
Quick Compilers Using Peephole Optimization

JACK W. DAVIDSON AND DAVID B. WHALLEY

Department of Computer Science, University of Virginia, Charlottesville, VA 22903, U.S.A.

SUMMARY

Abstract machine modeling is a popular technique for developing portable compilers. A compiler can be quickly realized
by translating the abstract machine operations to target machine operations. The problem with these compilers is that
they trade execution efficiency for portability. Typically the code emitted by these compilers runs two to three times
slower than the code generated by compilers that employ sophisticated code generators. This paper describes a C
compiler that uses abstract machine modeling to achieve portability. The emitted target machine code is improved by a
simple, classical rule-directed peephole optimizer. Our experiments with this compiler on four machines show that a
small number of very general hand-written patterns (under 40) yields code that is comparable to the code from compilers
that use more sophisticated code generators. As an added bonus, compilation time on some machines is reduced by 10 to
20 percent.
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INTRODUCTION

A popular method for building a portable compiler is to use abstract machine modeling1-3. In this technique the

compiler front end emits code for an abstract machine. A compiler for a particular machine is realized by construct-

ing a back end that translates the abstract machine operations to semantically equivalent sequences of machine-

specific operations. This technique simplifies the construction of a compiler in a number of ways. First, it divides a

compiler into two well-defined functional units—the front and back end. Second, by carefully designing the

abstract machine to support a single source language, code generation in the front end is often trivial. Third,

because the front end is largely machine independent, a compiler for a new machine is realized simply by supplying

a new back end.

While abstract machine modeling simplifies the construction of a retargetable compiler, the emitted code is usu-

ally substantially inferior to the code produced by a compiler constructed using a sophisticated code generator. This

paper describes a portable C compiler that uses abstract machine modeling for portability, and a simple rule-directed

peephole optimizer to produce reasonable object code. The compiler has been ported to four machines. The

interesting aspect of this compiler is that for all four machines (including a complex machine with a large number of

addressing modes and operations), no more than 40 peephole optimization rules were required to produce code that

was comparable to the code emitted by compilers that used sophisticated code generators. Furthermore, for three of
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the four machines the compiler was 10 to 20 percent faster than the more sophisticated ones.

FRONT END

The front end of the C compiler is called vpcc (Very Portable C Compiler)4. It supports the full C programming

language as defined by Kernighan and Ritchie5. vpcc emits code for a hypothetical machine called CVM (C Virtual

Machine). CVM’s design was motivated, to a large extent, by the principles and arguments used to design RISCs6.

This is most evident by the reduced number of machine operations. CVM contains 46 simple operators. Like P-

code for Pascal2 , CVM was specifically designed for the implementation of C compilers and interpreters. It is not a

general-purpose abstract machine. A complete description of the C Virtual Machine appears in Appendix I.

Unlike most real RISC machines, CVM is a stack architecture as opposed to a register architecture. The archi-

tecture provides instructions for manipulating two distinct stacks. Most instructions manipulate values found on the

evaluation stack or E-stack. A second stack, called the C-stack, is used to support the C calling sequence. Only five

instructions (PUSHA, PUSHV, STARG, CALL, and RET) access this stack. The separate stacks permit back ends

for pure stack machines or for register machines to be constructed easily. The next section discusses the mapping of

the CVM onto a real machine.

Using a small abstract machine language in the front end has a number of advantages7. Code generation in vpcc

is trivial. The reduced nature of the abstract machine means that the code generator can forgo the case analysis typi-

cally necessary to emit special case operators. The code is verbose, but simple to produce. The simplicity of the

abstract machine also reduces the effort required to map the abstract machine onto the target machine. Because the

front end emits code for a virtual machine, retargeting the front end for a new machine requires relatively little

effort. A few ‘‘defined’’ constants must be changed to reflect the sizes of integers, floating and double precision

numbers, and pointers. In addition, conditional compilation is used to select the order of evaluation of arguments to

functions that best matches the calling sequence supported by the target machine. Figure 1b shows the CVM code

produced by vpcc for the simple function in Figure 1a that computes the length of a string.
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int slen(s)
char *s;
{

int i = 0;
while (*s++)

i++;
return (i);

}

Figure 1a. String length function

SEG 1 # text segment
FUNC FTN int slen EXTDEF # begin function slen
DCL PTR char s PARAM 4 1 # declare parameter s
BGNBLK 2 # begin block 2
DCL int i AUTO 4 2 # declare local i
BGNSTMT 4 # begin source stmt 4
CON int SNULL 0 # push 0
ADDR int i AUTO 2 # push address of i
= int # store
EPDEF # end of procedure prologue code
LABEL 14 # label 14
BGNSTMT 5
ADDR PTR char s PARAM 1 # push address of s
@ PTR char # dereference s
DUP PTR char # duplicate top of stack
CON int SNULL 1 # push 1
VCONV int PTR char # convert to pointer
+ PTR char # add
ADDR PTR char s PARAM 1 # push address of s
= PTR char # store
@ char # dereference
CON char SNULL 0 # push 0
JEQ char 15 # if equal jump to label 15
BGNSTMT 6
ADDR int i AUTO 2 # push address of i
@ int # dereference i
CON int SNULL 1 # push 1
+ int # add
ADDR int i AUTO 2 # push address of i
= int # store
GOTO 14 # jump to label 14
LABEL 15 # label 15
BGNSTMT 7
ADDR int i AUTO 2 # push address of i
@ int # dereference i
RETURN int # return value to caller
EFUNC 4 # end of function

Figure 1b. Example of CVM code emitted by vpcc for code in Figure 1a
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

BACK END

The back end translates the CVM operators to machine-specific assembly language. Because each CVM opera-

tor represents, in most cases, a simple operation, the mapping from CVM instructions to target machine instructions

is usually trivial. There are two strategies that can be used to map CVM code onto the target machine. One strategy
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is to map both the E-stack and C-stack of the CVM onto the run-time stack of the target machine. A back end for

the Western Electric 32100 was constructed using this approach8. There are a couple of advantages to this strategy.

