
Fast Instruction Cache Performance Evaluation
Using Compile-Time Analysis

DAVID B. WHALLEY
Department of Computer Science, Florida State University, Tallahassee, FL 32306, U.S.A.

SUMMARY

Cache performance has become a very crucial factor in
the overall system performance of machines.Effective
analysis of a cache design requires the evaluation of the
performance of the cache for typical programs that are
to be executed on the machine. Recent attempts to
reduce the time required for such evaluations either
result in a loss of accuracy or require an initial pass by a
filter to reduce the length of the trace. This paper
describes techniques that overcome these problems for
instruction cache performance evaluation. Inf ormation
calculated during the compilation is used to reduce the
number of references in the trace. Thus, in effect refer-
ences are stripped before the initial trace is generated.
These techniques are shown to significantly reduce the
time required for evaluating instruction caches with no
loss of accuracy.

KEY WORDS: Instruction CacheCache Simulation Trace Generation

Trace Analysis

INTRODUCTION

The time required to generate and analyze trace data
is proportional to the number of references in the trace
[Smi77]. Since realistic program traces can be quite
lengthy, a trace is often only collected from a portion of the
program’s execution. However, it has been shown that the
cache performance can vary greatly in different portions of
a program’s execution [BKW90]. Cache performance mea-
surements obtained when unrealistic input data is used to
shorten the length of the trace would also be of questionable
value.

Many recently designed machines either have sepa-
rate instruction and data caches or forego using a cache for
data references and attempt to minimize data references
only by using registers. Thereare many advantages to hav-
ing an instruction-only cache. Most machines do not allow

modification of instructions during the execution of a pro-
gram. Byonly allowing read accesses to a cache, the design
of an instruction cache is simplified. Also, instruction refer-
ences typically have higher locality than data references.
By using separate caches, the designers of a system can
offer different configurations for each cache which may
improve the overall performance. Since the type of refer-
ence, instruction or data, issued to the memory system is
known by the CPU, there can be separate ports for instruc-
tions and data.Thus, the bandwidth between cache memory
and the CPU can be improved.

Since instruction caches have become more common,
there has been much recent work that attempts to reorganize
the code of programs to improve the instruction cache per-
formance [HwC89, McF89, PeH90].In fact, most compiler
optimizations can affect instruction cache performance
since the optimizations can change the order and number of
instructions that are executed by a program.Since these
optimizations can affect different portions of a program’s
execution, the effect of a compiler optimization on instruc-
tion cache performance can only be accurately evaluated if
the complete trace of instruction addresses from the pro-
gram’s execution is used.

This paper describes techniques that use compile-time
analysis to reduce the time required for evaluating instruc-
tion cache performance.Unlike many data references, the
address of each instruction remains the same during the
entire execution of a program.Information can therefore be
calculated prior to the instruction cache simulation that can
be used to reduce the number of references that the cache
simulator needs to process.Thus, in effect address refer-
ences are being stripped before the initial trace is generated.

RELATED WORK

Traditionally, the problem of evaluating the cache
performance during the execution of a program has been
separated into two tasks, trace generation and trace analysis.
The first task is to generate the trace of addresses that will
be presented to the cache.The address trace is typically
either written to secondary storage, such as a file on disk, or
stored in a trace buffer in memory. The second task is to
analyze the addresses that were generated. This analysis is
usually accomplished through the use of a separate program
that reads the generated address trace and simulates the
behavior of the cache.

-1-

Trace-driven cache simulation has long been the pri-
mary method used to analyze the performance of a cache.
Simple approaches for generating trace data and simulating
caches, however, can be both very time and space consum-
ing. Two common methods used for generating trace data
are forcing a program to trap after the execution of each
instruction or to record references while simulating the
execution of each instruction.Each of these methods can
result in a program executing a 1000 times slower than nor-
mal execution [PeS77, Wie82, HLT87]. Trace data is typi-
cally stored in secondary storage and then later read by a
cache simulator that will perform the analysis of the data.
Realistic trace data, however, requires at least several mil-
lion references which may make infeasible the use of disk
as the storage media [BKW90].Therefore, there has been
much work on the problem of reducing the space and time
requirements for trace-driven simulation.

One faster trace generation method is to modify the
microcode of a microprogrammed machine.Relative to
techniques using traps or simulated program execution, this
method does not impose a large run-time penalty [ASH86].
The microcode of a machine, however, is often not accessi-
ble to the typical user. Even when it is accessible, it often
requires great expertise to modify without adversely affect-
ing the operation of the machine. Also, modification of
microcode would not be applicable for machines which are
not microprogrammed (e.g. many RISCs).

Program instrumentation, or inline tracing, is a tech-
nique that requires little overhead for generating a trace of
addresses [HLT87, BKW90, EKK90]. Instructions are
inserted to record addresses during the program’s execution
and must not change the normal execution behavior of the
program. Therefore,the values in data registers or the con-
dition codes may have to be sav ed and restored.

