

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

EFFECTIVE EXPLOITATION OF A LARGE DATA REGISTER FILE

By

MARK C. SEARLES

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:
Fall Semester, 2006

 ii

The members of the Committee approve the Thesis of Mark Searles defended on
September 29, 2006.

 David Whalley

 Professor Co-Directing Thesis

 Gary Tyson
 Professor Co-Directing Thesis

 Xin Yuan
 Committee Member

The Office of Graduate Studies has verified and approved the above named
committee members.

 iii

For Tink and her pixie dust

 iv

ACKNOWLEDGEMENTS

I would like to thank my advisors – Dr. David Whalley and Dr. Gary Tyson – for their, well,

advice, guidance, and direction. I also would like to thank the other members of the Compilers

Group, in particular the senior members, who consistently offered their expertise on the

research compiler/simulator infrastructure. Your insights were invaluable as they saved

countless hours by allowing me to leverage the existing framework, to suit my needs, rather

than reinventing it.

Lastly – and most importantly – I thank my wife, Jennifer, without whom none of this would

have been possible. Your unfailing and unwavering support is invaluable; I love you with all my

heart.

 v

TABLE OF CONTENTS

List of Tables.. vii
List of Figures ... viii
Abstract .. ix

1. INTRODUCTION ... 1
1.1 Performance of the Memory Hierarchy.. 2

2. LDRF ARCHITECTURE .. 4
2.1 Architecture Support.. 4

2.1.1 Use of Register Windows in the LDRF ... 5
2.2 LDRF Access Time ... 6
2.3 Identification of Candidates for the LDRF ... 7

2.3.1 Characteristics of the Ideal Candidate Variable to be Promoted to the LDRF............ 7
2.3.2 Restrictions on Variables Placed in the LDRF.. 8

3. EXPERIMENTAL FRAMEWORK.. 10
3.1 Compiler .. 10
3.2 Simulator ... 10
3.3 Benchmarks .. 11

3.3.1 MiBench Embedded Applications Benchmark Suite... 11
3.3.2 Digital Signal Processing Kernels... 12

3.4 Experimental Test Plan ... 13
4. COMPILER ENHANCEMENTS... 15

4.1 Frontend Modifications .. 15
4.1.1 Gregister and Gpointer Keywords .. 15
4.1.2 Syntax, Semantic, and Type Checking... 17
4.1.3 Type Extension of LDRF Variables... 18

4.2 Middleware Modifications .. 19
4.3 Backend Modifications .. 20

4.3.1 Modifications to Generate Naïve LDRF Code .. 20
4.3.2 Application-Wide Call Graph... 20
4.3.3 Coalescing Optimization ... 21

4.4 Compilation Tools.. 31
4.4.1 LDRF Static Compilation Tool .. 32
4.4.2 LDRF Assembler Directive Collection Tool... 32

4.5 Assembler Modifications ... 34
4.6 Linker Modifications... 34
4.7 Compiler Analysis Tools.. 35

 vi

5. SIMULATOR ENHANCEMENTS .. 36
5.1 Sim-outorder.. 37

5.1.1 Analysis Tools... 37
5.2 Sim-profile ... 39
5.3 Sim-wattch... 39

6. EXPERIMENTAL TESTING .. 40
6.1 Experimental Results and Discussion ... 42

6.1.1 Execution Time Analysis... 43
6.1.2 Memory Instruction Count... 45
6.1.3 Data Cache Access Patterns.. 46
6.1.4 Power Analysis ... 46
6.1.5 Coalescing Optimization ... 47

7. RELATED WORK.. 50

8. FUTURE WORK .. 53
8.1 Automation of Variable Promotion to the LDRF .. 53
8.2 Permit Promotion of Dynamically Allocated Variables to the LDRF 54
8.3 Alternative LDRF Architecture to Support Non-Contiguous Accesses............................ 55
8.4 Extension of the Coalescing Optimization... 56

9. CONCLUSIONS ... 58

APPENDIX A: SIMPLESCALAR CONFIGURATION .. 60

REFERENCES ... 62

BIOGRAPHICAL SKETCH... 64

 vii

LIST OF TABLES

Table 3.1 MiBench Benchmarks Used for Experiments ...12

Table 3.2 DSP Kernels Used for Experiments..13

Table 4.1 Naive LDRF RTL Forms ...19

Table 4.2 MIPS Register Names and Uses ..28

Table 5.1 Sample Global Variable Behavior Data ..38

Table 6.1 Selected Processor Specifications..41

Table 6.2 Benchmark Characteristics ...43

 viii

LIST OF FIGURES

Figure 1.1 Performance Impact of Memory ..2

Figure 1.2 Number of Bits to Contain Offset ...3

Figure 2.1 LDRF and VRF Relationship ...5

Figure 2.2 LDRF using Register Windows..5

Figure 4.1 LDRF Compilation Pathway...15

Figure 4.2 Variable Declaration with LDRF Storage Specifier ..16

Figure 4.3 Variable Declaration with LDRF Pointer ..17

Figure 4.4 Significant Optimization Stages ...22

Figure 4.5 Sink Increments Algorithm...24

Figure 4.6 Coalescing Algorithm...25

Figure 4.7 Sequential LDRF References ..27

Figure 4.8 Register Renaming Algorithm..29

Figure 4.9 Register Rename Example..30

Figure 4.10 Coalescing Example ..31

Figure 4.11 Example LDRF References File ..33

Figure 6.1 MiBench and DSP Performance Results...44

Figure 6.2 Reduction in Memory Instructions ...45

Figure 6.3 Data Cache Contention ...46

Figure 6.4 Percent Energy Reduction...47

Figure 6.5 Coalescing and Performance ..48

Figure 6.6 Coalescing and Energy..49

Figure 8.1 Coalescing Across Blocks ...56

 ix

ABSTRACT

As the gap between CPU speed and memory speed widens, it is appropriate to investigate

alternative storage systems to alleviate the disruptions caused by increasing memory latencies.

One approach is to use a large data register file. Registers, in general, offer several advantages

when accessing data, including: faster access time, accessing multiple values in a single cycle,

reduced power consumption, and small indices. However, registers traditionally only have been

used to hold the values of scalar variables and temporaries; this necessarily excludes global

structures and in particular arrays, which tend to exhibit high spatial locality. In addition, register

files have been small and have been able to hold relatively few values, particular in comparison

with the capacity of typical caches. Large data register files, on the other hand, offer the

potential to accommodate many more values. This approach – in comparison to utilizing

memory – allows access to data values earlier in the pipeline, removes many loads and stores,

and decreases contention within the data cache.

Although large register files have been explored, prior studies did not resolve the

complexities that limited their usefulness. This thesis presents a novel implementation of a large

data register file (LDRF). It employs block movement of registers for efficient access and is able

to support composite data structures, such as arrays and structs. For maximum flexibility, the

implementation required extension of a robust research compiler, creation of several stand-

alone tools to aid compilation, and modification of a simulator toolset to represent the

architectural enhancement. Experimental testing was performed to establish the viability of the

LDRF and results clearly show that the LDRF, as implemented, exceeds the threshold for it to

be considered a useful design feature.

 1

CHAPTER 1

INTRODUCTION

As the gap between processor speed and memory speed widens, it is appropriate to

investigate alternative storage systems to minimize the use of high latency memory structures;

one such alternative is a large data register file. Even if the data actually resides in a data cache

rather than main memory, there are several, well-known advantages of accessing data from

registers instead of memory. These advantages include: faster access time, accessing multiple

values in a single cycle, alias free data addressing available early in the execution pipeline,

reduced power consumption, and reduced bandwidth requirement for the first-level data cache.

This thesis considers use of a Large Data Register File (LDRF) that acts as an alternative data

storage location. Despite its increased size, the LDRF retains many of the advantages of a

traditional register file as well as other additional advantages.

Customarily, registers have been constrained to hold the values of scalar variables and

temporaries. Also, traditional register files have not supported inclusion of aliased data. In part

because of these restrictions, the register file can be managed very effectively – there typically

are only a small number of live scalar variables and temporaries at any given point in the

execution of an application. Further, because of the limited number of live registers and the

restrictions on the data that may be placed in the register file, a small register file was well

suited to meet its needs. Hence, a large register file was unnecessary and even caused

difficulties, in part due to longer access times and additional state to maintain context switches.

The LDRF is not a replacement for the traditional register file, but rather works in concert with it.

The LDRF is a large store of registers without the restrictions of a traditional register file and

provides an effective storage alternative to the data cache. It relaxes many of the constraints

inherent in the traditional register file. For instance, the LDRF supports the storage of composite

data structures, including both local and global arrays and structs. In addition, aliased data may

be stored in the LDRF. Architectural and compiler enhancements have been implemented to

ensure that, despite the expanded capabilities of the LDRF, the data residing in the LDRF may

be accessed as efficiently.