First, the mapping of the CVM operators to target machine instructions is straightforward. Second, this approach

does not require a register allocator. The disadvantage is that for register machines the resulting code is inefficient

because all references to the E-stack result in target machine code that references memory.

For machines with an adequate number of allocable registers (more than four), the second strategy is to map the

E-stack onto the target machine’s registers. While the mapping is a bit more difficult, the code generated is substan-

tially more efficient. Figure 2 shows the assembly code produced for the string length function by a VAX-11 back

end that uses this strategy.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

.text /* change to text segment */

.align 1 /* align at next byte */

.globl _slen /* declare _slen as global */
_slen: .word slen.r /* mask containing registers used in slen */

subl2 $slen.,sp /* adjust stack pointer for locals in slen */
.set s.,4 /* define symbol s. to be 4 */
.set i.,-4 /* define symbol i. to be -4 */
/* BGNSTMT 4 */
movl $0,r0 /* load 0 in r0 */
moval i.(fp),r1 /* load address of i. in r1 */
movl r0,(r1) /* store r0 in location pointed at by r1 */

L14: /* BGNSTMT 5 */
moval s.(ap),r0 /* load address of s. in r0 */
movl (r0),r0 /* load value of s. in r0 */
movl r0,r1 /* move r0 to r1 */
movl $1,r11 /* load 1 in r11 */
addl2 r11,r1 /* add r11 to r1 */
moval s.(ap),r11 /* load address of s. in r11 */
movl r1,(r11) /* store r1 in location pointed at by r11 */
movb (r0),r0 /* load byte at location pointed to by r0 to r0 */
movb $0,r1 /* load a 0 byte in r1 */
cmpb r0,r1 /* compare bytes in r0 and r1 */
jeql L15 /* if they are equal jump to L15 */
/* BGNSTMT 6 */
moval i.(fp),r0 /* load address of i. in r1 */
movl (r0),r0 /* load value of i in r0 */
movl $1,r1 /* load 1 in r1 */
addl2 r1,r0 /* add r1 to r0 */
moval i.(fp),r1 /* load address of i. in r1 */
movl r0,(r1) /* store r0 in location pointed to by r1 */
jbr L14 /* jump to L14 */

L15: /* BGNSTMT 7 */
moval i.(fp),r0 /* load addr i. in r0 */
movl (r0),r0 /* load value of i in r0 */
ret /* return to caller */

L13: ret /* return to caller */
.set slen.,4 /* define symbol slen. to be 4 */
.set slen.r.,0x800 /* define register save mask to save r11 */

Figure 2. Assembly code emitted by VAX-11 back end
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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This back end maps the CVM’s E-stack onto registers r11 through r6, and r0 and r1. For this function,

only three registers (r0, r1, and r11) were required to compile the function. The back end uses registers r0

and r1 when possible as they do not need to be saved across function calls. If r0 or r1 are alive when a call is

encountered their contents are copied to a register that will be saved. If possible, the peephole optimizer will

replace the load of r0 or r1 and the copy instruction with a load directly into the destination register of the copy

instruction. There is the possibility that the depth of the E-stack will exceed the number of registers available. If

this occurs, the back end issues an error message that identifies the C source statement that caused the problem.

This permits the offending statement to be split into two simpler statements. In practice, exceeding the number of

available registers rarely occurs. During more than a year of use, the VAX-11 back end has never run out of regis-

ters. We have used the strategy above on a number of machines with success. These include machines with dif-

ferent types of registers (e.g. Motorola 68000), and machines where the registers have special uses (e.g. Intel 8086).

By changing the implementation of the CVM operators that manipulate the E-stack, other strategies are possible.

For example, if the target machine had a small number of registers, but supports operations that permit operands to

be either registers or memory references, the back end could easily use the run-time stack when the registers were

exhausted. Similarly one could use a dedicated area in the activation record to simulate the E-stack. The choice of

implementation depends on the target machine characteristics and the effort one is willing to invest in implementing

the appropriate CVM instructions.

A back end consists of a set of 46 functions, one for each CVM instruction. To retarget the compiler for a new

machine, each of these functions must be modified to emit assembly language that performs the indicated function.

For most machines, the modification is as simple as changing the sprintf statements that construct the assembly code

statements.

PEEPHOLE OPTIMIZER

Using the technique of emitting code for an abstract machine and expanding it into assembly language for a par-

ticular machine yields a compiler that is quickly and easily retargeted for a new machine. There are, however, two

serious problems. One is that the code produced by such a compiler is quite slow. For example, the code produced

by vpcc and a back end for the VAX-11 runs 11⁄2 to 2 times slower than the code produced by the Berkeley 4.3BSD
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C compiler. The second is that the compiler runs slowly. This is because the assembly phase of the compiler takes

a long time due to the verbosity of the emitted code. The slow compilation times are particularly serious if the com-

piler is to be used by students in which case fast compilation is often more important than fast execution. To solve

these problems, a simple, rule-directed peephole optimizer was constructed to improve the naive machine code

emitted by the compiler. The optimizer operates by applying a set of ‘‘optimization’’ rules to the generated code.

