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SUMMARY

A Zero Overhead Loop Buffer (ZOLB) is an architectural feature that is commonly
found in DSP processors. This buffer can be viewed as a compiler managed cache that
contains a sequence of instructions that will be executed a specified number of times
without incurring any loop overhead. Unlike loop unrolling, a loop buffer can be used to
minimize loop overhead without the penalty of increasing code size. In addition, a ZOLB

requires relatively little space and power, which are both important considerations for
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most DSP applications. This paper describes strategies for generating code to effectively
use a ZOLB. We have found that many common code improving transformations used
by optimizing compilers on conventional architectures can be easily used to (1) allow
more loops to be placed in a ZOLB, (2) further reduce loop overhead of the loops placed
in a ZOLB, and (3) avoid redundant loading of ZOLB loops. The results given in this
paper demonstrate that this architectural feature can often be exploited with substantial
improvements in execution time and slight reductions in code size for various signal

processing applications.

KEY WORDS: Compiler; Optimization; DSP; ZOLB

1. INTRODUCTION

The common features of signal processing applications are intense numerical computations with
hard real-time constraints. Digital signal processors are special purpose embedded processors
to support such applications using less energy and small amount of memory. Thus, DSPs
typically support heterogeneous multiple register files, that are placed in an arbitrary datapath,

to reduce the processor size and irregular instruction sets optimized for instruction length.

Programmability and reconfigurability are important market requirements for DSPs along
with performance. The DSP should be easily programmed to customize various feature sets.
In addition, the DSP should be rapidly reconfigured to support frequently varying industry
standards. In order to meet these two requirements, DSPs commonly support HLL (High-Level
Language) compilers.

However, the irregularities, which are both present in microarchitectures and instructions

sets of DSPs, make compiler code generation extremely difficult and challenging. Code
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generated by a compiler for applications written in a high level Tanguage typically runs
significantly slower than hand-crafted DSP code unless target specific compiler transformations

that are specially tailored and tuned for a given DSP are applied.

This paper describes a set of novel compiler optimization strategies that effectively improve
the C compiler code generation quality. In particular, this paper presents in detail how we
crafted/tailored a set of widely known conventional loop optimizations and interprocedural
analysis to exploit the ZOLB (Zero Overhead Loop Buffer) that is available on Lucent DSP

16000 [3].

1.1. Zero Overhead Loop Buffer as an Architectural Feature of DSPs

Target signal processing applications require extensive arithmetic computation. For example,

consider the following calculations typically found in communication and image processing.

N
FIR: y, = > buzpy
n=0
N-1 v
FFT: y. = wjkxj ,wherewzeff%f“r
§=0
1 2m + 1)um 2n + 1)vrw
2D-DCT: F(u,v) = mz Zf(m,n)cos[( 2+N) ]cos[( ;_N) ]

m=0 n=0

The main computational engines (or kernels) of these algorithms can be easily programmed
into tight small loops, and a large percentage of the execution time will be spent in the

innermost loops [1]. Without any software and/or hardware support, the execution of kernels
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for the aforementioned algorithms would incur significant Ioop overhead 7, and stringent
industry real-time constraints could be hardly met with current microprocessor fabrication
technology.

In order to reduce loop incurred overhead, a Zero Overhead Loop Buffer (ZOLB) is
commonly supported as an architectural feature in DSP processors.? A ZOLB is a buffer
that can contain a fixed number of instructions to be executed a specified number of times
under program control. This buffer can be used to increase the speed of applications with no
increase in code size and often with reduced power consumption since a ZOLB is significantly
smaller than ROM and this buffer is placed on a chip.

Since the ZOLB is placed on a chip, instructions can be fetched faster from the buffer
than from the conventional instruction memory. Thus, the same memory bus used to fetch
instructions can be used to access data when certain registers are dereferenced. Thus, memory
bus contention can be reduced when instructions are fetched from a ZOLB. Due to addressing
complications, transfers of control instructions are not typically allowed in such buffers.
Therefore, a compiler or assembly writer attempts to execute many of the innermost loops
of programs from this buffer. A ZOLB can be viewed as a compiler (software) controlled cache
since special instructions are used to load other instructions into it.

In order to improve the code generation quality of the Lucent DSP 16000 C compiler, we
have designed and implemented compiler optimization strategies for exploiting the ZOLB that

is available on the Lucent DSP16000 architecture [3]. Note that the proposed techniques could

TThis overhead is due to the increment and branch instructions to initiate a new iteration of a loop.
#The ZOLBs currently available in TI, ADI, and Lucent DSP processors are discussed in [5].
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also be applied to several other DSP architectures with ZOLBs. We tested our implementation
to demonstrate the effectiveness of the techniques for various Lucent wireless communication
applications. We believe that these strategies have the potential for being readily adopted by
compiler writers for DSP processors since they rely on the use of traditional compiler code
improving transformations and data flow analysis techniques.

Figure 1 presents an overview of the compilation process that we used to generate and
improve code for this architecture. Code is generated using a GNU C compiler retargeted to the
DSP16000 [4]. Conventional code improving transformations in this C compiler are applied and
assembly files are generated. Finally, the generated code is then processed by the optimizer that
we developed. This optimizer performs a number of code improving transformations including
those that exploit the ZOLB on this architecture.

There are advantages of attempting to exploit a ZOLB using this approach. First, the exact
number of instructions in a loop will be known after code generation, which will ensure that
the maximum number of instructions that can be contained in the ZOLB is not exceeded.
While performing these transformations after code generation sometimes resulted in more
complicated algorithms, the optimizer was able to apply transformations more frequently since
it did not have to rely on conservative heuristics concerning the ratio of intermediate operations
to machine instructions. Second, interprocedural analysis and transformations also proved to
be valuable in exploiting a ZOLB, as will be shown later in this paper.