 2

The remainder of this thesis is organized in the following manner. The remainder of this

chapter is use to motivate this work by showing that memory operations comprise a significant

portion of the overall instruction count and also to establish that eliminating these memory

operations, in favor of register accesses, has the potential to greatly increase performance.

Chapter 2 discusses the architectural modifications required to support the LDRF as well as the

characteristics of data that is best suited for inclusion in the LDRF. In Chapter 3, the

experimental framework is described to provide context for the remainder of the work. In

Chapter 4, the compiler modifications necessary to support the LDRF are robustly detailed. The

simulator modifications are discussed within Chapter 5. Chapter 6 presents the experimental

testing and the results. Chapter 7 describes other work related to this research. In Chapter 8,

thought is given as to future work that may be performed to improve the LDRF implementation.

Lastly, concluding remarks are provided in Chapter 9.

1.1 Performance of the Memory Hierarchy

The performance of the memory hierarchy has long been a critical factor in the overall

performance of a computer system. There are two primary reasons that this is so: (1) memory

operations comprise a significant portion of the overall instruction count (see Figure 1.1, which

shows 26%, on average, of instructions are memory operations for six representative MiBench

[10] applications) and (2) memory speeds are significantly slower than processor speeds.

Accordingly, many techniques [13][22][18] have been studied to hide the latency of main

memory from the processor. However, it is not feasible to hide all such latencies. Figure 1.1 also

shows that significant performance benefits would be realized if a memory operation were to

complete in the same amount of time as a register operation. While it is not suggested that this

Figure 1.1 Performance Impact of Memory

0%

10%

20%

30%

40%

50%

dij
ks

tra

bit
co

un
t

jpe
g

str
ings

earc
h

ad
pc

m

blo
wfis

h

av
era

ge

benchmark

pe
rc

en
ta

ge

Memory Instructions Performance Improvement

 3

goal is necessarily feasible, it will be shown that a large register file could significantly reduce

the number of memory operations, in favor of register operations, which thereby can potentially

realize performance gains.

Accessing memory – whether accessing a data cache or main memory – is slower than

accessing a register file because memory structures are physically farther from the processor

and therefore incur longer wire delays. In addition, they require a tag-lookup in order to deter-

mine if the desired data is available at the current memory hierarchy level. In addition,

instructions to access memory, on most architectures, are inherently burdened by the base

address plus offset calculation, which must be performed before a load/store may be attempted.

In the simple, classical, five-stage pipeline, this calculation is performed in the execute stage.

The load/store is then subsequently performed in the memory stage. For simplicity’s sake, this

base plus offset calculation is always performed even though it is often not necessary, i.e.,

when the offset is zero. Figure 1.2 shows the number of bits required to capture the offset

associated with a memory instruction. Noteworthy is that the offset is zero for 86% and 64% of

the memory instructions that access the static data and heap segments, respectively. Also, as

few as four bits are needed to capture 97% and 99% of the offsets associated with memory

instructions accessing the data and heap segments, respectively. On the other hand, the stack

segment requires ten bits to account for 99% of its references. As will be seen, these signature

characteristics – particularly of the static data segment – are of material importance to the

viability of the LDRF.

Figure 1.2 Number of Bits to Contain Offset

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 >= 11

number of bits to contain offset

pe
rc

en
ta

ge
 o

f m
em

or
y

op
er

at
io

ns

static data segment heap segment stack segment

 4

CHAPTER 2

LDRF ARCHITECTURE

2.1 Architecture Support

The LDRF is an architected register file that can efficiently support thousands of registers

and acts as a storage system that provides data to the traditional register file. Traditionally,

registers have been constrained to hold the values of local scalar variables, as well as tem-

poraries, and have excluded composite structures. Although such a register file can be man-

aged very effectively, there are typically only a small number of live scalar variables and

temporaries at any given point in the execution of an application. In contrast, the LDRF supports

storage of composite data structures, including both local and global arrays and structures.

Inclusion of scalars, within the LDRF, is restricted to global scalars. In addition, aliased data

may be stored in the LDRF. Architectural and compiler enhancements have been made to

ensure that, despite the expanded capabilities of the LDRF, it may be accessed as efficiently as

a traditional register file.

The primary differences between our approach and earlier register schemes lie in the ability

to (1) promote the wider range of application data values to the LDRF and (2) perform block

transfers of data to/from the LDRF. First, in contrast to earlier register schemes, global – as well

as local composite variables within – may be promoted to the LDRF. Many global arrays,

particularly in numerical applications on embedded processors, are well suited for the LDRF.

Second, the LDRF supports block transfer of sequential registers, as depicted in Figure 2.1.

After loading the registers from the LDRF to the VRF, subsequent accesses to the registers

occur from the VRF in a conventional manner.

 5

2.1.1 Use of Register Windows in the LDRF

An initial implementation of the LDRF architecture used the similar concepts as those

discussed in Chapter 2.1, but it is distinguished from the presented implementation by the use

of register windows. This implementation is depicted within as depicted in Figure 2.2, where two

register windows have been established. One is sized at two registers and the other is sized at

three registers. The register windows were established via a register window pointer (RWP) and

several RWPs were available such that several windows could be established at the same time.

The RWP served to create a mapping between the VRF and the LDRF. Only those LDRF

registers that were mapped to the VRF were available at any given time. A window, when

unmapped such that a new mapping could be created, would cause the contents of the window

Figure 2.1 LDRF and VRF Relationship

Figure 2.2 LDRF using Register Windows

Visible Register File LDRFVisible Register File LDRF

2

3

Visible Register File LDRFRWPs

Number of Registers
Register Window Pointer (RWP)

VRF Start Location
LDRF Start Location

2

3

Visible Register File LDRFRWPs

Number of Registers
Register Window Pointer (RWP)

VRF Start Location
LDRF Start Location

 6

to be written to the LDRF. This, in effect, is a store of the mapped portion of the VRF into the

LDRF on remapping of a window. Store instructions, therefore, were unnecessary in many

situations as the store was accomplished by the remapping. However, the additional encoding

bits required to indicate which RWP was being accessed offset this aspect.

The register window approach, although sound, proved to be unnecessarily complex. For

example, the implicit stores only occurred on a new mapping or expiration of an existing map-

ping, i.e., due to function return. It was, therefore, necessary to determine if an explicit store

was necessary. Also, for each LDRF register that was not contained within an existing RWP, a

RWP needed to be established before it could be accessed. This created an overhead burden,

which is amortized over the number of registers contained within the register. However,

because the complexities did not offer a sufficient return, an alternative was sought.

2.2 LDRF Access Time

The time required to load from/store to a single element of the LDRF is less than the access

time to comparable memory hierarchy structures, such as the data cache. It is important to note

that the ability to transfer multiple elements, via parallel register moves, compounds the savings.

The reduced access time is, primarily, from two sources: (1) earlier pipeline access and (2)

lower latency when compared to a data cache. In fact – at the naïve level – LDRF and memory

instructions have similar characteristics and similar encoding. For example, similar to a cache,

the address of a LDRF variable is included within the instruction encoding and is necessarily

used when accessing that variable within the LDRF. However, unlike a cache, LDRF

instructions do not support an offset. This is a significant distinction to the LDRF instruction

encoding. As was shown in Figure 1.2, only a small percentage of memory instructions require a

base plus offset calculation; it follows that very few LDRF instructions require a base plus offset

calculation. To support the calculation within that small percentage, the calculation is performed

in an instruction prior to the one that accesses the LDRF. Considering that accessing the LDRF

does not require an address calculation, the values from the LDRF will be available – in terms of

a simplified five-stage pipeline – after the execute stage, whereas the values from the data

cache are not available – again, in terms of a simplified five-stage pipeline – until after the

memory stage. Earlier access to data is a clear advantage. The second primary source of

reduced access time is that of lower latency. Access time to the LDRF is in line with that of

scratchpad memory, which is typically one cycle. Data cache latencies, on the other hand, may

be a single cycle but are commonly two or three cycles, particularly on general-purpose

machines [11]. Lastly, the data within the LDRF is known to be present; there are no LDRF

 7

“misses”. Despite the high hit rate of most caches, misses do occur and do incur a miss penalty.

The LDRF also distinguishes itself in that it does not require a data TLB lookup nor does it

require a data cache tag lookup. Thus, use of an LDRF reduces conflict misses within both the

DTLB and the data cache.

