Fast Instruction Cache Performance Evaluation
Using Compile-Time Analysis

DAVID B. WHALLEY
Department of Computer Sciené¢orida State UniversityTallahassegFL 32306, U.S.A.

SUMMARY modification of instructions during thexeeution of a pro-
gram. Byonly allowing read accesses to a cache, the design
of an instruction cache is simplified. Also, instruction refer
ences typically hae hgher locality than data references.

i By using separate caches, the designers of a system can
performance of the cache for tYP'Ca' programs that a offer different configurations for each cache which may
to be executed on the machine. Recent attempts to improve the averall performance. Since the type of refer
reduce the time equired for such e@aluations either gnce, instruction or data, issued to the memory system is
result in a loss of accuracy or equire an initial pass by a known by the CPU, there can be separate ports for instruc-
filter to reduce the length of the trace. This paper tions and dataThus, the bandwidth between cache memory
describes techniques that wercome these problemsdr and the CPU can be imwe.

instruction cache perbrmance e&aluation. Information Since instruction caches\@become more common,
calculated during the compilation is used to reduce the there has been much recerrivthat attempts to regenize
number of references in the trace. Thus, in effectefer- the code of programs to impm the instruction cache per
ences ae dripped before the initial trace is generated. formance [HwC89, McF89, PeH90In fact, most compiler
These techniques a own to significantly reduce the optimizations can affect instruction cache performance
time required for evaluating instruction caches with no since the optimizations can change the order and number of
loss of accuracy. instructions that arexecuted by a programsSince these

optimizations can affect dérent portions of a progras’
KEY WORDS: Instruction Cache Cache Simulation Trace Generation execution, the effect of a compiler optimization on instruc-
Trace Analysis tion cache performance can only be accuratejuated if

the complete trace of instruction addresses from the pro-

gram’s execution is used.

Cache perbrmance has become a very crucial factor in
the overall system performance of machines.Effective
analysis of a cache designequires the galuation of the

This paper describes techniques that use compile-time
INTRODUCTION analysis to reduce the time required foaleating instruc-

The time required to generate and analyze trace datdon cache performanceUnlike mary data references, the
is proportional to the number of references in the traceaddress of each instruction remains the same during the
[Smi77]. Since realistic program traces can be quite entire execution of a programlinformation can therefore be
lengtty, a race is often only collected from a portion of the calculated prior to the instruction cache simulation that can
programs execution. Havever, it has been shown that the be used to reduce the number of references that the cache
cache performance camuy greatly in different portions of simulator needs to proces3hus, in effect address refer
a programs eecution [BKW90]. Cache performance mea- ences are being stripped before the initial trace is generated.
surements obtained when unrealistic input data is used to
shorten the length of the trace would also be of questionable
value. RELATED WORK

Many recently designed machines eithevdaepa- Traditionally, the problem of ealuating the cache

rate instruction and data caches or forego using a cache fperformance during thexecution of a program has been

data references and attempt to minimize data referenceseparated into tavtasks, trace generation and trace analysis.

only by using rgisters. Therare mag advantages to ha The first task is to generate the trace of addresses that will

ing an instruction-only cache. Most machines do nowallo be presented to the cach&he address trace is typically
either written to secondary storage, such as a file on disk, or
stored in a traceuffer in memory The second task is to
analyze the addresses that were generated. This analysis is
usually accomplished through the use of a separate program
that reads the generated address trace and simulates the
behavior of the cache.

Trace-driven cache simulation has long been the pri- simulator once. Furthermore, the reduced trace may still be
mary method used to analyze the performance of a cachquite lengtly, which can result in large files and sl@mu-
Simple approaches for generating trace data and simulatingtions. Therehave dso been seral methods that alie
caches, hoever, can be both ery time and space consum- different cache configurations to besleated during a sin-
ing. Two common methods used for generating trace datajle simulation [WaB90, HiS89].
are forcing a program to trap after theeeution of each Another method tomid processing the entire trace
instruction or to record references while simulating theq references is to instead usevesal discrete samples of
exe:utl_on of each mstru_ctlonEach o_f these methods can {.,.as from the programxecution to predict cache perfor
result in a programxecuting a 1000 times slower than AOr 1\ ance measures [LPI88Yhile a significant loss of accu-

mal execution [PeS77, 82, HLT87]. Trace data is typi- 54 may not occurthe method may not kia the desirable
cally stored in secondary storage and then later read by &curay for measuring the &ct of a ne/ compiler opti-

cach_e _S|mulator that will perforn_1 the analysis of the_ dataization or reaganization technique.For instance, the
Realistic trace data, @ver, requires at least seral mil- o nimization may be applied on a section of code that when

lion references which may maknfeasible the use of disk oy teq is not in the samples of references that are col-
as the storage media [BKW90Therefore, there has been |,.teq.

much work on the problem of reducing the space and time

requirements for trace-akén smulation. On-the-fly analysis is a technique thabids the 1/0

.) . associated with storing the generated trace and vietgie
) One faster tra}ce generation method_ |t0 modlfy thethe trace for input to the cache simulatém this approach
microcode of a microprogrammed machinBelatve © either the cache simulator is a separate process that reads a

techniques using Fraps or simulated progrzmcetion, this — yrace iffer containing the trace [BKW90] or the cache sim-
methoq does not impose ‘_"‘ large run_-tlme penalty [ASH%]ulator is linked directly to the program and trace informa-
The microcode of a machine, wever, is dten not accessi- tion is receted as aguments via function calls [StF89].

ble t? the typical usgrEven Wher_1 it IS accessible, it often Even though the space and I/O requirements are diminished,
requires great expertise to m0d|_fy without adverselgf:af the trace analysis can still be quite time-consuming since
ing the operation of the machine. Also, modification Ofthe entire trace is being processed.

microcode wuld not be applicable for machines which are
not microprogrammed (e.g. maRISCs).

