Techniques for
Fast Instruction Cache Performance Evaluation

DAVID B. WHALLEY
Department of Computer Science B-173, Florida State UniveTaitghassee, FL 32306, U.S.A.

SUMMARY

Cache performance has become a very crucial factor in the overall system performance of machines. Effective analy-
sis of a cache designequires the evaluation of the performance of the cache for typical programs thateto be ee-
cuted on the machine. Recent attempts toeduce the time equired for such evaluations either result in a loss of
accuracy or require an initial pass by a filter to reduce the length of the trace. This paper evaluates techniques that
attempt to overcome these mblems for instruction cache performance evaluation. For each technique variations
with and without periodic context switches ae examined. Information calculated during the compilation is used to
reduce the number of eferences in the trace. Thus, in effectaferences ae dripped before the initial trace is gener
ated. Thesetechniques ae shown to significantly reduce the time equired for evaluating instruction caches with no
loss of accuracy.

KEY WORDS: Instruction Cache Cache Simulatiofrace GenerationTrace Analysis

INTRODUCTION

The time required to generate and analyze trace data is proportional to the number of references in the
trace’ . Since realistic program traces can be quite lengihace is often only collected from a portion of the
programs execution. Howeverit has been shown that the cache performance can vary greatly in different por
tions of a prograns executiorf . Cache performance measurements obtained when unrealistic input data is

used to shorten the length of the trace would also be of questionable value.

Most recently designed machines store instructions in a separate cache from data. There are many advan-
tages to having an instruction-only cache. Most machines do not allow modification of instructions during the
execution of a programBy only allowing read accesses to a cache, the design of an instruction cache is simpli-
fied. Also,instruction references typically have higher locality than data references. By using separate caches,
the designers of a system can offer different configurations for each cache which may improve the overall per
formance. Sincé¢he type of reference, instruction or data, issued to the memory system is known by the CPU,
there can be separate ports for instructions and data. Thus, the bandwidth between cache memory and the CPU

can be improved.

Since instruction caches have become more common, there has been much recent work that attempts to

reomganize the code of programs to improve the instruction cache perforrﬁ'énda fact, most compiler

optimizations can &ct instruction cache performance since the optimizations can change the order and number
of instructions that are executed by a program. Since these optimizations can affect different portions of a pro-
gram’s execution, the déct of a compiler optimization on instruction cache performance can only be accurately

evaluated if the complete trace of instruction addresses from the pregracution is used.

This paper describes techniques that use compile-time analysis to reduce the time required for evaluating
instruction cache performance. Unlike many data references, the address of each instruction remains the same
during the entire execution of a prograinformation can therefore be calculated prior to the instruction cache
simulation that can be used to reduce the number of references that the cache simulator needs tdrscess.

in effect address references are being stripped before the initial trace is generated.

RELATED WORK

Traditionally, the problem of evaluating the cache performance during the execution of a program has
been separated into two tasks, trace generation and trace analysis. The first task is to generate the trace of
addresses that will be presented to the cache. The address trace is typically either written to secondary storage,
such as a file on disk, or stored in a trace buffer in memfing second task is to analyze the addresses that
were generated. This analysis is usually accomplished through the use of a separate program that reads the gen-

erated address trace and simulates the behavior of the cache.

Trace-driven cache simulation has long been the primary method used to analyze the performance of a
cache. Simplapproaches for generating trace data and simulating caches, hossevee both very time and
space consumingTwo common methods used for generating trace data are forcing a program to trap after the
execution of each instruction or to record references while simulating the execution of each instruction. Each of
these methods can result in a program executing a 1000 times slower than normal €%8cuficace data is
typically stored in secondary storage and then later read by a cache simulator that will perform the analysis of
the data. Realistic trace data, howevequires at least several million references which may make infeasible

the use of disk as the storage mediaTherefore, there has been much work on the problem of reducing the

space and time requirements for trace-driven simulation.

There are other trace generation methods that are much faster than simulation or tit@ppingethod is
to modify the microcode of a microprogrammed machine. Relative to techniques using traps or simulated pro-
gram execution, this method does not impose a large run-time pendtte microcode of a machine, however
is often not accessible to the typical uséven when it is accessible, it often requires great expertise to modify
without adversely affecting the operation of the machifiiso, modification of microcode would not be appli-
cable for machines which are not microprogrammed (e.g. many RISCs). Another method is to use a hardware
monitor® which can collect address references without perturbation of a machine. These monitors are special-
ized and expensive hardware devices and are also not available to a typicah welition, a monitor that

watches a bus to obtain the addresses of references would not be appropriate with an on-chip instruction cache.

Program instrumentation, or inline tracing, is a technique that requires little overhead for generating a
trace of addressé!1 Instructions are inserted to record addresses during the pregeamition and must
not change the normal execution behavior of the progrEinerefore, the values in data registers or the condi-
tion codes may have to be saved and restofé trace generation overhead can be reduced by generating a
subset of the trace from which an entire trace can be regenefanedcan also optimize the placement of the

instrumentation code to produce the reduced trace with respect to a weighting of the control-flo\i: graph

Unfortunately even with fast trace generation techniques, evaluating the cache performance of a pro-
gram’s execution can be quite time-consuming since thgelstr factor in the time required for cache perfor
mance evaluation is analyzing the trace of addresses. Even after tuning a cache simulator for a specific cache
configuration, a cache simulator can still require an order of magnitude more time than generating the trace
itsel . Therefore, there has been much attention given to reducing the number of references that need to be

traced.

There have been several methods proposed to improve cache simulation times by reducing the number of
references in the trace. One widely known method for reducing the length of the trace data is called trace

strippingt® . This approach first simulates a direct-mapped cache and records only the references that are

misses since hits do not result in changes to the cache state. The reduced trace can then be used to simulate
caches with a greater number of sets and associativity as long as the line size is not changed and context
switches are not introducedlnfortunately this technique requires the entire trace to be processed by the cache
simulator once. Furthermore, the reduced trace may still be quite lemgtith can result in large files and

slow simulations. There have also been several methods that alfevewlifcache configurations to be evalu-

ated during a single simulatidfi1®

Another method to avoid processing the entire trace of references is to instead use several discrete sam-
ples of traces from the program execution to predict cache performance méasWesde a significant loss of
accuracy may not occuthe method may not have the desirable accuracy for measuring the effect of a new
compiler optimization or reganization technique. For instance, the optimization may be applied on a section

of code that when executed is not in the samples of references that are collected.

On-the-fly analysis is a technique that avoids the 1/0 associated with storing the generated trace and
retrieving the trace for input to the cache simulator this approach either the cache simulator is a separate
process that reads a trace buffer containing theracghe cache simulator is linked directly to the program
and trace information is received as arguments via function tallEven though the space and 1/O require-
ments are diminished, the trace analysis can still be quite time-consuming since the entire trace is being pro-

cessed.