Unfortunately, even with fast trace generation tech-
niques, evaluating the cache performance of a program’s
execution can be quite time-consuming since the largest fac-
tor in the time required for cache performance evaluation is
analyzing the trace of addresses.Even after tuning a cache
simulator for a specific cache configuration, a cache simula-
tor can still require an order of magnitude more time than
generating the trace itself [BKW90]. Therefore, there has
been much attention given to reducing the number of refer-
ences that need to be traced.

There have been several methods proposed to
improve cache simulation times by reducing the number of
references in the trace.One method for reducing the length
of the trace data is called trace stripping [Puz85].This
approach first simulates a direct-mapped cache and records
only the references that are misses since hits do not result in
changes to the cache state. The reduced trace can then be
used to simulate caches with a greater number of sets and
associativity as long as the line size is not changed and con-
text switches are not introduced.Unfortunately, this tech-
nique requires the entire trace to be processed by the cache

simulator once. Furthermore, the reduced trace may still be
quite lengthy, which can result in large files and slow simu-
lations. Therehave also been several methods that allow
different cache configurations to be evaluated during a sin-
gle simulation [WaB90, HiS89].

Another method to avoid processing the entire trace
of references is to instead use several discrete samples of
traces from the program execution to predict cache perfor-
mance measures [LPI88].While a significant loss of accu-
racy may not occur, the method may not have the desirable
accuracy for measuring the effect of a new compiler opti-
mization or reorganization technique.For instance, the
optimization may be applied on a section of code that when
executed is not in the samples of references that are col-
lected.

On-the-fly analysis is a technique that avoids the I/O
associated with storing the generated trace and retrieving
the trace for input to the cache simulator. In this approach
either the cache simulator is a separate process that reads a
trace buffer containing the trace [BKW90] or the cache sim-
ulator is linked directly to the program and trace informa-
tion is received as arguments via function calls [StF89].
Even though the space and I/O requirements are diminished,
the trace analysis can still be quite time-consuming since
the entire trace is being processed.

TECHNIQUES FOR REDUCING
INSTRUCTION CACHE EVALUATION TIMES

An optimizer of a compiler system was modified to
be able to generate and analyze trace data.The program
being measured is compiled in two passes. Thefirst compi-
lation pass serves to determine the address of each instruc-
tion. Ratherthan using a table lookup method, which may
be rather complicated for highly encoded CISC architec-
tures, a label is inserted before and after each instruction.A
call is inserted at the beginning of the main function to
invoke a routine that will dump out the size of each instruc-
tion, the difference between each pair of labels.Even the
size of branch instructions, which may vary depending upon
the distance to the branch target, may be accurately deter-
mined since no other trace instructions are inserted at this
point. The first compilation pass also stores information
about each function to be used by some of the techniques
described later in the paper.

The second compilation pass inserts the instructions
to invoke the cache simulator during the program’s execu-
tion. The values of scratch registers and condition codes
may have to be sav ed prior to the inserted instructions and
restored afterwards. By using the data-flow information
already calculated and available in the optimizer, these
saves and restores are only inserted when necessary. A call
to print the cache performance report is also inserted before
any return instructions in themain function or calls to the
exit function anywhere in the program. The cache

-2-

simulator is linked with the program to allow on-the-fly
trace analysis to occur while the program is being executed.

The techniques used to reduce the number of cache
references processed by the cache simulator are described in
the following sections.The cache references not processed
are those references which are ascertained to be cache hits
and will not change the state of the cache. Examples asso-
ciated with the techniques are given in Motorola 68020
assembly code. Each technique builds upon the previously
presented techniques.Technique A is a straight-forward
approach. Techniques B and C recognize spatial locality to
reduce the length of the trace and methods similar to these
have been used in previous studies [MiF88, EKK90].Tech-
niques D-G use cache configuration information and the
control flow of the program to avoid processing additional
references due to both spatial and temporal locality.

Technique A

For Technique A, a call to a trace routine is inserted
before each basic block in the program.Note, that basic
blocks for tracing are delimited by labels and branching
instructions, including calls.A block number, that uniquely
identifies the basic block being executed, is passed to the
trace routine which uses the number to access information
associated with the block.1 The trace routine in turn inter-
faces with the cache simulator, passing it the address and
size of each instruction within the block. Since the cache
simulator allows the option of periodic context switches, a
simulated context switch invalidating the entire instruction
cache can occur between two instructions in the same basic
block. Assemblycode with inserted instructions for Tech-
nique A is given in Figure 1.

...

L142:

pea #145 /* push block number 145*/

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

...

jne L67

pea #146 /* push block number 146*/

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

...

Figure 1: Assembly Code with Technique A

1 Though acache lineis sometimes referred to as ablock, in this pa-
per the termblock indicates abasic blockin the compiled program.

Technique B

The instructions inserted into the program for Tech-
nique B are identical to the instructions inserted for Tech-
nique A. The trace routine being invoked, however, inter-
faces with the cache simulator differently. If no context
switches can occur during the execution of the block, the
cache simulator is invoked only once with the address of the
first instruction within the basic block and the size of entire
block passed as arguments. Thus,the cache simulator is
treating the entire block as one large instruction. The actual
number of references to the cache associated with the block,
which is determined statically, may be greater than the num-
ber of instructions within the block.This situation occurs
when one or more instructions span more than one cache
line. Thenumber of references, hits and misses, caused by
invoking the simulator for the entire block as one large
instruction is equal to the number of cache lines being refer-
enced. Theremaining references associated with the block
due to spatial locality will always be cache hits and need not
be simulated. Thus, the counter for the number of cache
hits is incremented by the number of remaining references
after the call to the simulator. If it is determined that a peri-
odic context switch may occur during the execution of the
block, then the cache simulator will be invoked for each
individual instruction within the block as in Technique A.