Optimization Rules

An optimization rule consists of two parts; a pattern to match and a pattern to replace the matched portion of the

input. For example, the following rule for the VAX-11

"moval %1,r%2", /* pattern to match */
"movl (r%2),%3"
=>
"movl %1,%3" /* pattern to replace */

replaces a load-address and load-indirect instruction with a single equivalent instruction. The %i notation, where

i is a digit, specifies a pattern that matches everything up to the occurrence of the next pattern character. In addi-

tion, a limited form of regular expressions can be used with the %i notation. For example, %i[bwld] specifies a

pattern that matches one of the single characters ‘b’, ‘w’, ‘l’, or ‘d’. All occurrences of %i must denote the same

string. For instance, in the above example the %2 in the first line of the pattern and the %2 in the second line of the

pattern must match the same string.

A rule can also include a semantic action that performs some check on or conversion of the input. In the rule

"j%0 L%1",
"jbr L%2",
"L%1:" invert(%0)
=>
"j%0 L%2",
"L%1:"

invert reverses the sense of the condition specified by the branch. For example, the rule above would transform

the VAX-11 code sequence

...
jeql L1
jbr L2

L1:
...

to

...
jne L2

L1:
...

The ability to include simple semantic functions as part of a rule often permits a single rule to handle several cases.
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In the previous example, the rule handles all six conditional branches.

Applying Rules

Each assembly language instruction emitted by the back end is inserted at the end of a doubly-linked list. After

an instruction is added, the back end invokes the peephole optimizer. All matching and replacements occur at a

point in the linked list marked by the ‘‘cursor’’. The individual lines of the pattern-to-match portion of a rule are

matched against the input in reverse order. For example, when the VAX-11 rule

"movl %1,r%2",
"addl2 r%2,%3"
=>
"addl2 %1,%3"

is applied, the addl2 portion of the rule is matched against the instruction at the cursor. If the pattern matches,

matching continues with the previous line of the rule and the previous instruction in the linked list. If a failure

occurs at any point during pattern matching, the next rule in the list of rules, if any, is applied. If no rules match,

control returns to the back end which inserts the next instruction at the end of the linked-list, advances the cursor,

and the optimizer is reinvoked.

If the entire pattern portion of a rule matches the input, the instructions at the cursor that correspond to the

pattern-to-match portion of the rule are deleted, and the replacement pattern with all %i’s instantiated are inserted

in the linked list. The cursor is set to point to the instruction that corresponds to the last line of the replacement pat-

tern and matching continues by applying the first rule again. This permits any new patterns introduced by the

replacement to be optimized.

For the previous string length function, Figure 3 shows the code produced by vpcc with the peephole optimizer

enabled. In terms of instruction selection, the emitted code cannot be improved substantially.
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.text /* change to text segment */

.align 1 /* align at next byte */

.globl _slen /* declare _slen as global */
_slen: .word slen.r /* mask containing registers used */

subl2 $slen.,sp /* adjust stack pointer for locals */
.set s.,4 /* define symbol s. to be 4 */
.set i.,-4 /* define symbol i. to be -4 */
/* BGNSTMT 4 */
clrl i.(fp) /* store 0 in i. */

L14: /* BGNSTMT 5 */
movl s.(ap),r0 /* load s. in r0 */
addl3 $1,r0,s.(ap) /* add 1 to r0 and store back in s. */
tstb (r0) /* test value at location pointed to by r0 */
jeql L15 /* if equal to zero jump to L15 */
/* BGNSTMT 6 */
incl i.(fp) /* add 1 to i. */
jbr L14 /* jump to L14 */

L15: /* BGNSTMT 7 */
movl i.(fp),r0 /* load i. into r0 */
ret /* return to caller */

L13: ret /* return to caller */
.set slen.,4 /* define symbol slen. to be 4 */
.set slen.r,0x000 /* define save mask to save no registers */

Figure 3. Code produced by vpcc for a VAX-11
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Compiling Rules

The peephole optimizer was originally implemented as an interpreter. The interpretative application of the rules

to the input, however, resulted in compilers that ran too slow. Consequently, a translator that compiles rules into C

code was implemented. This simple change resulted in a ninefold reduction in the CPU time required to optimize a

program.

The compilation of a rule to C code that applies the pattern to the input is straightforward. The following

VAX-11 rule that optimizes a move of zero to a clear instruction

"mov%0 $0,%1"
=>
"clr%0 %1"

is compiled into
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pat0:
f = t;
p = f->line;
if (*p++ != ’m’ || *p++ != ’o’ || *p++ != ’v’)

goto pat1; /* try next rule */
for (s = arg[0]; (*s++ = c = *p++) && c != ’ ’; )

;
*(s-1) = ’\0’;
if (c != ’ ’ || *p++ != ’$’ || *p++ != ’0’ || *p++ != ’,’)

goto pat1; /* try next rule */
for (s = arg[1]; *s++ = *p++; )

;
/* make replacement */
f = t;
p = f->line;
*p++ = ’c’;
*p++ = ’l’;
*p++ = ’r’;
for (s = arg[0]; *p++ = *s++; )

;
*(p-1) = ’ ’;
for (s = arg[1]; *p++ = *s++; )

;
goto pat0; /* rule successful, start from beginning */

pat1:
/* code for subsequent rules follow */

Simple character comparisons are used to match portions of the pattern that contain fixed characters. The %i

portions of a pattern are matched by scanning forward for the character that follows the %i. The scanned charac-

ters are copied into the array arg[i]. This permits these strings to be matched against the input or used in the

replacement pattern. In the example above, the substrings matching %0 and %1 are copied into arg[0] and

arg[1] respectively which are used the create the replacement instructions.