TECHNIQUES FOR REDUCING INSTRUCTION CACHE EVALUATION TIMES

An optimizer of a compiler system was modified to be able to generate and analyze trace data. The pro-
gram being measured is compiled in two pas§d® first compilation pass serves to determine the address of
each instruction. Rather than using a table lookup method, which may be rather complicated for highly encoded
CISC architectures, a label is inserted before and after each instruktaatl.is inserted at the beginning of the

main function to invoke a routine that will dump out the size of each instruction, fheedde between each

pair of labels. Even the size of branch instructions, which may vary depending upon the distance to the branch
target, may be accurately determined since no other trace instructions are inserted at thihpdinst compi-
lation pass also stores information about each function to be used by some of the techniques described later in

the paper.

The second compilation pass inserts the instructions to invoke the cache simulator during the grogram’
execution. Thevalues of scratch registers and condition codes may have to be saved prior to the inserted
instructions and restored afterward3y using the data-flow information already calculated and available in the
optimizer these saves and restores are only inserted when necefseajl to print the cache performance
report is also inserted before any return instructions im#ien function or calls to thexi t function any-
where in the program. The cache simulator is linked with the program to allow on-the-fly trace analysis to

occur while the program is being executed.

The techniques used to reduce the number of cache references processed by the cache simulator are
described in the following sections. The cache references not processed are those references which are ascer
tained to be cache hits and will not change the state of the cache. Examples associated with the techniques are
given in Motorola 68020 assembly code. Each technique builds upon the previously presented techniques.
Technique A is a straight-forward approachechniques B and C recognize spatial locality to reduce the length
of the trace and methods similar to these have been used in previous @tﬁ%ie‘ﬁechniques D-G use cache
configuration information and the control flow of the program to avoid processing additional references due to
both spatial and temporal localitywo variations of each of the techniques are discus$ed. first variation

allows periodic context switches and the second variation assumes there are no context'switches.

Technique A

For Technique A, a call to a trace routine is inserted before each basic block in the priigtenthat

basic blocks for tracing are delimited by labels and branching instructions, including Addlsck number

* On some older machines, such as the CDC 6600, the insertion of a label can change the address of an instruction since all branch
tamgets had to be aligned on a word bounddryis author is not aware of any current machines with this characteristic. Furthermore, the
current trend is to have instructions that are all the same size to simplify decoding.

that uniquely identifies the basic block being executed, is passed to the trace routine which uses the number to
access information associated with the blbdke trace routine in turn interfaces with the cache simylator
passing it the address and size of each instruction within the block. If the cache simulator was compiled to
allow the option of periodic context switches, then a simulated context switch invalidating the entire instruction
cache can occur between two instructions in the same basic Bleskmbly code with inserted instructions for

Technique A is given in Figure 1. The source code for the trace routine is given in Figure 2.

L142: pea #145 / * push block number 145/

j bsr _tracebl knum / * call trace routine */
addql #4, a7 / * adjust stack pointer*/

j ne L67

pea #146 / * push block number 148/
j bsr _tracebl knum / * call trace routine */
addql #4, a7 / * adjust stack pointer*/

Figure 1: Assembly Code with Technique A

voi d tracebl knun{bl k)
int blk;
{

register int i;

[* Invoke the cache simulator for each instruction in the blook.
for (i = blkinfo[blk].first;
i < blkinfo[blk].first+blkinfo[blk].nuninst; i++)
cachesinm(instsize[i], instaddr[i]);

Figure 2: Trace Routine for Technique A

T An earlier study by this author only evaluated techniques that allow periodic context sifitches

i Though acache lineis sometimes referred to akock in this paper the terrblockindicates &asic blockin the compiled pro-
gram.

Technique B

The instructions inserted into the program for Technique B are identical to the instructions inserted for
Technique A. The trace routine being invoked, howeirgerfaces with the cache simulatorfeiently. If no
context switches can occur during the execution of the block or the cache simulator was compiled to not allow
context switches, then the cache simulator is invoked only once with the address of the first instruction within
the basic block and the size of entire block passedyasn@nts. Thushe cache simulator is treating the entire
block as one large instructiohe actual number of references to the cache associated with the block, which is
determined staticallymay be greater than the number of instructions within the blddls situation occurs
when one or more instructions span more than one cache Thme.number of references, hits and misses,
caused by invoking the simulator for the entire block as ome leastruction is equal to the number of cache
lines being referenced. The remaining references associated with the block due to spatial locality will always be
cache hits and need not be simulatd@thus, the counter for the number of cache hits is incremented by the
number of remaining references after the call to the simulétdri s determined that a periodic context switch
may occur during the execution of the block, then the cache simulator will be invoked for each individual
instruction within the block as in Technique Ahe source code for the trace routine with Technique B is given
in Figure 3. The variablex_hi t s andc_mi sses, which represent the number of cache hits and misses, are
global variables with initial values of zer@he portions that are in boldface are used only when periodic con-

text switches are allowed.

Technique C

Technique C is similar to Technique B except for onéed#nce. Insteadf invoking the simulator once
for an entire basic block, the technique invokes the simulator once for each sequence of executed blocks that are
physically contiguous.The basic block number of the beginning of a sequence of blocks, also described as a
superblock! , is saved. Acall instruction to the trace routine is inserted before any unconditional jump, call, or
return instructions. Handling conditional transfers of control is a little more complicateel.trace routine

should only be invoked when the conditional branch is takkéowever the conditional branch target block

voi d tracebl knunm(bl k)
int blk;

{
regi ster struct bl kinfotype *p;

int i;
int j;
/* If a context switch cannot occur during the execution of the
block then invoke the cache simulator once for theeshtick. */
p = &bl ki nfo[bl k] ;
if (I(c_switch + p->worst > SWTCHTI ME)) {
i = c_hits + c_misses;
cachesi m(p- >si ze, instaddr[p->first]);
c_hits += (j = (p->refs - ((c_hits + c_misses) - i)));
c_switch += j*H TTI Mg
}

/ * Else invoke the cache simulator for each instruction in the bl¢k.
el se {
for (i = p->first; i < p->first+p->numinst; i++)
cachesi mlinstsize[i], instaddr[i]);

Figure 3: Trace Routine for Technique B

could be in the middle of a different sequence of contiguous blothsrefore, the target of the conditional

jump is replaced with the target of a newly created laBskembly code is added at the end of the function that
contains the new label, the call to the trace routine, the reset of the beginning block of a new sequence, and an
unconditional jump back to the conditional jumpriginal taget. Anexample of assembly code before and

after modifications are made for Technique C is shown in Figuiiehé.source code for the trace routine with
Technique C is given in Figure 5. Again the portions that are in boldface are used only when periodic context

switches are allowed.