Technique C

Technique C is similar to Technique B except for one
difference. Insteadof invoking the simulator once for an
entire basic block, the technique invokes the simulator once
for each sequence of executed blocks that are physically
contiguous. Thebasic block number of the beginning of a
sequence of blocks, also described as a superblock
[EKK90], is saved. A call instruction to the trace routine is
inserted before any unconditional jump, call, or return
instructions. Handlingconditional transfers of control is a
little more complicated.The trace routine should only be
invoked when the conditional branch is taken. However, the
conditional branch target block could be in the middle of a
different sequence of contiguous blocks. Therefore, the tar-
get of the conditional jump is replaced with the target of a
newly created label. Assembly code is added at the end of
the function that contains the new label, the call to the trace
routine, the reset of the beginning block of a new sequence,
and an unconditional jump back to the conditional jump’s
original target. An example of assembly code before and
after modifications are made for Technique C is shown in
Figure 2.

Technique D

The remaining techniques use cache configuration
information to reduce the number of references to be pro-
cessed by the cache simulator. The compiler reads in infor-
mation that indicates the line size and number of sets of a
direct-mapped cache. The compiled program can be used to
simulate caches with different characteristics including

-3-

before

jbsr _foo /* call */

...

jne L74 /* branch not equal */

...

jeq L78 /* branch equal */

...

jra L67 /* unconditional jump*/

after

jbsr _foo

movl #15,_startblk /* follows a call inst */

...

jne LN10 /* L74 was replaced*/

...

jeq LN11 /* L78 was replaced*/

...

pea #17 /* push last block in seq */

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

movl #32,_startblk /* reset start block*/

jra L67

.

.

.

LN10:

pea #15 /* push last block in seq */

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

movl #22,_startblk /* reset start block*/

jra L74 /* jump to orig label*/

LN11:

pea #16 /* push last block in seq */

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

movl #26,_startblk /* reset start block*/

jra L78 /* jump to orig label*/

Figure 2: Assembly Code with Technique C

greater set associativity. As in Puzak’s trace stripping
method [Puz85], if the number of sets is not decreased and
the line size remains the same, then the program need not be
recompiled.

An array, where an element is indexed by a unique
block number, is used to indicate if each basic block in the
program is currently within the cache. The compiler deter-
mines if each loop in a function, proceeding from the outer-
most loop first, can fit in the cache and does not contain any
calls to other functions that are being measured. The same
cache simulator used to analyze the cache performance

during the execution of a measured program was linked
with the compiler so it could be invoked to check if a loop
will fit in the cache. If the loop does fit, then instructions
are inserted in the preheader block of the loop to clear the
array elements associated with the blocks in the loop.Note,
that if a preheader block is not available, then one will be
created. For each block within the loop, instructions are
inserted to determine if the block currently resides in the
cache by checking the array element associated with the
block. If the array element is currently set and a simulated
context switch cannot occur while the instructions in the
block are executed, then the number of cache hits and con-
text switch information is adjusted.2 It is assumed that the
inserted instructions to perform these two checks are much
less expensive than processing the reference by the cache
simulator. If a context switch does occur, then the array ele-
ments within the loop are cleared. Thus, when a loop that
fits in the cache is entered, except when a context switch
occurs, the cache simulator is invoked at most once for each
block in the loop.Technique C is used for code outside of
loops or in loops that do not fit in the cache.For the exam-
ple in Figure 3, which contains a loop with a single basic
block, simulated context switches occur every 10,000 units
of work. Thecontext interval can be changed, but would
require recompiling the program being measured.

The cache configuration information read by the com-
piler is used to determine if the cache lines that are associ-
ated with a basic block are currently in the cache. If these
cache lines are resident and each cache line was the last line
to be referenced within its set, then there is typically no
information that need be updated about the state of the
cache in the simulator. The replacement algorithm for
determining which cache line to replace within the set can
be usage or non-usage based [Smi82]. Non-usaged based
algorithms, such as first-in-first-out (FIFO) or random, are
not affected by the reuse of a line. The most common
usage-based replacement algorithm for set-associative
caches is least-recently-used (LRU) [HeP90]. If the current
cache line being referenced is also the last line that was ref-
erenced within the set, then LRU information need not be
updated. Therefore,a program containing a loop that fits in
a direct-mapped cache and processed using Technique D
would not require recompilation when the number of sets or
associativity is increased.

Technique D, as described so far, attempts to avoid
calls to the cache simulator for blocks that will be in the
cache already due to temporal locality. There are also situa-
tions when blocks will already be in the cache due to spatial
locality. When a basic block in a loop that fits in the cache
is totally contained in the last cache line referenced by the
predecessor block and/or the first cache line of the successor
block, then instructions are inserted to check the block

2 Note that adjusting this information does result in a stronger cou-
pling between the trace generation and trace analysis tasks.