2.3 Identification of Candidates for the LDRF

At this time, the responsibility to allocate variables to the LDRF resides with the

programmer, who uses directives within the high-level source code to specify that a given

variable should reside in the LDRF. As stated, the LDRF supports scalars as well as composite

date structures. Because existing schemes effectively allocate local scalars and temporaries to

the traditional register file, the LDRF is best utilized by allocating arrays and structs to it. Also as

afore mentioned, the LDRF supports aliased data. Recalling that the LDRF provides data to the

traditional (aka visible) register file, analogous to the role of the data cache, it is reasonable that

the LDRF can support aliased data, with the analogous constraints as with the data cache.

2.3.1 Characteristics of the Ideal Candidate Variable to be Promoted to the LDRF

The ideal variable that is a candidate to be promoted to the LDRF will possess the following

qualities:

• Accesses to the data should exhibit high spatial locality – Multiple consecutive

locations, in the LDRF, can be simultaneously accessed. This feature is exploited by

data with high spatial locality.

• Data should be frequently accessed – Since the data is accessed more efficiently via

the LDRF, it is advantageous to place frequently accessed data in the LDRF to

maximize the performance benefits.

• High Access to size ratio – Considering the limited size of the LDRF, the ratio of the

number of accesses of a given variable to its size can be a more telling metric rather

than simply the number of accesses.

• Integers and single-precision floats are preferred – As will be discussed in greater

detail in Chapter 4.1.3, values, when transferred from the LDRF to the VRF, are

neither sign nor zero extended. This is accomplished by storing values within the

LDRF on a four-byte boundary, which is the size of a LDRF register. Integers and

single-precision floating point data types naturally comply with this boundary and

therefore make best use, from a space perspective, of the LDRF. Shorts and chars,

 8

however, must be extended when first stored into the LDRF to be the same size as a

LDRF register.

2.3.2 Restrictions on Variables Placed in the LDRF

There are restrictions on the variables that may be placed within the LDRF. They are as

follows:

• Size and address of the data must be statically known – The compiler must ensure

that the total number of bytes allocated to the LDRF does not exceed its size. In

addition, by statically allocating variables to the LDRF, tag storage is not required,

which saves space and provides faster access. The address of the data must be

fixed. Thus, heap and run-time stack data are not candidates.

• The entire variable must be placed within the LDRF – In particular, this is germane to

structs, which contain discrete fields. An individual field of a struct may not be placed

in the LDRF; the entire struct is to reside in the LDRF or not at all.

• An individual variable must be smaller than the remaining capacity of the LDRF – it

follows that, if the entire variable must reside in the LDRF, then any variable to be

considered for LDRF promotion must be smaller than the size of the LDRF.

• A variable, to be placed in the LDRF, may not be passed to most library routines –

Although LDRF variables may be passed to functions, the function parameter must

either use pass-by-value or it must use pass-by-reference and the parameter must

be declared as a gpointer. The gpointer keyword, which is discussed in greater detail

within Chapter 4.1.1, is an added, reserved keyword to indicate that a pointer points

to a LDRF variable. Because many library routines use pass-by reference

parameters, and because it is not advisable – nor feasible in most instances – to

modify the library routines, LDRF variables may not be passed to them. If a LDRF

variable must be used with a library routine, then use of a temporary variable may

suffice. The temporary is assigned the value of the LDRF variable, passed to the

library routine, modified by the library routine, and the LDRF variable is then

assigned the new value of the temporary variable.

• Local variables within recursive functions may not be placed in the LDRF – although

local variables may reside in the LDRF, local variables within recursive functions

may not. Because the number of recursive calls is not known at compile time, the

number of instances of the local variable is unknown. Therefore, the amount of

 9

space, within the LDRF, that will be required to accommodate all of the instantiations

also is unknown. This violates the necessity to know the size, at compile time, of all

elements that are being added to the LDRF.

• Initialized character strings may not be placed in the LDRF – As will be discussed in

greater detail in Chapter 4.1.3, integral variables are extended to the size of integers

within the frontend of the compiler. The extension causes difficulties when initializing

strings. A string is stored as a character array; when declared to reside in the LDRF,

the type is extended from that of a character to an integer. However, the initializer

will fail in its attempt to initialize what is now an integer array to a string.

 10

CHAPTER 3

EXPERIMENTAL FRAMEWORK

The experimental framework consists of four major areas: (1) compiler, (2) simulator,

(3) benchmarks, and (4) experimental test plan.

3.1 Compiler

Our research compiler is a retargetable compiler for standard C. It uses a LCC frontend [9]

and the Very Portable Optimizer (VPO) [3] as its backend. LCC, which can be implemented as a

backend as well, is a robust frontend developed not only for production of efficient code, but

also for speed of compilation. LCC produces stack code as its output. The code is used, by the

middleware, to prepare input for VPO. VPO was designed to be portable as well as efficient. It

utilizes Register Transfer Lists (RTLs) as an intermediate representation and produces

machine-targeted assembly as its output. The RTLs themselves are machine-independent

representations, which means that many of the code-improvement transformations may largely

be written in a machine-independent manner, with a small portion of the code dedicated to

machine-dependent specifications. VPO, therefore, has the advantage that it may easily be

ported to a new architecture. The PISA port of VPO was used, which is a MIPS-like instruction

set [16]. For ease of familiarity, the ISA will be referred to as the MIPS, which is a 32-bit

architecture and is widely used on embedded systems.

3.2 Simulator

As the LDRF is an architectural enhancement, all testing was necessarily performed on a

simulator. The simulator chosen was SimpleScalar, which is widely used for computer

architecture research [5]. The SimpleScalar toolset provides several simulators, each of which

may be modified to suit one’s needs. Primarily, three simulators were used within this research:

1. sim-outorder – a detailed out-of-order issue superscalar processor with a two-level

memory system and speculative execution support. This simulator is a performance

 11

simulator and provides cycle accurate measures. It was used to collect the measure-

ments that are directly discussed within Chapter 6.

2. sim-profile – acts as a functional simulator with profiling support. It was used,

primarily, to collect information that led to the identification of candidate LDRF varia-

bles as well as identification of benchmarks that were amenable to the LDRF.

3. sim-wattch – similar in design to sim-outorder, except that it also provides power

measurements.

3.3 Benchmarks

Two benchmark suites were used to gauge the effectiveness of the LDRF: (1) the MiBench

Embedded Applications Benchmark (MiBench) Suite [14] and (2) a DSP kernel suite. Using two

benchmark suites was useful for a variety of reasons. In short, use of two benchmark suites

ensured a thorough testing and fair evaluation of the LDRF. The various data structures,

algorithms, and program structures employed within the benchmarks touched upon all com-

monly encountered situations and served to ensure that the modifications to the compiler and

simulator were sufficiently complete and sufficiently robust.

3.3.1 MiBench Embedded Applications Benchmark Suite

The applications within the MiBench Suite are a set of representative embedded programs.

In all, there are thirty-five applications within six categories. For the experiments performed, one

representative application was chosen from each category. The applications selected are listed

within Table 3.1. The MiBench Suite was most useful to verify the breadth of the compiler and

simulator modifications. Here breadth is refers to inclusion of a wide-variety of data types and

data structures within the LDRF. This is of particular importance, since – as will be discussed in

Chapter 4 – the programmer is currently responsible for assigning variables to the LDRF and

the compiler must be able to accept any constructs that are supported by the programming

language. Breadth also refers to a wide-variety of programming techniques to utilize these

structures. Here, again, the compiler must be able to accept any legitimate programming

constructs or fail gracefully.

 12

Table 3.1 MiBench Benchmarks Used for Experiments

Program Category Description
Adpcm Security Compresses speech samples using

variant of pulse code modulation
Bitcount Automotive Bit manipulation tests
Blowfish Security Symmetric block cipher
Dijkstra Network Dijkstra’s shortest path algorithm
Jpeg Consumer Creates a jpeg image from a ppm
Stringsearch Office String pattern matcher

Most of the MiBench applications are bundled with sample input as well as corresponding

output. With respect to the input, the small sample input was used when available. The size of

the small input was deemed more than sufficient to evaluate the LDRF; cycle counts for the

small input ranged from a few million to a few hundred million cycles. The output was used to

verify the correctness of not only the LDRF code – a term used to refer to a benchmark that

includes LDRF variables – but also the applications when using the original code.

3.3.2 Digital Signal Processing Kernels

The Digital Signal Processing (DSP) kernels that were selected are representative of the

key building-block operations found in most signal processing applications. In comparison to the

MiBench applications, these kernels are relatively simple. To broadly generalize, the code

comprising the DSP kernels amount to no more than a hundred statements; however, these

statements are perform number of mathematical computations. The mathematical focus is quite

useful to evaluate the depth of the implemented compiler enhancements. Here depth refers to

successful compilation of lengthy, convoluted statements.