Technique D

The remaining techniques use cache configuration information to reduce the number of references to be
processed by the cache simulatdhe compiler reads in information that indicates the line size and number of

sets of a direct-mapped cache. The compiled program can be used to simulate cachedevatit dif

-8-

bef ore after
j bsr f oo j bsr _foo
- novl #15, startblk /* follows a callinst*/
jne L74 L
... jne LN10 /* L74 was replaced*/
j eq L78 o
.. jeq LN11 /* L78 was replaced*/
jra L67 o
pea #17 [* push last block in sed/
j bsr _tracebl knum /* call trace routine */
addql #4, a7 [* adjust stack pointer*/
novl #32, _startbl k /* reset start block*/
jra L67
LN10: pea #15 [* push last block in sed/
j bsr _tracebl knum /* call trace routine */
addql #4, a7 / * adjust stack pointer*/
novl #22, _startbl k /* reset start block*/
jra L74 [* jump to orig label */
LN11: pea #16 [* push last block in sed/
j bsr _tracebl knum /* call trace routine */
addql #4, a7 [* adjust stack pointer*/
novl #26, _startbl k /* reset start block*/
jra L78 [* jump to orig label */

Figure 4: Assembly Code with Technique C

characteristics including greater set associativity in Ruzak’s trace stripping methdd , if the number of sets

is not decreased and the line size remains the same, then the program need not be recompiled.

The variation of Technique D that allows periodic context switches is accomplished as follows. An array
where an element is indexed by a unique block nunidbeased to indicate if each basic block in the program is
currently within the cacheThe compiler determines if each loop in a function, proceeding from the outermost
loop first, can fit in the cache and does not contain any calls to other functions that are being m&hsured.
same cache simulator used to analyze the cache performance during the execution of a measured program was
linked with the compiler so it could be invoked to check if a loop will fit in the cache. If the loop does fit, then

instructions are inserted in the preheader block of the loop to clear the array elements associated with the blocks

voi d tracebl knunm(bl k)

int blk;

{
register int i, refs, size;
int j;
regi ster int worst;

/* Sum information about the set of consecutive blocks.
refs = size = 0;
worst = 0;
for (i = startblk; i <= blk; i++) {
refs += blkinfo[i].refs;
size += blkinfo[i].size;
wor st += bl kinfo[i].worst;

}

/* If a context switch cannot occur during the execution of the set
of blocks then invoke the cache simulator once for theeestir * /

if (!(c_switch + worst > SWTCHTIME)) {
i = c_hits + c_mi sses;
cachesi m(size, instaddr[bl kinfo[startblk].first]);
c_hits += (j = (refs - ((c_hits + c_nmisses) - i)));
c_switch += j*H TTI Mg
}

/ * Else invoke the cache simulator for each instruction in the set of blé¢ks.
el se {
for (i = startblk; i <= blk; i++)
for (j = blkinfo[i].first;
j < blkinfo[i].first+blkinfo[i].numinst; j++) {
cachesi m(instsize[j], instaddr[j]);

}

Figure 5: Trace Routine for Technique C

in the loop. Note, that if a preheader block is not available, then one will be created. For each block within the
loop, instructions are inserted to determine if the block currently resides in the cache by checking the array ele-
ment associated with the blocki the array element is currently set and a simulated context switch cannot

occur while the instructions in the block are executed, then the number of cache hits and the context switch

-10-

information are adjuste*dlt is assumed that the inserted instructions to perform these two checks are much less
expensive than processing the reference by the cache simufadamontext switch does occuthen the array
elements within the loop are cleared. Thus, when a loop that fits in the cache is entered, except when a context
switch occurs, the cache simulator is invoked at most once for each block in th&dobpique C is used for

code outside of loops or in loops that do not fit in the cache. For the example in Figure 6, which contains a loop
with a single basic block, simulated context switches occur every 10,000 units of work. The context interval

can be changed, but would require recompiling the program being measured.

clrl _bl kmar ker +952 /* clear bl kmar ker [238] */

nmov| #238, _| owmar ker / * first block cleared on context switch/

nmov| #238, _hi ghmar ker / * last block cleared on context switch/
L405: cnpl #0, bl kmar ker +952 / * check if block 238 is in cach®/

j eq LN191 / * if not then have to invoke simulatdr/

cnpl #9992, c_switch / * check if context switch in 8 cycled

j ge LN191 / * if pending then invoke simulator/

addql #8, c_switch / * adjust context switch informatiof/

addql #8, c_hits / * adjust number of cache hits/
LN192: ...

j ne L405

nmov| #-1, _hi ghmar ker / * nothing to clear since not in loop/
LN191: novl #1, bl kmar ker +952 / * denote that block 238 is in cacheg

nmov| #238, starthbl k / * first block in sequencé /

pea #238 / * last block in sequencé/

j bsr _tracebl knum / * call trace routine */

addql #4, a7 / * adjust stack pointer*/

jra LN192 /* will now execute insts in basic block

Figure 6: Assembly Code with Technique D and Context Switches

The variation of &chnique D that assumes that there are no context switches is similar to the one with
context switches with the following @&rences. Eacklement of the array is used to represent the number of
outstanding cache hits associated with a basic blétkhe beginning of the execution of the program, each

element is initialized to the negated number of cache references that would be required if the block was

" Note that adjusting this information does result in a stronger coupling between the trace generation and trace analysis tasks.

-11-

executed. Annstruction is inserted at the beginning of each block to add the number of references to the asso-
ciated array element. At the exit(s) of the loop, instructions are inserted to update the number of cache hits and
misses for each block within the loop. First, the array element associated with a block in the loop is checked to
determine if it was executedf so, then the first execution of the block is simulated by the cache simthator
remaining references are added to the number of cache hits, and the array element is reset to the negated number
of cache references. Figure 7 shows the same example as in Figure 6, but with the assumption that no context

switches can occumote that only one instruction is inserted with each block in the loop rather than six.

L405: addql #8, bl kmar ker +952 / * adjust number of hits for block 238/

j ne L405

cnpl #0, bl kmar ker +952 / * check if block 238 was executéd

jlt LN191 / * if not then skip over measurement code
nmov| #238, starthl k / * first block in sequencé /

pea #238 / * last block in sequencé/

j bsr _tracebl knum / * call trace routine */

addql #4, a7 / * adjust stack pointer*/

nmov| _bl kmar ker +952, dO / * load remaining hits for block 238/

addl d0, c_hits / * adjust number of cache hits/

nmov| #-8, bl kmarker +952 /* reset hits for block 238/

LN191:

Figure 7: Assembly Code with Technique D and No Context Switches

Figure 8 shows the source code for the trace routine weithrlique D. This trace routine is also used for
Techniques E-G.Again the portions of the source code in boldface are used only when periodic context
switches are allowed. The only difference between this trace routine and the one used for Technique C is that a

set of markers are cleared when a periodic context switch occurred.