-4-

clrl _marker+952 /* clear marker[238] */

movl #238,_lowmarker /* first block cleared on switch*/

movl #238,_highmarker /* last block cleared on switch*/

L405:

cmpl #0,_marker+952 /* check if block 238 is in cache*/

jeq LN191 /* if not then invoke simulator */

cmpl #9992,_c_switch /* check if switch in 8 cycles */

jge LN191 /* if so then invoke simulator */

addql #8,_c_switch /* adjust switch information */

addql #8,_c_hits /* adjust number of cache hits*/

LN192:

...

jne L405

movl #-1,_highmarker /* out of loop so nothing to clear*/

.

.

.

LN191:

movl #1,_marker+952 /* block 238 is now in cache*/

movl #238,_startblk /* first block in sequence*/

pea #238 /* last block in sequence*/

jbsr _traceblknum /* call trace routine */

addql #4,a7 /* adjust stack pointer */

jra LN192 /* execute insts in block 238 */

Figure 3: Assembly Code with Technique D

markers of the predecessor and/or successor blocks.If set,
then the call to the cache simulator is avoided and the con-
text switch information and cache hit counter are adjusted.

Technique E

Technique E is similar to Technique D except that
inter-procedural cache analysis is performed.Initially, a
call graph of the functions being measured is constructed
using the information provided from the first compilation
pass. Then,it is determined if each subtree of the graph, a
function and the routines that can be invoked from that
function, can fit in the cache at the same time. If an entire
function and the routines that can be invoked will fit in the
cache, then Technique D, except for clearing the block
markers, is used throughout the function.In a function that
does not fit in cache, instructions are inserted preceding
calls to a function being measured that does fit in the cache
to clear the markers associated with that function.Loops
with calls to functions that are being measured may also be
candidates for avoiding references to be processed by the
cache simulator. If the entire loop and the functions that
can be invoked from the loop can fit in cache at the same
time, then the block markers associated with the blocks in
the loop and with each of the functions that can be invoked
are cleared in the preheader block of the loop.Inter-
procedural cache analysis can still be used when call graphs

are cyclic (i.e. recursive). Technique E (and Techniques F
and G), however, cannot be used with indirect calls since
the function being invoked is not known at compile-time
and the call graph cannot be accurately constructed.The
example given in Figure 3 for Technique D showed a loop
with a single block that contained no calls. Figure 4 shows
the same loop except with one call to a routine being mea-
sured. Thetwo loop blocks and the three basic blocks in the
routine fit in the cache at the same time.

clrl _marker+952 /* clear marker[238] */

clrl _marker+956 /* clear marker[239] */

clrl _marker+1056 /* clear marker[264] */

clrl _marker+1060 /* clear marker[265] */

clrl _marker+1064 /* clear marker[266] */

movl #238,_lowmarker /* first block cleared on switch*/

movl #266,_highmarker /* last block cleared on switch*/

L405:

cmpl #0,_marker+952 /* check if block 238 is in cache*/

jeq LN191 /* if not then invoke simulator */

cmpl #9995,_c_switch /* check if switch in 5 cycles */

jge LN191 /* if so then invoke simulator */

addql #5,_c_switch /* adjust context switch info */

addql #5,_c_hits /* adjust number of cache hits*/

LN192:

...

jbsr _foo

cmpl #0,_marker+956 /* check if block 239 is in cache*/

jeq LN193 /* if not then invoke simulator */

cmpl #9997,_c_switch /* check if switch in 3 cycles */

jge LN193 /* if so then invoke simulator */

addql #3,_c_switch /* adjust context switch info */

addql #3,_c_hits /* adjust number of cache hits*/

LN194:

...

jne L405

movl #-1,_highmarker /* out of loop so nothing to clear*/

Figure 4: Assembly Code with Technique E

Technique F

To be able to avoid address references being pro-
cessed by the cache simulator, Technique E required that all
the blocks in a loop and the blocks in the routines that can
be invoked from the loop fit in the cache at the same time.
Technique F relaxes this requirement. All of the blocks in
the loop itself still have to fit in the cache at the same time.
Also, each individual function invoked directly from the
loop and the set of routines the function could in turn invoke
have to fit in the cache at the same time.Otherwise there
can be conflicts between blocks.For instance, a basic block
in a routine invoked from the loop could conflict with a
basic block in the loop or a block from a different routine
invoked from the same loop.A heuristic was applied that
requires that at least one half of the blocks in the loop and
the routines invoked cannot conflict. If the heuristic is not

-5-

satisfied then Technique C is used for the blocks in the loop.
Otherwise, if a block in the loop conflicts with blocks in
routines invoked from the loop, then instructions are
inserted to clear the markers associated with the conflicting
blocks in the invoked routines when the loop block is
executed. Likewise, when a block in an invoked function
conflicts with a loop block or a different routine that is
invoked from the same loop, then instructions are inserted
to clear the conflicting blocks before the call instruction to
the invoked function. Figure5 shows a loop containing a
block that conflicts with a basic block in a routine invoked
from the loop.