1.2. Organization of the Paper

This paper is organized as follows. In Section 2, detailed architectural features of the DSP 16000

ZOLB and instructions to manipulate the buffer will be explained. Section 3 will introduce a set
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Figure 1. Overview of the Compilation Process for the DSP16000

of compiler optimization techniques, which perform transformations so that these loops could
be placed in the ZOLB, which otherwise would not be possible. Sections 4 and 5 introduce
a set of additional transformations to futher reduce loop overhead by carefully crafting the
conventional loop transformations and the interprocedural flow analysis for exploiting the
DSP16000 ZOLB. In Section 6, the order of transformations, which was carefully tuned to
produce the desired results, will be described and benchmark performance results will be
presented. Other software and hardware techniques to reduce loop overhead are described in

Section 7. Finally, the conclusion from our experiments will be made in Section 8.

2. USING THE DSP16000 ZOLB

The target architecture for which we generated code was the DSP16000 developed at Lucent
Technologies. This architecture contains a ZOLB that can hold up to 31 instructions. Two
special instructions, the do and the redo, are used to control the ZOLB on the DSP16000 [7].

Figure 2(a) shows the assembly syntax for using the do instruction, which specifies that the n
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do k {
instruction 1

redo k
instruction n
} (b) Assembly Syntax for
Using the redo Instruction

(a) Assembly Syntax for
Using the do Instruction

Figure 2. DSP16000 Assembly Syntax for Using the ZOLB

instructions enclosed between the curly braces are to be executed k times. The actual encoding
of the do instruction includes a value of n, which can range from 1 to 31, indicating the number
of instructions following the do instruction that are to be placed in the ZOLB. The value k
is also included in the encoding of the do instruction and represents the number of iterations
associated with an innermost loop placed in the ZOLB. When £k is a compile-time constant
less than 128, it may be specified as an immediate value since it will be small enough to be
encoded into the instruction. Otherwise, the value of zero is encoded and the number of times
the instructions in the ZOLB will be executed is obtained from the cloop register, which can be
assigned a value in a separate instruction. The first iteration results in the instructions enclosed
between the curly braces being fetched from the memory system, executed, and loaded into
the ZOLB. The remaining k-1 iterations are executed from the ZOLB. The redo instruction
shown in Figure 2(b) is similar to the do instruction, except that the current contents of the

ZOLB are executed k times.
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instruction
buffer cloop
instruction 1 k

instruction 2

ces cstate
instruction 31

«es|z0lbpc | n

Figure 3. Example of Using the ZOLB on the DSP16000

Figure 3 depicts some of the hardware used for a ZOLB, which includes a 31 instruction
buffer, a cloop register initially assigned the number of iterations (k) and implicitly
decremented on each iteration, and a cstate register containing the number of instructions
in the loop (n) and the pointer to the current instruction to execute (zolbpc). Performance
benefits are achieved whenever the number of iterations executed is greater than one.

Figure 4 shows a simple example of exploiting the ZOLB on the DSP16000. Figure 4(a)
contains the source code for a simple loop. Figure 4(b) depicts the corresponding code for
the DSP16000 without placing instructions in the ZOLB. The effects of these instructions are
also shown in this figure. The array in Figure 4(a) and the arrays in the other examples in the
paper are of type short. Thus, the postincrement causes r0 to be incremented by 2. Many DSP
architectures use an instruction set that is highly specialized for known DSP applications. The
DSP16000 is no exception and its instruction set has many complex features, which include
separation of address (r0-r7) and accumulator (a0-a7) registers, postincrements of address

registers, and implicit sets of condition codes from accumulator operations. Figure 4(b) also
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for (i = 0; 1 < 10000; i++)
a[il = 0;

(a) Source Code of Loop

r0 = _a # r[0]=ADDR(_a); cloop = 10000
a2 =0 # al[2]1=0; r0 = _a
al = -9999 # a[ll= -9999; a2z =0
L5: *rO0++ = a2 # M[r[0]]l=a[2]; r[0]l=r([0]+2; do cloop {
al = al + 1 # a[l]l=a[l]+1l; IC=a[l]+1°?0; *r0++ = a2
if le goto L5 # PC=IC<=0?L5:PC; }
(b) DSP16000 Assembly and Corresponding RTLs without Using the ZOLB (c) After Using the ZOLB

Figure 4. ZOLB Hardware

shows that the loop variable is set to a negative value before the loop and is incremented on
each loop iteration. This strategy allows an implicit comparison to zero with the increment
to avoid performing a separate comparison instruction. Figure 4(c) shows the equivalent code
after placing the loop in the ZOLB. The branch in the loop is deleted since the loop will be
executed the desired number of iterations. After applying basic induction variable elimination
and dead store elimination, the increment and initialization of al are removed. Thus, the loop

overhead has been eliminated.

3. PLACING MORE LOOPS IN A ZOLB

In this section, we will discuss the limiting factors that can prevent exploiting a ZOLB for a

loop nest, and show several techniques that we used to address each of these factors.
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r0 = _a
al = =-9999 r0 = _a
L5: a0 = *r0 al = -9999
for (i = 0; i < 10000; a0 = a0 L5: a0 = *ro0
i++) if gt goto L4 a0 = a0
if (a[i] > 0) a2 = a2 + a0 if le a2 = a2 + a0
sum += al[i]; L4: rO = r0 + 2 r0 = r0 + 2
(a) Original Source Code al = al +1 al = al +1
if le goto L5 if le goto L5
(b) DSP16000 Assembly (c) DSP16000 Assembly
without Conditional Instructions with Conditional Instructions

Figure 5. Example of Using Conditional Instructions to Place More Loops in a ZOLB

