On Providing Useful Information for Analyzing and Tuning
Applications

John Mellor-Crummey*, Robert Fowler!, and David Whalley?
! Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005
2Department of Computer Science, Florida State University, Tallahassee, FL 32306

johnmc@rice.edu, rif@rice.edu, whalley@cs.fsu.edu

Application performance tuning is a complex process that
requires correlating many types of information with source
code to locate and analyze performance problems bottle-
necks. Existing performance tools don’t adequately support
this process in one or more dimensions. We describe two
performance tools, MHSim and HPCView, that we built to
support our own work on data layout and optimizing com-
pilers. Both tools report their results in scope-hierarchy
views of the corresponding source code and produce their
output as HTML databases that can be analyzed portably
and collaboratively using a commodity browser.

MHSim is an integrated simulator and instrumentation tool
designed to investigate problems with poor memory hier-
archy utilization in Fortran programs. MHSim quantifies
cache conflicts, temporal reuse, and spatial reuse, and it cor-
relates simulation results to individual references and loops
in the target program.

When browsing MHSim output, as shown in Figure 1, the
upper right pane displays source code annotated with hy-
perlinks. Clicking on a # hyperlink that precedes an array
reference scrolls each of the panes below to display the sim-
ulation results associated with that reference. To the left of
each loop header (scope) are two hyperlinks. Clicking the ’S’
hyperlink displays loop summary information in the panes
below rather than the reference-level information shown in
the figure. Clicking the A’ hyperlink displays loop-level
summary information for each array referenced in the loop.
The simulation results for each level of the memory hier-
archy are displayed in panes below the source pane, one
line per array reference in the source code. The bottom
pane in the window shows evictor information. For each
reference in the source program, the evictor pane presents a
sorted list of source-code references that cause interference
(cache evictions, including self-interference) with this refer-
ence. Clicking on the hyperlink associated with an evicting
reference will auto-navigate all of the panes to display the
source code and simulation output for that reference. The
evictor information is an effective, intuitive mechanism for

identifying and quantifying patterns of cache interference.

HPCView produces a navigable HTML document that com-
bines performance metrics from diverse sources, synthsizes
new metrics, and correlates them with program source code.
HPCView inputs are “profiles” in a standardized format.
Simple scripts convert vendor- or tool- specific data into the
HP(CView format. To date, the principal source of input
data have been profiles generated by sampling the program
counter at events such as timers or the overflow of hardware
performance counters tracking interesting events, e.g. cache
misses. Other “profile-like” data sources include simulators
and static analysis tools.

Figure 2 shows an HPCView screenshot. From left to right,
the data columns are: cycles, measured with a hardware
counter; ideal cycles, computed by pizte using a combi-
nation of static analysis and loop counts; stalls, computed
by HPCView by subtracting ideal cycles from cycles; and
FLOPS, from a hardware counter. Each line in the source
pane with associated performance information is marked
with an ‘L’ hyperlink that navigates and highlights the other
panes. Below the source pane is a flat, line-oriented perfor-
mance data table. Each line is labelled a hyperlink con-
taining file name and line number. The table is sorted in
descending order by the performance metric column is se-
lected by clicking on the ‘sort’ link in the column header.
Sorting affects both the flat and hierarchical displays. The
lower three panes of window are a hierarchical display of
data aggregated by program scopes: program, source file,
procedure, loop, and source line. In general, data sources
provide data for only individual source lines. We combine
that data with scope information obtained through static
analysis to aggregate the data at the higher levels. The
three panes show the data, from top to bottom, for a par-
ent scope, the currently selected scope, and its immediate
children. Links navigate up and down the hierarchy.

MHSim and HPCView have proven themselves to be ex-
tremely useful for analysis and tuning for two general rea-
sous. First, they explicitly present information that is useful
for tuning. Of special utility are the evictor information of
MHSim and the combination of data, including computed
metrics, from multiple sources in HPCView. Second, by
combining multiple views of performance data with a source
browser under a familiar, browsable interface, these tools
dramatically reduce the effort needed to do performance
analysis. This reduction of effort is of particular importance
in repeated cycles of measurement, analysis, and tuning.

Cache Level) -Miss— ——-Miss— —Temporal —Spatial-

endif
compute Fﬂux Pn moments (I-1inel

do i =1, it
#fluxCi, J, K, 12 = #Flux{d, 3, k, 1) + #wlmd * #phidil
d

1,
Fluxti, 1, k, n) = #flux{i, 3, k, n) + #pnim, n, iqd

#1
sweep.f * o gwdm) * #phicid
463 enddo
464 enddo
465
466 i compute DSA face currents (I-Tine)
467 if (do_dsa) then
S1A468 do 1 =1, it
469 #faceli + 13, 1, k, 12 = #faceli + 13, i, k, 12 + #wmulm)
o gphii(id
470 #face(i, J + 33, k, 22 = #face(i, § + 33, k, 22 + #wetaim)
i)

#ow gphiibli, Tk, mi
. #face(1, 3, k + k3, 3) = #face(i, J, k + k3, 3) + #wtsilm)