L85:

...

cmpl #0,_marker+2120 /* check if block 530 is in cache*/

jeq LN141 /* if not then invoke simulator */

cmpl #9981,_c_switch /* check if switch in 19 cycles */

jge LN141 /* if so then invoke simulator */

addl #19,_c_switch /* adjust context switch info */

addl #19,_c_hits /* adjust number of cache hits*/

LN142:

clrl _marker+7344 /* clear block 1836 in foo */

...

clrl _marker+2120 /* clear block 530 in loop */

jbsr _foo

...

jne L85

Figure 5: Assembly Code with Technique F

Technique G

Techniques D-F attempt to find basic blocks that are
already resident in the cache because of temporal locality
due to loops. There is, however, another situation when
temporal locality can result in blocks being resident.This
situation occurs when a routine is invoked from more than
one location and some blocks in the routine have not been
replaced when the second call occurs. As stated previously,
the block markers of a function that do fit in the cache are
cleared before the call instruction to that function in a rou-
tine that does not fit in cache.At the point when a call to
such a function is encountered in Technique G, the compiler
attempts to determine if any block markers in the function
have already been cleared and the lines associated with
those blocks have not been replaced.Any block that is
determined to be resident, and thus its associated marker is
already cleared, need not have its marker cleared again.
The example in Figure 6 has two calls to the same function
that fits in the cache. In this example, the instructions fol-
lowing the first call reside in the same line as only one of
the blocks in the function being invoked.

clrl _marker+528 /* clear marker[132] */

clrl _marker+532 /* clear marker[133] */

clrl _marker+536 /* clear marker[134] */

clrl _marker+540 /* clear marker[135] */

movl #132,_lowmarker /* first block cleared on switch*/

movl #135,_highmarker /* last block cleared on switch*/

jbsr _foo

... /* insts conflicting with block 132 */

clrl _marker+528 /* clear marker[132] */

jbsr _foo

movl #-1,_highmarker /* out of func so nothing to clear*/

Figure 6: Assembly Code with Technique G

RESULTS

The set of test programs used in this experiment and
their associated code size are shown in Table I. The code
size for each program does not include the routines from the
run-time library since their source code was not available.
The techniques discussed in this paper could be used to pro-
cess assembly or object files.Unfortunately, this would
complicate implementation of the techniques since portabil-
ity would be decreased and the control-flow and data-flow
information already available in a compiler would have to
be recalculated. A C compiler for the Motorola
68020/68881 was implemented within theeaseenvironment
[DaW90], which consists of a compiler generation system
calledvpo [BeD88] and measurement tools. The compiler
was modified to implement each of the seven techniques
described in the previous section. Cache performance mea-
surements were obtained for each program within the test
set using each of the techniques.The measurements
obtained for each specific program were not affected by the
technique used. Identical results occurred, the exact num-
ber of hits and misses, despite periodic simulated context
switches and each program requiring at least one million

Name Descriptionor Emphasis Size in Bytes

compact Huffman Coding Compression 4322

cpp CPreprocessor 12678

diff Differences between Files 9166

lex Lexical Analyzer Generator 26318

sed StreamEditor 13946

sort Sortor Merge Files 5500

tbl Table Formatter 24592

yacc Yet Another Compiler-Compiler 22392

Table I: Test Programs

-6-

cache references.

Periodic context switches were simulated by invali-
dating the entire cache every 10,000 units of work. A cache
hit was assumed to require one work unit while a cache
miss was assumed to require ten.The context switch inter-
val and estimated time units required for a hit versus a miss
are the same as those used in Smith’s cache studies [Smi82].
Though the experiments in this paper simulated context
switching based on estimated cache work to check that
identical measurements were obtained with the different
techniques, other methods to determine context switch
points could also be used.

Tables II and III show the number of times that the
cache simulator was invoked for each program using each
of the techniques for a 1K byte direct-mapped cache with a
16 byte line size. The hit ratio is given to indicate the per-
centage of references that are candidates for not being pro-
cessed by the cache simulator. Note that the number of
calls to the cache simulator using Technique A is the same
as the number of instructions that were executed.3 The
results using Technique B indicate that there were on aver-
age 2.77 instructions per basic block being executed. There
was also on average 5.29 contiguous instructions being pro-
cessed by the cache simulator using Technique C.Tech-
nique D, which requires no inter-procedural analysis,
resulted in a substantial improvement over Technique C.
This indicates that a large percentage of instructions
executed in programs occur in loops with no calls.Tech-
niques E, F, and G appear to be more closely affected by the
hit ratio. The results indicate that Technique F has a slight
improvement over Technique E. Technique G, however,
rarely resulted in fewer references being processed as com-
pared to Technique F. It is interesting to note that using
Techniques E, F, and G can occasionally result in more
address references being processed by the cache simulator.
This situation can occur when the loops that do fit in cache
are also in the functions that fit in cache.Since each block
in these functions are processed individually, then the
blocks outside the loops in these functions would require
more references to be processed by the cache simulator
since the method used in Technique C is not applied.