3.1. Transfers of Control in a Loop

One limiting factor that prevents the exploitation of a ZOLB for many loops is that transfers
of control cannot be executed from a ZOLB. This limitation can be partially overcome by the
use of conditional instructions. Consider the example source code in Figure 5(a), which shows
a loop with an assignment that is dependent on a condition. The assembly code in Figure 5(b)
cannot be placed into a ZOLB since there is a conditional branch that is not associated with
the exit condition of the loop.8

Our compiler used predicated execution when possible to avoid this problem [1]. Figure 5(c)
depicts the same loop with a conditional instruction and this loop can be transformed to be

executed from a ZOLB. Unfortunately, many potential loops could not be placed in a ZOLB

8The a0 = a0 instruction is used to set the condition codes, which are not set by the previous load instruction.
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_abs: a0 = a0
int abs (int wv) if 1t a0 = -a0
{ return
if (v < 0) rd = _a
v = -Vv; rd = _a a5 =0
return v; a5 =0 a4 = -9999
} a4 = -9999 L5:a0 = *rd++
L5: ald = *rd++ a0 = a0
sum = 0; call _abs if 1t a0 = -a0
for (i = 0; i < 10000; i++) a5 = a5 + a0 a5 = a5 + a0l
sum += abs(al[il); ad = a4 + 1 ad = a4 + 1
if le goto L5 if le goto L5
(a) Source Code (b) Before Inlining (c) After Inlining

Figure 6. Example of Inlining a Function to Allow a Loop to Be Placed in a ZOLB

since predicates are assigned to a single condition code register on the DSP16000 and only a

subset of the DSP16000 instructions can be conditionally executed.

A call instruction is another transfer of control that cannot be placed in the DSP16000
ZOLB. Consider the source code and corresponding DSP16000 assembly in Figures 6(a) and
6(b). The loop cannot be placed in a ZOLB since it contains a call to _abs. However, the
function can be inlined as shown in Figure 6(c) and the ZOLB can be used for the resulting
loop. The DSP16000 optimizer does not inline indiscriminately due to potential growth in
code size. However, the optimizer inlines functions that are called from a loop when the loop
after inlining can be placed in the ZOLB (i.e. limited code growth for measurable performance
benefits). Likewise, inlining of a function is performed when the function is only called from

one site (i.e. no code growth) [13].
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3.2. Too Many Instructions within a Loop

Another factor that sometimes prevented loops from being placed in the DSP16000 ZOLB was
the limit of 31 instructions in the buffer. Consider the loop in Figure 7(a). When translated to
DSP16000 assembly, this loop requires 34 instructions as shown in Figure 7(b), which cannot
fit into the ZOLB. However, not all of the statements in the loop are dependent. We used a

conventional loop transformation technique, called loop distribution, to address this problem.

The technique splits loops exceeding the ZOLB limit if the sets of dependent instructions can
be reorganized into separate loops that can all be placed in the ZOLB. It first finds all of the
sets of dependent instructions. As an illustration, consider the code shown in Figure 7(b). The
optimizer can detect two sets of instructions by applying dependence checking, where one is
the code fragment denoted as set 1, and the other is the fragment denoted as set 2. Conditional
branch and the instructions that contribute to setting the condition codes for that branch are
treated separately since they will be placed with each set. Note that these instructions will
typically be deleted once loops are placed in the ZOLB by applying basic induction variable

elimination and dead store elimination transformations.

The technique then checks if each set of instructions will fit in the ZOLB and combines
multiple sets together when they would not exceed the maximum instructions that the ZOLB
can hold. Figure 7(c) shows the actual code after distributing the original loop into two. Now

each of the two loops require 18 DSP16000 instructions and both can be placed in a ZOLB.
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For (i =0; i < 10000; i++) {
ali] += al[i]l*x;
b[i] += bli]*y;
c[i] += c[i]l*x;
dfi] += d[i]*y;
x = x+1;
y = yt2;
}
(a) Source Code
L5::
# compute a[i] += a[i]*x;
yl = *r2 cloop = 10000
x1 = *rl do cloop {
p0 = xh*yh pl = xl*yl Set 1 i .
a2 = yl # compute a[i] += a[i] *x;
a0 = a2 + pl yii:ri
*r2++ = a0l *=or
p0 = xh*yh pl = xl*yl
# compute b[i] = b[i]*y; a2 =yl
yl = *r3 a0 = a2 + pl
x1 = *r0 *r2++ = a0l
p0 = xh*yh pl = xl*yl Set 2 # compute c[i] += c[i]*x;
az =yl yl = *r4
a0 = a2 + pl x1 = *rl
*r3++ = a0l p0 = xh*yh pl = xl1*yl
a2 =yl
# compute c[i] += c[i]*x; a0 = a2 + pl
vyl = *r4 *rd4++ = all
xl = *rl # compute x = x+1;
p0 = xh*yh pl = xl*yl Set 1 aOh = *rl
a2z =yl a0 = a0 >> 16
a0 = a2 + pl a0 = a0 + 1
*rd4++ = a0l *rl = a0l
}
# compute d[i] += d[i]*y;
vyl = *r5
%1 = *r0 do cloop {
p0 = xh*yh pl = xl*yl Set 2 # compute B[i] += B[i]*x;
a2z =yl yl = *r3
a0 = a2 + pl x1 = *rl
*r5++ = a0l p0 = xh*yh pl = x1*yl
a2 =yl
# compute x = x+1; a0 = a2 + pl
a0h = *rl *r3++ = a0l
a0 = a0 >> 16 Set 1 # compute d[i] += d[i]*y;
a0 = a0 + 1 yl = *r5
*rl = a0l x1 = rrl
p0 = xh*yh pl = xl*yl
a2 =yl
# compute y = y+2; a0 = a2 + pl
abh = *ro0 Set 2 *r5++ = a0l
a0 = a0 >> 16 # compute y = y+2;
a0 = a0 + 0x00000002 a0h = *rl
*r0 = a0l a0 = a0 >> 16
a0 = a0 + 0x00000002
al = al +1 > Loop Overhead frl = a0l
if le goto _.L5 }
(b) DSP 16000 Assembly before Loop Distribution (c) DSP 16000 Assembly after Loop Distribution