Program instrumentation, or inline tracing, is a tech- TECHNIQUES FOR REDUCING
nique that requires littlewverhead for generating a trace of INSTRUCTION CACHE EVALWATION TIMES
addresses [HLT87, BKW90, EKK90]. Instructions are
inserted to record addresses during t_he progrmbution be able to generate and analyze trace dat® program
and must not change the normabceutlon pehawor of the being measured is compiled indwgasses. Théirst compi-
program. Thereforethe values in data registers or the con-|4ion pass sems to determine the address of each instruc-
dition codes may he © be sved and restored. tion. Ratherthan using a table lookup method, which may

Unfortunately even with fast trace generation tech- be rather complicated for highly encoded CISC architec-
nigues, gauating the cache performance of a progmm’ tures, a label is inserted before and after each instrucfion.
execution can be quite time-consuming since thgdat fic- call is inserted at the beginning of the main function to
tor in the time required for cache performanedwation is invoke a outine that will dump out the size of each instruc-
analyzing the trace of addressds/en after tuning a cache tion, the difference between each pair of labdisen the
simulator for a specific cache configuration, a cache simulasize of branch instructions, which magry depending upon
tor can still require an order of magnitude more time tharthe distance to the branch target, may be accurately- deter
generating the trace itself [BKW90]. Therefore, there hasmined since no other trace instructions are inserted at this
been much attention\gin to reducing the number of refer point. Thefirst compilation pass also stores information
ences that need to be traced. about each function to be used by some of the techniques
described later in the paper.

An optimizer of a compiler system was modified to

There hae leen seeral methods proposed to
improve ache simulation times by reducing the number of The second compilation pass inserts the instructions
references in the tracé&dne method for reducing the length to invoke the cache simulator during the progranstecu-
of the trace data is called trace stripping [Puz8bhis tion. Thevalues of scratch gisters and condition codes
approach first simulates a direct-mapped cache and recordsay hae © be svel prior to the inserted instructions and
only the references that are misses since hits do not result restored afterards. By using the data-fls information
changes to the cache state. The reduced trace can then d&ecady calculated andvalable in the optimizer these
used to simulate caches with a greater number of sets ammdves and restores are only inserted when necessArgall
associatiity as long as the line size is not changed and conto print the cache performance report is also inserted before
text switches are not introducedJnfortunately this tech- ary return instructions in theai n function or calls to the
nigue requires the entire trace to be processed by the cack&i t function alywhere in the program. The cache

0

simulator is linked with the program to allo on-the-fly = Technique B

trace analysis to occur while the program is bexegeted. The instructions inserted into the program farch-

The techniques used to reduce the number of cacheique B are identical to the instructions inserted fechr
references processed by the cache simulator are describednique A. The trace routine being\oked, havever, inter-
the following sections.The cache references not processedfaces with the cache simulator fdifently If no context
are those references which are ascertained to be cache hitsitches can occur during theeeution of the block, the
and will not change the state of the cache. Examples assoache simulator is iroked only once with the address of the
ciated with the techniques arevei in Motorola 68020 first instruction within the basic block and the size of entire
assembly code. Each technique builds upon theiqusly block passed as guments. Thusthe cache simulator is
presented techniquesTechnique A is a straight-forard treating the entire block as onedarinstruction. The actual
approach. &chniques B and C recognize spatial locality tonumber of references to the cache associated with the block,
reduce the length of the trace and methods similar to thesghich is determined staticallynay be greater than the num-
have keen used in previous studies [MiF88, EKK9Ugch- ber of instructions within the blockThis situation occurs
nigues D-G use cache configuration information and thevhen one or more instructions span more than one cache
control flov of the program tomid processing additional line. Thenumber of references, hits and misses, caused by

references due to both spatial and temporal locality. invoking the simulator for the entire block as onegéar
instruction is equal to the number of cache lines being-refer
Technique A enced. Thaemaining references associated with the block

gdue to spatial locality will atays be cache hits and need not
be simulated. Thus, the counter for the number of cache
hits is incremented by the number of remaining references

For Technique A, a call to a trace routine is inserte
before each basic block in the prograiote, that basic

blocks for tracing are delimited by labels and branching X o i .
instructions, including callsA block numbeythat uniquely after the call to the simulatotf it is determined that a peri-

identifies the basic block beingeeuted, is passed to the odic context switch may occur during theeeution of the

trace routine which uses the number to access informatioHlof:'f' thep the c;ache_ s!mulator wil b‘?"""‘ed fqr each
associated with the blodkThe trace routine in turn inter individual instruction within the block as in Technique A.