3 The number of executed instructions is slightly less than the total
cache references simulated since a Motorola 68020/68881 instruction may
span two cache lines.

Instructions

Executed
Program HitRatio

compact 95.25% 4,699,295

cpp 93.78% 1,322,671

diff 99.54% 3,425,264

lex 99.48% 36,844,880

sed 96.49% 1,643,093

sort 96.91% 1,778,463

tbl 86.59% 2,715,097

yacc 98.63% 23,960,045

av erage 95.83% 9,548,601

Table II: Measurements with a 1K Byte Cache

Relative to Technique A

B C D E F G
Program

compact 26.51% 13.21% 10.92% 8.03% 8.03% 8.03%

cpp 26.53% 15.75% 11.07% 11.01% 11.02% 11.02%

diff 29.83% 15.07% 3.22% 1.22% 0.77% 0.77%

lex 50.55% 19.47% 2.32% 1.89% 0.94% 0.94%

sed 45.86% 26.84% 6.99% 6.92% 5.32% 5.32%

sort 34.36% 18.49% 12.24% 12.59% 12.59% 12.59%

tbl 30.70% 19.65% 17.28% 16.78% 16.36% 16.24%

yacc 44.58% 22.89% 5.17% 4.52% 3.51% 3.51%

av erage 36.12% 18.92% 8.65% 7.87% 7.32% 7.30%

Table III: Calls to Cache Simulator with a 1K Byte Cache

Table IV shows the number of times that the cache
simulator was invoked with cache sizes ranging from 2K to
16K bytes. Increasing the cache size did not vary the num-
ber of references processed by the cache simulator using
Technique A since the number of instructions that were
executed remained the same. Also, the number of refer-
ences processed using Techniques B, C, and D varied only
slightly as the cache size was increased.4 Therefore, only
the hit ratio and results from Techniques E, F, and G were
presented in Table IV. Slightly varying number of refer-
ences processed when the cache size was increased for each
program using Technique D indicates that loops with no
calls in the test set always fit in a 1K byte cache.Unlike
Techniques A-D, Techniques E-G improved as the cache
size and hit ratios increased.For a program that executes a
very large number of instructions, more time may be saved

4 When a context switch could occur in a basic block, the cache sim-
ulator processes each instruction within the block individually. Since
changing the cache size typically resulted in context switches occurring in
basic blocks with a different number of instructions, there was a slight vari-
ation in the number of times that the cache simulator was invoked.

-7-

Cache Relative to Technique A

E F GSize
Program HitRatio

compact 96.04% 8.03% 8.03% 8.03%

cpp 96.52% 11.03% 11.03% 11.02%

diff 99.68% 1.22% 0.77% 0.77%

2K lex 99.49% 0.94% 0.94% 0.94%

sed 98.23% 6.92% 3.93% 3.93%

bytes sort 99.83% 9.91% 5.41% 5.41%

tbl 93.94% 13.40% 13.42% 13.17%

yacc 99.28% 2.88% 2.89% 2.89%

av erage 97.88% 6.79% 5.80% 5.77%

compact 97.63% 8.03% 2.46% 2.46%

cpp 97.72% 11.23% 11.07% 11.07%

diff 99.75% 0.28% 0.28% 0.28%

4K lex 99.59% 0.94% 0.94% 0.94%

sed 98.23% 3.93% 3.93% 3.93%

bytes sort 99.83% 0.22% 0.23% 0.23%

tbl 95.69% 13.38% 13.41% 13.16%

yacc 99.45% 2.86% 2.88% 2.88%

av erage 98.49% 5.11% 4.40% 4.37%

compact 99.26% 0.72% 0.72% 0.72%

cpp 98.06% 10.90% 10.30% 10.30%

diff 99.75% 0.28% 0.28% 0.28%

8K lex 99.60% 0.92% 0.92% 0.92%

sed 99.11% 0.82% 0.82% 0.82%

bytes sort 99.82% 0.22% 0.22% 0.22%

tbl 96.76% 13.41% 13.44% 13.19%

yacc 99.48% 0.97% 0.99% 0.99%

av erage 98.98% 3.53% 3.46% 3.43%

compact 99.26% 0.72% 0.72% 0.72%

cpp 98.39% 1.36% 1.36% 1.36%

diff 99.75% 0.28% 0.28% 0.28%

16K lex 99.60% 0.44% 0.41% 0.41%

sed 99.11% 0.82% 0.82% 0.82%

bytes sort 99.83% 0.22% 0.22% 0.22%

tbl 97.89% 10.78% 7.05% 6.95%

yacc 99.48% 0.63% 0.63% 0.63%

av erage 99.16% 1.91% 1.44% 1.42%

Table IV: Calls to Cache Simulator with Larger Cache Sizes

by recompiling the program when the number of sets in the
cache configuration being measured is increased.

