
FSU DEPARTMENT OF COMPUTER SCIENCE

1

Fast Instruction Cache Performance Evaluation

Using Compile-Time Analysis

by

David B. Whalley

Florida State University

FSU DEPARTMENT OF COMPUTER SCIENCE

2

Motivation

• traditional trace-driven cache evaluations are time-consuming

• past attempts to speed up cache evaluations either

— require an initial pass by a filter to reduce the

length of trace

— or use only a sampling of the references which re-

sults in a loss of accuracy

FSU DEPARTMENT OF COMPUTER SCIENCE

3

Overview

• instruction addresses (unlike many data references) do not

change during execution

• use compile-time analysis to avoid simulating instruction ref-

erences that

— will be cache hits

— and will not change the state of the cache

• sev en techniques (A-G) are described

FSU DEPARTMENT OF COMPUTER SCIENCE

4

Technique A

• call trace routine as enter each basic block

...

L142: pea #145 /* push block number 145*/

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

...

jne L67

pea #146 /* push block number 146*/

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

...

• trace routine invokes cache simulator for each instruction in
the block

FSU DEPARTMENT OF COMPUTER SCIENCE

5

Technique B

• assembly code same as Technique A

• trace routine treats entire block as one big instruction when a
context switch cannot occur during the execution of the block

• number of references equal to number of lines referenced

• remaining references are hits due to spatial locality

FSU DEPARTMENT OF COMPUTER SCIENCE

6

Technique C

• trace routine only invoked on a taken branch

before after
------------ --------------------------

jbsr _foo jbsr _foo

... movl #15,_startblk /* follows a call inst */

jne L74 ...

... jne LN10 /* L74 was replaced*/

jeq L78 ...

... jeq LN11 /* L78 was replaced*/

jra L67 ...

pea #17 /* push last block in seq */

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

movl #32,_startblk /* reset start block*/

jra L67

.

.

LN10: pea #15 /* push last block in seq */

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

movl #22,_startblk /* reset start block*/

jra L74 /* jump to orig label*/

LN11: pea #16 /* push last block in seq */

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

movl #26,_startblk /* reset start block*/

jra L78 /* jump to orig label*/

FSU DEPARTMENT OF COMPUTER SCIENCE

7

Requirements for Techniques D-G

• compiler reads in line size and minimum number of cache
sets

• if number of sets not decreased and line size stays the same

— can obtain measurements for a different cache
configuration with the same executable

FSU DEPARTMENT OF COMPUTER SCIENCE

8

Technique D

• if the compiler finds that a loop with no calls fits in cache

— markers (array elements) associated with loop
blocks are cleared in preheader

— each loop block is checked if currently in cache

clrl _marker+952 /* clear marker[238] */

movl #238,_lowmarker /* first block cleared on switch*/

movl #238,_highmarker /* last block cleared on switch*/

L405: cmpl #0,_marker+952 /* check if block 238 is in cache*/

jeq LN191 /* if not then invoke simulator */

cmpl #9992,_c_switch /* check if switch in 8 cycles */

jge LN191 /* if so then invoke simulator */

addql #8,_c_switch /* adjust switch information */

addql #8,_c_hits /* adjust number of cache hits*/

LN192: ...

jne L405

movl #-1,_highmarker /* out of loop so nothing to clear*/

.

.

LN191: movl #1,_marker+952 /* block 238 is now in cache*/

movl #238,_startblk /* first block in sequence*/

pea #238 /* last block in sequence*/

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

jra LN192 /* execute insts in block 238 */

FSU DEPARTMENT OF COMPUTER SCIENCE

9

Technique E

• similar to Technique D except that

— a call graph is built from information supplied
from first compilation pass

— if entire function and routines it can invoke fit in
cache

• use Technique D throughout the func-
tion

— markers are cleared before calls to functions that
fit in cache

— for loops with calls that fit in cache

• markers of blocks in the loop and the
routines that can be invoked from the
loop are cleared as well in the prehead-
er of the loop

FSU DEPARTMENT OF COMPUTER SCIENCE

10

Assembly Code Example for Technique E

clrl _marker+952 /* clear marker[238] */

clrl _marker+956 /* clear marker[239] */

clrl _marker+1056 /* clear marker[264] */

clrl _marker+1060 /* clear marker[265] */

clrl _marker+1064 /* clear marker[266] */

movl #238,_lowmarker /* first block cleared on switch*/

movl #266,_highmarker /* last block cleared on switch*/

L405: cmpl #0,_marker+952 /* check if block 238 is in cache*/

jeq LN191 /* if not then invoke simulator */

cmpl #9995,_c_switch /* check if switch in 5 cycles */

jge LN191 /* if so then invoke simulator */

addql #5,_c_switch /* adjust context switch info */

addql #5,_c_hits /* adjust number of cache hits*/

LN192: ...