In the above example, if the rule does not match the next rule is applied. In practice, this is often unnecessary.

Consider the following rule for the Motorola 68020.

"lea a%0@(%1),a%2"
"movl a%2@,%3"
=>
"movl a%0(%1),d%4"

This rule replaces a load effective address instruction followed by a load indirect with a load direct instruction. If

during matching the ‘m’ of the movl pattern fails to match the input, all subsequent rules where the first pattern

begins with ‘m’ will also fail. Rather than waste time attempting to match these rules, the rule compiler determines

the next rule to attempt when a rule fails. On the VAX, measurements of several benchmark programs revealed that

on average 3.87 rules are attempted for a successful optimization, while 8.18 rules out of a possible 39 were tried on

an unsuccessful attempt to perform an optimization. These numbers indicate that the compile-compile time analysis

performed by the rule compiler is worthwhile.
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On the VAX, the 39 optimization rules were compiled into a C routine consisting of 6025 lines which resulted in

an object file of 20816 bytes. Overall, the sizes of the text, data, and bss segments of the compiler are 92160,

25600, and 66400 bytes respectively, resulting in a total size of 184160 bytes. The system C compiler’s text, data,

and bss segments are 88064, 15360, and 158944 bytes respectively, resulting in a total size of 262368 bytes. On the

Sun-3/75, the 40 68020 optimization rules resulted in a 7277 line C program that was compiled into a 21516 byte

object file. Overall, the text, data, and bss sections of the compiler are 114688, 32768, and 72168 bytes respectively

resulting in a total size of 218724 bytes. The Sun-3/75 C compiler text, data, and bss sections measured 155648,

32768, and 67268 bytes respectively. The total size of this compiler was 255684 bytes. Compiling optimization

rules into code does not seem to seriously affect the size of the compiler.

RESULTS

During the course of experimenting with vpcc and the optimizer on a VAX-11, it was discovered that a compiler

using a surprisingly small number of rules (39) was able to generate code that was as good as the code generated by

the standard C compiler which incorporates a more sophisticated code generator. This compiler, pcc, uses a tree-

matching algorithm to produce assembly code for the target machine9,10. Table 1 contains data comparing the com-

pilation and execution times of these compilers. In order to compare only the code generators, in these runs as well

as the runs reported in Table 2, the optimization phases of the vendor-supplied compilers (-O option for the pcc-

based compilers) was disabled. In analyzing these results, our first thought was that the orthogonality and regularity

of the VAX-11 instruction set and assembly language allowed a small number of rules to capture a large percentage

of the optimizations necessary to produce good code. To test whether this was true or not, C compilers for three

additional machines were constructed using the same approach. The new machines used were the Sun-3/75

(Motorola 68020; 40 rules), the Tektronix Workstation (National Semiconductor 32032; 33 rules), and an AT&T

6300 (Intel 8086; 22 rules). Table 1 also compares these ports of vpcc with the C compilers from the vendors.

Appendix II contains the complete rule set for the Tektronix Workstation. The Sun-3/75 C compiler is the one dis-

tributed with SUNOS 3.0. The Tektronix C compiler is distributed with UTek, while the compiler used on the

AT&T 6300 is the Microsoft C compiler Version 4.0. The Sun and Tektronix compilers appear to be derivatives of

pcc. Its code generation algorithms are well documented9,10. The Microsoft C compiler uses a code generator that
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was developed in-house11.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Compile Time Execution Time
Program

cc vpcc vpcc/cc cc vpcc vpcc/cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
puzzle 8.5 7.4 0.87 10.45 10.13 0.97
grep 13.2 12.3 0.93 5.60 6.00 1.07
matmult 2.7 2.6 0.96 3.42 3.83 0.89
od 18.9 17.5 0.93 7.30 7.10 0.97
merge 3.0 2.9 0.97 19.63 19.26 0.98
qsort 5.3 4.2 0.79 0.95 0.95 1.00
bubble 2.5 2.4 0.96 8.33 8.57 1.03iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

VAX-11

Average 0.92 0.99

Compile Time Execution Time
Program

cc vpcc vpcc/cc cc vpcc vpcc/cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
puzzle 4.9 3.5 0.71 5.40 5.18 0.96
grep 6.3 5.4 0.86 3.30 3.40 1.03
matmult 1.8 1.3 0.72 2.22 2.35 1.07
od 9.6 8.1 0.84 3.60 3.50 0.97
merge 2.2 1.3 0.59 10.93 9.95 0.91
qsort 3.3 2.2 0.67 0.53 0.50 0.94
bubble 1.7 1.2 0.71 4.55 4.80 1.05iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sun3/75

Average 0.73 0.99

Compile Time Execution Time
Program

cc vpcc vpcc/cc cc vpcc vpcc/cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
puzzle 17.7 13.1 0.77 27.20 24.15 0.89
grep 20.9 19.1 0.91 8.80 8.90 1.01
matmult 5.4 4.7 0.87 11.80 11.20 0.95
od 32.2 29.2 0.91 15.30 15.40 1.01
merge 6.0 4.7 0.78 58.48 59.41 1.02
qsort 11.1 8.7 0.78 2.50 2.48 0.99
bubble 4.6 4.6 1.00 23.25 23.75 1.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Tektronix

