to the one of symbolic debugging of optimized cidey users are willing to
rely on symbolic debugging of unoptimized codeegithat the behavior of the unoptimized and optimized
programs are semantically egalent. Hawvever, correct behaior of real-time programs demands that the
results are produced on time. Thus, the timing analysis should be avé¢heflehe optimized machine
instructions or the compiler should maintain an accurate mapping between thevlighddon-level rep-
resentations. Thefgas been much research in the area of symboliegighg of optimized code to main-
tain such mappings [3], [4], [5], [6].

This paper describes anvimonment to support the specification and analysis of timing constrdihts.
ervironment allows specification of constraints at the source codg performs the timing analysis at the
machine code ie&l, and praoides a graphical display of the relationship between the machine instructions
(i.e. assembly code) and the corresponding source cdde. timing analysis is performed for the
MicroSFARC | processor [7]. Other papers anaitable for readers interested invadhe timing predic-
tions are actually obtained [8], [9].

2. Owerview

The design of the environment described in this paper had the following goals:

(1) Auser should be able to quickly specify constraints and obtain timing predictions for the specified por
tions of a program.

(2) Theuser should only be alied to select portions of the program for which timing bounds can be
obtained.

(3) Theability to specify constraints and obtain timing predictions should not inhibit compiler optimiza-
tions from being performed.

(4) Thecorrespondence between source code and machine code of the program selected by the user for
timing prediction should be graphically depicted.

Figure 1 gves an werview of the context in which timing predictions are obtain€hntrol-flov infor-
mation, which includes timing constraint specifications, is stored as a side effect of the compilation of a file.
This control-flav information is passed to a static cache simulatbich constructs the control-fhograph
of the program that consists of the call graph and the contwlofieach function [10]. The program con-
trol-flow graph is then analyzed for avgh cache configuration and a categorization of each instrustion’
potential caching behavior is produced [1Next, a timing analyzer uses the instruction cachinggmate
rizations, machine-dependent information describing the pipeline, and the contratfitmmation pro-
vided by the compilemwhich includes the source lines associated with each basic block, éobesticase
and worst-case performance predictiodstiming analysis tree is constructed to simplify the process of
predicting best and evst-case times. Each node within the tree is considered a natural loop. The outer
level of each function instance is treated as a loop that will iterate only once when emebedt and
worst-case time is predicted for each function and loop within the program. The user is prompted for the
minimum and maximum loop iterations of loops when it could not be calculated by the corfipiddiy, a
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Figure 1: Overviev of Obtaining Timing Predictions



graphical user intesice (GUI) is imoked that allows the user to request the status of the constrained por
tions and timing predictions for other specified parts of the program.

The timing analyzer determines the set of possible paths through eachAlgagth is a sequence of
unique blocks in the loop connected by controlflvansitions. Eactpath corresponds to a possible
sequence of blocks that could bee@ited during a single loop iteratioif a path within a loop enters a
child loop, then the entire child loop is represented as a single block along that path.

Sometimes the control flowithin a loop is too complicated to efficiently represent and analyze all pos-
sible paths.For instance, consider the function in Figure 2(a), which contains three loops. Figure 2(b)
depicts the timing tree that would be constructed for this program. Figure 2(c) shows the camtiml flo
Loop 1, which containsn consecutie if statements. & each iteration of the loop, there afemssible
paths that can be taken since each ohtliiestatements can either be entered or not entdfédere are 20
suchif statements, then there would 4 paths, which could not be represented and analyzed on most
machines. Théiming analyzer was modified to partition the controlflof complex loops and functions
into sectionsthat are limited to a predefined number of paths. The timing tree is also updated to include
each section as a direct descendant to the loop for whichsitcveated as shown in Figure 2(dach

mai n()

{
/* Loop1*/
for (i =0; i < 10000; i++) {

i f (condition )
statement 1
i f (condition 3
statement 2

i f (condition B
statement k

i f (condition k+1) _ o
(d) Revised Timing Tree
statement k+1
i f (conditionn
statement n
} Sect 1
/* Loop2*/
for (i =0; i < 100; i++) stmt k
/* Loop 3 */
for (j =0; j < 100; j++) cond k+1
stmt k+1

(a) Source Code
cond n

@ stmt n cond n
i++ stmt n
i <10000
i++
(c) Original Control i < 10000

Flow for Loop 1
(e) Revised Control
Flow for Loop 1

(b) Original Timing T ree

Figure 2: Example lllustrating the Use of Sections



section is treated by the timing analyzer as a loop that iterates only Bigeee 2(e) illustrates thevised
control flav for Loop 1, where the firsk conditions and firsk-1 statements are partitioned into a separate
section. Vith a limit of 16 paths for each loop or function, we found that it was rarely necessary to parti-
tion the control flav into sections.Even when partitioning was necessahere was little or no impact on

the accurag of the timing analysis [12].

3. RelatedWork

There has been muchovk on proposing real-time language constructs to express timing constraints.
Many authors hae alded real-time constructs to existing languages, such as C [13], [14], C++ [15], [16],
and Euclid [17]. In addition, mgmew real-time languages with features for expressing timing constraints
have been proposed and implemented [18], [19], [20]. There has also been soknenaperforming code
transformations in an attempt to ensure that timing constraints are not violateifzdlly, expert systems
with friendly user interfaces ka dso been desloped to provide scheduling advice fovd®pers of real-
time system applications [21].