faces with the cache simulatgrassing it the address and)

size of each instruction within the block. Since the cachelechnique C

simulator allows the option of periodic coxteswitches, a Technique C is similar to Technique B except for one

simulated context switch validating the entire instruction difference. Insteadf invoking the simulator once for an

cache can occur betweenawwstructions in the same basic entire basic block, the techniqueraikes the simulator once

block. Assemblycode with inserted instructions foedh- for each sequence ofkexuted blocks that are pkically

nigue A is gven in Fgure 1. contiguous. Thdasic block number of the beginning of a
sequence of blocks, also described as a superblock
[EKK90], is saed. A call instruction to the trace routine is
inserted before anunconditional jump, call, or return
instructions. Handlingonditional transfers of control is a

L142 little more complicated.The trace routine should only be

invoked when the conditional branch is tak Havever, the
pea #145 / push blok mmber 145%/ conditional branch target block could be in the middle of a
jbsr _traceblknum /* Ca'_l trace rou“_ne*/ different sequence of contiguous blocks. Therefore, the tar
addal #4, a7 /* adjust stak pointer */ get of the conditional jump is replaced with the target of a
c newly created label. Assembly code is added at the end of
Jne L6 the function that contains thewéabel, the call to the trace
pea #146 / push blok mmber 146/ routine, the reset of the beginning block of a/rsequence,
jbsr _traceblknum /* Ca'_l trace rou“_ne*/ and an unconditional jump back to the conditional jlanp’
addql #4, a7 / * adjust stak pointer */

original taget. Anexample of assembly code before and
after modifications are made for Technique C iswsh@n
Figure 1: Assembly Code with Technique A Figure 2.

Technique D

The remaining techniques use cache configuration
! Though acache lineis sometimes referred to adlck in this pa- information to reduce the number of references to be pro-
per the ternblockindicates asic blockn the compiled program. cessed by the cache simulat@he compiler reads in infor
mation that indicates the line size and number of sets of a
direct-mapped cache. The compiled program can be used to
simulate caches with different characteristics including

during the ®&ecution of a measured program was &dk

bef ore with the compiler so it could bevioked to check if a loop
----------- will fit in the cache. If the loop does fit, then instructions
jbsr _foo /* call */ are inserted in the preheader block of the loop to clear the
e array elements associated with the blocks in the ldage,
jne L74 / * branch not equal */ that if a preheader block is notadable, then one will be
created. Br each block within the loop, instructions are
jeq L78 /* branch equal */ inserted to determine if the block currently resides in the
cache by checking the array element associated with the
jra L67 / * unconditional jump*/ block. If the array element is currently set and a simulated

context switch cannot occur while the instructions in the
block are gecuted, then the number of cache hits and con-

after text switch information is adjustelet is assumed that the

-------------------- inserted instructions to perform theseotdnecks are much
jbsr _foo less gpensve than processing the reference by the cache
movl #15, startblk /* follows a call inst*/ simulator If a context switch does occuthen the array ele-

e ments within the loop are cleared. Thus, when a loop that
jne LN1O /* L74 was replaced*/ fits in the cache is entered, except when a context switch
e occurs, the cache simulator iwaked at nost once for each
jeq LN11 /* L78 was replaced*/ block in the loop.Technique C is used for code outside of
e loops or in loops that do not fit in the cacler the exam-

pea #17 /* push last blokin seq */ ple in Figure 3, which contains a loop with a single basic
jbsr _tracebl knum /* call trace routine */ block, simulated context switches occwery 10,000 units
addgl #4, a7 / * adjust stak pointer */ of work. Thecontet interval can be changed, bubwd

movl #32, _startblk /* reset start block*/ require recompiling the program being measured.

jra L67

The cache configuration information read by the com-
piler is used to determine if the cache lines that are associ-
ated with a basic block are currently in the cache. If these

: cache lines are resident and each cache lawthe last line
LN10:

to be referenced within its set, then there is typically no
pea #15 I push last blok in seq */ information that need be updated about the state of the
Jbsr _traceblknum /* call trace routine */ cache in the simulator The replacement algorithm for
addql #4, a7 /' adjust stak pointer */ determining which cache line to replace within the set can
movl #22,_startblk /* resetstart block*/ be usage or non-usage based [Smi82]. Non-usaged based
jra L74 I jump to orig label*/ algorithms, such as first-in-first-out (FIFO) or random, are
LNLL: not affected by the reuse of a line. The most common
pea #16 I push last blokin seq */ usage-based replacement algorithm for set-asseiati
Jbsr _traceblknum /* call trace routine */ caches is least-recently-used (LRU) [HeP90]. If the current
addql #4, a7 /' adjust stak pointer */ cache line being referenced is also the last line thatnef-
movl #26, startblk /* reset start block*/ erenced within the set, then URnformation need not be
jra L78 /* jump to orig label */

updated. Therefore program containing a loop that fits in

a drect-mapped cache and processed usiaghilique D
would not require recompilation when the number of sets or
associativity is increased.