Figure 7. Example of Distributing Loops to Allow More Loops to Be Placed in a ZOLB

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 0000; 00:0-0

Prepared using speauth.cls



SPE EFFECTIVELY EXPLOITING A ZOLB 13
S

3.3. Unknown Number of Iterations

A final factor preventing the use of the ZOLB is that often the number of iterations associated
with a loop is unknown at run-time. However, sometimes such loops can still be placed in the
ZOLB on the DSP16000. Consider the source code shown in Figure 8(a) and the corresponding
DSP16000 assembly shown in Figure 8(b). The number of iterations is unknown since it is not
known which will be the first element of array a that will be equal to n. For each iteration
of a ZOLB loop on the DSP16000 the cloop register is implicitly decremented by one and
then tested. The ZOLB is exited when this register is equal to zero. Thus, assigning a value
of one to the cloop register will cause the loop to exit after the current iteration completes.
The loop in Figure 8(b) can be transformed to be placed in the ZOLB since the cloop register
can be conditionally assigned a value in a register. Figure 8(c) depicts the transformed code.
The cloop register is initially set to the maximum value to which it can be assigned and a
register, a3, is allocated to hold the value 1. The a[i] !'= n test is accomplished by the last
three instructions in Figure 8(b).

To enforce an exit from the ZOLB on the DSP16000, the cloop register must be assigned a
value of 1 at least three instructions before the end of the loop due to the latency requirements
of the machine. Moving three instructions after the branch, comparison, and instructions that
affect the comparison often required the optimizer to perform register renaming and adjust the
displacements of memory references, as shown in Figure 8(c). Since the loop can eventually
exit due to the cloop register being decremented to zero without being set in the conditional
assignment, another loop is placed after the ZOLB loop that will repeatedly redo the ZOLB

loop until the exit condition has been satisfied. Note that unlike ZOLB loops with a known
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sum = 0;
for (i = 0; af[i] !'= n; i++)

sum += ali]l*2;

(a) Source Code of Loop

r0 = _a

a2 =0

rl = _n

a0 = *r0

al = *rl

a0 - al

if eq goto L3
L5: a0 = *r0++

a0 = a0 << 1

a2 = az + a0

a0 = *r0

a0 - al

if ne goto L5
L3:
(b) DSP16000 Assembly
without Using the ZOLB

L02:

LO1:

L3:

if eq goto L3

cloop = <max value>
a3 =1

do cloop {

a4 = *(r0+2)

a4 - al

if eq cloop = a3

a0 = *r0++

a0 = a0 <<< 1

a2 = az + a0

}

goto LO1

cloop = <max value>
redo cloop

a4 - al

if ne goto LO2

(c) DSP16000 Assembly
after Using the ZOLB

Figure 8. Example of Placing a Loop with an Unknown Number of Iterations in a ZOLB

number of iterations, the number of instructions in this ZOLB loop is not less than the number

of instructions before the loop was placed in the ZOLB. However, conditional branches on the

DSP16000 require more cycles than conditional assignments. Other potential benefits include

reducing power consumption and contention to the memory system in the loop. Thus, there

is a performance benefit on the DSP16000 from placing loops with an unknown number of

iterations in the ZOLB.
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4. LOOP TRANSFORMATIONS TO MINIMIZE L P OVERHEAD

In Section 3.2, we showed how a conventional loop transformation technique was applied
to better exploit the ZOLB for a loop nest in our work. In this section, we will discuss
additional loop transformation techniques that we have used to further reduce loop overhead

when exploiting a ZOLB.

4.1. Loop Sinking

As shown previously in Figure 4(c), basic induction variables and dead store elimination are
invoked after placing a loop in a ZOLB since often assignments to the loop variable become
useless due to the branch no longer being in the loop.

When the value of the basic induction variable is used after the loop and is used for no other
purpose in the loop, the optimizer extracts these increments of the variable from the loop, and
deletes the increments in the loop. The optimizer sinks a new increment of the variable by
placing an instruction after the loop that computes the product of the original increment and
the number of loop iterations, as shown in Figure 9. Loop sinking can be viewed as a special

form of the basic induction variable elimination.

4.2. Loop Collapsing

Another approach that is often used to reduce the overhead associated with outer level loops
is to collapse nested loops into a single loop. Figure 10(a) shows perfectly nested loops that
initialize every element of a matrix. Figure 10(b) shows how the array is conceptually accessed

after these loops are collapsed by our optimizer into a single loop. After the optimizer places the
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cloop = 10000

r0 = _a
a2 =0
do cloop {

*r0++ = a2
al = al + 1
}

(a) DSP16000 Assembly
after Using the ZOLB with
al Live after the Loop

cloop = 10000

r0 = _a
a2 =0
do cloop {

*r0++ = a2
}
al = al + 10000

(b) DSP16000 Assembly
after Extracting the
Assignment to al

Figure 9. Example of Extracting Increments of Basic Induction Variables from a ZOLB Loop

int a[50][100];
int a[50007];
0; 1 < 50; i++)

0; j < 100; j++) for (1 = 0;
1 =0; afi] = 0;

for (i = 0;
for (j = i < 5000; i++)

alil[3

(a) Original Nested Loops (b) After Loop Collapsing

Figure 10. Example of Loop Collapsing to Eliminate Additional Loop Overhead

collapsed loop into the ZOLB, the loop overhead for both original loops are entirely eliminated.
The optimizer collapses nested loops when it detects it is possible. Even when the inner loop

cannot be placed in a ZOLB, the loop overhead is reduced since the outer loop is eliminated.