jbsr _foo

cmpl #0,_marker+956 /* check if block 239 is in cache*/

jeq LN193 /* if not then invoke simulator */

cmpl #9997,_c_switch /* check if switch in 3 cycles */

jge LN193 /* if so then invoke simulator */

addql #3,_c_switch /* adjust context switch info */

addql #3,_c_hits /* adjust number of cache hits*/

LN194: ...

jne L405

movl #-1,_highmarker /* out of loop so nothing to clear*/

FSU DEPARTMENT OF COMPUTER SCIENCE

11

Technique F

• avoids references of loops that do not fit in cache if

— at least one half of blocks in loop and routines in-
voked from the loop fit in cache

— and each function invoked directly from the loop
and the set of functions they could invoke fit in
cache

FSU DEPARTMENT OF COMPUTER SCIENCE

12

Assembly Code Example for Technique F

• clear markers of conflicting blocks when a block in a routine
invoked from the loop conflicts with

— a block in the loop

— or a block from another routine invoked from the
loop

L85:

...

cmpl #0,_marker+2120 /* check if block 530 is in cache*/

jeq LN141 /* if not then invoke simulator */

cmpl #9981,_c_switch /* check if switch in 19 cycles */

jge LN141 /* if so then invoke simulator */

addl #19,_c_switch /* adjust context switch info */

addl #19,_c_hits /* adjust number of cache hits*/

LN142: clrl _marker+7344 /* clear block 1836 in foo */

...

clrl _marker+2120 /* clear block 530 in loop */

jbsr _foo

...

jne L85

FSU DEPARTMENT OF COMPUTER SCIENCE

13

Technique G

• potential temporal locality when a routine is invoked from
more than one location

• only clear markers that have lines that could be replaced

clrl _marker+528 /* clear marker[132] */

clrl _marker+532 /* clear marker[133] */

clrl _marker+536 /* clear marker[134] */

clrl _marker+540 /* clear marker[135] */

movl #132,_lowmarker /* first block cleared on switch*/

movl #135,_highmarker /* last block cleared on switch*/

jbsr _foo

... /* insts conflicting with block 132 */

clrl _marker+528 /* clear marker[132] */

jbsr _foo

movl #-1,_highmarker /* out of func so nothing to clear*/

FSU DEPARTMENT OF COMPUTER SCIENCE

14

Test Set

• all cache simulations with

— direct-mapped organization

— 16 byte line size

— periodic context switches

Name Descriptionor Emphasis Size in Bytes

compact Huffman Coding Compression 4322
cpp CPreprocessor 12678
diff Differences between Files 9166
lex Lexical Analyzer Generator 26318
sed StreamEditor 13946
sort Sortor Merge Files 5500
tbl Table Formatter 24592
yacc Yet Another Compiler-Compiler 22392

FSU DEPARTMENT OF COMPUTER SCIENCE

16

Calls to Simulator with Cache Sizes from 2K to 16K

• As cache size increases

— hit ratio increases

— calls to simulator for Techniques E, F, and G de-
crease

Cache Relative to Technique A
E F GSize

Hit Ratio

2K 97.88% 6.79% 5.80% 5.77%

4K 98.49% 5.11% 4.40% 4.37%

8K 98.98% 3.53% 3.46% 3.43%

16K 99.16% 1.91% 1.44% 1.42%

FSU DEPARTMENT OF COMPUTER SCIENCE

18

Execution Time Overhead
with Cache Sizes from 2K to 16K

• As cache size increases

— overheads for Techniques E, F, and G decrease

Cache Ratioto Execution Time without Tracing
E F GSize

2K 19.27 17.57 17.51

4K 15.09 13.69 13.65

8K 11.59 11.46 11.47

16K 9.36 8.95 8.92

FSU DEPARTMENT OF COMPUTER SCIENCE

19

Future Work

• can reduce number of trace instructions executed when as-
sume no context switches

— block markers now contain number of outstanding
hits for that block

— each marker first set to negated number of refer-
ences for the block

— in loops add number of references to marker

— after loop update cache hits and misses

L405: addql #8,_marker+952 /* adjust number of hits for block 238 */
...
jne L405
cmpl #0,_marker+952 /* check if block 238 was executed*/
jlt LN191 /* if not then skip over trace code*/
movl #238,_startblk /* first block in sequence*/
pea #238 /* last block in sequence*/
jbsr _traceblknum /* call trace routine */
addql #4,a7 /* adjust stack pointer */
movl _marker+952,d0 /* load remaining hits for block 238 */
addl d0,_c_hits /* adjust number of cache hits*/
movl #-8,_marker+952 /* reset hits for block 238 */

LN191: ...