Unfortunately there has been little work in the area of providing support for user analysis of timing
constraints. Firsta user needs to kmowhich timing constraints could be violated and tleeet of the
violations. Furthermorea utser may wish to kne which timing constraints are close to being potentially
violated. Finally one may wish to obtain some insight as toy\ahiiming constraint may be violatedhis
insight can aid the user in tuning okwréing the constrained code to satisfy the constraint. In addition to
providing the ability to specify timing constraints, the environment described in this paper alstepro
GUI support for user-friendly analysis of these constraints.

4. Specificationof Timing Constraints

Real-time programs may oftenveatiming constraints on portions of source code, which are sometimes
referred to as critical sections. It is desirable teehtaese timing constraintxpressed within the source
code and be automatically checkas programs are beingvdeped and later maintaineddeally, the tim-
ing analysis could occur each time the program islinknd the user can be informed of potential tim-
ing constraint violations. In addition, the user may wish to monitor the constrained sections of code to
determine he close the predicted worst-caseeeution time is to violating a timing constrainRecogniz-
ing potential timing constraint violations earlier in ther@epment process canwatoth time and mone
Finally, the ability to obtain timing predictions on constrained code portions should not inhibit the opti-
mizations performed by a compiler.

The ability to capture these constraintasnaccomplished by modifying the front end of a C compiler
calledvpcc[22]. Thisconstraint information was passed through the back end of a C compilerwgailed
[23]. Sourcdines associated with basic blocks are teatkhile performing the optimizations upo. As
shavn in Figure 1, the back end a@ys the constraint information along with the correspondence between
source lines and assembly code to the timing analyzer in the comvohfarmation.

The environment described in this papenafiaisers to specify timing constraints in the source code on
functions, loops, and paths. Figure 3 depicts the three types of constraints that can be spheiftede
within this figure contains a function that calculates the sum and count of thegaoreend n@aive val-
ues of a matrix. The function is constrained to no more than 2 millisecénbast-case constraint for the
function was not specifiedThe inner loop within the function has a best-case constraint of 500 nanosec-
onds and a worst-case constraint of 3 microsecoAdzath is specified by annotating source lines, which
must be contained within the path. If a source line contains\excdtion of a function, then the time
required to gecute that function (and grother functions that could bevioked from it) is included when
the timing analyzer determines if the constraint was satisfibése annotations are of the fo@, where
n is the path identifier The annotations require only arMeharacters to facilitate their placement on the
source lines being specified. One of the annotations within a path nvesa st and/or worst-case con-
straint. Thereare two overlapping paths within the inner loop thatveamonstraints. Bth 1 goes through
source lines 13 and 15 and path 2 goes through lines 13, 18, and 19. Thus, this simple method of specify-
ing paths is quite fleble. For instance, werlapping paths can be easily specified.
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1 functinebnd [:2ns]

2 void Sun{Array, Nonnegcnt, Negcnt, nonnegsum Negsum
3 matrix Array;

4 int *Nonnegcnt, *Negcnt, *Nonnegsum *Negsum

51

6 int i, j;

7 voi d Addnonneg(), Addneg();

8

9 *Nonnegsum = *Negsum = *Nonnegcnt = *Negcnt = 0
10 for (i=1; i <= MAXSIZE; i++)

11 | oopti nebnd [500ns: 3us]

12 for (j=1; j <= MAXSIZE;, j++)

13 if (Array[i][j] >=0) { @[ :150ns] @[ 10ns: 100ns]
14 Addnonneg(Array[i][j], Nonnegsum;

15 (*Nonnegcnt ) ++; @

16

17 el se {

18 *Negsum += Array[i][j]; @

19 (*Negcnt) ++; @

20

21}

Figure 3: Source Code with Timing Constraints

5. Userlnterface

The user intedce is ivoked ater the timing analyzer has analyzed the entire program. Figures 4 and 5
depict the three windows that arevays displayed for the timing analysis graphical user iatexf Figure
4 shows the main winde of the user intedce. Thetop section of the main windodisplays a message

[®] time.hin

Select a function within the progranm,

function nane

Cycles to Execute the ks Function
Bezt Caze 3588 Horzt Caze 5633

Exit Constraints Hore Detail é fhank

Figure 4: Main Windw at Function Level



indicating the current action the user can perform with a mouse selection in the middle Sdwtioniddle
section of the main windo has a specific portion highlighted, which indicates the current program con-
struct for which best-case and worst-case timing predictions are displayed in the lower part of this section.
Portions of the middle section of the windassociated with other program constructs can be selected by
simply clicking on the appropriate line. The bottom section of the main wicdotains buttons that allo

the user to select thevid of information displayed. Selection of tivor e Detail button permits the user

to view the current program portion in finer detaithe Back button is selected when the user desires to
back up to a coarservd of detail. Examplef selecting these wvoptions will be gven shortly. The

Exit button can alays be selected to allothe user to exit the application atyaime. TheConstraints
button is clicked when the user wishes towihe timing predictions associated with the source code speci-
fied constraints.

Figure 5 shows the wwother windows in the user intade that are alays displayed. The left windo
contains a display of the source code of the program being analyzed. The highlighted lines are the
executable source lines that correspond to the highlighted construct in the middle section of the main win-
dow. Whenever a dfferent construct is selected in the main wingdthe highlighted lines in the source and
assembly windows are automatically updated and scrolled to the appropriate position.