4.3. Loop Interchange

Figures 11(a) and 11(c) show the source and corresponding assembly code for an example of
a loop nest that cannot be collapsed by our optimizer since not all of the elements of each

row of the matrix are accessed. However, these two loops can be interchanged, as shown in
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extern int a[200][100]; rl = _a rl = _a
rl = _a a3 =0 a3 =0
for (i=0; i<200; i++) a3 =0 a2 = -49 a2 = —-49
for (§=0; 3<50; j++) a2 = -199 L5: r0 = rl L5: cloop = 200
alill[j1=0; L5: r0 = rl al = -199 r0 = rl
(a) Source Code of Nested Loops al = -49 k = 200 3 = 200
L9: *rO0++ = a3 L9: *rO++k = a3 do cloop {
al = al + 1 al = al + 1 *rO0++k = a3
if le goto L9 if le goto L9 }
) rl = rl + 200 rl =rl + 2 rl =rl + 2
extern int af200]1[1001; a2 = a2 + 1 a2 = a2 + 1 a2 = a2 + 1
if le goto LS if le goto L5 if le goto L5
for (3=0; j<50; j++)
for (i=0; 1<200; i++) (c) DSP16000 Assembly (d) DSP16000 Assembly (e) DSP16000 Assembly
alil[31=0; before Loop Interchange after Loop Interchange after Using the ZOLB

(b) Source Code after Loop Interchange

Figure 11. Example of Loop Interchange to Increase the Iterations Executed in the ZOLB

Figures 11(b) and 11(d). After interchanging the two loops, the inner loop now has a greater
number of loop iterations, which can be executed from the ZOLB as shown in Figure 11(e).
More loop overhead is now eliminated by placing the interchanged inner loop in the ZOLB as
opposed to the original inner loop.

The optimizer attempts to interchange nested loops when the loops cannot be collapsed,
the loops are perfectly nested, the number of iterations for the original inner loop is less than
the number of iterations for the original outer loop, the number of instructions in the inner
loop does not increase, and the resulting inner loop can be placed in the ZOLB. Figure 11(d)
shows that register k was allocated to hold the value of the increment 200 so an additional
instruction to increment r0 would be unnecessary. This example illustrates the advantage of
performing loop interchange after code generation since otherwise it would not be known if a

register was available to be used to hold the increment and the transformation may result in
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more instructions in the inner Ioop. Note that interchanging loops should not be performed if
it will degrade the performance of the memory hierarchy. This is not an issue for the DSP16000

since it has no data cache or virtual memory system and only a limited on-chip RAM.

5. Avoiding Redundant Loading of Loops into the ZOLB

The do instruction indicates that a specified number of instructions following the do will
be loaded into the ZOLB. Depending upon the implementation of the DSP architecture,
instructions may be fetched faster from a ZOLB than the conventional memory system. In
addition, contention for the memory system may be reduced when a ZOLB is used. The redo
instruction has similar semantics as the do instruction, except that the redo does not cause
any instructions to be loaded into the ZOLB. Instead, the current contents of the ZOLB are

simply executed the specified number of iterations.

The redo instruction can be used to avoid redundant loads of loops into the ZOLB. Consider
the source code shown in Figure 12(a). It would appear that the two loops are quite different
since they iterate a different number of times, access different variables, and access different
types of data. However, the body of the two loops are identical as shown in Figure 12(b).
The reason is that much of the characteristics of the loops have been abstracted out of the
loop bodies. The number of iterations for ZOLB loops is encoded in the do instruction or
assigned to the cloop register preceding the loop. After loop strength reduction is performed,
the addresses of the arrays are assigned to registers associated with basic induction variables

preceding the loop. In addition, data moves of the same size between registers and memory are
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extern int a[100], b[100];
extern float c[200], d[200];

for (i = 0; i < 100; i++)
ali] = bl[il;

for (1 = 0; i < 200; i++)
cl[i] = dI[i];

(a) Source Code of Two Different Loops

rl = _a
r0 = _b
do 100 {

a0 = *r0++
*rl++ = a0
}

cloop = 200

rl = _c
r0 = _d
do cloop {

a0 = *rO0++
*rl++ = al
}

(b) DSP16000 Assembly
after Using the ZOLB

rl = _a
r0 = _b
do 100 {

a0 = *rO++
*rl++ = a0

}

cloop = 200
rl =

r0 = _d

redo cloop

(c) DSP16000 Assembly
after Avoiding the
Redundant ZOLB Load

Figure 12. Example of Avoiding a Redundant Load of the ZOLB

accomplished in the same manner on the DSP16000, regardless of the data types. Figure 12(c)

shows the assembly code after the redundant loop is eliminated using the redo instruction.

The optimizer determines which ZOLB loops can reach each point in the control flow without

the contents of the ZOLB being changed. We used data flow analysis to determine if the loading

of each ZOLB loop was necessary. A bit was associated with each ZOLB loop and one bit was

also reserved to indicate that no ZOLB loops could reach a given point. Equations (1) and (2)

are used to determine which ZOLB loops could possibly reach each point in the control flow

within a function.¥

9Note that B represents a basic block in the program
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In the actual implementation, interprocedural flow analysis was used to avoid redundant
loading of ZOLB loops across function calls and returns. An adjustment was required when
ZOLB loop information was propagated from a return block of a function. This adjustment
prevented ZOLB loops that are propagated into the entry block of a function at one call site
from being propagated to the block following a call to the same function at a different call site.
Likewise, it was assumed that no ZOLB loops could reach the point after a library call since
it was not known if the ZOLB would be used for a different ZOLB loop in the called library

function.