The cache configuration information read by the compiler is used to determine if the cache lines that are
associated with a basic block are currently in the cathihese cache lines are resident and each cache line
was the last line to be referenced within its set, then there is typically no information that need be updated about
the state of the cache in the simulat®he replacement algorithm for determining which cache line to replace

within the set can be usage or non-usage Bﬁsedi\lon-usaged based algorithms, such as first-in-first-out

-12-

voi d tracebl knunm(bl k)

int blk;

{
register int i;
register int refs, size;
int j, k;
regi ster int worst;

/* Sum information about the set of consecutive blotKs.
refs = size = 0;
worst = 0;
for (i = startblk; i <= blk; i++) {
refs += blkinfo[i].refs;
size += blkinfo[i].size;
wor st += bl kinfo[i].worst;

}

/ * If a context switch cannot occur during the execution of the set
of blocks then invoke the cache simulator once for theeestir * /

if (!(c_switch + worst > SWTCHTIME)) {
i = c_hits + c_misses;
cachesi m(size, instaddr[bl kinfo[startblk].first]);
c_hits += (j = (refs - ((c_hits + c_nmisses) - i)));
c_switch += j*H TTI Mg
}

/ * Else invoke the cache simulator for each instruction in the set of blé¢ks.
el se {
for (i = startblk; i <= blk; i++)
for (j = blkinfo[i].first;
j < blkinfo[i].first+blkinfo[i].numinst; j++) {
cachesi m(instsize[j], instaddr[j]);

/ * Clear set of block markers if context switch occurréd.
if (old_context_switch < context_switch) {
ol d_context_switch = context_switch;
for (k = lowrarker; k <= highmarker; k++)
bl kmar ker[k] = 0;
}

Figure 8: Trace Routine for Technique D

-13-

(FIFO) or random, are notfatted by the reuse of a line. The most common usage-based replacement algo-
rithm for set-associative caches is least-recently-used ({]RUM the current cache line being referenced is
also the last line that was referenced within the set, then LRU information need not be uptatetbre, a
program containing a loop that fits in a direct-mapped cache and processed egingjide D would not

require recompilation when the number of sets or associativity is increased.

Technique D, as described so,fatempts to avoid calls to the cache simulator for blocks that will be in
the cache already due to temporal localifhere are also situations when blocks will already be in the cache
due to spatial localityWhen a basic block in a loop that fits in the cache is totally contained in the last cache
line referenced by the predecessor block and/or the first cache line of the successor block, then instructions are
inserted to check the block markers of the predecessor and/or successor lblsekshen the call to the cache

simulator is avoided and the context switch information and cache hit counter are adjusted.

Technique E

Technique E is similar to Technique D except that ipi@rcedural cache analysis is performéuitially,
a all graph of the functions being measured is constructed using the information provided from the first compi-
lation pass.Then, it is determined if each subtree of the graph, a function and the routines that can be invoked
from that function, can fit in the cache at the same tith@n entire function and the routines that can be
invoked will fit in the cache, then Technique D, except for clearing the block markers, is used throughout the
function. Ina function that does not fit in cache, instructions are inserted preceding calls to a function being
measured that does fit in the cache to clear the markers associated with that function. Loops with calls to func-
tions that are being measured may also be candidates for avoiding references to be processed by the cache simu-
lator. If the entire loop and the functions that can be invoked from the loop can fit in cache at the same time,
then the block markers associated with the blocks in the loop and with each of the functions that can be invoked
are cleared in the preheader block of the lotterprocedural cache analysis can still be used when call
graphs are cyclic (i.e. recursivejechnique E (and Techniques F and G), howesemot be used with indirect

calls since the function being invoked is not known at compile-time and the call graph cannot be accurately

-14-

constructed. Thexample given in Figure 6 for Technique D showed a loop with a single block that contained
no calls. Figure 9 shows the same loop except with one call to a routine being measured. The two loop blocks

and the three basic blocks in the routine fit in the cache at the same time.

clrl _bl kmar ker +952 /* clear bl kmar ker [238] */

clrl _bl kmar ker +956 /* clear bl kmar ker [239] */

clrl _bl kmar ker +1056 /* clear bl kmar ker [264] */

clrl _bl kmar ker +1060 /* clear bl kmar ker [265] */

clrl _bl kmar ker +1064 /* clear bl kmar ker [266] */

nmov| #238, _| owmar ker / * first block cleared on context switch/

nmov| #266, _hi ghmar ker / * last block cleared on context switch/
L405: cnpl #0, bl kmar ker +952 / * check if block 238 is in cach®/

j eq LN191 / * if not then have to invoke simulatdr/

cnpl #9995, c_switch / * check if context switch in 5 cycled

j ge LN191 / * if pending then invoke simulator/

addql #5, c_switch / * adjust context switch informatiof/

addql #5, c_hits / * adjust number of cache hits/
LN192: ...

j bsr _foo

cnpl #0, bl kmar ker +956 / * check if block 239 is in cach®/

j eq LN193 / * if not then have to invoke simulatdr/

cnpl #9997, c_switch / * check if context switch in 3 cycled

j ge LN193 / * if pending then invoke simulator/

addql #3, _c_switch / * adjust context switch informatiof/

addql #3, _c_hits / * adjust number of cache hits/
LN194: ...

j ne L405

nmov| #-1, _hi ghmar ker / * nothing to clear since not in loop/

Figure 9: Assembly Code with Technique E and Context Switches

The variation of Technique E that assumes there are no context switches is similar to the method illus-
trated in Figure 7.Not only are the array elements associated with the blocks in the loop checked in the exit
blocks, but the array elements associated with the invoked routines are checked in the exit blocks as well. In a
function that does not fit in cache, instructions are inserted after calls to a function being measured that does fit
in the cache to adjust the number of cache hits and middlesmrray elements are checked at the end of the exe-
cution of the program in case the program terminated in a routine that fits in déghee 10 illustrates the

same loop as in Figure 9 with the assumption that no context switches can occur.

-15-

L405: adddgl #5, _bl kmar ker +952 /* adjust number of hits for block 238/

j bsr _foo
addql #3, _bl kmar ker +956 / * adjust number of hits for block 239/

j ne L405
/* check blocks 238-239 and blocks in foo

Figure 10: Assembly Code with Technique E and No Context Switches

Technique F

To be ale to avoid address references being processed by the cache siriatdtoique E required that
all the blocks in a loop and the blocks in the routines that can be invoked from the loop fit in the cache at the
same time.Technique F relaxes this requiremertll of the blocks in the loop itself still have to fit in the cache
at the same time. Also, each individual function invoked directly from the loop and the set of routines the func-
tion could in turn invoke have to fit in the cache at the same time. Otherwise there can be conflicts between
blocks. Forinstance, a basic block in a routine invoked from the loop could conflict with a basic block in the
loop or a block from a different routine invoked from the same lgopeuristic was applied that requires that
at least one half of the blocks in the loop and the routines invoked cannot conflict. If the heuristic is not satis-
fied then Technique C is used for the blocks in the |@@herwise, if a block in the loop conflicts with blocks
in routines invoked from the loop, then instructions are inserted to clear the markers associated with the con-
flicting blocks in the invoked routines when the loop block is executed. Likewise, when a block in an invoked
function conflicts with a loop block or a tlfent routine that is invoked from the same loop, then instructions
are inserted to clear the conflicting blocks before the call instruction to the invoked function. Bigure/d a

loop containing a block that conflicts with a basic block in a routine invoked from the loop.