Note that the source lines within the display are numbeFéds allows a user to identify constructs that
are referenced by line numbers in the main wimdd@he options at the bottom of the source windill

C Source Code of des.c Assenbly Code of des.s

line # source code blk  assenbly code

23 49,17 .57 25k z11 ﬁod,l,ﬁd

24 ztatic great kns[171: in

o5 ztatic int initflag=1:

26 imt 1i.1.4.0k:

27 unzighed long ic,shifter.gethiti):

28 immense itmp:

29 woid cyfuntl, ksiis:

30 # block B (lines 37-38)

i if {initflag) { =t Eg0, [Foh]

32 initflag=0: may  1,E10

33 bit[1]=zhifter=1L3 add  Esp, . 0_STARG,Z14

34 for{j=2:j4=32:j++3 bit[j] = (shifter <<= 1) sethi  #hi(l214) 216

add  #16,%lofl214} 213
N add  #13,12,%16
37 #newkey=03 add  ¥13,192,%i2
== Forii=l:i<=16:i++} ksikey, i, Bkns[il}: # block 7 (lines 38-38)
L2271
1d  [#il + 41.%01
st #ol.[¥sp + (LO_STARG + 431
1d  [#il1l1,%a0
st Fol,[Xsp + JO_STARG]
mow  Ald,Hal

45 for (i=lri<=1Bri++) o mow E10,50l

45 ii = fisw o ==171F-i 3 iir call  _ks,3

47 cyfun{itmp,l, knsliil, &ich: mov 216,402

48 ic "= itmp,rt # block 8 (lines 38-38)

43 ithp,r=itmp, 12 add  #16,12.%16

50 itmp, l=ic: cmp  #16,Xi2

51 ¥ ble L2927

52 ic=itmp,r: add  ®10,1.%10

03 itmp,r=itmp,1: # block 9 {lines 40-40}

o4 itmp,l=ic? =t Fg0, [H=p + ,1_itmpl
oo kot ? , r={kout ), =00+ 0C .

56 for {j=32,k=Ed4: j »>= 1} j—, k=) {

o7 (koutd,r = (i¥outd,r <= 13 | getbitiitmp,ipm[j1,32}¢

ha Chout 3,1 = (dkoutd, 1 <<= 1 | getbitiitmp,ipmlk], 32}:

59 ¥

=T st +

Select Path §§Ef:<:f:§>t§ é{:é}i?i}(’: Clear #Hil |Best Pipeline Dia,| |Horst Pipeline Dia,

Figure 5: Source Code and Assembly Code Windows



be explained later in the papéerhe right windev contains a display of the assembly code for the program.

The highlighted assembly lines correspond to the code generated for the highlighted source lines. Note that
a ommment precedes each basic block that identifies the block number and the associated source lines.
These comments in the assembly windand the line numbers in the source windellow a wser to

quickly grasp the relationship between the higlellésource code) andwelevel (machine code) represen-
tations.

Figure 5 also illustrates a pitfall a user magd with the tool. Source code lines are only tracked to a
basic block leel. Remembethat one goal of the environment was to not inhibyt e@mpiler optimiza-
tions from being performed. Sometimes optimizationwvenindividual instructions from one basic block
to another For instance, the last instruction in block 5 of Figure 5 corresponds to the assignment of zero to
i tmp. | atline 40 in the source code. This instructicasveopied from block 10 into block 5 when filling
the delay slot for the preceding branch. The user has the responsibility to ensure that the selected source
lines correspond to the assembly instructions that are examined by the timing analyzer.

The timing analyzer constructs a tree to simplify the process of bounding the timing performance of a
program. Eacimode in the tree corresponds to an instance of a function, natural loop, or sEatiations
and sections are analyzed as thougl there natural loops that iterate only once when entered. The nodes
in the timing analysis tree are processed in a bottonasipidn [8]. The entire tree is analyzed before a
user is allowed to request timing predictions.

The most straightforward approach for allng one to obtain timing predictions from various portions
of the program wuld be to allev the user to mee yp or down a sngle node of the timing tree at a time.
The authors perced that most users ould not be interested in trersing a graph representing the com-
bined call graph and loop nesting structure of the progiastead, users would most likely want the capa-
bility of accessing specified portions of the program as quickly as possible. The user interface described in
this paper provides three fiifent methods for quickly accessing portions of a program. The first method
quickly allows a user to check if each of the specified timing constraints were met or violated. The second
method uses a hierarchical approach that provides a very ¥ieleoleselection of program portionsThe
final method permits quick and a@mient selection of source code portions for timing predictions.

5.1. SelectingPortions of a Program Using the Constraints Window

The first method for accessing portions of the prograwvolwes using the constraints windcter
clicking the Constraints button in the main winde. The different portions of the program that can be
accessed are the portions specified in the source code timing constiaguie 6 shows the constraint
window, which contains a scrollable display of the user-specified constrainiser may choose to Y&

Uzer Specified Tining Constraints

Bezst Case Best Case Horst Case Horst Casze
Hun Predicted 5Specified Specified Predicted Function Hame Type Source Lines

1 1205 110 1010 2865+ main func 9..37

2 b3= 400 ) 513« loop 23,.23

3 () 1000 2066%

q 263 10 780 397 loop 26, .27

L] 272 10 751 397 loop 31,.31

[ 272 10 7h2 397 loop 36,.36

7  no path 2h no path path 10, 11, 12,

14
g 20 100 7 path 10, 15

Disniss

Figure 6: Constraints Window



the source and assembly windows display the code associated with a constraint by simply clicking on the
appropriate line within the scrollable sectiofit that point the associated code portion will be highlighted

and scrolled to the appropriate position in both the source and assemblyaintioeconstraint winda

will remain until it is dismissed. Thus, the user can quicklywtiee code associated with a number of con-
straints by simply clicking on a sequence of lines.