Table V shows the execution time required using a 1K
byte direct-mapped cache with a 16 byte line size relative to
execution without tracing for each program.5 Note that

5 All execution times reported in this paper were obtained by deter-
mining the average of ten executions of each instance of a program.

execution times of the programs being measured include
both the time required for generating the trace and analyz-
ing the references with the cache simulator. The ratio to
execution time without tracing for the different programs
with each technique varied. For instance, the ratio for Tech-
nique A for thelex program was over 3.8 times as great as
the ratio fortbl. The ratio to execution time without trac-
ing is affected by a number of factors which include the
av erage execution time required for the non-tracing instruc-
tions executed, the average number of instructions in
executed basic blocks, and the percentage of time spent in
the library routines which were not measured.6

Ratio to Execution Time without Tracing

A B C D E F G
Program

compact 124.57 51.35 40.23 33.22 25.70 25.74 25.80

cpp 113.05 47.83 40.24 31.55 31.62 31.62 31.67

diff 83.04 35.64 26.51 8.31 5.20 4.50 4.51

lex 188.68 118.70 73.37 15.13 13.68 10.69 10.69

sed 143.18 87.62 72.85 24.94 25.35 22.05 22.05

sort 161.03 83.41 64.75 46.39 47.64 47.72 47.64

tbl 49.65 25.22 22.88 21.01 21.10 20.82 20.35

yacc 124.56 75.12 54.82 17.29 16.46 14.20 14.09

av erage 123.47 65.61 49.46 24.73 23.34 22.17 22.10

Table V: Execution Time with a 1K Byte Cache

Table VI shows the execution time overhead with
cache sizes ranging from 2K to 16K bytes. In general, the
execution times decrease as the number of references pro-
cessed by the cache simulator decrease. Thus, as the cache
size increases, the execution times for programs using Tech-
niques E, F, and G decrease. The execution times for Tech-
niques A-D varied only slightly since the number of refer-
ences processed by the cache simulator only changed
slightly with different cache sizes simulated.Therefore,
only the execution time ratios for Techniques E, F, and G
are presented in Table VI.

6 Smaller ratios to execution times without tracing were reported for
a method similar to Technique B in thetrapedssystem [StF89] This dis-
crepancy was probably due to their choice to simulate more floating-point
intensive programs, to not introduce or check for pending context switches,
and the use of a cache simulator tuned for specific cache configurations.

-8-

Cache Ratioto Execution Time without Tracing

E F GSize
Program

compact 25.58 25.63 25.57

cpp 29.58 29.60 29.58

diff 5.12 4.41 4.44

2K lex 10.83 10.83 10.75

sed 16.90 16.90 16.91

bytes sort 37.72 24.30 24.33

tbl 15.96 16.32 16.01

yacc 12.48 12.53 12.52

av erage 19.27 17.57 17.51

compact 24.47 11.56 11.51

cpp 29.65 29.17 29.45

diff 3.76 3.78 3.81

4K lex 11.02 10.93 10.98

sed 16.98 17.19 17.14

bytes sort 6.87 8.64 8.55

tbl 15.42 15.42 15.05

yacc 12.52 12.83 12.68

av erage 15.09 13.69 13.65

compact 6.67 6.67 6.67

cpp 29.14 27.93 27.95

diff 4.08 4.08 4.08

8K lex 11.38 11.47 11.38

sed 9.49 9.59 9.61

bytes sort 7.63 7.64 7.65

tbl 15.22 15.21 15.29

yacc 9.08 9.11 9.12

av erage 11.59 11.46 11.47

compact 7.44 7.44 7.45

cpp 8.99 9.02 8.97

diff 4.73 4.73 4.71

16K lex 11.91 11.74 11.74

sed 10.95 10.97 10.97

bytes sort 8.58 8.60 8.58

tbl 13.29 10.14 10.02

yacc 8.96 8.97 8.92

av erage 9.36 8.95 8.92

Table VI: Execution Time with Larger Cache Sizes

FUTURE IMPROVEMENTS

The tracing overhead is dependent on the perfor-
mance of the cache simulator. Less tracing overhead would
be required if cache simulators were used that were tuned
for a particular cache configuration.This scheme, however,
would be less flexible since a program would have to be
relinked each time the cache configuration was changed.

The introduction of periodic context switches also
increased the execution times. Figure 3 shows an example

of instructions inserted to keep track of the intervals
between context switches for Techniques D-G. The absence
of context switches would also allow other techniques to be
used to further reduce the tracing overhead. For instance,
the number of cache hits and misses for the blocks in a loop
that fits in cache could be adjusted after the loop exits,
rather than each time the block was executed. Themarker
of a block within the loop would be incremented each time
the block is entered. Only the first reference to each block
would require simulation. The order of simulating the first
references to the different blocks within the loop would not
affect the total number of hits and misses.

CONCLUSIONS

The techniques presented in this paper have been
shown to significantly reduce the time required for instruc-
tion cache performance evaluations as compared to more
traditional approaches. This improvement occurred despite
no special requirements to implement the techniques7 and
without any loss of accuracy. Technique D is particularly
attractive since with no interprocedural analysis required it
is simple to implement and still results in a significant
improvement. Thoughonly the number of instruction refer-
ences to be processed can be reduced, the techniques can
also be used when evaluating split instruction and data
caches. Therestill should be a measurable improvement in
this situation since typically the majority of address refer-
ences being processed are instructions [BKW90].The
effective evaluation of large second-level caches may
require billions of references to be traced.When positioned
behind a split first-level cache, the techniques presented in
this paper would be very useful.