Figure 2: Assembly Code with Technique C

greater set associaly. As in Ruzaks tace stripping Technique D, as described sar,fatempts to woid
method [Puz85], if the number of sets is not decreased angplls to the cache simulator for blocks that will be in the

the line size remains the same, then the program need not f&che already due to temporal localiinere are also situa-
recompiled. tions when blocks will already be in the cache due to spatial

o) locality. When a basic block in a loop that fits in the cache
An array where an element is inded by a wique g totally contained in the last cache line referenced by the

block numbe,rls used tc_’ mdlcate if each basic blopk in the predecessor block and/or the first cache line of the successor
prpgram 1S currentl_y within the cache. The compiler deter block, then instructions are inserted to check the block
mines if each loop in a function, proceeding from the euter

most loop first, can fit in the cache and does not contgin an 2 Note that adjusting this information does result in a stronger cou-
calls to other functions that are being measured. The samuging between the trace generation and trace analysis tasks.
cache simulator used to analyze the cache performance

A-

clrl
nmov|
nmov|
L405:
cnpl
jeq
cnpl
jge
addql
addql
LN192:

j ne
nov|

LN191:
nmov|
nmov|
pea
j bsr
addql
jra

markers of the predecessor and/or successor blokset,
then the call to the cache simulator v®ided and the con-
text switch information and cache hit counter are adjusted.

_mar ker +952
#238, _| owmar ker
#238, _hi ghmar ker

#0, _mar ker +952
LN191

#9992, c_switch
LN191

#8, _c_switch
#8, _c_hits

L405
#-1, _hi ghmar ker

#1, _mar ker +952
#238, _startblk
#238

_tracebl knum
#4, a7

LN192

/*
/*
/*

/*
/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*

clear mar ker[238] */
first blok deared on switch*/
last blok deared on switch* /

ched if block 238 is in cache*/
if not then invok smulator */
ched if switch in 8 gycles */

if so then invok smulator */
adjust switb information */
adjust number of cache hits/

out of loop so nothing to cleat /

blodk 238 is now in cache*/
first blodk in sequence*/
last blok in ssquence*/
call trace routine * /

adjust stak pointer */
execute insts in bldc238 */

Figure 3: Assembly Code with Technique D

Technique E

Technique E is similar to Technique D except that jne
inter-procedural cache analysis is performeaditially, a

are cyclic (i.e. recurge). Technique E (and Techniques F
and G), hwever, cannot be used with indirect calls since
the function being woked is mot known at compile-time
and the call graph cannot be accurately construcldae
example gven in FHgure 3 for Technique D showed a loop
with a single block that contained no calls. Figure 4asho
the same loop except with one call to a routine being mea-
sured. Theawo loop blocks and the three basic blocks in the
routine fit in the cache at the same time.

clrl _marker+952 /* clear mar ker[238] */

clrl _marker +956 /* clear mar ker[239] */

clrl _marker+1056 /* clear mar ker[264] */

clrl _marker+1060 /* clear mar ker[265] */

clrl _marker+1064 /* clear mar ker[266] */

nmovl #238, | owrarker /* first blok deared on switch*/

movl #266, _hi ghmarker /* last blok deared on switch*/
L405:

crpl #0, _nmar ker +952 / * ched if block 238 is in cache*/

jeq LN191 [* if not then invok smulator */

crpl #9995, c_switch [/* chedifswitchin5 g/cles */

j ge LN191 / * if so then invo& smulator */

addql #5, _c_sw tch / * adjust context swittinfo */

addql #5, _c_hits / * adjust number of cache hits/
LN192:

jbsr _foo

crpl #0, _nmar ker +956 | * ched if block 239 is in cache*/

jeq LN193 / * if not then invok smulator */

cpl #9997, c_switch [/* chedif switchin 3 g/cles */

j ge LN193 / * if so then invo& smulator */

addql #3, _c_swtch / * adjust context swittinfo */

addql #3, _c_hits / * adjust number of cache hits/
LN194:

L405

movl #-1, _hi ghmarker /* outof loop so nothing to cleat/

call graph of the functions being measured is constructed

using the information provided from the first compilation

Figure 4: Assembly Code with Technique E

pass. Thenit is determined if each subtree of the graph, a

function and the routines that can beoked from that

Technique F

function, can fit in the cache at the same time. If an entire

function and the routines that can beoked will fit in the

To be ale to aoid address references being pro-

cache, then dchnique D, except for clearing the block cessed by the cache simulaft@chnique E required that all

markers, is used throughout the functioim a function that

the blocks in a loop and the blocks in the routines that can

does not fit in cache, instructions are inserted precedin§€ invoked from the loop fit in the cache at the same time.
calls to a function being measured that does fit in the cachkéchnique F relaxes this requirement. All of the blocks in

to clear the markers associated with that functibnops

the loop itself still hae to fit in the cache at the same time.

with calls to functions that are being measured may also b@!S0, €ach individual function iwked directly from the

candidates for widing references to be processed by the!00P and the set of routines the function could in tuvoke
cache simulator If the entire loop and the functions that "€ © fitin the cache at the same tim@therwise there

can be imoked from the loop can fit in cache at the samecan be conflicts between blockBor instance, a basic block
time, then the block maeks associated with the blocks in I @ routine imoked from the loop could conflict with a

the loop and with each of the functions that can kekied
are cleared in the preheader block of the lodpter-

basic block in the loop or a block from a different routine
invoked from the same loopA heuristic was applied that

procedural cache analysis can still be used when call grapfigauires that at least one half of the blocks in the loop and

the routines imoked cannot conflict. If the heuristic is not

satisfied then 8chnique C is used for the blocks in the loop.