Rank —-——————- Reference Mame--—-—-——- ——-| Hitg==~ = Misses—— % Tot] —--Ratio-- —-Ratio-- ——— Use-—- numBlocks
TLB 1 #fusii, 3.k, 1.788+07 2.20e+05 24,58 1.22e-02 4,.668-01 3.41e-03 duer0fd
2 #src(i,ik,m 1.78e+07 2.20e+05 24,57 1.22e-02 ¢,60e-01 2.208-03 6,052+048
=B =
L1 1 #Fux(1,7,k,nd 1.33e+07. 4.68e+06 20.54 2.60e-01 4.50e-04 9.158-01 &.|8e+0]
2 #sreld,i,k,ny 1.332+07 4.68e+06 20.54 2.60e-01 4.362-04 9.15e-01 & |le+0
Lz 2 #flux{,3,k.nd 4. 582+06 1,01e+05 18,67 2.17e-02 9.832-01 3.15e-03 0 Sie+0
3 #sreldi, ik, 12 1.51e+06 5,33e+04 9 82 3.42e-02 9.962-01 3.48e-03 © +0
i F AR : 3
||===————-Reference Ham Cache = Evictor Name-----——--—— ——| Count-- Percnt
EVICTOR J#FTuxCid ko) TLE #F1ux(i,3,k,n) 69010 31,36
#srcidi,i.k,nd 43666 19 84
#37gt(1,3 kK 25764 11.71
#Flux(ii .k, 12 25083 11.40
#face(i+i3,3,k,1) 18828 8.55
#face(i,j+i3. k.20 15635 7.10
#face(i,j k+k3, 32 10982 4,99
#sre(i,3.Kk, 1) 8617 3,92

Figure 1: The MHSim user interface.

SOURCE FILE: . /heat.F
1521
1522 ifChumdim. eq. 32then
1523
1524 do 1=1,nhumcel]
LisEs vetry(13=vctrx{1) &
1526 +cell_of fCLO_SIDE,®_DIR,1*vctrx{cell_pnt{LO_SIDE,X_DIR,1))
1527 +cell_off(HI_SIDE,%_DIR,1)*vctrx{cell_pnt{HI_SIDE,X _DIR,12)
1528 +cell_of fFCLO_SIDE,Y¥_DIR,1}*vctrx{cell_pnt{LO_SIDE,¥_DIR,1))
1529 +cell_off(HI_SIDE,¥_DIR,1)*vctrx{cell_pnt{HI_SIDE,Y_DIR,12)
1530 +cell_off{LO_SIDE,Z_DIR,1}*vctrx{cell_pnt{LO_SIDE,Z_DIR,1))
1531 +cell_off(HI_SIDE,Z_DIR,1)*vctrx{cell_pnt{HI_SIDE,Z DIR,12})
IS Bl enddo
1533
1534 else ifinumdim.eq.2lthen
1535
1536 do T=1,numcell
118 ctrv{]d=votrx(]d

| sorted | sort | sort | sort |

Location | CYCLES % | TCYCLES % | STALL % | FLoPs 5

Program | 1.69e+10 100 | 1.67e+09 100 | 1.52e+10 100 | 1,67e+09 100 |

| 5.61e+09 39 | 4.10e+08 24 | 6.20e+09 41 | 4.10e+08 24 |

| 2.39e+09 14 | 5.412+08 32 | 1.85e+09 12 | 5.41e+08 32 |

| 1.82e+09 11 | 6.692+07 4 | 1.75e+09 12 | 6.69e+07 4 |

| 9.92e+08 6 | 5.73e+07 3| 9. 34e+08 6 | 5.73e+07 3

| 8.99e+08 5 | 6.36e+07 4 | B 36e+08 5 | B.36e+07 4 |

| 8.13e+08 5 | 1.36e+08 8 | 6.77e+08 4 | 1.36e+08 g |

| 7.55e+08 4 | | —1.00e+00 o | |

| 5.55e+08 3 1.35e+08 8 | 4.19e+08 3 | 1.35e+08 8 |

| 4.02e+08 2 | 1.43e+07 1| 3.87e+08 3 | 1.43e+07 1

| 3.14e+08 2 | | —1.00e+00 O | |

F | 1.94e+08 1 | 1.35e+08 8 | 5.92e+07 0 | 1.35e+08 g |
Parent Scope $Program | 1.69e+10 100 | 1,672+08 100 | 1,52e+10 100 1.67e+08 100 |
Current Scope heat.F | 1.69e+10 100 | 1.67e+09 100 | 1.52e+10 100 | 1.67e+09 100 |
Child Scopes #mcgds Cheat F:1160) | B.60e+09 51 | 1.09e+09 65 | 7.51e+090 49 | 1.09e+09 65 |
: #mvmult Cheat.F:1498) | 6.61e+09 39 | 4.10e+08 24 | 6.20e+08 41 | 4.10e+08 24 |
#dotprod Cheat F: 10862 | B.142+08 5 | 1.36e+08 8 | 6.738+08 4 | 1.36e+08 |

#faceget (heat.F:15832 | 3.14e+08 2| | —1.00e+00 0| |

B

Figure 2: HPCView displaying both measured and computed metrics.