The variation of €chnique F that assumes there are no context switches is accomplished in the following
manner If a block in the loop conflicts with the blocks in routines invoked from the loop, then instructions are
inserted to adjust the number of cache hits and misses associated with the conflicting blocks in the invoked rou-

tines when the loop block is executdd.a similar fashion, when a block in an invoked function conflicts with a

-16-

L85: .
cnpl #0, _bl kmar ker +2120 /* check if block 530 is in cach&/

jeq LN141 / * if not then have to invoke simulatdr/
cnpl #9981, c_switch [* check if context switch in 19 cycléed
i ge LN141 I * if pending then invoke simulatof/
addl #19, c_switch [* adjust context switch informatiot/
addl #19, c_hits [* adjust number of cache hits/
LN142: clrl _bl kmar ker +7344 / * block 530 in loop conflicts with block 1836
clrl _bl kmar ker +2120 / * block 1836 in foo conflicts with block 530/
j bsr _foo
j ne L85

Figure 11: Assembly Code with Technique F and Context Switches

loop block or a different routine that is invoked from the same loop, then instructions are inserted to adjust the
number of cache hits and misses associated with the conflicting blocks before the call instruction to the invoked
function. Figurel2 shows how the same loop in Figufeid instrumented with trace instructions in the varia-

tion that assumes there are no context switches.

Technique G

Techniques D-F attempt to find basic blocks that are already resident in the cache because of temporal
locality due to loops. There is, howeyanother situation when temporal locality can result in blocks being res-
ident. Thissituation occurs when a routine is invoked from more than one location and some blocks in the rou-
tine have not been replaced when the second call occurs. Assuming that context switches,CEthomues
E and F clear the block markers of a function that fits in the cache before the call instruction to that function in a
routine that does not fit in cachét the point when a call to such a function is encountered in Technique G, the
compiler attempts to determine if any block markers in the function have already been cleared and the lines
associated with those blocks have not been replaced. Any block that is determined to be resident, and thus its
associated marker is already cleared, need not have its marker clearedragagxample in Figure 13 has two
calls to the same function that fits in the cache. In this example, the instructions following the first call reside in

the same line as only one of the blocks in the function being invoked.

-17-

L85: C
addl #19, bl kmar ker +2120 [* adjust number of hits for block 530/

cnpl #0, _bl kmar ker +7344 / * check if block 1836 was executé&d
jlt LN142 / * if not then skip over measurement cotle
novl #1836, _startbl k [* first block in sequencé /
pea #1836 / * last block in sequencé/
j bsr _tracebl knum / * call trace routine */
addql #4, a7 / * adjust stack pointer/
novl| _bl kmar ker +7344, dO / * load remaining hits for block 1836/
add| do, _c_hits / * adjust number of cache hits/
novl| #-7, _bl kmar ker +7344 | * reset hits for block 1836/
LN142: ...
cnpl #0, _bl kmar ker +2120 / * check if block 530 was executéd
jlt LN143 / * if not then skip over measurement cotle
novl #530, _startbl k [* first block in sequencé /
pea #530 / * last block in sequencé/
j bsr _tracebl knum [* call trace routine */
addql #4, a7 / * adjust stack pointer/
novl _bl kmar ker +2120, dO / * load remaining hits for block 530 /
add| do, _c_hits / * adjust number of cache hits/
novl #- 19, _bl kmar ker +2120 /* reset hits for block 530/
LN143: ...
j bsr _foo
j ne L85

Figure 12: Assembly Code with Technique F and No Context Switches

clrl _bl kmar ker +528 [* clear bl kmar ker [132] */

clrl _bl kmar ker +532 [* clear bl kmar ker [133] */

clrl _bl kmar ker +536 [* clear bl kmar ker [134] */

clrl _bl kmar ker +540 [* clear bl kmar ker [135] */

nmovl| #132, _| ownar ker | * first block cleared on context switcty
nmovl| #135, _hi ghmar ker / * last block cleared on context switct/
j bsr _foo

clrl _bl kmar ker +528 [* clear bl kmar ker [132] */

j bsr _foo

nmovl| #- 1, _hi ghmar ker / * nothing to clear since not in funt/

Figure 13: Assembly Code with Technique G and Context Switches

-18-

The variation for €chnique G that assumes there are no context switches is accomplisbreohttlif
After the call to a function that fits in cache, each block marker associated with the called function is examined
to update the number of cache hits and misses and the marker is reset to the negated number of references asso-
ciated with the block. If it is determined that there exists another call to a function that always follows the cur
rent call and will result in a block marker being rechecked and the block has not been replaced, then the check
after the current call is not inserted. The example in Figure 14 also has two calls to the same function that fits in

cache. Onlytthe marker for the conflicting block is checked after the first call.

j bsr _foo
cnpl #0, bl kmar ker +528 / * check if block 132 was executéd
jlt LN75 / * if not then skip over measurement code
nov| #132, startblk / * first block in sequencé /
pea #132 / * last block in sequencé/
j bsr _tracebl knum / * call trace routine */
addql #4, a7 / * adjust stack pointer*/
nov| _bl kmar ker +528, d0 / * load remaining hits for block 528/
addl d0o, c_hits / * adjust number of cache hits/
nov| #-13, bl kmar ker +528 /* reset hits for block 1836/

LN75: ...
j bsr _foo

/* now check all four blocks /

Figure 14: Assembly Code with Technique G and No Context Switches

RESULTS

The set of test programs used in this experiment and their associated code size are shown ifThable 1.
code size for each program does not include the routines from the run-time library since their source code was
not available.The techniques discussed in this paper could be used to process assembly or objecifdites.
tunately this would complicate implementation of the techniques since portability would be decreased and the
control-flow and data-flow information already available in a compiler would have to be recalcida@d.
compiler for the Motorola 68020/68881 was implemented withirettseenvironment2-23 which consists of

a compiler generation system callegc?® and measurement tools. The compiler was modified to implement

-10-

each of the seven techniques described in the previous section. Cache performance measurements were
obtained for each program within the test set using each of the techniques. The measurements obtained for each
specific program were not affected by the technique used. ldentical results occurred, the exact number of hits

and misses, despite periodic simulated context switches and each program requiring at least one million cache

references.

Name Description Size in Bytes
compact| Huiman Coding Compression 4322
cpp CPreprocessor 12678
diff Differences between Files 9166
lex LexicalAnalyzer Generator 26318
sed Streankditor 13946
sort Sortor Merge Files 5500
tbl Table Formatter 24592
yacc ParseGenerator 22392

Table 1: Test Programs

Periodic context switches were simulated by invalidating the entire cache every 10,000 units oA work.
cache hit was assumed to require one work unit while a cache miss was assumed to require ten. The context
switch interval and estimated time units required for a hit versus a miss are the same as those used in Smith’
cache studie’. Though the experiments in this paper simulated context switching based on estimated cache
work to check that identical measurements were obtained with fleeedif techniques, other methods to deter
mine context switch points could also be used.