Average 0.86 0.98

Compile Time Execution Time
Program

cc vpcc vpcc/cc cc vpcc vpcc/cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
puzzle 34.6 30.4 0.88 20.6 17.4 0.84
grep 45.4 46.8 1.03 3.7 3.9 1.05
matmult 16.2 16.8 1.04 9.4 10.1 1.07
od 60.6 57.2 0.94 56.3 47.3 0.84
merge 17.8 17.6 0.99 8.1 7.3 0.90
qsort 24.3 23.5 0.97 2.8 3.0 1.07
bubble 16.8 17.0 0.96 54.6 49.9 0.91iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

AT&T 6300

Average 0.97 0.95

Table 1. Comparison of Compilation and Execution Times
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The programs used to produce Table 1 were the ones that were used to determine the optimization rules for each

machine. To determine if the rules deduced from the training set were sufficient, a second set of programs were



12 J. W. DAVIDSON AND D. B. WHALLEY

selected and benchmarked. The execution times of these programs and comparisons against the native C compilers

are presented in Table 2. These numbers indicate that the small number of rules deduced from the benchmark pro-

grams seem sufficient to produce a relatively good C compiler.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Execution Time Execution Time
Program

cc vpcc vpcc/cc
Program

cc vpcc vpcc/cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cache 15.3 14.9 0.97 cache 8.3 7.8 0.94
lex 49.8 53.3 1.07 lex 26.5 28.9 1.09
keyword 2.0 1.9 0.95 keyword 1.9 2.1 1.11
patgen 5.8 5.9 1.02 patgen 3.5 3.4 0.97
m4 2.3 2.2 0.96 m4 1.2 1.1 0.92
dhryst 35.4 34.2 0.97 dhryst 23.0 20.6 0.90
mincost 48.2 47.6 0.99 mincost 26.9 23.8 0.88
acker 5.4 5.1 0.94 acker 1.9 1.1 0.58
sieve 3.0 3.2 1.07 sieve 1.7 1.8 1.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

VAX-11

Average 0.99

Sun3/75

Average 0.85

Execution Time Execution Time
Program

cc vpcc vpcc/cc
Program

cc vpcc vpcc/cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cache 34.5 34.5 1.00 cache 28.9 29.2 1.01
lex 94.4 96.1 1.02 lex 137.0 148.9 1.09
keyword 4.2 4.5 1.07 keyword 4.7 4.6 0.98
patgen 14.5 14.0 0.97 patgen 10.3 10.2 0.99
m4 3.7 3.8 1.03 m4 2.7 2.6 0.97
dhryst 78.7 78.3 0.99 dhryst 29.3 31.3 1.07
mincost 94.8 91.2 0.96 mincost 259.2 259.0 1.00
acker 6.6 6.1 0.92 acker 6.9 7.2 1.04
sieve 7.58 7.73 1.01 sieve 2.6 2.3 0.88iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Tektronix

Average 1.00

AT&T 6300

Average 1.00

Table 2. Comparison of Execution Times
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The code produced by the vpcc-based compiler and peephole optimizer could be further improved if there were

some mechanism for combining instructions that were not physically adjacent. Our examinations of the emitted

code and previous studies7 have shown that this would result in further improvements in the emitted code and faster

compilation times. In order to perform such optimizations, the optimizer would need to perform some flow analysis

as well as identify dead variables. The extra mechanisms required did not seem consistent with our goal of a quick,

simple way to produce a reasonable compiler.
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DISCUSSION

Caveats

Building a compiler using the techniques described here is a straightforward way to implement a fast compiler

that produces reasonably good code. There are a number of situations where such compilers can be used. In an

educational environment, compilation speed is more important than execution speed. Further, educational settings

are characterized by a wide variety of hardware and budgets for the purchase of software are limited. The tech-

niques described in this paper are also useful when experimenting with new languages or developing new machines.

The ability to quickly build a compiler permits experiments to be performed or software to be quickly bootstrapped

onto the new machine. It is not the approach to use to build a highly optimizing compiler.

While the approach is both conceptually and in practice simple, there are a few caveats that should be men-

tioned. One problem is that optimization rules can sometimes interact resulting in the production of poor code.

These interactions can be avoided by a simple modification of certain rules. For example, on some machines a typi-

cal interaction is caused by a rule to convert a move of constant zero to a clear instruction and other rules involving

move instructions. Consider the VAX-11 rules

"mov%0 $0,%1"
=>
"clr%0 %1"

and

"mov%0 %1,r%2",
"mov%0 r%2,%3"
=>
"mov%0 %1,%3"

If the following instructions

movl $0,r3
movl r3,i.(fp)

are emitted by the code generator, the move of zero is optimized into a clear instruction (recall that all optimizations

take place at the end of the linked list). When the second instruction is emitted and added to the linked list and the

peephole optimizer invoked, the rule above that would seem to apply is no longer applicable.