Although the DSP Kernels do provide input sets, they do not produce any output. To verify

the program correctness of the kernels, output statements were added to both the original and

LDRFerized code. These output statements were compiled dependent upon the definition of a

preprocessor macro. Thus, the kernels were compiled and run, initially, with the output

statements to verify program correctness. The kernels were then recompiled and rerun without

the output statements. It is possible – naturally – that the output generated by the executables

created by our research compiler, both with and without the LDRF, may match one another yet

may still be incorrect (both would, therefore, be incorrect in the same way). To alleviate this

concern, the original code also was compiled with GCC and the resulting executable was run on

a physical machine rather than a simulator. The three sets of output were compared against one

 13

another; if the output of all three executables agrees with one another, it seems fair to conclude

program correctness in all cases.

All measurements were collected when investigating the kernels without compilation of the

output statements. This was done to minimize the number of changes to the benchmarks.

Without output, the kernels do not lend themselves to a definitive test for program correctness.

Correct compilation, when including the output statements, does suggest that the kernels also

will compile correctly without the output statements. However, the assembly code that was

produced also was inspected, by hand, to identify any anomalies. This process is actually quite

effective, as the LDRF assembly is easily compared against assembly that does not use the

LDRF. Lastly, we were mindful of the results and investigated any which did not seem

reasonable. Since many of the DSP kernels are similar in structure, there is the expectation that

they will behave in a similar fashion. If a kernel were to deviate from what was reasonable, it

was investigated more thoroughly to determine the cause and appropriate actions were taken

as necessary.

The kernels typically include one or two loops and much of the execution time is spent within

these loops. However, the iteration count for some of the loops was sufficiently low so that the

loops did not reach a steady state due to instruction cache misses and the cost of startup and

termination code. Therefore, the results were skewed by the warm-up period. To alleviate this

situation, an outer loop was added to cause the inner loop to iterate many more times. Doing so

does not change the code within the inner loop but does cause the loop to reach a steady state,

which is necessarily a fairer test.

Table 3.2 DSP Kernels Used for Experiments

Program Description
Conv45 Performs convolution algorithm
Fir Applies finite impulse response filter
IIR1 Applies infinite impulse response filter
Jpegdct Jpeg discrete math transform
Mac Multiple-accumulate operation
Vec_mpy Performs simple vector multiplication

3.4 Experimental Test Plan

A test plan was devised to determine the efficacy of the LDRF. Potential areas of interest to

determine the LDRF efficacy include: static code size, dynamic instruction count, energy

 14

consumption, and performance. In addition, the size of the LDRF was investigated and, in

particular, how the areas of efficacy are affected by the size of the LDRF.

Initially, the benchmarks are run using the original code. These results provide a base case

against which the LDRF results may be compared. In addition, compiler and simulator analysis

tools are invoked during compilation/simulation of the original code that aid in identification of

candidate LDRF variables, which are variables that warrant promotion to the LDRF. Once the

candidate LDRF variables have been identified, then the high-level source code are modified –

as appropriate – to include the LDRF variables. Three LDRF sizes – “small”, “medium”, and

“large” – are identified based in part on the size requirements of the benchmarks and in part by

the constraints imposed the desired architectural characteristics of the LDRF. Candidate

variables are added to the LDRF such that those variables that may be expected to provide the

greatest positive impact are added first. Subsequent variables are added until either no further

LDRF appropriate variables exist or the LDRF has reached capacity. The benchmarks, coded

for the LDRF, are then be compiled and run within the simulator framework. As applicable,

LDRFerized benchmark output is compared against the original code output to verify program

correctness.

 15

CHAPTER 4

COMPILER ENHANCEMENTS

In order to support the LDRF, modification to many of the stages of the compiler toolchain –

the frontend, middleware, backend, and assembler – were required. Also, two stand-alone

compilation tools were developed to ease compilation of program containing LDRF variables.

The compiler environment, inclusive of the tools, is depicted in Figure 4.1.

4.1 Frontend Modifications

Currently, it is the programmer’s responsibility to allocate data to reside in the LDRF by use

of directives within the high-level source code. This provides the programmer, who ostensibly

has the greatest understanding of their application, the opportunity to use the LDRF to its best

advantage. The frontend, therefore, is charged with not only generating correct code to be

passed to the middleware, but – more importantly – is charged with performing the myriad of

syntax, semantic, and type checks necessary to ensure that the programmer has not erred in its

use of LDRF variables at the source code level.

4.1.1 Gregister and Gpointer Keywords

To allow the programmer to assign variables to the LDRF, the frontend of the compiler was

enhanced to allow two new keywords to be specified in the source code: (1) gregister and (2)

gpointer.

Figure 4.1 LDRF Compilation Pathway

LDRF Statics
Conversion
Tool

LDRF
Assembler
Tool

Middleware BackendFrontend

Linker Executable
LDRF Statics
Conversion
Tool

LDRF
Assembler
Tool

Middleware BackendFrontend

Linker Executable
LDRF Statics
Conversion
Tool

LDRF
Assembler
Tool

MiddlewareMiddleware BackendBackendFrontendFrontend

LinkerLinker Executable

 16

The gregister keyword is a storage class specifier and may be used in conjunction – as

appropriate – with most other storage class specifiers. Figure 4.2 provides a declaration

example using the gregister keyword. For example, a variable that has been declared to be

static as well as a gregister maintains the characteristics of a static variable, one of file scope,

with the additional qualification that the variable will reside in the LDRF. Although the gregister

keyword works in concert with some storage class specifiers – i.e., static or extern – it is

inappropriate to use it with others, such as register or auto. The register keyword indicates that

the given variable should reside in a register, which is a sensible specification for oft-used,

nonstatic, local variables. However, it is not permissible to use the register keyword in

conjunction with the gregister keyword. To do so, in effect, instructs the compiler to allocate the

given variable to both a register and the LDRF, which is not possible. The auto keyword, which

is the default storage class specifier, allocates memory for variables from the run-time stack.

The combination of the gregister keyword and the auto keyword poses a similar problem as

when combining the gregister and register keywords, it instructs the compiler to allocate the

given variable to two locations – the run-time stack and the LDRF.

The second added keyword – the gpointer keyword – is used to declare a pointer to a LDRF

variable. A LDRF pointer must point to a LDRF variable and a LDRF variable – in turn – may

only be pointed to by a LDRF pointer. The LDRF pointer itself does not reside in the LDRF; it

will reside in a traditional register, which is the common allocation practice for pointers. Figure

4.3 provides a declaration example using the gpointer keyword. Use of pointers is a common

programming practice and the utility of the LDRF is greatly enhanced by inclusion of a LDRF

pointer. Many programmers are accustomed to pointer use and, in addition, many good

programming practices dictate their use. In particular, use of pointers is of value when passing

arguments to functions. It is a common programming practice to pass a pointer as an argument.

This is particularly true for composite data structures, which are well suited for inclusion in the

LDRF. Note that the existing pointer syntax was insufficient to ensure program correctness – it

is necessary to qualify the pointer as one that points to a location within the LDRF. Without such

a qualifier, the compiler is unable to distinguish between a traditional pointer and one which

points to an object in the LDRF. This is of vital importance when performing type checking,

which is discussed in greater detail within this chapter.

Figure 4.2 Variable Declaration with LDRF Storage Specifier

gregister int a[1000];

 17

An undue burden would be placed on the programmer if the gpointer keyword were not

available. This is especially so when modifying existing source code to use the LDRF. With the

inclusion of the gpointer keyword, as well as the gregister keyword, the programmer can update

existing source code to use the LDRF simply by including these keywords, as necessary, within

declarations. No additional modifications are necessary.

4.1.2 Syntax, Semantic, and Type Checking

The additional syntax checks, as required by the addition of the gregister and gpointer

keywords, are straightforward: the character strings “gregister” and “gpointer” must be recog-

nized as reserved keywords. Verification of correct usage of these keywords is reserved for

semantic and type checking.

The primary role of the semantic checks, with respect to the LDRF, when evaluating a

declaration specifier is to ensure that the gregister and gpointer keywords are used solely – and

correctly – within declarations. More specifically, the gregister and gpointer keywords are used

within a declaration specifier, which is comprised of a storage class specifier, type specifier, and

type qualifier. Unfortunately for the compiler, these keywords may occur in any order within a

declaration. In addition, because of the permissible combinations of the gregister keyword with

other storage class specifiers, the declaration specifier may contain two storage class specifiers

if one of which is the gregister keyword.

The afore mentioned considerations are sufficient to semantically check scalar variables;

however, composite data structures, notably C-style structs, require additional handling. Structs

may be declared to reside within the LDRF, but the entire struct, including each of its fields,

must necessarily reside in the LDRF. Therefore, when a struct is declared to reside in the

LDRF, the compiler must ensure that it is permissible for each of its fields to reside in the LDRF

and must extend the LDRF storage specification to each of the fields. Furthermore, if the

compiler encounters a struct field that has been denoted as residing in the LDRF, it must

confirm that the struct itself has been declared to reside within the LDRF.