Null if B is a function entry block
inlB] = U out [P] otherwise M)
P € pred[B]
Null if B contains a call
out[B] = ¢ B if B contains a ZOLB loop (2)
in[B] otherwise

After all of the ZOLB loop reaching information is calculated, the optimizer determines
which ZOLB loops do not need to be loaded into the ZOLB. If the in[] of a current block
containing a ZOLB loop indicates that only a single other ZOLB loop is guaranteed to
reach that point and if all of the instructions in the other ZOLB loop are identical with
the instructions in the current ZOLB loop, then the entire current ZOLB loop is replaced with
a redo instruction.

Even after using flow analysis to avoid redundant loads of ZOLB loops, many loops are

repeatedly loaded into the ZOLB because they are in nested loops. The optimizer was modified
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for (1 = 0; 1 < 1000; i++)
for (5 = 0; § < 2000; j++) rl = _a
alil (31 = 0; as =0
a2 = -999
(a) Source Code of Nested Loops cloop = 2000
r0 = rl
rl = _a rl = _a do cloop {
a3 =0 a3 =0 *r0++ = a3
a2 = -999 a2 = -999 }
L5: r0 = rl L5: cloop = 2000 rl = rl + 200
al = -1999 r0 = rl a2 = az2 + 1
L9: *rO0++ = a3 do cloop { L5: cloop = 2000
al = al + 1 *r0++ = a3 r0 = rl
if le goto L9 } redo cloop
rl = rl + 200 rl = rl + 200 rl = rl + 200
a2 = a2 + 1 a2z = a2 + 1 a2 = az + 1
if le goto L5 if le goto L5 if le goto L5
(b) DSP16000 Assembly (c) DSP16000 Assembly (d) DSP16000 Assembly
without Using the ZOLB after Using the ZOLB after Loop Peeling

Figure 13. Using Loop Peeling to Avoid Repeated Loads of the ZOLB

to have the ability to avoid these redundant loads as well. Figures 13(a) and 13(b) contain
the source and corresponding DSP assembly for two nested loops, respectively.

Figure 13(c) shows the assembly after the inner loop is placed in the ZOLB. For each
iteration of the outer loop, the inner loop is loaded into the ZOLB using the do instruction.
Figure 13(d) shows how the optimizer avoids the repeated loading of the inner loop in the
ZOLB by peeling an iteration of the outer loop. The optimizer avoids the repeated loading
of the inner loop in the ZOLB by peeling an iteration of the outer loop. Only in the peeled
iteration is the ZOLB loaded. All remaining iterations execute from the ZOLB using the redo
instruction. The optimizer only performs the loop peeling transformation when the increase

in code size is small and there are expected performance benefits (i.e. reducing memory bus
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1. Build call graph for the program 10. Perform loop distribution to place
more loops in the ZOLB

2. Merge consecutive blocks 11. Flatten perfectly nested loops

3. Find the loops in the program 12. Perform loop interchange

4. Calculate live register info 13. Place loops in the ZOLB

5. Convert branches into conditional 14. Eliminate basic induction variable
assignments

6. Find loop invariant & induction 15. Extract loop induction variable
variables assignment

7. Calculate the number of loop 16. Avoid redundant loading of the ZOLB
iterations

8. Perform inlining to support 17. Perform loop peeling to further
placing more loops in the ZOLB avoid redundant ZOLB loading

9. Calculate ranges of addresses
accessed by each memory reference

Figure 14. Order of the Analysis and Transformations Used to Exploit a ZOLB

contention conflicts on the DSP16000) from avoiding the repeated load of the inner loop into

the ZOLB.

6. RESULTS

The order in which these transformations are applied can affect how effectively a ZOLB can
be exploited. Figure 14 shows the order of the pertinent analysis and transformations that
are applied on the assembly code in the second optimization phase shown in Figure 1. The
complete list of types of analysis and code improving transformations performed in this phase
of optimization and a more thorough description and rationale for this order may be found
elsewhere [8]. Likewise, a more general description of these analyses and transformations can

also be obtained [14].
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Table I. Test Programs

Program Description | Program Description
add8 add two 8-bit images conv convolution code
copy8 copy one 8-bit image to another | fft 128 point complex fft
fir finite impulse response filter fir_no fir filter with
fire fire encoder redundant load elimination
inverse8 invert an 8-bit image iir iir filtering
Ims Ims adaptive filter jpegdct  jpeg discrete cosine transform
sumabsd sum of absolute differences of scale8 scale an 8-bit image

two images trellis trellis convolutional encoder
vec_mpy simple vector multiply

Table 1 describes the benchmarks and applications used to evaluate the impact of using the
ZOLB on the DSP16000. All of these test programs are either DSP benchmarks used in industry
or typical DSP applications. Many DSP benchmarks represent kernels of programs where
most of the cycles occur. Such kernels in DSP applications have been historically optimized in
assembly code by hand to ensure high performance [6]. Thus, many established DSP industrial
benchmarks are small since they were traditionally hand coded. Standard benchmarks (e.g.
SPEC) were not used since the DSP16000 was not designed to support operations on floating-
point values or integers larger than two bytes.

Table 2 contrasts the results for loop unrolling and exploiting the DSP16000 ZOLB.I
Execution measurements were obtained by accessing a cycle count from a DSP16000 simulator
[9]. Code size measurements were gathered by obtaining diagnostic information provided by

the assembler [10]. We compared the performance of using the ZOLB against loop unrolling,

HOnly relative performance results could be given due to disclosure restrictions for these test programs.
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which is a common approach for reducing loop overhead. The Ioop unrolling showed in Table
2 was performed on all innermost loops when the number of iterations was known statically
or dynamically. As shown in the results, using the ZOLB typically resulted in fewer execution
cycles as compared to loop unrolling. Sometimes loop unrolling did have benefits over using a
ZOLB. This occurred when an innermost loop had too many instructions or had transfers of
control that would prevent it from being placed in a ZOLB. In addition, sometimes loop
unrolling provided other benefits, such as additional scheduling and instruction selection
opportunities, that would not otherwise be possible.*™ However, the average performance
benefits of using a ZOLB are impressive, particularly when code size is important. As shown
in the table, loop unrolling caused significant code size increases, while using the ZOLB
resulted in slight code size decreases. The code size decreases when using the ZOLB came
from the combination of eliminating branches by placing the loops in the ZOLB and applying
induction variable elimination and dead store elimination afterwards. Occasionally, code size
decreases were obtained by avoiding redundant loads of the ZOLB loops using the flow analysis
described in Section 5. Loop peeling, which increases code size, was rarely applied since memory

contentions did not occur that frequently.