There are two solutions to this problem. The obvious solution is to add extra rules to handle these special situa-

tions. For example, the rule
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"clr%0 r%1",
"mov%0 r%1,%2"
=>
"clr%0 %2"

would handle the previous situation. Our solution, which requires no extra rules, is to delay some optimizations by

forcing them to not match until more context is available. The previous situation can be handled by specifying the

rule to handle clear instructions as

"mov%0 $0,%1",
"%2"
=>
"clr%0 %1",
"%2"

and placing this rule after the one that optimizes move instructions. The clear rule cannot be matched until the

second instruction is seen, which permits any rules listed first to be applied.

To help determine what actions the optimizer is taking, the rule compiler can be directed to emit code in the rule

matching routines that records the number of times a rule is successfully applied. This information can be used to

identify rules that are not being used, and it is also useful for ordering the rules.

A second, but less serious, problem with using this approach is that it is often tempting to spend too much time

sifting through the emitted code looking for new rules. Our experience is that this is done more for amusement than

necessity. There is a certain satisfaction in discovering new and clever optimization rules even though they may be

applied infrequently. The most useful optimization rules are generally obvious and can be determined by using

knowledge of how the code generator emits code.

Comparison with Other Work

Lamb12 describes a peephole optimizer similar to the one described here. This optimizer was used to improve

the code emitted by a prototype Ada compiler that generated code for the VAX-11. The optimization rules were

compiled into a set of subroutines that matched the various pattern portions of a rule. On the VAX, there were 53

rules that resulted in 237 subroutines. He noted that extra rules were often necessary to handle similar situations.

For example, the VAX optimizer required several rules to handle the various types of clear instructions. Our

language for specifying rules handles this type of situation simply and efficiently. While a production version of

Lamb’s optimizer was never constructed, it was felt that the optimizer could be made to run quite fast. Our experi-

hhhhhhhhhhhhhhhhhh
 Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).
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ment seems to confirm this.

Davidson and Fraser13 describe a fast rule-directed peephole optimizer where the rules are inferred automati-

cally by running a training set through a peephole optimizer that is driven by a machine description. The advantage

to this approach is that the rules are derived automatically. The disadvantage is that essentially two compilers must

be built; one that operates using the machine description and one that uses the rules. The second one, however, is

constructed automatically once the first one is completed. The final result is a thorough, fast peephole optimizer.

In the Amsterdam compiler kit3 , two peephole optimizers are used to replace a traditional code generator. In a

manner similar to the compiler described here, the front end emits code for an abstract machine. This machine,

called EM (Encoding Machine), models a stack machine and includes a number of special-case operations (e.g.,

increment, decrement, clear, etc.). The EM code is improved by a peephole optimizer that replaces inefficient

sequences of EM instructions with more efficient ones. This optimizer is driven by a table of pattern-replacement

pairs much like the rules described here. Tanenbaum reports the use of 400 such rules in the EM peephole optim-

izer. The improved abstract machine code is processed by a global optimizer that performs a number of optimiza-

tions that require a larger view of the program’s structure14. A back end translates the optimized abstract machine

code to target-machine instruction sequences. A second, machine-specific peephole optimizer improves the target

machine assembly code. This peephole optimizer is similar to the one that operates on EM code. The number of

pattern-replacement pairs required for various machines is not reported.

SUMMARY

This paper has described a quick technique for building a simple, yet fast compiler. The compiler’s code gen-

erator is implemented using a simple rule-directed peephole optimizer. Optimization rules are written in a simple

notation. For the four machines studied, it was found that a small number of optimization rules were sufficient to

construct compilers that produced code that compared favorably to the code emitted by compilers that used more

sophisticated code generation techniques. As an added bonus, the simple compilers were smaller and generally 10

to 20 percent faster than their more complicated counterparts.
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APPENDIX I

C Virtual Machine Instruction Set

Arithmetic Operators Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
+, -, *, /, % v1←pop; v2←pop; push(v1 op v2);
<<, >>, &, ^, | v1←pop; v2←pop; push(v1 op v2);

Unary Operators Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
-, ~ v←pop; push(op v);
FLD n v←pop; push(extract_field(v, n));
IFLD n v←pop; push(insert_field(v, n));

Conversion Operators Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PCONV ot nt Convert pointer of type ot to pointer of type nt.
VCONV ot nt Convert value of type ot to type nt.

Data Movement Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CON con push(con);
ADDR id class level push(addr(id));
@ addr←pop; push(m[addr]);
= addr←pop; v←pop; m[addr]←v
DUP v←pop; push(v); push(v)
SWAP v1←pop; v2←pop; push(v1); push(v2)
ROTATE v1←pop; v2←pop; v3←pop; push(v2); push(v1); push(v3)
STASG n dst←pop; src←pop; strncpy(dst, src, n);

Program Control and Jump Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CALL nargs argsize addr←pop; push(environ); push(retaddr); pc←addr;
SWITCH s r Switch stmt with starting value s and r consecutive values.
GOTO n Jump to label n.
JEQ n v1←pop; v2←pop; pc←v1 == v2 ? n : pc;
JNE n v1←pop; v2←pop; pc←v1 != v2 ? n : pc;
JLT n v1←pop; v2←pop; pc←v1 < v2 ? n : pc;
JLE n v1←pop; v2←pop; pc←v1 <= v2 ? n : pc;
JGT n v1←pop; v2←pop; pc←v1 > v2 ? n : pc;
JGE n v1←pop; v2←pop; pc←v1 >= v2 ? n : pc;
FUNC name class Define start of function.
RET v←pop; addr←pop; pop(environ); push(v); pc←addr;

Argument Transmission Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PUSHA addr←pop; pass(addr);
PUSHV v←pop; pass(v)
STARG n addr←pop; strncpy(v,addr,n); pass(v);

Pseudo Operations Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
BGNSTMT n Begin code for statement n.
FILE name Code was generated from source file name.
EFUNC n End function that required n bytes for locals.
EPDEF End of prologue code for a procedure.
DCL id class n level Define variable id. It requires n bytes.
DC value Initialize a memory location with value.
LABEL n Generate local label n.
SEG n Signal start of segment n.