The gpointer keyword is most accurately described as a pointer qualifier, as it qualifies a

pointer to point to a variable that resides in the LDRF. From a semantic perspective, the

Figure 4.3 Variable Declaration with LDRF Pointer

gpointer int *ptr;

 18

compiler need only verify that the gpointer keyword has been used in conjunction with a pointer,

an example of which was provided in Figure 4.3. The gpointer keyword is commonly used to

qualify pointer function parameters. This is obvious utility – it allows a pointer, to a LDRF

variable, to be passed to a function. This aligns well with the tendency for arrays to be passed

to a function via a pointer.

Type checking ensures that declarations and expressions adhere to the typing conventions

that are dictated by the programming language. Many of the type checking responsibilities, of

the compiler, are associated with the use of the gpointer keyword, and have been touched

upon. The compiler, for example, must verify that a gpointer is assigned an LDRF address. This

is accomplished by (1) appending a bit to the type of the pointer – its lvalue – to indicate that it

is a gpointer and (2) by appending a bit to the underlying type of the pointer – its rvalue – to

indicate that the value of the variable resides in the LDRF. The gregister keyword, in addition to

its role as a storage class specifier, imparts type information as well. The type of a LDRF

variable must be appended as a gregister type, in addition to the typical type information that

maintained. Appending the gregister type information allows the compiler to verify that, if the

address of a LDRF variable is assigned to a pointer, it will be a gpointer. For example, consider

“x = &n;”; if x is declared as a gpointer, then n must be declared as a gregister (or vice versa).

This is in addition to the standard type checking evaluations that are made during compilation.

4.1.3 Type Extension of LDRF Variables

The size of a traditional register is typically that of an integer; commonly 4 bytes or 32 bits.

Chars and shorts often use a smaller space; chars commonly occupy 1 byte in memory and

shorts commonly occupy 2 bytes. A sign – or unsign – extension occurs immediately prior to

loading the value into a register. The LDRF supports variables of different types and sizes;

however, it eliminates the need for a sign/unsign extension by storing each integral value as an

integer. In addition, it simplifies alignment constraints as each LDRF integral value is aligned to

the width of an integer, which also is the width of a register. The values, within the LDRF, are

therefore “preloaded” into registers and are available for immediate use. To accomplish the

extension, the compiler changes the type of all gregister integrals, i.e., chars and shorts, to that

of an integer when examining the declaration. This extension is not necessary for floating point

types – neither single nor double precision – as they occupy either 4 or 8 bytes. Double-

precision floats occupy two LDRF registers in order to accommodate its space requirements.

Although type extension simplifies data movement from the LDRF into a traditional register,

it does have some drawbacks. Notably, this approach is not as space efficient as memory,

 19

which allocates the minimum space required to accommodate a data element. The LDRF, on

the other hand, will allocate one LDRF register – or four bytes – to accommodate a 1-byte data

element, such as a char. In addition, the extension causes difficulties when initializing strings. A

string is stored as a character array; when declared to reside in the LDRF, the type is extended

from that of a character to an integer. However, the initializer will fail in its attempt to initialize

what is now an integer array to a string. This failure represents an acknowledged limitation of

the current LDRF implementation; however, it is one that could be overcome, in the future, if

warranted.

4.2 Middleware Modifications

The main role of the middleware is to generate naïve RTLs based on the stack code

provided by the frontend. The middleware, therefore, has been modified to generate RTLs that

store to/load from the LDRF; the structure of these RTLs is very similar to that of RTLs that

store to/load from memory. To generate the RTLs that access the LDRF, three new memory

characters were created, as depicted in Table 4.1.

Table 4.1 Naive LDRF RTL Forms

Memory
Character

Description Usage within a
Store

Usage within a Load

G Integer LDRF character G[r[2]]=r[3]; r[3]=G[r[2]];

J Single-point precision
LDRF character

J[r[2]]=f[3]; r[3]=J[r2]];

N Double-point precision
LDRF character

N[r[2]]=f[3]; f[3]=N[r[2]];

The middleware also is charged with creating assembler directives such as variable

declarations. The middleware was modified such that the LDRF variable declarations – inclusive

of alignment, initialization, or space directives – are generated as commented assembler

directives with a distinguishing initial character sequence so that: in terms of the assembler,

these directives are ignored; however, in terms of the LDRF Assembler Directive Collection

Tool, they are easily recognized.

 20

4.3 Backend Modifications

The VPO backend is responsible for producing assembly for use by the assembler. In

addition, it performs the classical backend optimizations, such as instruction selection, common

subexpression elimination, strength reduction, and constant folding, to name but a few. In order

to accommodate the LDRF, VPO was first modified to generate naïve code accessing the

LDRF. Once naïve code was correctly generated, then optimizations to produce more efficient

code were implemented. The focus of the optimizations is to create LDRF instructions that are

likely to coalesce with one another, thereby forming a block access that moves multiple values

to/from the LDRF in a single instruction.

4.3.1 Modifications to Generate Naïve LDRF Code

Relatively few modifications are necessary in order for the backend to generate correct

assembly code that accesses the LDRF. The most significant change was modification of the

machine description, which was modified to include representations for the LDRF instructions.

Semantic checks also were put in-place to ensure that the LDRF instructions generated by the

backend are valid.

An important distinction to the assembly instructions representing LDRF accesses are that

they do not support offsets, as will be discussed in detail in Chapter 4.5. Within the RTL

representation, offsets are supported. Doing so permits a variety of code modifications to be

considered. Once the code modifications have completed, and the assembly is being

generated, the compiler identifies any LDRF instructions that use an offset and issues it as two

assembly instructions: (1) an addition instruction that adds the base to the offset and (2) a

LDRF instruction that uses the base plus offset value, provided by the addition instruction, as

the address to be accessed within the LDRF.

4.3.2 Application-Wide Call Graph

VPO comes equipped with the capability to generate a call graph, which is often used within

interprocedural optimizations, for a given source file. This capability was extended to create an

application-wide call graph, which is used within the coalescing optimization (see Chapter 4.3.3

Coalescing Optimization). It should be noted that the generation of the application-wide call

graph necessarily mandates a two-pass compilation. In the first pass, the call graphs for each

source file within an application are created; in the second pass, the application-wide call graph

is cobbled together from the individual call graphs and code is then generated.

 21

4.3.3 Coalescing Optimization

The objective of the coalescing optimization is to combine – or coalesce – two or LDRF

instructions, e.g., two loads, that use sequential LDRF addresses into a single LDRF instruction.

The single instruction acts as a block LDRF access, as it accesses more than one LDRF

register at a time. This has the potential to increase performance as well as to counteract the

code bloat endemic to loop unrolling, a necessary step within coalescing optimization.

The coalescing optimization is a multi-step optimization and depends on many stages to

have the greatest likelihood of success. Although many of the stages are implemented to

support the coalescing optimization, they are complete optimizations unto themselves.

However, because of their support role, their discussion is tailored to highlight their functionality

within the overarching coalescing optimization. The major stages of the optimization are listed

below to provide context and – stages that result in code modification – also are illustrated

within Figure 4.4; Figure 4.4(d) illustrates the desired end. Note that, within the figure, bold

RTLs have been modified from their previous state. The bold is only for the ease of the reader.

This style is used throughout the thesis’ figures.

• Loop unrolling – Figure 4.4(a); a classic optimization, used to increase the likelihood

of sequential LDRF accesses within a single basic block

• Sink increments – Figure 4.4(b); increases the likelihood that sequential LDRF

accesses will be of a form that is amenable to coalescing

• Identify sequential LDRF accesses – Find the LDRF references, within a basic block,

that are sequential and are therefore candidates for coalescing.

• Rename registers – Figure 4.4(c); renames registers so that the traditional registers,

present within the LDRF instructions, are sequential

• Coalesce accesses – Figure 4.4(d); coalesce two or more properly formed LDRF

instructions so that a block access from/to the LDRF is performed.

 22

4.3.3.1 Loop Unrolling Optimization. Loop unrolling, a common loop transformation

optimization, combines two or more iterations of an innermost loop into a single iteration. Doing

so increases the static code size as two or more copies of the loop body are now contained

within a single iteration, but it does reduce the number of overhead instructions, which serves to

reduce the number of branch instructions that are executed. These effects provide a

performance boon at the expense of increased static code size, but more importantly make the

loop more amenable to coalescing LDRF references. The coalescing optimization, as will be

discussed in greater detail in Chapter 4.3.3, coalesces two or more LDRF instructions into a

single LDRF instruction. In order to do so, the addresses within the coalesced instructions must

be sequential. Loop unrolling lends itself to creating such instructions. Consider a simplistic loop

such as one that iterates through each element of a LDRF array; unrolling the loop four times

will create a single loop body that now has four sequential LDRF accesses.