**The production version of the optimizer does limited unrolling of loops. For instance, loop unrolling is applied
when memory references and multiplies can be coalesced. However, unrolling is not performed when it would
cause the number of instructions to exceed the limit that the ZOLB can hold [8]. Note the measurements
presented in this paper did not include loop unrolling while placing loops in the ZOLB since it would make
the comparison of applying loop unrolling and using a ZOLB less clear. Likewise, the production version of the
optimizer performs other optimizations, such as multiply and memory coalescing and software pipelining, that

were not applied for the results in this paper.
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Table II. Contrasting Loop Unrolling and Using a ZOLB

Unroll Factor = 2 Unroll Factor = 4 Unroll Factor = 8 Exploiting ZOLB
Program

Cycles Code Size Cycles Code Size Cycles Code Size Cycle Code Size
adds -11.5% +7.8% -23.1% +62.8% -27.5% +90.2% -36.3% -3.9%
conv -33.4% +22.6% —47.6% +29.0% -54.6% +41.9% —47.8% -3.2%
copy8 -23.1% +6.3% -42.3% +12.5% -52.0% +25.0% -62.4% -4.2%
fft -6.2% +32.1% -10.6% +92.9% -12.7% +214.3% -8.7% -3.6%
fir -20.4% +21.1% -35.3% +147.4% -42.0% +255.3% —48.4% -10.5%
fir_no -4.0% +34.9% -7.1% +109.3% -9.1% +258.1% -31.4% -4.7%
fire -0.8% +36.3% -4.2% +110.8% -6.2% +255.9% —26.9% -21.6%
iir -11.1% +14.6% -15.4% +51.0% -15.7% +88.5% -19.6% -4.2%
inverse8| -20.3% +8.2% -37.3% +18.4% -46.6% +49.0% -55.5% -4.1%
jpegdct -8.3% +17.6% —-8.4% +59.5% -8.4% +59.5% 0.0% 0.0%
1ms -1.8% +0.5% -10.5% +1.8% -10.5% +1.8% -8.3% 0.0%
scale8 -4.9% +38.5% -9.4% +93.9% -11.6% +204.6% -14.3% -1.5%
sumabsd -14.7% +8.6% -19.6% +25.7% -22.0% +60.0% -58.8% -8.6%
trellis -11.5% +0.1% -19.1% +0.3% -22.8% +0.8% -20.2% -0.2%
vec_mpy -19.1% +63.2% —28.5% +336.8% -31.2% +531.6% -38.2% -15.8%
Average -12.7% +20.8% -21.2% +76.8% -24.9% +142.4% -31.8% -5.7%

Table 3 depicts the benefit of applying the code improving transformations described in
Sections 4 and 5. Only some of the code improving transformations applied without using
a ZOLB (column 2) had a performance benefit on their own. These transformations include
the use of conditional instructions, inlining, and loop collapsing. The characteristics of the
DSP16000 prevented conditional instructions from being used frequently. Inlining only had
occasional benefits for the test programs since the optimizer only inlined functions when the
function was called from a loop and inlining would allow the loop to be placed in the ZOLB.
Inlining was not performed when a function had transfers of control other than a return
instruction, which was the common case. Loop collapsing was applied most frequently of these
transformations. The results shown in column 3 include basic induction variable elimination
since it was quite obvious that this transformation could almost always be applied when

a loop is placed in the ZOLB. The combination of using the ZOLB with the code improving
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Table III. The Impact of Code Improving Transformations on Using a

ZOLB

Impact on Execution Cycles

Transformations Using the ZOLB Using the ZOLB
Program without without with
Using the ZOLB Transformations Transformations

adds -2.
conv -8.
copy8 -1.
fft 0.
fir 0.
fir_no 0.
fire =-7.
iir 0.
inverse8 -1.
jpegdct 0.
lms 0.
scale8 -3.
sumabsd -23.
trellis -8.
vec_mpy 0.
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transformations (column 4) sometimes resulted in greater benefits than the sum of the benefits
(columns 2 and 3) when applied separately. Most of the additional benefit came from the new
opportunities for placing more loops in the ZOLB (transformations described in Section 4).
We also obtained the percentage of the innermost loops that were placed in the ZOLB.
On average 71.56% of the innermost loops could be placed in the ZOLB without applying
the code improving transformations described in Section 4. However, 84.89% of the innermost
loops could be placed in the ZOLB with these improving transformations applied. Transfers of
control was the most common factor that prevented the use of a ZOLB. The use of conditional
instructions, inlining, and the transformation on loops with an unknown number of iterations

all occasionally resulted in additional loops being placed in the ZOLB.
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7. RELATED WORK

A number of hardware and software techniques have been used to reduce loop overhead.
Common hardware techniques include branch prediction hardware to reduce branch
mispredictions and superscalar or VLIW logic to allow other operations to execute in parallel
with the loop overhead instructions. However, the use of complex hardware mechanisms to
minimize branch overhead results in the consumption of more power.