Table 2 shows the number of times that the cache simulator was invoked for each program using each of
the techniques for a 1K byte direct-mapped cache with a 16 byte line size and periodic context sWitehes.
hit ratio is given to indicate the percentage of references that are candidates for not being processed by the

cache simulator Note that the number of calls to the cache simulator usaapriique A is the same as the

-20-

number of instructions that were executéEhe results usingékchnique B indicate that there were on average

2.77 (i.e. 1/ .3612) instructions per basic block being executed. There was also on average 5.29 (i.e. 1/.1892)
contiguous instructions being processed by the cache simulator usomgidue C. Technique D, which

requires no inteprocedural analysis, resulted in a substantial improvement over Technique C. This indicates
that a large percentage of instructions executed in programs occur in loops with ndediliques E, Fand

G gpear to be more closely affected by the hit ratio. The results indicate that Technique F has a slight
improvement over Technique Hechnique G, howeverarely resulted in fewer references being processed as
compared to Technique Rt is interesting to note that using Techniques ,BanE G can occasionally result in

more address references being processed by the cache simiitasosituation can occur when the loops that

do fit in cache are also in the functions that fit in cache. Since each block in these functions are processed indi-
vidually, then the blocks outside the loops in these functions would require more references to be processed by
the cache simulator since the method used in Technique C is not appiexh no context switches were
allowed, the number of calls to the cache simulator decreased slightlyegithiGues B-G since the cache sim-

ulator never had to process instructions within a block individually.

o Instructions Relative to Technique A
Program | HitRatio
Executed B C D E F G

compact 95.25% | 4,699,295| 26.51% 13.21% | 10.92%| 8.03% 8.03% 8.03%
cpp 93.78% 1,322,671 | 26.53% 15.75% | 11.07% 11.019 11.02% 1.02%
diff 99.54% 3,425,264 29.83% | 15.07%| 3.22% 1.22% 0.77% 0.77%
lex 99.48% | 36,844,880 | 50.55% 19.47% 2.32% 1.89% 0.94% 0.94%
sed 96.49% | 1,643,093 | 45.86% 26.84% 6.99% 6.92% 5.32% 5.32%
sort 96.91% 1,778,463 | 34.36% 18.49% | 12.24%| 12.599% 12.59% 12.59%
tbl 86.59% 2,715,097 | 30.709q 19.65% | 17.28%| 16.789 16.36% 16.24%
yacc 98.63% | 23,960,045| 44.58% 22.89% 5.17% 4.52% 3.51% 3.51%

average 95.83%| 9,548,601 | 36.12% 18.92% 8.65% 7.87% 7.32% 7.30%

Table 2: Calls to Cache Simulator with a 1K Byte Cache

" The number of executed instructions is slightly less than the total cache references simulated since a Motorola 68020/68881 instruc-
tion may span two cache lines.

-21-

Table 3 shows the number of times that the cache simulator was invoked with cache sizes ranging from
2K to 16K bytes. Increasing the cache size did not vary the number of references processed by the cache simu-
lator using Bchnique A since the number of instructions that were executed remained the same. Also, the num-
ber of references processed usimgfniques B, C, and D varied only slightly as the cache size was increased.
Therefore, only the hit ratio and results fromchiniques E, ,Find G were presented in Table 3. Slightly vary-
ing number of references processed when the cache size was increased for each program using Technique D
indicates that loops with no calls in the test set always fit in a 1K byte cHcilige Techniques A-D, dch-
nigues E-G improved as the cache size and hit ratios increased. For a program that executes a very large num-
ber of instructions, more time may be saved by recompiling the program when the number of sets in the cache
configuration being measured is increased. Again the number of calls to the cache simulator decreased only

slightly when no context switches were allowed.

Table 4 shows the execution time required using a 1K byte direct-mapped cache with a 16 byte line size
and periodic context switches relative to execution without tracing for each pngrem.that execution times
of the programs being measured include both the time required for generating the trace and analyzing the refer
ences with the cache simulatdrhe ratio to execution time without tracing for the different programs with each
technique varied. For instance, the ratio fechinique A for thé ex program was over 3.8 times as great as
the ratio fort bl . The ratio to execution time without tracing is affected by a number of factors which include
the average execution time required for the non-tracing instructions executed, the average number of instruc-
tions in executed basic blocks, and the percentage of time spent in the library routines which were not

measure&.

" When a context switch could occur in a basic block, the cache simulator processes each instruction within the block individually
Since changing the cache size typically resulted in context switches occurring in basic blocks with a different number of instructions, there
was a slight variation in the number of times that the cache simulator was invoked.

T All execution times reported in this paper were obtained by determining the average of ten execution times of each instance of a
program.

* Smaller ratios to execution times without tracing were reported for a method similar to Technique Bapettissystem!’. This
discrepancy was probably due to their choice to simulate more floating-point intensive programs, to not introduce or check for pending con-
text switches, and the use of a cache simulator tuned for specific cache configurations.

-22-

Cache]) Relativéo Technique A
Program | HitRatio

Size E F G
compact 96.04% | 8.03% 8.03% 8.03%
cpp 96.52% | 11.03% | 11.03%| 1.02%
diff 99.68% 1.22%| 0.77% 0.77%
2K lex 99.49% 0.94%| 0.94% 0.94%
sed 98.23% | 6.92% 3.93% 3.93%
bytes | sort 99.83% 9.91%| 5.41% 5.41%
tbl 93.94% | 13.40% | 13.42%| 13.17%
yacc 99.28% 2.88% 2.89% 2.89%

average 97.88%| 6.79% 5.80% 5.77%

compact 97.63% | 8.03% 2.46% 2.46%

cpp 97.72% | 1123% | 11.07%| 1.07%
diff 99.75% 0.28%| 0.28% 0.28%
4K lex 99.59% 0.94%| 0.94% 0.94%
sed 98.23% | 3.93% 3.93% 3.93%
bytes | sort 99.83% 0.22%| 0.23% 0.23%
tbl 95.69% | 13.38% | 13.41%| 13.16%
yacc 99.45% 2.86% 2.88% 2.88%

average 98.49%| 5.11% 4.40% | 4.37%

compact 99.26% | 0.72% 0.72% 0.72%

cpp 98.06% | 10.90% | 10.30%| 10.30%
diff 99.75% 0.28%| 0.28% 0.28%
8K lex 99.60% 0.92%| 0.92% 0.92%
sed 99.1% 0.82% | 0.82% 0.82%
bytes | sort 99.82% 0.22%| 0.22% 0.22%
tbl 96.76% | 13.41% | 13.44%| 13.19%
yacc 99.48% | 0.97% 0.99% 0.99%

average 98.98%| 3.53% 3.46% 3.43%

compact 99.26% | 0.72% 0.72% 0.72%

cpp 98.39% 1.36% 1.36% 1.36%
diff 99.75% 0.28%| 0.28% 0.28%
16K lex 99.60% 0.44%| 0.41% 0.41%
sed 99.1% 0.82% | 0.82% 0.82%
bytes | sort 99.83% 0.22%| 0.22% 0.22%
tbl 97.89% | 10.78% 7.05% 6.95%
yacc 99.48% | 0.63% 0.63% 0.63%

average 99.16%| 1.91% 1.44% 1.42%

Table 3: Calls to Cache Simulator with Larger Cache Sizes

-23-

Ratio to Execution Time without Tracing
Program
A B C D E F G

compact | 124.57) 51.35| 40.23] 33.22 25.70 25.74 25/80
cpp 13.05 47.83| 40.24 | 31.55| 31.62 31.62 31.67
diff 83.04 35.64| 26.51 8.31 5.20 4.50 4.51
lex 188.68| 118.70 | 73.37| 15.13 13.68 10.69 10.69
sed 143.18| 87.62 | 72.85| 2494 2535 22.05 22[05
sort 161.03| 83.41| 64.75| 46.39 47.64 47.72 4764
tbl 49.65| 25.22 | 22.88| 21.01] 21.10 20.82 20,35
yacc 124.56| 75.12 | 54.82| 17.29 16.46 1420 14)09
average 123.47 65.61 | 49.46| 24.73 23.34 2217 2210

Table 4: Execution Time Overhead with a 1K Byte Cache and Context Switches

Table 5 shows the execution time required using a 1K byte direct-mapped cache with a 16 byte line size
and no periodic context switches relative to execution without tracing for each proghematios for all the
techniques decreased since the trace routine and cache simulator did not have to check for periodic context

switches. €chniques D-G also improved since fewer trace instructions were executed inside loops.