For each constraint the windodisplays the specified and predicted best and worst-case times in clock
cycles1 and the location of the constrained source cdfithe user did not specify a best or worst-case time
in the timing constraint, then the corresponding field in the display is left blank. If the best-case predicted
time is less than the specified best-case timing constraint, then an asterisk fbhkopredicted time to
indicate that the constraint has been violatetkewise, an asterisk will follv the worst-case predicted
time if it exceeds its corresponding worst-case specified time. It is possible that a user may select a set of
lines that cannot bexecuted in a single path (as in constraint 7 of Figure 6), such ahteandel se
portions of ari f - t hen- el se construct. Constraimtumber 7 in Figure 6 illustrates such a selection and
the display indicates that no path can be associated with the selected source lines.

5.2. SelectindPortions of a Program Using the Main Window

The second method for accessindgati#nt portions of the programvaves clicking theMor e Detail
button after selecting the appropriate construct in the middle section of the maiwwilkdere are six ke
els of detail a user is allowed to wie The top leel and initial display for the middle section of the main
window is the list of functions within the program. This towékis depicted in Figure 4, which as dis-
cussed earlier in the paperhe function selected by drflt upon initialization of the interface is thai n
function, which results in displaying the best and worst-case ciad&screpresenting thexecution of the
entire program. The remaining &Jevds are shown in Figures 7 through 11.

The next lower Ieel of detail consists of loops as shown in Figure 7. Selection of a function, loop, sec-
tion, path, subpath, or range of instructions will cause the corresponding bounded prediction of cycles to be
displayed and the appropriate lines to be highlighted in the otbeasitwvdows. Theloops displayed are the
loops within the selected functioMote that by each loop number is its range of source lines and nesting
level of the loop within the function toatilitate identification by the useSections are displayed after
loops as shown in Figure 8 he sections displayed are the sections that are automatically created to sim-
plify the control flav within the selected function or loop. If a function contains no loops, then the loop
level will be automatically skipped when tior e Detail is selected.Likewise, the section V&l will be
skipped if a loop contains no sectior¥&hs, as shon in Figure 9, are thevel displayed after sectionsA
path is defined as a unique sequence of basic blocks connected by contt@sfkitions. Eacloop path
starts with the loop header and is terminated by a block with a transition to the loop header ofitto an e
block outside the loop. The paths at a functiomllstart with the initial block in the function and are-ter
minated by blocks containing return instructiofius, each path is depicted in the main winds a ist
of blocks and corresponding ranges of source lilggte that if a path contains a transition to a header of a
more deeply nested loop, then the entire child loop is represented as a single step along thahasith.
mum of 16 paths is allowed atyagiven function or loop. Otherwise, the timing analyzer would create a
section to reduce the number of paths at thegt.l€The subpath leel is depicted in Figure 10A subpath is
a abset of the blocks within a path that are connected by contwolffmsitions. Asubpath is selected by
pressing the mouse button with the cursor on the subpath starting block and releasing it on the ending
block. Thefinal level of detail consists of machine instructions asvaman Figure 11. Only the instruc-
tions within the initial and ending block of the subpath areveholheuser selects a beginning instruction
from the initial block by holding den the mouse button and selects an ending instruction from the last
block by releasing theutton. Hencethe user is allwed to obtain a very fine-grainv of timing predic-
tions.

! These specified and predicted times avergin dock ¢ycles as opposed to a time unit (e.g. microsecori$ter section of
the paper will describe othe environment supports detailed pipeline analysis of the code porfibisanalysis is easily accom-
plished by presenting performance information based on cycles.



Select a loop within the function des.

loop nane
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Sec nane source lines nest level

Loop 1
Loop 2
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Figure 7: Main Windw at Loop Level
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Figure 8: Main Windw at Section Level
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Note that a basic block is the finestdeof detail for which timing predictions may be obtained for
associated source code selections. The source wiisd®mt updated when a range of instructions within a
subpath is selected since source code lines are only tracked to the basicvelodkdee that while it vas
not difficult to provide timing bounds at a very fine-graiveldy alowing selection of one specific instruc-
tion within each of the first and last blocks in the subpath, a corresponding set of source lines would be
more difficult to identify It is possible that a basic block may be associated with multiple source lines or a
single source line may be associated with multiple basic blocks.

It was relatvely simple to track the source lines associated with basic blocks during compiler optimiza-
tions. Duringthe compilation, the source lines for each C statement are identified by the front end of the
compiler and are passed to the back end, which associates a range of source lines with each basic block.
These ranges of source lines are then maintained wérdrssic blocks were mad (i.e. the control flav is
adjusted) during optimizations. Note that all the instructions within a specific basic block may not corre-
spond to the associated lines of source codeious global optimizations may me individual instruc-
tions to different blocks (e.g. code motion, filling delay slots, etéd. instance, the delay slot of the
branch in block 5 (source lines 36-36) of Figure 5 was filled with an instruction from block 10 (source lines
40-41). Theauthors hae found that the optimizations performed by our compiler stilvabowser to eas-
ily understand the correspondence between source code and the generated.aSsenillgr optimiza-
tions that perform a greatent of restructuring may makiis task for the user more difficult.