Notes:
1. Each executable opcode is followed by a type indicator.
2. Class denotes the scope of the variable (i.e., local, global, etc.).
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APPENDIX II

The rule set for the Tektronix Workstation (National Semiconductor 32032).

1. /* load */
" addr %0,r%1", /* addr i.(fp),r1 */
" mov%2 (r%1),%3" /* movd (r1),r3 */
=>
" mov%2 %0,%3"; /* movd i.(fp),r3 */

2. /* store */
" addr %0,r%1", /* addr i.(fp),r1 */
" mov%2 %3,(r%1)" /* movd r3,(r1) */
=>
" mov%2 %3,%0"; /* movd r3,i.(fp) */

3. /* store address */
" addr %0,r%1", /* addr i.(fp),r1 */
" movd r%1,%2" /* movd r1,j.(fp) */

isvar(%2)
=>
" addr %0,%2"; /* addr i.(fp),j.(fp) */

4. /* register relative load */
" add%0[q\0]%1 $%2,r%3", /* addd $4,r3 */
" mov%4 %5(r%3),%6" /* movd (r3),r5 */

offsetexpr(%5,%7)
=>
" mov%4 %2%7(r%3),%6"; /* movd 4(r3),r5 */

5. /* register relative store */
" add%0[q\0]%1 $%2,r%3", /* addd $4,r3 */
" mov%4 %5,%6(r%3)" /* movd r5,(r3) */

offsetexpr(%6,%7)
=>
" mov%4 %5,%2%7(r%3)"; /* movd r5,4(r3) */

6. /* mov to var */
" mov%0[q\0]%1 %2,%3[rf]%4", /* movd $5,r4 */
" mov%5 %3[rf]%4,%6" /* movd r4,i.(fp) */

movtovar(%2,%6)
=>
" mov%5 %2,%6"; /* movd $5,i.(fp) */

7. /* convert to var */
" mov%0[xz\0]%1[dlbfw]%2[dlbfw] %3,%4[rf]%5", /* movbd r3,r5 */
" mov%2[dlbfw] %4[rf]%5,%6" /* movd r5,i.(fp) */

isvar(%6)
=>
" mov%0%1%2 %3,%6"; /* movbd r3,i.(fp) */

8. /* convert */
" mov%0 %1,%2[rf]%3", /* movb r1,r3 */
" mov%4[xz\0]%5[dlbfw]%6[dlbfw] %2[rf]%3,%7" /* movbd r3,r7 */
=>
" mov%4%5%6 %1,%7"; /* movbd r1,r7 */

9. /* memory relative load */
" mov%0[dbw] %1(fp),r%2", /* movd i.(fp),r2 */
" mov%3 %4(r%2[0-7]),%5" /* movd 4(r2),r5 */
=>
" mov%3 %4-0(%1(fp)),%5"; /* movd 4-0(i.(fp)),r5 */
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10. /* memory relative store */
" mov%0[dbw] %1(fp),r%2", /* movd i.(fp),r2 */
" mov%3 %4,%5(r%2)" /* movd r5,4(r2) */
=>
" mov%3 %4,%5-0(%1(fp))"; /* movd r5,4-0(i.(fp)) */

11. /* load, binary operation, store */
" mov%0 %1,%2[rf]%3", /* movd r2,r4 */
" %4 %5,%2[rf]%3", /* addd r7,r4 */
" mov%0 %2[rf]%3,%1" /* movd r4,r2 */

typematch(%0,%4) && isbinoper(%4)
=>
" %4 %5,%1"; /* addd r7,r2 */

12. /* add to register as address */
" add%0[q\0]d %1[$\0]%2,r%3", /* addd r1,r3 */
" movd r%3,%4" /* movd r3,i.(fp) */

(ISCONST(%1) || isreg(%2)) && isvar(%4)
=>
" addr %2[b‘r%3],%4"; /* addr r1[b‘r3],i.(fp) */

13. /* special case for putchar */
" mov%0 %1,r%2", /* movd r1,r2 */
" movb r%2,r%3", /* movb r2,r3 */
" addr _%4,r%5", /* addr _i,r5 */
" movd (r%5),r%6", /* movd (r5),r6 */
" movd r%6,r%7", /* movd r6,r7 */
" addr 1[b‘r%7],(r%5)", /* addr 1[b‘r7],(r5) */
" movb r%3,(r%6)", /* movb r3,(r6) */
" movxbd r%2,r%2" /* movxbd r2,r2 */
=>
" movd _%4,r%2", /* movd _i,r2 */
" addqd $1,_%4", /* addqd $1,_i */
" movb %1,(r%2)", /* movb r1,(r2) */
" movxbd (r%2),r%2"; /* movxbd (r2),r2 */

14. /* move quick */
" mov%0[dbw] $%1[-\0]%2[0-7],%3" /* movd $0,r3 */
=>
" movq%0 $%1%2,%3"; /* movqd $0,r3 */

15. /* delete useless assignment */
"%0",
" mov%1[dlbfw] %2,%2" /* movd r2,r2 */
=>
"%0";