Ratio to Execution Time without Tracing

Program

A B C D E F G
compact| 15.72 | 45.72| 33.28§ 28.00 20.70 21.10 20.78
cpp 97.57| 40.97 | 33.21| 25.13 2530 2537 2534
diff 64.44 | 27.94| 19.51] 5.09 2.69 2.03 2.04
lex 139.62 | 84.40 | 44.52| 7.37 6.02 41 411
sed 1116 | 59.60| 46.96] 15.61 1586 13.30 13|76
sort 121.23| 55.17 | 41.93| 31.3§ 31.00 31.65 3177
tbl 41.83| 20.38| 17.59| 15.67 1548 15.18 1527
yacc 94.81| 51.46 | 35.09| 10.24 9.30 9.35 9.31
average 98.30 48.21| 34.01] 17.313 1580 15.26 15,30

Table 5: Execution Time Overhead with a 1K Byte Cache and No Context Switches

Table 6 shows the execution time overhead with cache sizes ranging from 2K to 16K bytes and periodic
context switchesln general, the execution times decrease as the number of references processed by the cache

simulator decrease. Thus, as the cache size increases, the execution times for prograrestusmees E, F

-24-

Cache Ratido Execution Time without Tracing
. Program
Size E F G
compact 25.58 25.63 25.57
cpp 29.58 29.60 29.58
diff 5.12 4.41 4.44
2K lex 10.83 10.83 10.75
sed 16.90 16.90 16.91
bytes | sort 37.72 24.30 24.33
tbl 15.96 16.32 16.01
yacc 12.48 12.53 12.52
average 19.27 17.57 17.51
compact 24.47 11.56 1n.51
cpp 29.65 29.17 29.45
diff 3.76 3.78 3.81
4K lex 11.02 10.93 10.98
sed 16.98 17.19 17.14
bytes | sort 6.87 8.64 8.55
tbl 15.42 15.42 15.05
yacc 12.52 12.83 12.68
average 15.09 13.69 13.65
compact 6.67 6.67 6.67
cpp 29.14 27.93 27.95
diff 4.08 4.08 4.08
8K lex 11.38 11.47 1.38
sed 9.49 9.59 9.61
bytes | sort 7.63 7.64 7.65
tbl 15.22 15.21 15.29
yacc 9.08 9.1 912
average 1.59 11.46 1.47
compact 7.44 7.44 7.45
cpp 8.99 9.02 8.97
diff 4.73 4.73 471
16K lex 11.91 11.74 1.74
sed 10.95 10.97 10.97
bytes | sort 8.58 8.60 8.58
tbl 13.29 10.14 10.02
yacc 8.96 8.97 8.92
average 9.36 8.95 8.92

Table 6: Execution Time Overhead with Larger Cache Sizes and Context Switches

-25-

and G decrease. The execution times for Techniques A-D varied only slightly since the number of references
processed by the cache simulator only changed slightly witbrelift cache sizes simulated. Therefore, only

the execution time ratios for Techniques Eafél G are presented in Table 6.

Table 7 shows the execution time overhead for TechniquesaddFs with cache sizes ranging from 2K
to 16K bytes and no periodic context switches. As the cache size increases, the reduction in execution time
resulted in greater improvements as compared to the execution times with context switches. These greater
improvements were due to the high percentage of blocks that fit within loops and fewer trace instructions being

executed with the variations that do not allow periodic context switches.

The tracing overhead is dependent on the performance of the cache simiuds®rtracing overhead
would be required if cache simulators were used that were tuned for a particular cache configlitasion.
scheme, howevewould be less flexible since a program would have to be relinked each time the cache config-

uration was changed.

FUTURE WORK

The techniques described in this paper could be extended to have the ability to evaluate instruction cache
performance from programs executing concurrenilige method used by the techniques to simulate periodic
context switches had the advantage that it disregarded the time required to execute the instructions that were
inserted to obtain the measuremenithis advantage is important since the measurement overhead not only
dominates the total execution time, but also can vary during different portions of the execution because calls to
the trace routine are not uniformly distributefilso, context switches were allowed to occur between instruc-
tions within a basic block, which is more realistic than methods that only allow context switches on basic block
boundaries. Theeffect of each context switch was simulated by invalidating the entire instruction cache.
Unfortunately most current systems do not cold start the cache when switching to a new process. The tech-
niques described in this paper could be extended to measure cache performance for multiple concurrently exe-

cuting programs in the following mannefirst, the data used to represent the state of the cache in the cache

-26-

Cache Ratido Execution Time without Tracing
. Program
Size E F G
compact 20.19 20.25 20.20
cpp 24.27 24.48 24.84
diff 2.55 1.95 1.93
2K lex 3.99 3.94 3.97
sed 9.55 9.65 9.82
bytes | sort 24.34 13.81 14.01
tbl 12.12 12.24 12.24
yacc 5.91 5.91 5.91
average 12.87 11.53 1n.61
compact 20.00 6.07 5.82
cpp 25.06 2491 24.82
diff 1.26 1.26 1.24
4K lex 3.81 3.79 3.85
sed 8.90 8.67 8.79
bytes | sort 1.46 4.79 4.84
tbl 11.86 11.94 1.76
yacc 5.88 5.90 5.93
average 9.78 8.42 8.38
compact 1.51 1.53 1.53
cpp 25.17 24.38 24.46
diff 1.25 1.25 1.26
8K lex 3.86 3.91 3.89
sed 1.68 1.63 1.67
bytes | sort 1.76 1.78 1.74
tbl 10.63 10.68 10.65
yacc 2.54 2.57 2.56
average 6.05 5.97 5.97
compact 1.53 1.52 1.53
cpp 1.45 1.45 1.44
diff 1.24 1.24 1.24
16K lex 2.09 1.77 1.77
sed 1.68 1.69 1.69
bytes | sort 1.69 1.73 1.67
tbl 8.90 6.38 6.20
yacc 1.78 1.77 1.77
average 2.55 2.19 2.16

Table 7: Execution Time Overhead with Larger Cache Sizes and No Context Switches

-27-

simulator would be mapped to a shared global data area. Rather than invalidate the entire cache at a periodic
context switch point, the cache simulator will suspend itself until it receives a signal indicating that the current
process can continuét this point control will be passed to the next program in a round robin fashion. At the
desired termination point, instruction cache measurements could be generated for each individual program

and/or for the entire set of programs.