Otherwise, if a block in the loop conflicts with blocks in clrl _marker+528 /* clear marker[132] */
routines iwoked from the loop, then instructions are clrl _marker+532 /* clear marker[133] */
inserted to clear the markers associated with the conflictingcl ri _mar ker +536 I * clear marker[134] */
blocks in the imoked routines when the loop block is clrl _marker+540 I * clear marker[135] */
executed. Lilewise, when a block in anvoked function movl #132, |lowmarker /* first blok deared on switch*/

conflicts with a loop block or a different routine that is novl #135, _hi ghmarker /* last blok deared on switch* /
invoked from the same loop, then instructions are inserted j bsr _foo

to clear the conflicting blocks before the call instruction to ... /* insts conflicting with bldc132 */
the invoked function. Figure5 shows a loop containing a clrl _marker +528 /* clear marker[132] */
block that conflicts with a basic block in a routingaked jbsr _foo

from the loop. movl #-1, highmarker /* out of func so nothing to cleat/

L85: Figure 6: Assembly Code with Technique G

cnpl #0, marker+2120 /* ched if block 530 is in cache*/

jeq LN141 /* if not then invok smulator */ RESULTS

crpl #9981, c_switch /* chedifswitchin 19 gcles */ The set of test programs used in this experiment and
Jge LN4l [ifso then invok smulator */ their associated code size are shown in Table I. The code
addl #19, c_switch /* adjustcontext switcinfo */ size for each program does not include the routines from the
addl #19, c_hits I adjust number of cache hits/ run-time library since their source codasvnot sailable.
LN142: The techniques discussed in this paper could be used to pro-
clrl _marker+7344 / * clear blod 1836 in foo */

cess assembly or object filedJnfortunately this would

T complicate implementation of the techniques since portabil-
clrl _marker+2120 / * clear blodk 530 in loop */

_ ity would be decreased and the controlfland data-flav
jbsr _foo information already \ailable in a compiler would he ©
s be recalculated. A C compiler for the Motorola
jne L85 68020/68881 as implemented within theaseenvironment
. .) [Daw90], which consists of a compiler generation system
Figure 5: Assembly Code with Technique F calledvpo [BeD88] and measurement tools. The compiler
was modified to implement each of thevea techniques
Technique G described in the previous section. Cache performance mea-

Techniques D-F attempt to find basic blocks that areSurements were obtained for each program within the test

already resident in the cache because of temporal localityet USing each of the techniqueShe measurements
due to loops. There is, tvever, another situation when °btained for each specific program were négaéd by the
temporal locality can result in blocks being residefihis ~ t€chnique used. ldentical results occurred, tk&cenum-
situation occurs when a routine is/iked from more than P€r Of hits and misses, despite periodic simulated kbnte
one location and some blocks in the routineehmt been SWitches and each program requiring at least one million

replaced when the second call occurs. As statedqugy,

the block markers of a function that do fit in the cache are | \yame Descriptior Emphasis Size in Bytds
cleared before the call instruction to that function in a rou-

tine that does not fit in cachét the point when a call to compact | Huiman Coding Compression 4322
such a function is encountered in Technique G, the compiler | cpp CPreprocessor 12678
attempts to determine if grblock markers in the function diff Differences between Files 9166
have dready been cleared and the lines associated with lex Lexcal Analyzer Generator 26318
those blocks ha ot been replacedAny block that is sed Streaniditor 13946
determined to be resident, and thus its associated marker is | sort Sortor Merge Files 5500
already cleared, need notJeaits marker cleared ain. tbl Table Formatter 24592
The example in Figure 6 hasdwalls to the same function yacc ‘et Another CompileCompiler 22392

that fits in the cache. In this example, the instructions fol-
lowing the first call reside in the same line as only one of

. : o Table I: Test P
the blocks in the function beingvioked. e jestrrograms

cache references.

Periodic context switches were simulated byalin Instructions
dating the entire cache@ery 10,000 units of wrk. A cache Program | HitRatio | .4
hit was assumed to require one work unit while a cache
miss was assumed to require térhe context switch inter

compact 95.25% | 4,699,295

val and estimated time units required for a hit versus a miss cPp 93.78% | 1322,671
are the same as those used in Swithche studies [Smi82]. diff 99.54% 3,425,264
Though the ®periments in this paper simulated codte lex 99.48% | 36,844,880
switching based on estimated cacherkvto check that sed 96.49% 1,643,093
identical measurements were obtained with théewift sort 96.91% | 1,778,463
techniques, other methods to determine context switch tol 86.59% | 2,715,097

yacc 98.63% | 23,960,045

points could also be used.