VPO is equipped with a loop unrolling optimization. However, portions of the optimization

are machine-dependant. These portions were originally ported for the ARM, but not for MIPS.

Therefore, the optimization was necessarily ported to the MIPS so that it may be used in

support of the LDRF and any other research effort, targeted for the MIPS, that benefits from

loop unrolling.

Figure 4.4 Significant Optimization Stages

gregister e[100];

 for(i=0;i<100;i++)
 e[i] = i;

(b) sink increments
 r[5]=0;
 L2
 G[r[6]]=r[5];
 r[5]=r[5]+1;
 G[r[6]+4]=r[5];
 r[6]=r[6]+8;
 r[5]=r[5]+1;
 PC=r[5]<r[2],L2;

(c) rename registers
 r[4]=0;
 L2

 G[r[6]]=r[4];
 r[5]=r[4]+1;

 G[(r[6]+4)]=r[5];
 r[6]=r[6]+8;
 r[4]=r[5]+1;
 PC=r[4]<r[2],L2;

(d) coalesce accesses
 r[4]=0;
 L2

 r[5]=r[4]+1;
 G[r[6]..r[6]+4]=r[4..5];

 r[6]=r[6]+8;
 r[4]=r[5]+1;
 PC=r[4]<r[2],L2;

(a) unrolled 2x
 r[5]=0;
 L2
 G[r[6]]=r[5];
 r[6]=r[6]+4;
 r[5]=r[5]+1;
 G[r[6]]=r[5];
 r[6]=r[6]+4;
 r[5]=r[5]+1;
 PC=r[5]<r[2],L2;

 23

4.3.3.2 Sink Increments Optimization. Although the loop unrolling optimization is useful to

create sequential LDRF accesses, those sequential accesses will not necessarily be in the form

to be exploited by the coalescing optimization. To increase the likelihood that the coalescing

optimization will be successful, the LDRF instructions – within the RTL representation – should

use a base plus offset notation to reference the LDRF address as this greatly simplifies the

process of identifying sequential LDRF addresses. The Sink Increments Optimization endeavors

to put LDRF instructions into this format. To illustrate consider Figure 4.4; the RTLs within (a)

represent the loop body when unrolled two times. The RTLs within (b) represent the RTLs after

the Sink Increments Optimization has been performed. Note that the second LDRF location is

now of the form base plus offset and also note the ease to which the two LDRF accesses might

be identified as sequential. Although the primary objective of the optimization is to sink the

increments to create LDRF accesses of a specific form, it has the potential for a secondary

side-benefit: two instructions (the LDRF access and the increment) are combined into a single

LDRF access, thereby saving an instruction. Although it is always true that the increment and

the LDRF instruction are merged together, the increment is not necessarily eliminated. It may be

necessary to move it after the LDRF instruction to retain program correctness. This distinction is

clarified within the discussion of the optimization’s algorithm. This optimization also may be

used to sink increments into traditional memory locations. Although creation of sequential

memory locations may not be beneficial in and unto itself, the reduction of instructions is directly

beneficial.

 Figure 4.5 provides the pseudo-code necessary to implement the Sink Increments

Optimization, which is performed on each single basic block within a function. First, the RTLs

within the block are scanned to find a RTL that is an increment or a decrement (Line 3-4), which

is of the form r[x] = r[x] ± n where n is a constant. Next, the remaining RTLs are scanned until

another occurrence – either a set or a use – of the set register, within the RTL being sunk, is

found. Once found, it is verified that an intervening function call has not occurred. If it has and

the set register is not preserved across the call (Line 6), then the sink of the RTL must be

aborted. The next occurrence of the set register is then examined (Lines 8-15). If it occurs as

both a set and a use, then the right-hand side of the sink RTL is simply substituted into the use

and the sink RTL may be removed (Lines 8-10). If it occurs solely as a use, then the right-hand

side of the sink RTL is simply substituted into the use and the sink RTL must be moved

immediately after the next occurrence. This is often the case with a memory or LDRF reference,

where the use represents the memory or LDRF location within the reference. Lastly, if the next

occurrence occurs solely as a set, then the sink must be abandoned.

 24

4.3.3.3 Coalescing Algorithm. The algorithm for the coalescing optimization is presented

within Figure 4.6. The algorithm is complete as presented, but has a greater likelihood of

success if loop unrolling and sink increments already have been performed. The first step is to

perform a quick scan of the RTLs, within a block, to determine if it has LDRF references (Line 2-

3). If it does not, then coalescing is clearly not possible. Once a LDRF reference has been

found, then the remaining RTLs are scanned to identify as many sequential LDRF accesses as

possible (Line 7-8). This step identifies a series of LDRF references, each of which is sequential

to the previous access. The process by which sequential references are identified is discussed,

in detail, in Chapter 4.3.3.4.

Once the series of RTLs with sequential LDRF references are identified, a check is

performed to determine if two or more RTLs are contained within the series (lines 9-10; Figure

4.6). It quite obviously would be unnecessary to coalesce a single RTL. At this point, sequential

registers, to be used in register renaming, must be identified (line 11; Figure 4.6). Ideally, n

sequential registers will be available to coalesce the n RTLs. However, so long as there are two

or more available sequential registers, then coalescing may proceed. If there are two or more,

but less than n available sequential registers, then the first n’ RTLs will be coalesced with one

another, where n’ represents the number of available sequential registers that were found. This

situation is more likely to occur with longer series of RTLs, where it is more difficult to find a

sufficiently long series of available sequential registers. In these cases, it is not uncommon for a

series of, say, six RTLs to be coalesced as two blocks of three accesses rather than one block

of six. Next, register renaming is performed (line 13; Figure 4.6) in accordance with the

algorithm presented in Figure 4.7 and as discussed in Chapter 4.3.3.5. Once register renaming

Figure 4.5 Sink Increments Algorithm

1 foreach blk in function do
2 foreach rtl in blk do
3 if (rtl is not an increment or decrement) then
4 continue;
5 find the next occurrence of rtl->set
6 if (intervening function call and rtl->set is scratch) then
7 continue;
8 if (next occurrence sets and uses rtl->set) then
9 substitute right-hand side of rtl into next occurrence
10 remove rtl
11 elseif (next occurrence uses rtl->set) then
12 substitute right-hand side of rtl into next occurrence
13 move rtl immediately after next occurrence
14 elseif (next occurrence sets rtl->set) then
15 continue;

 25

is completed, then the LDRF accesses are of the correct form to be coalesced (lines 14-18;

Figure 4.6); coalescing is discussed within Chapter 4.3.3.6.

4.3.3.4 Identify sequential LDRF accesses. Identification of sequential LDRF accesses

must be done carefully as there are many considerations that must be evaluated. The process

is an exercise in memory location analysis, requires an awareness of function calls, sets, uses,

and memory aliasing concerns. The optimization is structured conservatively, as dictated by

good programming practices, to ensure program correctness is retained.

There are several circumstances that prevent a sequential RTL to be coalesced. Each of the

scenarios, below, discusses a situation that would prevent coalescing; the scenarios are

depicted within Figure 4.7. The terms source RTL and sink RTL are used within the discussion.

The source RTL is the RTL for which a sequential RTL is sought; the sink RTL is a RTL whose

location is sequential to the source RTL.

a. If there is an intervening, opposite LDRF access whose location is equal to the sink RTL,

then no further coalescing with the source RTL may occur. Figure 4.7(a) represents this

situation. Although the sink RTL is sequential with the source RTL, there is an

intervening RTL that performs the opposite action and is sequential to the sink RTL. If

the sink RTL where to be coalesced with the source RTL, the sink RTL would not

receive the correct value from the LDRF. Note that the blocking RTL only prevents the

Figure 4.6 Coalescing Algorithm

1 foreach blk in function do
2 if (blk does not have LDRF references)
3 continue;
4 foreach inst in blk do
5 if (inst does not have LDRF references) then
6 continue;
7 foreach remaining inst in blk do
8 determine if inst is contiguous with last LDRF reference
9 if (numContiguous references < 2)
10 continue;
11 identify sequential, available registers for register renaming
12 if (numSequential renaming registers > 1)
13 rename registers so that loaded (or stored) registers are

sequential
14 if (inst is a store)
15 coalesce numSequential contiguous references into last

reference to form a single instruction
17 else
18 coalesce numSequential contiguous references into first

reference to form a single instruction

 26

first sink RTL from being coalesced; it does not prevent coalescing of the second sink

RTL.

b. If there is an intervening opposite LDRF access whose location is unknown, then no

further coalescing may occur. The RTL representation of a LDRF reference, like a

memory reference, is composed of two parts: base and offset. The offset is nothing more

than a constant and is easily recognized. The base is represented by a value contained

within a register. Without specific contrary knowledge, no assumptions may be made

regarding the value within this register. Figure 4.7(b) represents this situation, the base

address of the blocking RTL is not known and, therefore, no sink RTL may be coalesced

with the source RTL. To establish the variable name that is associated with a LDRF

reference, an analysis routine is performed prior to the coalescing optimization that

incorporates the variable name into a RTL. Comparison of the variable names may be

used to establish that the bases are different. Although the analysis routine robustly

identifies local and global variable names, it is handcuffed when identifying variable

names associated with function parameters. As the variable names that are passed to

the function are not available until run-time, these names are not available to the

compiler. Therefore, coalescing within a function may have a lower likelihood of success.