The main windar accommodates six Wels of detail in a program that a user canwiéunctions, loops,
sections, paths, subpaths, and ranges of machine instruciibas, at most six selections in the main win-
dow are required for a user to quickly choose apecifiable portion of the program. The appropriate tim-
ing analysis information is extracted for each user selection. If there is more than one instance of the user
selected portion (i.e. multiple instances can occur when the portion of source code can be reached via dif-
ferent sequences of calls), then the fastest of the best-case times and the slowestrst-ttesevtimes of
the different instances are displayed.

5.3. SelectindgPortions of a Program Directly from the Source Window

The last method for accessing a portion of the program is to select lines of source code directly by using
the mouse as depicted in Figure 12. First, the user clicks o8eieet Rth button at the bottom of the
source code winda Next, the user highlights the source lines within the path to be tifiki. highlight-
ing is accomplished by clicking the left mouse button on the desired source lines as shown in Figure 12.
user may quickly obtain the best-case and worst-case timing predictions gmeansef code by selecting
only two source lines, which would indicate the start and the end of the patauser can clear a specific
highlighted line by clicking the right mousetton on that line. The user can also clear all the highlighted
lines selected so far by clicking ti@ear All button. Finally the user can also cancel the selection of a
path by clicking th&Cancelbutton.

Once the user has highlighted the source lines of interest, then the timing bounds can be obtained by
clicking on theAcceptbutton. Atthis point a popup windwis displayed that alls the user to select the
best or worst-case path or indicates that no path existsxéaites instructions fromvery selected source
line. Inaddition, the user can select towithe loop or function that most tightly encloses the highlighted
lines.

Figures 13 and 14 shothe best and worst case set of source lines, regggcthat would be displayed
associated with the source lines selected in Figurdri2ontrast to the best case path, bdthstatements
are entered in the worst-case paote that instructions associated with other source lines magytinéie
executed as wellwen in the best case. The basic block associated with source line 36 haxéouiedto
be able to reach line 40 from line 3llikewise, other lines may ka © be eecuted since their correspond-
ing machine instructions are in a selected basic blck.instance, the initialization of the for loop at line
41 is in the same basic block as the assignment statement at line 40.

Automatically including line 41 in this example illustrates that the user is restricted to only selecting
portions of the program for which timing predictions can be obtained. The timing analyzer only tracks
source lines to a basic block/é& Thus,it must include all source lines associated with a basic block if
ary source lines in that block are selected.
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C Source Code of des.c

line # source code

32,24,16.8,57.49,41,33,25,17,9,1,59,51 43,35,
27,19,11,3,61,53,45,37,29,21,13, 5,63, 55, 47,39,
31,23,15,73:

static char ipm[B5]=

40,.40,8,48,16,56, 24,64 ,32,39,7 47,15,
0h,23,63,31,38,6,46,14,54,22,62,30,37 .5, 45,13,
53,21,61,29,36, 4, 44,12 52, 20,60,28,35,3 43,11,
51,19,59,27,34.2,42,10,50,18,58,26,33,1,41,3,
43,17,57,258:

static great kn=[171:

static int initflag=1:

int ii,i.§.k:

unzigned long ic,shifter,getbit(l;
immense itmpd

woid oyfun{}, ks(}:

A initflag=0;

k1 bitl1]=shifter=1L:

kS fardj=2:j{=32: j++} bit[j] = {shifter = 1)
Ei) ¥

3B if iknewkeyr {

37 #neukey=0:

38 forii=1yi<=167i++} ksikey, i, &knslill;

42 itmp.r = {itmpur <4= 1} | getbitdiinp.ipljl.32}:
43 itmp,1 = {itmp,] <<= 1} | gethitd{inp,iplk], 320
44 ¥
45 far (i=1:i{=16zi++) {
46 il = Gisw == 17 17-1 1 i
47 cyfuntitmp.l, knsliil, &icd:
48 ic *= itmp,r:
49 itmp,r=itmp,1t
) itmp.l=ic:
51 ¥
52 ic=itmp,r?
Selest Path |Hccept| |[Iancel‘ | Clear A1l |

Figure 12: Selecting a Path via the Source Code

C Source Code of des.c

line # source code

18 static char ipm[B5]=

19 {0.40.8,48,16,56,24,64,.32,.39,7 47 15,

20 55, 23,63,31,38,6,46,14 54,22 62, 30,37,5, 40,13,

21 53,21,61,29,36.4,44,12,52,20,60,28,35,3,43,11,

22 51,19.59,27,34.2,42,10,50,18,58.26,33,1.41,9,

22 43,17,57,25):

24 static great kns[171:

25 static int initflag=1:

26 int ii,1.5.k?

27 unsigned long ic,shifter, gethitid:

28 inmensze itmpy

29 woid eyfuniy, ks(i:

32 initflag=0:

33 bitl1l=shifter=1L;

34 Ford j=23:j<=32¢ j++ bit[j] = {shifter <<= 1)
T

42 i fitmp,r <<= 1 | getbitiinp,ip(jl.320:
43 itmp.l = {itmp.] <<= 1} | getbitiinp.iplk].32}:
44 ¥

45 for (i=1pi<=162i++) {

46 ii = {isw==1717-i ¢ i3

47 cyfunditmp,l, knsliil, &icly

48 ic = itmp.r:

49 itmp,r=itmp,1:

50 itmp,1=ic?