16. /* compare */
" mov%0[q\0]%1 %2,%3[rf]%4", /* movd r2,r4 */
" cmp%1 %3[rf]%4,%5" /* cmpd r4,r5 */
=>
" cmp%0%1 %2,%5"; /* cmpd r2,r5 */

17. /* compare */
" mov%0[q\0]%1 %2,%3[rf]%4", /* movd r2,r4 */
" cmp%5[q\0]%1 %6,%3[rf]%4" /* cmpd r6,r4 */
=>
" cmp%5%1 %6,%2"; /* cmpd r6,r2 */

18. /* special case for getchar and putchar */
" addr _%1,r%2", /* addr _i,r2 */
" movd (r%2),r%3", /* movd (r2),r3 */
" addqd $-1,r%3", /* addqd $-1,r3 */
" movd r%3,(r%2)", /* movd r3,(r2) */
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" cmpd r%3,$0" /* cmpd r3,r0 */
=>
" addqd $-1,_%1", /* addqd $-1,_i */
" cmpd _%1,$0"; /* cmpd _i,$0 */

19. /* compare quick */
" cmp%0[dbw] $%1[-\0]%2,%3" /* cmpd $1,r3 */
=>
" cmpq%0 $%1%2,%3"; /* cmpqd $1,r3 */

20. /* call */
" addr %0,r%1", /* addr _foo,r1 */
" jsr r%1" /* jsr r1 */
=>
" bsr %0"; /* bsr _foo */

21. /* shift index register */
" ashd $%0[123],r%1", /* ashd $2,r1 */
" addr %2\[b‘r%1],%3" /* addr _i[b‘r1],r3 */

indexchr(%0,%4)
=>
" addr %2[%4‘r%1],%3"; /* addr _i[d‘r1],r3 */

22. /* add reg to address */
" addr %0,r%1", /* addr _i,r1 */
" addd r%1,r%2" /* addd r1,r2 */

notindex(%0)
=>
" addr %0[b‘r%2],r%2"; /* addr _i[b‘r2],r2 */

23. /* index register */
" ashd $%0[123],r%1", /* ashd $2,r1 */
" addd r%1,r%2" /* addd r1,r2 */

indexchr(%0,%3)
=>
" addr r%2[%3‘r%1],r%2"; /* addr r2[d‘r1],r2 */

24. /* add offset to addr */
" addr _%0,r%1", /* addr _i,r1 */
" addd $%2,r%1" /* addd $4,r1 */

notindex(%0)
=>
" addr _%0+%2,r%1"; /* addr _i+4,r1 */

25. /* add quick */
" add%0[dbw] $%1[-\0]%2[0-7],%3" /* addd $1,r3 */
=>
" addq%0 $%1%2,%3"; /* addqd $1,r3 */

26. /* special case for getchar */
" addr _%0,r%1", /* addr _i,r1 */
" movd (r%1),r%2", /* movd (r1),r2 */
" movd r%2,r%3", /* movd r2,r3 */
" addr 1[b‘r%3],(r%1)", /* addr 1[b‘r3],(r1) */
" movxbd (r%2),r%1", /* movxbd (r2),r1 */
" andd $255,r%1" /* andd $255,r1 */
=>
" movd _%0,r%2", /* movd _i,r2 */
" movzbd (r%2),r%1", /* movzbd (r2),r1 */
" addqd $1,r%2", /* addqd $1,r2 */
" movd r%2,_%0"; /* movd r2,_i */

27. /* reverse compare to make quick */
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" cmp%0[dbw] %1,$%2[-\0]%3[0-7]", /* cmpd r3,$1 */
" b%4 L%5" /* bgt L05 */

revcmp(%4)
=>
" cmpq%0 $%2%3,%1", /* cmpd $1,r3 */
" b%4 L%5"; /* blt L05 */

28. /* add quick by minus value */
" sub%0[dbw] $%1[0-7],%2" /* subd $1,r2 */
=>
" addq%0 $-%1,%2"; /* addqd $-1,r2 */

29. /* negate const to move */
" neg%0 $%1,%2" /* negd $1,r2 */

negconst(%1,%3)
=>
" mov%0 $%3,%2"; /* movd $-1,r2 */

30. /* bin oper comb */
" mov%0[q\0]%1 %2,%3[rf]%4", /* movd r2,r4 */
" %5 %3[rf]%4,%6" /* addd r4,r6 */

typematch(%1,%5) && isbinoper(%5)
=>
" %5 %2,%6"; /* addd r2,r6 */

31. /* jump comb */
" b%0 L%1", /* beq L01 */
" br L%2", /* br L02 */
"L%1:" /* L01: */

jmpflip(%0,%3)
=>
" b%3 L%2", /* bne L02 */
"L%1:"; /* L01: */

32. /* elim dup reg */
" mov%0 %1[rf]%2,%1[rf]%3", /* movd r2,r3 */
" mov%0 %1[rf]%3,%4", /* movd r3,i.(fp) */
"%5"

isvar(%4) && notlastinst()
=>
" mov%0 %1%2,%4", /* movd r2,i.(fp) */
"%5";

33. /* elim reg used as addr in deref */
" movd r%0,r%1", /* movd r0,r1 */
" mov%2 (r%1),%3", /* movd (r1),r3 */
"%4" /* addd r3,r4 */
=>
" mov%2 (r%0),%3", /* movd (r0),r3 */
"%4"; /* addd r3,r4 */
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