Some current general-purpose processors have a single instruction that increments a loop
counter, compares the counter to a constant, and performs a branch. Common software
techniques include loop strength reduction with basic induction variable elimination, loop
unrolling [2] and software pipelining [15, 16, 17, 18]. Note that loop unrolling and software
pipelining can significantly increase code size, which can be unacceptable for many DSPs with
limited on-chip memory. Therefore, DSP programmers have manually tuned their assembly
code. However, maintaining the required software in assembly language by manually exploiting
the ZOLB is labor intensive given the frequent changes in communication signal processing
algorithms with frequent architecture/instruction set modifications.

To meet the fast time-to-market window without violating stringent performance and code
size constraints on software, optimizing compilers are becoming more widely available for
DSP applications. As an illustration of successful DSP compilers, the TI VLIW TMS320C6x
optimizing compiler has been widely cited. This optimizing compiler is specially designed to
tune the Huff’s iterative modulo scheduler to exploit the slack created from different latencies

in a multiply instruction and a load instruction [16, 19].
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As an illustration for successful DSP compiler construction tools, CoSy (COmpiler SYstem)
provides a novel framework for flexible combination and embedding of compiler phases such
that the construction of parallel and inter-procedural optimizing compilers is facilitated. This
framework is designed to automatically generate a compiler infrastructure that solves the phase
ordering problem in the presence of highly coupled optimization phases, which are common
for low power DSPs [20].

To the best of our knowledge, no other work describes how a ZOLB can be exploited by
a compiler, the interaction of exploiting a ZOLB with other code improving transformations,

and the performance benefits that can be achieved from using a ZOLB.1T.

8. CONCLUSION

This paper described strategies for generating code and utilizing code improving
transformations to exploit a ZOLB. We found that many conventional code improving
transformations used in optimizing compilers significantly affect how a ZOLB can be exploited.
The use of predicated execution, loop distribution, and function inlining allowed more loops to
be placed in a ZOLB. The overhead of loops placed in a ZOLB was further reduced by basic
induction variable elimination, loop sinking, loop collapsing, and loop interchange.

We also found that a ZOLB can improve performance in ways probably not intended by
the architects who originally designed this feature. The use of conditional instructions and

instruction scheduling with register renaming allowed some loops with an unknown number of

ttPreliminary versions of this paper have appeared in [11] and [12]
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iterations to be placed in a ZOLB. Interprocedural flow analysis and loop peeling were used

with the redo instruction to avoid redundant loading of a ZOLB. The results obtained from

test programs indicate that these transformations allowed a ZOLB to be often exploited with

significant improvements in execution time and small reductions in code size.

REFERENCES

10.

11.

12.

13.

. Hennessy, J., Patterson, D. Computer Architecture: A Quantitative Approach, Second Edition. Morgan

Kaufmann, San Francisco, 1996.

. Davidson, J.W., Jinturkar, S. Aggressive Loop Unrolling in a Retargetable, Optimizing Compiler.

Proceedings of Compiler Construction Conference, 59-73, April 1996.

. Lucent Technologies. DSP16000 Digital Signal Processor Core Information Manual. Core Reference

Manual, 1997.

. Lucent Technologies. DSP16000 C Compiler User Guide. Tools Reference Manual, 1997.
. Lapsley, P., Bier, J., Lee, E. DSP Processor Fundamentals - Architecture and Features. IEEE Press, 1996.
. Eyre, J., Bier, J. DSP Processors Hit the Mainstream. IEEE Computer 31(8), 51 59, August 1998.

. Lucent Technologies. DSP16000 Digital Signal Processor Core Instruction Set Manual. Core Reference

Manual, 1997.

. Whalley, D. DSP16000 C OPtimizer Overview and Rationale. Lucent Technologies, Allentown, 1998.

. Lucent Technologies. DSP16000 LuxWorks Debugger Tools Reference Manual, 1997.

Lucent Technologies.: DSP16000 Assembly Language User Guide. Tools Reference Manual, 1997.

Uh, G.R., Wang, Y., Whalley, D. Jinturkar, S., Burns, C., and Cao, V. Effective Exploitation of a Zero
Owverhead Loop Buffer. ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded
Systems, 10—19, 1999.

Uh, G.R., Wang, Y., Whalley, D. Jinturkar, S., Burns, C., and Cao, V. Techniques for Effective Fxploitation
of a Zero Overhead Loop Buffer. 9th International Conference on Compiler Construction, March 2000.
Wang, Y. Interprocedural Optimizations for Embedded Systems. Masters Project, Florida State University,

Tallahassee, FL, 1999.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 0000; 00:0-0

Prepared using speauth.cls



30

GANG-RYUNG UH, YUHONG WANG, DAVID WHALLEY, ET AL.
)

14.

15.

16.

17.

18.

19.

20.

Bacon, D., Graham, S., Sharp, O. Compiler Transformations for High-Performance Computing ACM
Computing Surveys, Volume 26 Number 4, 345-420, 1994.

Eichenberger, A. E. Modulo Scheduling, Machine Representations, and Register-Sensitive Algorithms
Ph.D Thesis, University of Michigan, 1997

Huff, R. A. Lifetime-Sensitive Modulo Scheduling Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 258-267, June 1993

Lam, M. Software Pipelining: An Effective Scheduling Technique for VLIW Machines Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 318-329, June
1988

Rau, B. R. Iterative Modulo Scheduling: An Algorithm For Software Pipelining Loops Proceedings of the
27th Annual International Symposium on Microarchitecture, pp. 63-74, November 1994

Stotzer, E. and Leiss, E. Modulo Scheduling for the TMS320C6x VLIW DSP Architecture Proceedings of
the ACj SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems (LCTES’99)
pp. 28-34, May 1999

Alt, M. and Someren, H. V. Cosy Compiler Phase Embedding with the CoSy Compiler Model Compiler
Construction (CC), vol. 786, Lecture Notes in Computer Science, pp. 278-293, Heidelberg, Springer, April

1994

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 0000; 00:0-0

Prepared using speauth.cls