REFERENCES

[ASH86] A. Agarwal, R. L. Sites, and M. Horowitz,
“ATUM: A New Technique for Capturing
Address Traces Using Microcode,” Proceed-
ings of the 13th Annual Symposium on Com-
puter Architecture, pp. 119-127 (June 1986).

[BeD88] M. E. Benitez and J. W. Davidson, “A Portable
Global Optimizer and Linker,” Proceedings of
the SIGPLAN ’88 Symposium on Programming
Language Design and Implementation, pp.
329-338 (June 1988).

[BKW90] A. Borg, R. E. Kessler, and D. W. Wall, “Gen-
eration and Analysis of Very Long Address
Traces,” Proceedings of the 17th Annual

7 Some approaches have dedicated a set of registers to be used ex-
clusively for tracing and/or require special operating system support
[BKW90, EKK90, ASH86, Wie82].

-9-

International Symposium on Computer Archi-
tecture, pp. 270-279 (May 1990).

[DaW90] J.W. Davidson and D. B. Whalley, “Ease: An
Environment for Architecture Study and Exper-
imentation,” Proceedings SIGMETRICS ’90
Conference on Measurement and Modeling of
Computer Systems, pp. 259-260 (May 1990).

[EKK90] S.J. Eggers, D. R. Keppel, E. J. Koldinger, and
H. M. Levy, “Techniques for Efficient Inline
Tracing on a Shared-Memory Multiprocessor,”
Proceedings SIGMETRICS ’90 Conference on
Measurement and Modeling of Computer Sys-
tems, pp. 37-47 (May 1990).

[HeP90] J.Hennessy and D. Patterson,Computer Archi-
tecture: A Quantitative Approach, Morgan
Kaufmann, San Mateo, CA (1990).

[HiS89] M. D. Hill and A. J. Smith, “Evaluating Asso-
ciativity in CPU Caches,” IEEE Transactions
on Computers 38(12) pp. 1612-1630 (Decem-
ber 1989).

[HLT87] M. Huguet, T. Lang, and Y. Tamir, “A B lock-
and-Actions Generator as an Alternative to a
Simulator for Collecting Architecture Measure-
ments,”Proceedings of the SIGPLAN ’87 Sym-
posium on Interpreters and Interpretive Tech-
niques, pp. 14-25 (June 1987).

[HwC89] W. W. Hwu and P. P. Chang, “Achieving High
Instruction Cache Performance with an Opti-
mizing Compiler,” Proceedings of the 16th
Annual Symposium on Computer Architecture,
pp. 242-250 (May 1989).

[LPI88] S. Laha, J. H. Patel, and R. K. Iyer, “Accurate
Low-Cost Methods for Performance Evaluation
of Cache Memory Systems,” IEEE Transac-
tions on Computers 37(11) pp. 1325-1336
(November 1988).

[McF89] S. McFarling, “Program Optimization for
Instruction Caches,” Proceedings of the Third
International Conference on Architectural Sup-
port for Programming Languages and Operat-
ing Systems, pp. 183-191 (April 1989).

[MiF88] C. L. Mitchell and M. J. Flynn, “A Workbench
for Computer Architects,” IEEE Design & Test
of Computers5(1) pp. 19-29 (February 1988).

[PeH90] K.Pettis and R. Hansen, “Profile Guided Code
Positioning,”Proceedings of the SIGPLAN ’90
Conference on Programming Language Design
and Implementation, pp. 16-27 (June 1990).

[PeS77] B.L. Peuto and L. J. Shustek, “An Instruction
Timing Model of CPU Performance,” Proceed-
ings of the 4th Annual Symposium on Computer
Architecture, pp. 165-178 (March 1977).

[Puz85] T. R. Puzak, Analysis of Cache Replacement
Algorithms, PhD Dissertation, University of
Massachusetts, Amherst, MA (February 1985).

[Smi77] A. J. Smith, “Two Methods for the Efficient
Analysis of Memory Address Trace Data,”
IEEE Transactions on Software Engineering
3(1) pp. 94-101 (January 1977).

[Smi82] A. J. Smith, “Cache Memories,” Computing
Surveys14(3) pp. 473-530 (September 1982).

[StF89] C.Stunkel and W. Fuchs, “TRAPEDS: Produc-
ing Traces for Multicomputers Via Execution
Driven Simulation,” Proceedings of the Inter-
national Conference on Measurement and
Modeling of Computer Systems, pp. 70-78
(May 1989).

[WaB90] W. Wang and J. Baer, “Efficient Trace-Driven
Simulation Methods for Cache Performance
Analysis,” Proceedings SIGMETRICS ’90 Con-
ference on Measurement and Modeling of Com-
puter Systems, pp. 27-36 (May 1990).

[Wie82] C. A. Wiecek, “A Case Study of VAX-11
Instruction Set Usage for Compiler Execution,”
Proceedings of the Symposium on Architectural
Support for Programming Languages and
Operating Systems, pp. 177-184 (March,
1982).

-10-

