
each execution class is executed is inserted at the beginning of the
first basic block in the execution class. 

At the end of the execution of the program, the number of
times that each execution class is executed is written to a file. The
execution counts and the characteristics of the instructions can then
both be used to produce dynamic measurements. The
characteristics of the instructions can also be used to produce static
measurements.

ease has been ported to ten different machines to compare
current architectures. Measurements from the execution of a test set
of nineteen C programs were obtained for each of the architectures.
The detail and accuracy of the reports produced by ease allowed
insights to be drawn when analyzing the measurements. The
measurements collected include:

• instruction path length 

• instruction path size

• instruction type distribution

• addressing mode distribution

• memory reference size distribution

• memory reference address distribution

• register usage

• condition code usage

• conditional branches taken

• average number of instruction between branches

• data type distribution

The measurements are sufficiently detailed to determine the
number of times each combination of addressing mode and data
type is used for each field of each type of instruction. Results
comparing the ten architectures analyzed appears in WHAL89. 

In addition to using ease to evaluate and analyze existing
instruction set architectures, it can be used to help design new
machines [DAVI 89b]. In this case, vpo emits code for an existing
host machine that emulates the instruction set of the machine being
designed. vpo’s organization permits this to be done quickly and
easily as follows. The last step in the compilation process is the
conversion of an machine-independent representation of an
instruction to assembly language for the target machine and its
emission to a file that will be processed by the system’s assembler.
In order to evaluate an architecture that does not exist, rather than
emit assembly code for the target machine, assembly code for an
existing architecture is emitted. Information about the effects of the
instruction are emitted as if the target architecture existed. 

ease has also been used to analyze different code generation
strategies. For instance, by recompiling the source files from the C
run-time library, different calling sequence conventions have been
investigated [DAVI 89a]. By extracting measurements of the
behavior of the code, the effect of any change can be easily
observed. 

This environment for the collection of architectural
measurements has been designed to require little effort when
retargeting for a new architecture. Since the code selector and other
optimizations are constructed automatically, a vpo-based compiler
is easy to retarget. Because the optimizer stores information about
instructions using a machine-independent representation, it is easy
to produce assembly code for both existing and proposed
architectures and to store instruction information for the collection

of measurements. Most of the code to perform the extraction of
measurements is also machine-independent. A vpo-based C
compiler for ten different machines was modified to collect
measurements as specified above. For each machine, it typically
took three to four hours to make the necessary machine-dependent
modifications to the compiler. 

The ease environment has been shown to be an efficient tool
for architectural evaluation and design. Since accurate and detailed
reports can be produced for a variety of measurements, the impact
of each modification to the compiler or architecture can easily be
determined. This allows one to use an iterative design method for
evaluation of performance in a quantitative manner. 

ACKNOWLEDGEMENTS 

Manuel Benitez helped implement the machine-independent
portion of  vpo. 

REFERENCES

[BENI88] M. E. Benitez and J.  W.  Davidson,  A  Portable
Global  Optimizer and Linker, Proceedings of the
SIGPLAN Notices  ’88  Symposium on   Programming
Language Design and  Implementation, Atlanta,
GA, June 1988, 329-338. 

[DAVI 84] J. W. Davidson and C. W. Fraser, Code  Selection
through  Object  Code Optimization, Transactions
on  Programming  Languages   and   Systems   6,4
(October 1984), 7-32. 

[DAVI 86] J.  W.  Davidson,  A  Retargetable   Instruction
Reorganizer,  Proceedings of the SIGPLAN  Notices
’86 Symposium  on  Compiler   Construction,  Palo
Alto, CA, June 1986, 234-241. 

[DAVI 89a] J. W. Davidson and D. B.  Whalley,  Methods  for
Saving  and  Restoring  Register  Values  across
Function Calls, Tech. Rep. 89-11, University  of
Virginia, November 1989. 

[DAVI 89b] J. W. Davidson and D. B. Whalley,  Reducing  the
Cost  of  Branches  by Using Registers, TR89-14,
University of Virginia, November 1989. 

[HUGU87] M. Huguet, T. Lang and Y.  Tamir,  A  Block-and-
Actions   Generator   as  an  Alternative  to  a
Simulator    for     Collecting     Architecture
Measurements, Proceedings of the SIGPLAN
Notices ’87 Symposium  on  Interpreters  and
Interpretive Techniques, St. Paul, MN, June 1987,
14-25. 

[WHAL89] D. B. Whalley, A Study  of  High-Level  Language
Architectures,   Ph.D.   Dissertation  Proposal,
University  of  Virginia,  Charlottesville,  VA, June
1989. 



 Gathering detailed measurements of the execution behavior of
an instruction set architecture is difficult. There are two major
problems that must be solved. First, for meaningful measurements
to be obtained, programs that represent typical work load and
instruction mixes must be used. This means that high-level
language compilers for the target architecture are required. This
problem is further compounded as most architectures require an
optimizing compiler to exploit their capabilities. Building such a
compiler can be a formidable task. 

The second problem is that gathering detailed dynamic
measurements of an architecture using typical user programs
reading typical data sets can consume significant computation
resources. For example, a popular way to gather execution
measurements is to simulate the architecture. This technique is
often used when the architecture in question does not yet exist, or is
not yet stable and available for production use. Depending on the
level of the simulation, programs can run 100 to 500 times slower
than directly-executed code [HUGU87]. Tracing is another
alternative one can use if the architecture being measured exists, is
accessible, and tracing is possible on that machine. Tracing can be
even slower than simulation [HUGU87]. Because of the large
performance penalties with these methods, the tendency is to use
small programs with small data sets. The relevance of measures
collected this way is always subject to question. 

This paper describes an environment called ease
(Environment for Architecture Study and Experimentation) that
solves both these problems. It consists of a easily retargetable
optimizing compiler that produces production-quality code. The
compiler also supports the generation of instrumented code that
gathers very fine-grained execution statistics with little overhead.
Typically, instrumented code runs 10 to 15 percent slower than
code that is not instrumented. Similarly, because information about
instructions are collected as a side effect of the compiler generating
code, compilation time is only increased by 15 to 20 percent. The
combination of an easily retargetable compiler and an efficient
method of observing the run-time behavior of real programs
provides an environment that is useful in a number of contexts. 

ease logically consists of two parts; the set of tools for

building optimizing compilers quickly and the tools that produce
and analyze the measurements of the execution behavior of the
instruction set architecture. The compiler technology is known as
vpo [BENI88, DAVI 84, DAVI 86]. An efficient way to collect
measurements for subsequent analysis is to modify the back end of
the compiler to store the characteristics of the instructions to be
executed and to produce code that will count the number of times
that each instruction is executed. These modifications have been
implemented in vpo and are shown in Figure 1. 

The first modification necessary to collect measurements is to
have vpo save the characteristics of the instructions that will be
executed.  During code selection, information about the
characteristics of the instructions are gathered and used for
semantic checks.  The semantic checks are extended to store these
characteristics with the instruction by invoking a machine-
independent routine. After all optimizations have been completed,
the information about each instruction is then written to a file for
subsequent processing. 

The second modification is to have  vpo generate code to
count the number of times each instruction is executed. Again this
is accomplished after all optimizations have been performed.
Within each function there are groups of instructions, basic blocks,
that are always executed the same number of times. There are also
groups or classes of basic blocks that are executed the same number
of times and these are denoted as execution classes. Using the
dataflow information collected by the optimizer, the execution
classes are determined and code to count the number of times that
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Figure 1. Schematic of ease.
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