This, to be sure, is dependent upon the function and the RTLs therein.

c. If the base location of the source RTL is set after its use, within the source RTL, then it is

likely that no further coalescing may occur. Figure 4.7(c) represents this situation, where

the base address (r[6]) of the source RTL is set after its use. Because it also is the

base address of the source RTL, the intervening set must be considered when

attempting to establish the two RTLs as sequential. In the example, the base address is

set to a different variable and clearly coalescing with the source RTL is not permissible.

Sets of the register containing the base address most often occur when a new memory

location is needed and an offset is not used. In general, the Sink Increments

Optimization eliminates these RTLs.

d. If there is an intervening function call that contains LDRF references or that calls a

function that contains LDRF references, then no further coalescing the source RTL may

occur. Figure 4.7(d) represents this situation. The application-wide call graph is used for

to determine if a given called function, or one of its children, contain any LDRF

references. The intervening function call has the potential to modify the LDRF location

that we are attempting to coalesce.

 27

4.3.3.5 Rename Registers Methodology. The purpose of the rename registers metho-

dology is to rename the registers within a series of sequential LDRF accesses so that the

registers are sequential. Renaming of registers is the final step prior to coalescing several RTLs

with sequential LDRF accesses into a single RTL. It serves to create a block of sequential

registers, within the traditional register file, which will align with a like-sized block within the

LDRF. The register rename methodology may best be thought of as a step within the

Coalescing Optimization – the renaming is done for the explicit purpose of coalescing and has

limited use outside of that context. To be clear, this will necessarily rename the registers within

their live range and not solely within the LDRF accesses.

Because the register rename methodology seeks to rename registers such that they are

sequential, register pressure is of great concern. Not only must registers be available for

renaming, but they must be sequential as well. Table 5.2 [20] provides an overview of the

registers on the MIPS architecture and their use. Although the MIPS has thirty-two registers, not

all registers are created equal in the eyes of the renaming methodology. Ideally, temporary

registers will be used as they may be referenced without first saving their value and do not have

an otherwise prescribed function. Those registers that do have a prescribed function, or those

that must be saved and restored on subroutine exit, must be used with greater care. Because of

these concerns, register renaming was restricted to registers within the inclusive range 4-25,

yielding twenty-two possible rename registers.

Figure 4.7 Sequential LDRF References

(a)
 r[6]=x;
 r[5]=G[r[6]]; # source
 ...
 G[r[6]+4]=r[5]; # blocks sink 1
 ...
 r[5]=G[r[6]+4]; # sink 1
 ...
 r[8]=G[r[6]-4]; # sink 2

(c)
 r[6]=x;
 r[5]=G[r[6]]; # source
 ...
 r[6]=z; # blocks all sinks
 ...
 r[5]=G[r[6]+4]; # sink

(d)
 r[6]=x;
 r[5]=G[r[6]]; # source
 ...
 r[25]=ST; # blocks all sinks
 # if it, or children,

 # contain LDRF
 # references

(b)
 r[6]=x;
 r[5]=G[r[6]]; # source
 ...
 G[r[7]]=r[5]; # blocks
 # all sinks

 28

Table 4.2 MIPS Register Names and Uses

Register number Used for
0 Always returns 0
1 Reserved for use by assembler
2-3 Value returned by subroutine
4-7 First four subroutine parameters
8-15,24-25 Temporaries; may be used without saving
16-23 Subroutine register variables; must be saved and

restored upon subroutine exit
26,27 Reserved for use by interrupt/trap handler
28 Global pointer
29 Stack pointer
30 Frame pointer
31 Return address for subroutine

The algorithm used to rename registers is presented in Figure 4.8. An example of the

algorithm, in action, is provided within Figure 4.9. To put the algorithm in context of the overall

coalescing optimization, the renaming occurs once the n sequential LDRF accesses, to be

coalesced, have been identified. The first task is to identify n sequential, available registers

where n is the number of sequential LDRF accesses that will be coalesced (Line 1). When

seeking the sequential, available registers, the registers currently being used within the n LDRF

accesses are evaluated to determine if they naturally happen to be sequential. If not, then it is

attempted to identify n sequential, available registers. An available register is defined as either a

register that occurs in one of the n LDRF accesses or one that is neither set nor used within the

union of the live ranges of the LDRF accesses. The registers that occur within one of the n

LDRF accesses may be considered available because they will be renamed. The union of the

live ranges of the LDRF accesses is used as, once coalesced, each the LDRF accesses will

have a live range equivalent to the union of each of the LDRF accesses.

 29

A check (Figure 4.8, lines 2-3; depicted in Figure 4.9(a)) is performed to verify that at least

two sequential registers have been found. If not, then we break from the routine. Next, it is

determined if any of the registers, to be replaced, have not been set – within this block – prior to

their first use (lines 4-5). Each register that is used, before being set within the block, must

necessarily have had its value set in a previous block. Rather than attempt to identify these

sets, a predecessor block is inserted into the control flow. RTLs are added to this block that set

the new register value to that of the old (Figure 4.8, lines 6-8; depicted in Figure 4.9(b)). At this

point, it is determined if the LDRF accesses are a series of stores, which require special

handling. As described in Figure 4.8 lines 9-12; depicted in Figure 4.9(c), it must be determined

if each register to be replaced, within a store, has an intervening set between successive stores.

If storing a constant value, there is unlikely to be an intervening set. If not, then a RTL must be

added – immediately prior to the store – that is of the form r[x] = r[x]; where r[x] is the register to

be replaced; during the renaming, the RTL will be modified to the form r[y] = r[x];. Once this has

been accomplished, then renaming may be performed. For each register to be renamed, each

RTL, within the live range of the old register(s), is examined and any occurrences of the old

register(s) is replaced with the new register(s) (Figure 4.8, lines 13-15; depicted in Figure

4.9(d)). The last task (Figure 4.8, lines 16-19; depicted in Figure 4.9(e)) is to check if the

register renaming is being performed within a loop and, if so, any loop invariant RTLs that may

have been created by the register rename routine are moved to a preheader block.

Figure 4.8 Register Renaming Algorithm

1 identify n sequential, available registers
2 if (numSequential registers found < 2) then
3 break;
4 foreach register to be replaced do
5 determine if register is used before it is set
6 foreach register used before set do
7 insert predecessor block
8 add rtl to predecessor block to set new register to old register
9 if (replacing into stores) then
10 foreach register to be replaced do
11 if (no intervening set of register between successive stores) then
12 add rtl of the form r[x] = r[x]; immediately prior to the store
13 foreach rtl in live range of old register do
14 if (register in rtl->sets or register in rtl->uses) then
15 replace old register with new register
16 if (blk in loop) then
17 foreach rtl in blk do
18 if (rtl is loop invariant) then
19 move rtl to preheader

 30

4.3.3.6 Coalescing of Sequential LDRF References. The actual coalescing of accesses is

the most straightforward piece of the optimization. At this point, it is simply a matter of

coalescing the multiple RTLs into a single RTL with multiple effects. The coalescing piece also

serves to eliminate multiple RTLs that are now represented by the single coalesced RTL,

thereby reducing the number of instructions.

As depicted within Figure 4.10, if coalescing stores, then the RTLs are coalesced into the

last reference to form a single RTL with multiple effects. If coalescing loads, then the RTLs are

coalesced into the first reference to form a single RTL with multiple effects. The number of RTLs

that may be coalesced is dependent upon the hardware configuration of the LDRF; as the RTLs

are coalesced, a check is performed to ensure that this limit is not exceeded.