Tables Il and 1ll sher the number of times that the aveage 95.83% | 9,548,601

cache simulator wasvwoked for each program using each

of the techniques for a 1K byte direct-mapped cache with a Table 1I: Measurements with a 1K Byte Cache
16 byte line size. The hit ratio isvgnh to indicate the per

centage of references that are candidates for not being pro-

cessed by the cache simulatddote that the number of Relative © Technique A

calls to the cache simulator using Technique A is the same Program

as the number of instructions that weneeaaited® The B c b E F ©
results using Technique B indicate that there wereven a compact| 26.51% 13.21%| 10.92% 8.03%| 8.03% 8.03%
age 2.77 instructions per basic block beirgcated. There cpp 26.53% 15.75%| 11.07% 11.01% 11.02p6 11.02%
was dso on aerage 5.29 contiguous instructions being pro- | diff 29.83%| 15.07% 3.22%| 1.22% 0.77% 0.77%
cessed by the cache simulator using TechniqueTé&h- lex 50.55%| 19.47% 2.32%| 1.89% 0.94% 0.94%
nigue D, which requires no intprocedural analysis, sed 45.86% 26.84% 6.99% 6.92% 5.32% 5.32%
resulted in a substantial imp@ment wer Technique C. sort 34.36% 18.49%| 12.24% 12.59% 12.59% 12.59%
This indicates that a lge percentage of instructions | tbl 30.70%) 19.65%) 17.28% 16.78% 16.3606 16.24%
executed in programs occur in loops with no callech- yacc 44.58% 22.89%| 5.17% 4.52% 3.51% 3.51%
niques E, Fand G appear to be more closely affected by the | 5 qage | 36.1204 18.9206| 8.65% 7.87% 7.32% 7.30%

hit ratio. The results indicate that Technique F has a slight
improvement aver Technique E. Technique G, heever, , ,

rarely resulted in fewer references being processed as com-a0l€ Ill: Calls to Cache Simulator with a 1K Byte Cache
pared to Technique.Flt is interesting to note that using

Techniques E, Fand G can occasionally result in more Table IV shows the number of times that the cache

address references being processed by the cache Simmatgi[}nulator was imoked with cache sizes ranging from 2K to
This situation can occur when the loops that do fit in cacha6K bytes. Increasing the cache size did not vary the num-
are also in the functions that fit in cact®ince each block o o references processed by the cache simulator using
in these functions are processed vialially, then the rehpigue A since the number of instructions that were
blocks outside the loops in these functionsuld require o, teq remained the same. Also, the number of efer
more references to be_ proces_sed by_ the Cach_e S'mUIatglhces processed using Techniques B, C, andr2d/only
since the method used in Technique C is not applied. slightly as the cache size was increasdterefore, only

the hit ratio and results from Techniques Eatd G were
presented in Table IVSightly varying number of refer
ences processed when the cache sa®increased for each
program using Technique D indicates that loops with no
calls in the test setwabys fit in a 1K byte cacheUnlike
Techniques A-D, Techniques E-G imprdl a&s the cache
size and hit ratios increase&or a program that recutes a
very large number of instructions, more time may beeda

#When a context switch could occur in a basic block, the cache sim-

% The number of xecuted instructions is slightly less than the total ulator processes each instruction within the block viddally. Since
cache references simulated since a Motorola 68020/68881 instruction maghanging the cache size typically resulted in odnsavitches occurring in
span tvo cache lines. basic blocks with a dérent number of instructions, there was a sligit-v
ation in the number of times that the cache simulator waked.

execution times of the programs being measured include

: : both the time required for generating the trace and analyz-
Cache Relatie © Technique A
, Program| HitRatio ing the references with the cache simulat®he ratio to
Size E F G execution time without tracing for the different programs
compact| 96.04%| 8.03% | 8.03%| 8.03% with each techniqueavied. For instance, the ratio foreth-
cpp 96.52% | 11.03% | 11.03%| 11.02% nique A for thel ex program was eer 3.8 times as great as
diff 99.68% | 1.22%| 0.77% | 0.77% the ratio fort bl . The ratio to gecution time without trac-
2K | lex 99.49% 0.94%| 0.94% | 0.94% ing is affected by a number of factors which include the
sed 98.23% | 6.92% | 3.93%| 3.93% aveage gecution time required for the non-tracing instruc-
bytes | sort 99.83% 9.91%| 5.41% | 5.41% tions eecuted, the werage number of instructions in
tbl 93.94% | 13.40% | 13.42%| 13.17% executed basic blocks, and the percentage of time spent in
yacc 99.28% | 2.88% | 2.89%| 2.89% the library routines which were not measu%ed.
aveage | 97.88% | 6.79% | 5.80%| 5.77%
compact| 97.63% | 8.03% | 2.46%| 2.46% Ratio to Execution Time without Tracing
cpp 97.72% | 11.23% | 11.07%| 11.07% Program A B c b E F e
diff 99.75% | 0.28%| 0.28% | 0.28%
K| lex 9959% | 094%| 0.94% | 0.94% compact| 124.57 51.35| 40.23 33.22 2570 25.74 25/80
sed 08.23% | 3.93% | 3.93%| 3.93% cpp 113.05 47.83| 40.24 3155 31.62 31.62 31/67
bytes | sort 99.83% | 0.22%| 0.23% | 0.23% diff 83.04| 3564 2651 83l 520 430 451
tol 05.69% | 13.38% | 13.41%| 13.16% lex 188.68| 118.70 73.3f 15.13 13.68 1069 10.69
yacc 9945% | 286% | 2.88% 2.88% sed 143.18 87.62| 72.85 24.94 25.35 22.05 22/05
sort 161.03 83.41| 64.759 46.39 47.64 47.72 47/64
avaage | 98.49%) S.11% | 440% 4.37% thl 49.65| 25.22| 22.88 21.01 21.10 20.82 2035
compact| 99.26%| 0.72% | 0.72%| 0.72% yacc 1245 75.12| 54.82 17.29 16.46 14.20 14)09
cpp 98.06% | 10.90% | 10.30%) 10.30% aveage | 123.47 65.61| 49.46 2473 23.34 22.17 22/10
diff 99.75% | 0.28%| 0.28% | 0.28%
8K | lex 99.60% | 0.92%| 0.92% | 0.92%
sed 99.11% | 082% | 0.82%| 0.82% Table V: Execution Time with a 1K Byte Cache
bytes | sort 99.82% | 0.22%| 0.22% | 0.22%
;Z:CC S;%ZZ; 13::;:: 103.';;1://: 15;;;: Tal_JIe \ shows the »xecution time e@erhead with
cache sizes ranging from 2K to 16K bytes. In general, the
avgage | 98.98% | 3.53% | 3.46% 3.43% execution times decrease as the number of references pro-
compact| 99.26%| 0.72% | 0.72%| 0.72% cessed by the cache simulator decrease. Thus, as the cache
cpp 08.39% | 1.36% | 1.36%| 1.36% size increases, the@ution times for programs usingdh-
diff 99.75% | 0.28%| 0.28% | 0.28% niques E, Fand G decrease. Theeution times for &ch-
16K | lex 99.60% | 0.44%| 041% | 0.41% niques A-D varied only slightly since the number of refer
sed 99.11% | 0.82% | 0.82%| 0.82% ences processed by the cache simulator only changed
bytes | sort 09.83% | 0220 0.22% | 0.22% slightly with different cache sizes simulatedherefore,
tbl 97.89% | 10.78% | 7.05%| 6.95% only the eecution time ratios for Techniques E, &d G
yacc 09.48% | 0.63% | 0.63%| 0.63% are presented in Table VI.
aveage | 99.16% | 1.91% | 1.44%| 1.42%