Another area of future work would be to determine if the techniques discussed in this paper could be
applied to machines that fetch and issue multiple instructions at the same time. (V)LIW machines would not be
difficult to handle since the compiler packages the program into sets of instructions that are always fetched and
issued togetherThe challenge would be determining the sets of instructions that are actually fetched and issued
simultaneously for superscalar machines since these sets would depend on the paths taken through a program.
The number of instructions issued together would also depend not only structural hazards (available functional

units), but also the alignment requirements of a fetch Bfack

CONCLUSIONS

The techniques presented in this paper have been shown to significantly reduce the time required for
instruction cache performance evaluations as compared to more traditional approaches. This improvement
occurred despite no special requirements to implement the tecﬁn:inmhwithout any loss of accuracyech-
nigue D is particularly attractive since with no interprocedural analysis required it is simple to implement and
still results in a significant improvementhough only the number of instruction references to be processed can
be reduced, the techniques can also be used when evaluating split instruction and datdlecadhesll should
be a measurable improvement in this situation since typically the majority of address references being processed
are instructions. The effective evaluation of lge second-level caches may require billions of references to be
traced. Wherpositioned behind a split first-level cache, the techniques presented in this paper would be very

useful.

" Some approaches have dedicated a set of registers to be used exclusively for tracing and/or require special operating system support
2,7,9,11

-28-

10.

11

12.

13.

14.

15.

16.

REFERENCES

A. J. Smith, “wWo Methods for the Efficient Analysis of Memory Address Trace DataEE
Transactions on SoftwarEngineering 3, 94-101 (January 1977).

A. Borg, R. E. Kessler and D. Wh\all, ‘Generation and Analysis ofevwy Long Address faces’,
Proceedings of the 17th Annual International Symposium on Computgitesiure Seattle, Vshington,
270-279 (May 1990).

W, W. Hwu and P P. Chang, ‘Achieving High Instruction Cache Performance with an Optimizing
Compiler’, Proceedings of the 16th Annual Symposium on Computshitécture Jerusalem, Israel,
242-250 (May 1989).

S. McFarling, ‘Program Optimization for Instruction CacheBtpceedings of the ThirInternational
Confeence on Achitectural Support for Programming Languages and Operating SysBoston, Ma,
183-191 (April 1989).

K. Pettis and R. Hansen, ‘Profile Guided Code Positionirgiceedings of the SIGPLAN Notices '90
Confeence on Programming Language Design and Implementatihite Plains, New York, 16-27
(June 1990).

B.L. Peuto and L. J. Shustek, ‘An Instruction Timing Model of CPU PerformaReeteedings of the
4th Annual Symposium on Computer Architect8ileer Spring, Maryland, 165-178 (March 1977).

C.A. Wiecek, ‘A Case Study of AX-11 Instruction Set Usage for Compiler Executiddtpceedings of
the Symposium on Architectural Support foodgfamming Languages and Operating Systétal® Alto,
California, 177-184 (March, 1982).

M. Huguet, T Lang and YTamir, ‘A Block-and-Actions Generator as an Alternative to a Simulator for
Collecting Architecture MeasurementsRroceedings of the SIGPLAN Notices '87 Symposium on
Interpreters and Interpretive Techniqu&s. Paul, Minnesota, 14-25 (June 1987).

A. Agarwal, R. L. Sites and M. Horowitz, TAUM: A New Technique for Capturing Addressates
Using Microcode’ Proceedings of the 13th Annual Symposium on Computbitécture Tokyo, Japan,
119-127 (June 1986).

D. W. Clark and H. M. Levy ‘Measurement and Analysis of Instruction Use in theX\11/780’,
Proceedings of the 9th Annual Symposium on Computer Archite&tustn, Texas, 9-17 (April 1982).

S. J. |ggers, D. R. Keppel, E. J. Koldinger and H. M. Lewgchniques for Efficient Inline Tracing on a
Shared-Memory Multiprocessor Proceedings SIGMETRICS '90 Conference on Meament and
Modeling of Computer SystenBoulder CO, 37-47 (May 1990).

T Ball and J. R. Larus, ‘Optimally Profiling and Tracing Prograr@sinfeence Recda of the Nineteeth
Annual Symposium on Principles of Programming Languaiésiquerque, NM, 59-70 (January 1992).

T R. Ruzak,Analysis of Cache Replacement AlgorithPsD Dissertation, University of Massachusetts,
Ambherst, MA, February 1985.

W Wang and J. BaerEfficient Trace-Driven Simulation Methods for Cache Performance Analysis’,

Proceedings SIGMETRICS '90 Conference on Measurement and Modeling of Computer, Systems

Boulder CO, 27-36 (May 1990).

M.D. Hill and A. J. Smith, ‘Evaluating Associativity in CPU Cach#&SEE Transactions on Computers
38, 1612-1630 (December 1989).

S.Laha, J. H. Patel and R. K. lyéAccurate Low-Cost Methods for Performance Evaluation of Cache
Memory Systems’|EEE Transactions on ComputeB¥, 1325-1336 (November 1988).

-20-

17.

18.

19.

20.
21.

22.

23.

24,

25.

C. Stunkel and WFuchs, ‘TRAPEDS: Producing Traces for Multicomputers Via Execution Driven
Simulation’, Proceedings of the International Cordaece on Measurement and Modeling of Computer
Systems, 70-78 (May 1989).

C. L. Mitchell and M. J. Flynn, ‘A Workbench for Computer Architect&EE Design & Test of
Computers5, 19-29 (February 1988).

D. B. Whalley ‘Fast Instruction Cache Performance Evaluation Using Compile-Time Analysis’,
Proceedings SIGMETRICS and PERFORMANCE ’'92 Conference on Measurement and Modeling of
Computer SystemBlewport, RI, 13-22 (June 1992).

A.J. Smith, ‘Cache MemoriesGomputing Survey4d4, 473-530 (September 1982).

J.Hennessy and D. Patters@pmputer Achitectue: A Quantitative Apmrach Morgan Kaufmann, San
Mateo, CA, 1990.

J.W. Davidson and D. B. WhalleyEase: An Environment for Architecture Study and Experimentation’,
Proceedings SIGMETRICS '90 Conference on Measurement and Modeling of Computer, Systems
Boulder CO, 259-260 (May 1990).

J.W. Davidson and D. B. WhalleyA D esign Environment for Addressing Architecture and Compiler
Interactions’ Microprocessors and Microsysteyi$, 459-472 (November 1991).

M. E. Benitez and J. WDavidson, ‘A Portable Global Optimizer and LinkeProceedings of the
SIGPLAN Notices '88 Symposium on Programming Language Design and ImplemeAtidiota, GA,
329-338 (June 1988).

M. D. Smith, M. Johnson and M. A. Horowitz, ‘Limits on Multiple Instruction IssBedceedings of the
Third International Conference on Architectural Support for Programming Languages and Operating
SystemsBoston, Ma, 290-302 (April 1989).

-30-