[ ¥

62 ic=itmp,r:

63 itmp,r=itmp,1%

b4 itmp.l=ic:

55 (kouty,r=tkouty, 1=0L:

| Swlest Paih ﬁf:i‘.fi§>‘§.'§ Clam HLIL

Figure 13: Best Case Path from Source Lin
Selected in Figure 12

es
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C Source Code of des.c

line # source code

18 static char ipm[B5]=

19 {0.40.8.48.16,56,24 .64 32,329,747 15,

20 50, 23,63,31,38,6, 46,14 54,22 62,30,37 .5, 40,13,
21 63.21,61,29,36.4,44,12,52,20,60,28,35,3,43,11.
22 51,19.59,27,34,2,42,10,50,18,58,.26,33,1.41,9,
22 43,17,57, 251

24 static areat kns[171:

25 static int initflag=1:

26 int 1i,i..k?

27 unsigned long ic,shifter,getbitid:

28 inmenze itmp;

29 void cyfunty, ks(i:

42 itmp,r = {itmp,r <<= 1» | getbit{inp,ip[j1,322;
43 itmp.l = {itmp.l <<= 1} | getbitiinp.iplk],32}:
44 ¥

45 for (i=13i<=162i++) {

46 ii o= {isw == 17171 1 i

47 cyfunditmp,l, knsliil, &icly

48 ic = itmp.r:

49 itmp,r=itmp,1:

50 itmp,1=icy

[ ¥

62 ic=itmp,r:

63 itmp,r=itmp,1t

b4 itmp.l=ic:

55 (kouty,r=ikoutd, 1=0L2

Sulect Path ficvept dfaz:e%.é Liear HL1

Figure 14: Worst Case Path from Source
Selected in Figure 12

Lines



C Source Code of des.c
line # source code
48 ic *= itmp,r:
49 itmp,r=itmp,1t
) itmp.l=ic:
51 ¥
52 ic=itmp,r?
53 itmp,r=itmp,1:
54 itmp,l=icy
2] Chout.r=Okout ) 1=0L2
56 for (j=32,k=B4: j »= 1: j—, k=) {
&7 Ckoutd,r = Cikoutd,r <<= 1) | getbitCitmp,ipm[j1,323: There iz no path cnrrespunding to the
) fkoutd,l = Cikoutd,l <<= 1) | getbitlitmp,ipmlk], 3233 lines highlizhted
53 3 you nighlighted,
B0}
61 Please either cancel or select the entire
B2 unzigned long getbit{zource, bitno, nbits) function.
B3 immense sourced
E4  int bitno,nbits:

Cancel Entire Function

Figure 16: Popup Windw after
72 woid ks{key.n kn} . .
73 tunense key: Selecting an Infeasible Path
74 great #kn:
75 int n:
EL
77 static immense icd:
78 static char ipcl[571={0,57,49,41,33,25,17,9,1,58.50,
73 42,34,26,18,10,2,59,51,43,35,27,19,11,3,60,
a0 52.44,36,63,55,.47.39,31 23,15, 762,54 46,308,
al 30,22,14,8,61,53,45,37,29,21,13.5,28, 20,12, 4}
a2 static char ipc20491={0,14,17,11,24,1.5,3,28,15,6,21,
a3 10,23,19,12,4,26,8,16,7.27,20,13,2,41,52 31,
a4 37,47,55,30,40,51,45, 33,48, 44, 49,33,56, 34,
) 53,46,42,50,36,23, 32}
Selest Path |Hccept| |[Iancel‘ | Clear A1l |

Figure 15: Selecting an Infeasible Path

Figure 15 contains a source windselection of an f -t hen- el se construct. Figurd6 shows the
popup windwv that is displayed when no path can be associated with the selected sourcédiriks.
popup indicates in Figure 16, there is no single path that>cmute both thé hen andel se portions.
Note in this case the user is/gi the option of selecting the entire function, which immediately encloses
the selected source lines.

Figure 17 shows another selection by the.ubgtice that the user has selected lines partially within a
loop and outside of the looplhis selection illustrates another restriction imposed by the timing analyzer
Any path that contains a loop along with code outside a loop is assumesttibecthe entire loopFigure
18 shows that additional highlighted lines are included after the path has been s¢leeted.66-168 are
automatically included since the entire loop is assumedv® lirgen eecuted. Asillustrated previously in
Figures 12 through 14, only selections that correspond to entire basic blocks \aesl allones172-176
are included since its corresponding instructions are in the same basic block as the instructions associated
with line 171.