Table IV: Calls to Cache Simulator with Larger Cache Sizes

by recompiling the program when the number of sets in the
cache configuration being measured is increased.

Table V shows thexecution time required using a 1K
byte direct-mapped cache with a 16 byte line size velddi 6 Smaller ratios toxecution times without tracing were reported for

. . . a method similar to Technique B in thepedssystem [StF89] This dis-
execution without tracing for each prograﬁnNote that crepang was probably due to their choice to simulate more floating-point

: . .) intensie rograms, to not introduce or check for pending cangevitches,
All execution times reported in this paper were obtained by deter and the use of a cache simulator tuned for specific cache configurations.
mining the &erage of ten xecutions of each instance of a program.

of instructions inserted to keep track of the inédsv

; — : : between context switches for Techniques D-G. The absence
Cache Ratido Execution Time without Tracing . .
_ Program of context switches would also alather techniques to be
Size E F G used to further reduce the tracingethead. Br instance,
compact 25.58 25.63 25.57 the number of cache hits and misses for the blocks in a loop
cpp 29.58 29.60 29.58 that fits in cache could be adjusted after the logits.e
diff 5.12 4.41 4.44 rather than each time the bloclasvececuted. Themarker
2K | lex 10.83 10.83 10.75 of a block within the loop would be incremented each time
sed 16.90 16.90 16.91 the block is entered. Only the first reference to each block
bytes | sort 37.72 24.30 24.33 would require simulation. The order of simulating the first
tbl 15.96 16.32 16.01 references to the different blocks within the loopuid not
yacc 12.48 12.53 12.52 affect the total number of hits and misses.
aveage 19.27 17.57 17.51
compact 24.47 11.56 11.51 CONCLUSIONS
Z?f:) 2;'725 22_2 22’_2? The techniques presented in this papeveh&een
shawn to significantly reduce the time required for instruc-
4K | lex 11.02 10.93 10.98 .)
tion cache performancevauations as compared to more
sed 16.98 17.19 17.14 - o .
traditional approaches. This imm@nent occurred despite
bytes | sort 6.87 8.64 8.55 . . . 7
b 15.42 15.42 15.05 no special requirements to implement the techniqaes
without ary loss of accurac Technique D is particularly
yacc 12.52 12.83 12.68 - . .
attractive snce with no interprocedural analysis required it
aveage 15.09 13.69 13.65 is simple to implement and still results in a significant
compact 6.67 6.67 6.67 improvement. Thoughonly the number of instruction refer
cpp 29.14 27.93 27.95 ences to be processed can be reduced, the techniques can
diff 4.08 4.08 4.08 also be used whenvauating split instruction and data
8K | lex 11.38 11.47 11.38 caches. Therstill should be a measurable impgement in
sed 9.49 9.59 9.61 this situation since typically the majority of address refer
bytes | sort 7.63 764 765 ences being processed are instructions [BKW9The
tbl 15.22 15.21 15.29 effectve evaluation of lage second-Mel caches may
yacc 9.08 9.11 9.12 require billions of references to be tracatthen positioned
behind a split first-leel cache, the techniques presented in
avaage 1159 11.46 1147 this paper would be very useful.
compact 7.44 7.44 7.45
cpp 8.99 9.02 8.97
diff 4.73 4.73 4.71 REFERENCES
16K | lex 11.91 11.74 11.74
sed 1095 | 1007 10.97 [ASHS6] A. Agarwal, R. L. Sites, and M. Howdtz,
bytes | - sort 8.58 8.60 8.58 “ATUM: A New Technique for Capturing
ol 13.29 10.14 10.02 Address Traces Using MicrocotleProceed-
yace 8.96 8.97 8.92 ings of the 13th Annual Symposium on Com-
aveage 9.36 8.95 8.92 puter Achitecture pp. 119-127 (June 1986).
[BeD88] M. E. Benitez and J. WDavidson, ‘A Portable
Table VI: Execution Time with Larger Cache Sizes Global Optimizer and Lindr,” Proceedings of

the SIGPLAN 88 Symposium onoBramming
Language Design and Implementation pp.