FSU DEPARTMENT OF COMPUTER SCIENCE

21

Execution Time Overhead
with Cache Sizes from 2K to 16K

and No Context Switches

• As cache size increases

— more instructions are in loops that fit in cache

— and fewer trace instructions are executed

Cache Ratioto Execution Time without Tracing
E F GSize

2K 12.87 11.53 11.61

4K 9.78 8.42 8.38

8K 6.05 5.97 5.97

16K 2.55 2.19 2.16

FSU DEPARTMENT OF COMPUTER SCIENCE

22

Conclusions

• techniques significantly reduce execution overhead with no
loss of accuracy

• Technique D is particularly attractive since it

— is simple to implement

— still results in a significant improvement

FSU DEPARTMENT OF COMPUTER SCIENCE

23

Trace Routine for Technique A

• allows context switches to occur between instructions within
a basic block

void traceblknum(blk)

int blk;

{

register int i;

/* Invoke the cache simulator for each instruction in the block.*/

for (i = blkinfo[blk].first;

i < blkinfo[blk].first+blkinfo[blk].numinst; i++)

cachesim(instsize[i], instaddr[i]);

}

FSU DEPARTMENT OF COMPUTER SCIENCE

24

Trace Routine for Technique B

• treats entire basic block as one big instruction

void traceblknum(blk)

int blk;

{

register struct blkinfotype *p;

int i, j;

/* If a context switch cannot occur during the execution of the

block then invoke the cache simulator once for the entire block. */

p = &blkinfo[blk];

if (!(c_switch + p->worst > SWITCHTIME)) {

i = c_hits + c_misses;

cachesim(p->size, instaddr[p->first]);

c_hits += (j = (p->refs - ((c_hits + c_misses) - i)));

c_switch += j*HITTIME;

}

/* Else invoke the cache simulator for each instruction in the block.*/

else

for (i = p->first; i < p->first+p->numinst; i++)

cachesim(instsize[i], instaddr[i]);

}

FSU DEPARTMENT OF COMPUTER SCIENCE

25

Trace Routine for Technique C

void traceblknum(blk)

int blk;

{

register int i, refs, size, worst;

int j;

/* Sum information about the set of consecutive blocks. */

refs = size = worst = 0;

for (i = startblk; i <= blk; i++) {

refs += blkinfo[i].refs;

size += blkinfo[i].size;

worst += blkinfo[i].worst;

}

/* If a context switch cannot occur during the execution of the set

of blocks then invoke the cache simulator once for the entire set. */

if (!(c_switch + worst > SWITCHTIME)) {

i = c_hits + c_misses;

cachesim(size, instaddr[blkinfo[startblk].first]);

c_hits += (j = (refs - ((c_hits + c_misses) - i)));

c_switch += j*HITTIME;

}

/* Else invoke the cache simulator for each instruction in the set of blocks.*/

else

for (i = startblk; i <= blk; i++)

for (j = blkinfo[i].first;

j < blkinfo[i].first+blkinfo[i].numinst; j++)

cachesim(instsize[j], instaddr[j]);

}

FSU DEPARTMENT OF COMPUTER SCIENCE

26

Trace Routine for Technique D-G

• same trace routine used for Techniques D-G

• similar to trace routine for Technique C except that a set of
markers are cleared on a context switch

void traceblknum(blk)

int blk;

{

...

/* Else invoke the cache simulator for each instruction in the set of blocks.*/

else

for (i = startblk; i <= blk; i++)

for (j = blkinfo[i].first;

j < blkinfo[i].first+blkinfo[i].numinst; j++) {

cachesim(instsize[j], instaddr[j]);

/* Clear set of block markers if context switch occurred. */

if (old_context_switch < context_switch) {

old_context_switch = context_switch;

for (k = lowmarker; k <= highmarker; k++)

blkmarker[k] = 0;

}

}

...

}