5.4. SupportingDetailed Analysis of Timing Constraints

The user interface can also be used to display information to the user alwahehoning prediction
was dbtained. Thisinformation may aid a user in rewriting constrained code to satisfy a violated con-
straint. Theuser can select buttons at the bottom of the assembly wigttmvn in Figure 5 to obtain a
pipeline diagram of the best and worst-case performance of a path containing no loops or calls. Figure 19
shaws the pipeline diagrams for both the best awdstvcase performance associated with a path through a
loop. Incontrast to Figure 5, the assembly windas been redven to include numbers with each assem-
bly instruction. These numbers are referenced in the scrollable pipeline diagrams to indicate when each
instruction enters a gén dage of the pipeline. The source code winde dso covered by the pipeline
diagram windows since the user may confuse the source line numbers with the instruction numbers in the
pipeline diagram.Pipeline diagrams are useful since a user may wish to understand whuence of
instructions required aggn number of gcles. For instance, a user can determine that load stalls occurred
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C Source Code of des.c C Source Code of des.c
line # source code line # source code
153 0,9,0,4,12,0,7,10,0,0,5,9,11,10,9,11,15,14, 153 0,9,0,4,12,0,7,10,0,0,5,9,11,10,9,11,15,14,
154 0,10,3,10,2,3,13,5,3,0,0,5,5,7.4,0,2,5, 154 0,10,3,10,2,3,13,5,3,0,0,5,5,7.4,0,2,5,
155 0,0,5.2.4,14,5,6,12,0,3,11,15,14,8,3.,8.9, 155 0,0,5,2.4.14,5,6,12,0,3,11,15,14,8,3,8.9,
156 0,5,2,14,8,0,11,9,5,0,6,14,2,2,5.8,3,6, 156 0,5,2,14,8,0,11,9,5,0,6,14,2,2,5.8,3,6,
157 0,7,10,08,15,9,11,1.7,0,8,5,1,9.6,8,6,2. 157 0,7,10,08,15,9,11,1.7,0,8,5,1,9.6,8,6,2.
158 0,0,15,7,4,14,6,2,8,0,13,9,12,14 313,12 113 158 0,0,15,7,4,14,6,2,8,0,13,9,12,14 313,12 113
159 static char ibin[161=00,8,4,12,2,10,6,14,1,9,5,12,3,11,7 15k 159 static char ibin[161=00,8,4,12,2,10,6,14,1,9,5,12,3,11,7 15k
160 great ie: 160 great ie:
161 unsighed long itmp, ietmpl,ietmpl2; 161 unsighed long itmp, ietmpl,ietmpl2;
162 char iec[3]: 162 char iec[3]:
163 int jj.irow,icol.iss.j,l.m: 163 int jj.irow,icol.iss.j,l.m:
164 164
165 ig.r=ie.c=ie, 1=03
166 for {j=16,1=32 m=d48; j>=1rj-—-, 1-—, m—» £

167 ig,r = (ie,r <<=1) | (bitliet[j1] & ir 71 3 Ob:
1EE : 0k

172 ig,c k.

172 ig]l "= ke l

174 ietmpl={{unzigned long} ie.c << 1B}+{unsigned long} ie,r:

175 ietmp2={{unsigned longl ie,l << 83+{{unzigned long} ie,c >> 8
176 for {j=l.m=bsjl=dsj++ m++) { i

177 iecljl=ietmpl & Ox3fL: 177 iecljl= 1etmp1 & Ox3fL:

17 ieciml=ietmp2 & Ox3fL: 178 ieciml=ietmp2 & Ox3fL:

179 ietmpl 3= B: 179 ietmpl 3= B:

180 ietmp2 >»= Gy 130 ietmp2 5= B

181 ¥ 181 ¥

182 itmp=0Lx 182 itmp=0Lx

182 for (j3=8:4i>=1:4j—) 182 for (j3=8:4i>=1:4j—)

184 J =ieclijls 184 J =ieclijls

185 irom={0j & O} << AD+d0j & Ox20} B B 185 irow={0j & O} << AD+d0j & Ox2O} > B2

186 iool=d0j & 0x2) << 2)+(j & Oxdd 186 iool=d0j & 0x2) << 2)+(j & Oxdd

187 UG & 0xB) B3 2300 & 0x10} 33 432 187 UG & 0xB) B3 2300 & 0x10} 33 432

138 izs=izlicolllirowlljjl: 138 izs=izlicolllirowlljjl:

139 itmp = {itmp <<= 4> | ibin[iss]: 139 itmp = {itmp <<= 4> | ibin[iss]:

130 ¥ 130 ¥

Seiect Path |Hccept| ‘[Iancel| | Clear All ‘ ‘ Select Path | zafg»i {Iazzmﬁ.; Lisar HLE
Figure 17: Selecting a Single Path Figure 18: Expanded Selected Path

at g/icles 7 (between instructions 146 and 147) and 10 (between instructions 148 and 149) in the best-case
diagram of Figure 191n addition, a user may wish to kmavhy there is a difference between best and
worst-case timeslIn this example, the worst-case time requires 36 more cycles than the best-case time due
to four instruction cache misses. Other potential pipeline stalls due to structural or data hazards can also be
quickly analyzed by a user.

6. Implementation of the User Interface

The user interface is notvioked until the timing analysis tree (examples were shown in Figure 2) is
already constructedEach node within this tree represents a function, loop, or section. Each of these nodes
is distinguished by function instances, where a function is uniquely identified by the sequence of call sites
required for its imocation. Ifthe user requests a timing prediction for a function, loop, section, or path,
then this information can be obtained directly from the timing tree. If a function containing the selected
code portion has more than one instance, then the best-case timing prediction is the fastest one of the best-
case predictions among all instancéskewise, the worst-case timing prediction would be the slowest of
the worst-case predictions.

Timing predictions for subpaths and ranges of instructions are not stored in the timing analysis tree
since there are mgrcombinations of subpaths and ranges of instructions within a single fhaahuser
requests information for a subpath or a range of instructions, then the appropriate function within the timing
analyzer is reimoked for each instance of the loop or function in which the subpath or range is contained.
The authors ha found the user intemte quite respons. Even timing prediction requests for subpaths or
ranges of instructions can be quickly determined and displayed to the user.