FUTURE IMPFOVEMENTS 329-338 (June 1988).

[BKW90] A. Borg, R. E. Kesslerand D. W Wall, “Gen-
eration and Analysis of &fy Long Address
Traces,” Proceedings of the 17th Annual

The tracing werhead is dependent on the peffor
mance of the cache simulatdress tracing werhead vould
be required if cache simulators were used that were tuned
for a partICUIar cac_he copflguratlofr.ms scheme, &, " Some approaches Ve cedicated a set of registers to be used e
unld be Iess.erX|bIe since a program would/énd be clusively for tracing and/or require special operating system support
relinked each time the cache configuration was changed. [BKw90, EKK90, ASH86, Wie82].

The introduction of periodic context switches also
increased thexecution times. Figure 3 shows anxample

_0-

International Symposium on Computerchir [Puz85] T R. Ruzak, Analysis of Cache Replacement

tecture pp. 270-279 (May 1990). Algorithms, PhD Dissertation, Unmersity of
[Daw90] J.W. Davidson and D. B. Whalie “Ease: An Massachusetts, Amherst, MA (February 1985).
Environment for Architecture Study and Exper [Smi77] A. J. Smith, “Two Methods for the Hicient
imentation,” Proceedings SIGMETRICS '90 Analysis of Memory Address Trace Ddta,
Confeence on Measurement and Modeling of IEEE Transactions on Softwar Engineering
Computer Systemgp. 259-260 (May 1990). 3(1) pp. 94-101 (January 1977).
[EKK90] S.J. Eggers, D. R. &ppel, E. J. Kldinger and [Smi82] A. J. Smith, “Cache Memoriés,Computing
H. M. Levy, “Techniques for Efficient Inline Surveyd 4(3) pp. 473-530 (September 1982).

Tracing on a Shared-Memory MultiprocesSor [girgg] C.Stunlel and W Fuchs, “TRAPEDS: Produc-
Proceedings SIGMETRICS '90 Conference on ing Traces for Multicomputers Via Eution

Measuement and Modeling of Computer Sys- Driven Smulation,” Proceedings of the Inter
tems pp. 37-47 (May 1990). national Conference on Measment and

[HeP90] JHennessy and D.atersonComputer Achi- Modeling of Computer Systemgpp. 70-78
tectue: A Quantitative Apmach, Morgan (May 1989).
Kaufmann, San Mateo, CA (1990). [WaB90] W Wang and J. Bagf'Efficient Trace-Driven

[HiS89] M. D. Hill and A. J. Smith, “Evaluating Asso- Simulation Methods for Cache Performance
ciativity in CPU Caches, |IEEE Tansactions Analysis,” Proceedings SIGMETRICS '90 Con-
on Computes 38(12) pp.1612-1630 (Decem- ference on Measement and Modeling of Com-
ber 1989). puter Systemspp. 27-36 (May 1990).

[HLT87] M. Huguet, T Lang, and Y Tamir, “A Block- [Wie82] C. A. Wiecek, A Case Study of WX-11
and-Actions Generator as an Alternatio a Instruction Set Usage for Compiler &ution,”
Simulator for Collecting Architecture Measure- Proceedings of the Symposium ochitectural
ments,”Proceedings of the SIGPLAN '87 Sym- Support for Pogramming Languges and
posium on Interpeters and Interpretive @ch- Openting Systems pp. 177-184 (March,
niques pp. 14-25 (June 1987). 1982).

[HwWC89] W. W. Hwu and PP. Chang, Achieving High
Instruction Cache Performance with an Opti-
mizing Compilef’ Proceedings of the 16th
Annual Symposium on Computerclitecture
pp. 242-250 (May 1989).

[LPI88] S.Laha, J. H. Btel, and R. K. lyer‘Accurate
Low-Cost Methods for Performance &wuation
of Cache Memory SysteMis]EEE Transac-
tions on Computer 37(11) pp. 1325-1336
(November 1988).

[McF89] S. McFarling, “Program Optimization for
Instruction Caches,Proceedings of the Thr
International Conference on éhitectural Sup-
port for Pogramming Languges and Opeat-
ing Systemspp. 183-191 (April 1989).

[MiF88] C. L. Mitchell and M. J. Flynn,A Workbench
for Computer Architect$,IEEE Design & €st
of Computer$(1) pp. 19-29 (February 1988).

[PeHI90] K.Pettis and R. Hansen, “Profile Guided Code
Positioning,” Proceedings of the SIGPLAN 90
Confeence on Rsgramming Languge Design
and Implementatignpp. 16-27 (June 1990).

[PeST77] B.L. Peuto and L. J. Shustek, “An Instruction
Timing Model of CPU PerformanéeProceed-
ings of the 4th Annual Symposium on Computer
Architecture pp. 165-178 (March 1977).

-10-