The user intedce was implemented using the X Toolkit (Xt) Intrinsics [24] and Xlib [25] libranés.
is a library of useinterface objects called widgets and gadgets, which providesvanient interface for
creating and manipulating windowsyeats, colormaps, and other attributes of the displ&yme of the
widgets of the timing user intexfe were implemented using Xlib, the layer on which Xt is based, for
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Best Case Pipeline Diagran
cycle # IF ID EX FPEX CA HB FHB

1: 144 PN
23 145 144

Assenbly Code of des,s

blk assenbly code
136 st Egl,[¥i2]

3+ 146 145 144 137 sethi  #hi{L283),%04
qs 147 146 145 144 138 sethi  Zhi{_bit} %0
5: 148 147 146 145 144 139 add  %0d,¥10il283),2i1
6: 148 147 146 145 140 add  #i0,¥leé_bit),¥gd
;3 }23 ﬂ; 147 146 146 141 add  2i1,32,%g5

9: 150 149 148 147 ﬂg add [?1,1,%95

10: 150 149 148 147 . -

11: 151 150 149 148

12: 153 151 149

13: 154 153 151 149

14: 155 154 153 151

15: 156 155 154 153 151

16: 157 156 155 154 153

17: 157 156 155 154

18: 158 157 156 155

19; 158 156 155

203 158 156
223 158

# block 25 (lines 193-193)

152 moy 1, ol

Horst Caze Pipeline Diagram

cycle # IF ID EX FPEX CA HB FHB

1: 144 1

§3 ﬂg ﬂg 144 # block 23 {lines 132-192)
4: 146 145 144 123 :::tm
51 146 145 144 N "
G2 146 145 ey "data
7: 146 Ls89  “text"
8 146 .alobal  _main
9: 146 nain:

10z 146 Coeew - oc

i%; igg §§3é:&;‘?; Fipeline Hia, E%»%{;z‘s?. Pipaling Ha, |
13: 147 146

14z 148 147 146

153 148 147 146

163 143 148 147 146

173 150 143 148 147

183 150 143 148 147

19; 150 149 148

201 150 149

213 150 149

22z 150

233 150

24z 150

25t 150

263 150

Disniss

Figure 19: Best and Worst-Case Pipeline Diagrams

manipulating specific attriies. Bothlibraries come with each distribution of Xikidows. Thus,use of
these libraries and the proliferation of X-Windows should enhance the portability of the interface.

7. Future Work

One area in which the user interface could be enhanced is wohidjblighting and selection of per
tions of a source lineFor instance, Figure 14 shows a subpath that includes the initializatioh af a
loop. Yet, the entire first line of thieor statement is highlighted, which inappropriately includes the test
condition and increment as welLikewise, the selection of this loop for timing predictions should not
include the initialization portion of thieor statment. Iraddition, consider thEor loop from source lines
45-51 in the same figure. There ar@tgaths through this loopHowever, both paths would be highlighted
identically in the source windosince the conditional control flo within the loop is entirely contained in
line 46, which consists of an assignment statement containing a condikpregdson. ¥t, the user inter
face would allev both paths to be selected via the main wim@nd the appropriate assembly instructions
would be highlighted.
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The user intedce could also support selecting portions of source code that includes portions of a line.
The character position within the lines where the mouse is pressed and releatd@ftect the corre-
sponding assembly code select&dr instance, if a user wished to sele¢taa loop with the mouse in the
source windw, then one could select a character onftbe statement that was after the initialization of
the loop. The user could also select a portion of an arithmepiegsion. Br instance, a function call
associated with some observabierg could be selected [20]Thus, the compiler and timing analyzer
would have © track character positions along with source lines to a basic blegk le

At this time the only target for our timing analyzer has been the MicroSPARC | pracéssdown in
Figure 1, we hee isolated machine-dependent information in an easily editable file to facilitagetatail-
ity of the timing analyzer Howeve, any alditional architectural features used in avrocessor and not
awailable in the MicroSPARC I, such as branch prediction buffers, woutlel thde aldressed.

8. Conclusions

The user interface described in this papewijoies three methods to ala wser to quickly select a por
tion of a program for timing prediction. The first method whloa user to quickly inspect whether or not
the timing constraints specified in the source code were violated. The second method uses a menu selection
approach, which permits a very finevdkof selection. r instance, consider that C condition&pees-
sions (i.,ea > b ? a : b), logical operators (i.g.]| , &, and! ), and assignment of booleaxpees-
sions (e.gv = i == | ;) often are expressed on a single source lifet, the resulting assembly
instructions will consist of multiple basic blockkikewise, macro calls may beganded to also generate
multiple basic blocks. The menu selection approactwallselection of subpaths down to the machine
instruction level.

The third method alles a user to directly select paths from the source windthis method is func-
tionally equvalent to specifying a path constraint in the source code using the first méthuokk a user
may find the third method faster than the second method, some selections of paths or subpaths may not be
possible when a single source line has multiple basic bldekthermore, selections with the third method
are restricted to only those portions of the program for which the timing analyzer can provide timing pre-
dictions. Selectiorof portions of a program with either of these methods results in the corresponding
source lines and assembly instructions being highlighted.

This paper describes a solution for resolving the coatsy of whether timing analysis should be-per
formed at a high or l@ levd. This controversy is a result of the desire to relate timing constraints to the
source code and to obtain as accurate timing predictions as pogsibkerfriendly interface has been
presented that assists real-time programmers in relating the analysis of timing constraints associated with
source code lines to sequences of machine instructions. Thus, specifying and presenting timing predictions
at a high (source code)vi# can be achieed while retaining the accurgof low-level (machine code) anal-
ysis.
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