Figure 4.9 Register Rename Example

gregister distance[100];

 for(i=0;i<100;i++)

distance[i] = 9999;

(a) (b)

 (c) (d) (e)

L2
G[(r[7]+0)]=r[2];
r[2]=r[2];
G[(r[7]+4)]=r[2];
r[7]=r[7]+8;
PC= r[7]<r[3],L2;

r[4]=r[2]; r[4]=r[2];

G[(r[7]+0)]=r[4];
G[(r[7]+4)]=r[5];
r[7]=r[7]+8;
PC= r[7]<r[3],L2;

r[4]=r[2];
r[5]=r[4];

r[2]=9999;

r[7]=distance;

r[2]=9999;
r[7]=distance;

r[2]=9999;
r[7]=distance;

r[2]=9999;

r[7]= distance;

L2
G[(r[7]+0)]=r[2];

G[(r[7]+4)]=r[2];

r[7]=r[7]+8;

PC= r[7]<r[3],L2;

r[2]=9999;

r[7]= distance;

L2

G[(r[7]+0)]=r[2];

r[2]=r[2];
G[(r[7]+4)]=r[2];

r[7]=r[7]+8;

PC= r[7]<r[3],L2;

L2

G[(r[7]+0)]=r[4];
r[5]=r[4];
G[(r[7]+4)]=r[5];
r[7]=r[7]+8;

PC= r[7]<r[3],L2;

L2

 31

4.4 Compilation Tools

To simplify the compilation process, two compilation helper tools have been created. The

first tool detects LDRF variables that have been declared as static and the second collects the

LDRF variable declarations into a single assembly file. The overarching goal of these tools is to

simplify the job of the linker. Conceptually, the LDRF is an architected large register file. In order

to most accurately implement this representation within the compiler, two new assembler data

sections would necessarily be created – analogous to the bss and data sections where global

data (uninitialized and initialized, respectively) – to contain the initialized and uninitialized LDRF

data. The linker would, therefore, have the added responsibility to manage the new data

sections. The added complexity of not only adding two new data sections but also modifying the

linker to manage them was deemed unnecessary. Rather, the approach taken was to move all

LDRF assembler declarations – for both uninitialized and initialized LDRF declarations – into a

Figure 4.10 Coalescing Example

 (a) LDRF loads, ready to be coalesced
 r[6]=x;
 L2
 r[7]=G[r[6]];
 ...
 r[8]=G[r[6]+4];
 ...
 r[9]=G[r[6]+8];
 ...
 r[10]=G[r[6]+12];
 ...
 r[6]=r[6]+12;
 r[4]=r[4]+4;
 PC=r[4]<r[2],L2;

(b) Coalesced LDRF loads
 r[6]=x;
 L2
 r[7..10]=G[r[6]..r[6]+12];
 ...
 ...
 ...
 ...
 r[6]=r[6]+12;
 r[4]=r[4]+4;
 PC=r[4]<r[2],L2;

(c) LDRF stores, ready to be coalesced
 r[6]=x;
 L2
 G[r[6]]=r[7];
 ...
 r[8]=r[7]+1
 G[r[6]+4]=r[8];
 ...
 r[9]=r[8]+1
 G[r[6]+8]=r[9];
 ...
 r[10]=r[9]+1;
 G[r[6]+12]=r[10];
 ...
 r[6]=r[6]+12;
 r[4]=r[4]+4;
 PC=r[4]<r[2],L2;

(d) Coalesced LDRF stores
 r[6]=x;
 L2
 ...
 r[8]=r[7]+1
 ...
 r[9]=r[8]+1
 ...
 r[10]=r[9]+1;
 G[r[6]..r[6]+12]=r[7..10];
 ...
 r[6]=r[6]+12;
 r[4]=r[4]+4;
 PC=r[4]<r[2],L2;

 32

single assembly file to create a single, continuous block of LDRF declarations. In addition, the

newly created assembly file would be the first assembly file to be linked, thereby causing the

block of LDRF block of declarations to begin at a known location – the start of the data section.

Lastly, a “filler” declaration is added to the assembly file, whose size is such that the cumulative

space of LDRF declarations is equivalent to the overall size of the LDRF. Doing so creates an

allocated block, by the linker, whose size is equal to the size of the LDRF and whose location,

within the allocated memory space, is known. This block is interpreted, by the simulator, as the

data that populates the LDRF during program load time.

4.4.1 LDRF Static Compilation Tool

 Static variables, which have file scope rather than program scope, may be declared to

reside within the LDRF. However, in order for the LDRF Assembly Directive Collection Tool (see

Chapter 4.4.2) to be successful, all LDRF variables must have program scope. The LDRF Static

Compilation Tool depicted in the compilation pathway of Figure 4.1, works by scanning a given

assembly file, identifying any statically declared LDRF variables, and rewriting the declaration

as a global declaration. To avoid collision with a global LDRF variable within any source file in

the application, the name of the variable being declared is modified to include the base of the

source filename. As a result, the assembly file must be scanned and any references to the static

variable must be altered to use the new name.

4.4.2 LDRF Assembler Directive Collection Tool

The LDRF Assembler Directive Collection Tool (LADCT) is a compilation aid and, as

depicted in Figure 4.1, is invoked immediately prior to the linker stage. The LADCT is

responsible for:

• Scanning each assembly file within a compilation – a list of assembly files is

maintained during compilation and it is these files that are scanned by the LADCT.

• Recognizing LDRF variable directives – these directives are distinguished by a

signature character sequence that both identifies them as LDRF directives, but also

signifies – to the assembler – that they are comments and should be ignored by the

assembler.

• Appending them, as global, initialized declarations, to a separate assembly file – as

a result of the LDRF Static Compilation Tool, all LDRF declaration directives are

global. However, they will not necessarily be initialized. This is necessary so that

 33

.globl LDRFADDR

.globl ldrf_fill

.globl dijkstra_L2

.globl c

.data

.align 4
LDRFADDR:
dijkstra _L2: # name of variable
.word 0 # allocate space
.align 4 # align on 4-byte boundary
c:
.word 0
.align 4
ldrf_fill:
.word 0
.space 131036

they naturally occupy a contiguous block. The LDACT will rewrite, as necessary,

directives so that all variables are initialized.

• Calculating the number of bytes allocated to the LDRF – by calculating the number

of bytes allocated to the LDRF, the LDACT provides a compile-time check to verify

that the number of bytes allocated to the LDRF does not exceed the size of the

LDRF.

• Allocating appropriate space to a fill variable – A fill variable is used to ensure that

that the overall number of allocated bytes is equal to that of the LDRF.

The single assembly file, created by the LADCT, will contain all LDRF variable declarations.

Figure 4.11 shows a sample LDRF references file. Note that there are four global declarations

within this file: LDRFADDR, ldrf_fill, dijkstra_L2, and c. The first two are generated by the

LADCT and serve specific purposes. LDRFADDR is the first declaration within every LDRF

references file and acts as a label to identify the beginning of the LDRF region within the linked

executable. LDRFADDR will not include any data definition directives; it will solely be used in its

label capacity. The second, ldrf_fill, will have its data definition directives as the last set of such

directives within the LDRF references file. It will contain two data definition directives – “.word 0”

and “.space x”, where x is the number of bytes that should be skipped in order for the overall

number of bytes allocated to the LDRF to be equal to the size of the LDRF. The number of

bytes, which should be skipped, is determined by subtracting the sum of the space occupied by

the variables that have been allocated to the LDRF from the overall size of the LDRF. The third

directive, “.globl dijkstra_L2”, illustrates a static LDRF directive that has been converted, by the

Figure 4.11 Example LDRF References File

 34

LDRF Static Compilation Tool, into a global LDRF directive. The fourth directive, “.globl c”, is an

example of the common case – a global LDRF directive.

4.5 Assembler Modifications

The assembler is responsible for transforming assembly into machine language. To support

the LDRF, two additions are made to the MIPS ISA. Namely, a load- and store-LDRF instruc-

tion:

• lg <number of registers>, <VRF start register>, <LDRF address>;

i.e., lg 1, $2, b

• sg <number of registers>, <VRF start register>, <LDRF address>;

i.e., sg 1, $2, a

The four fields of the instructions are, respectively:

1. Opcode (lg/sg; 6 bits) – load from LDRF or store to LDRF.

2. Number of registers to be accessed (3 bits) – the size of the block transfer to be

undertaken. Note that three bits imposes an upper bound, of eight registers, on the

number of registers that may be accessed. Considering typical register

requirements, this upper bound seems sufficient.

3. Start register in the VRF (5 bits) – one of 32 registers.

4. Start address in the LDRF (18 bits) – one of, perhaps, 256K registers. Note that

256K represents the maximum number of LDRF registers that could be supported

with the current encoding. In practice, the LDRF is considerably smaller.

The disassembler also was modified so that it correctly disassembles binary code, such as

object or executable files, that contain sg or lg instructions. Successful disassembling is a

critical step to aid debugging and to ensure that the assembler is generating correct

machine code.

4.6 Linker Modifications

Because of the LDACT, no linker modifications were necessary. It is important to note,

however, that the assembly file created by the LDACT is the first assembly file to be linked.

Because it is the first assembly file to be linked, and because the starting address of the data

section is known, the starting address of the LDRF also is known. More accurately, the starting

 35

address of the LDRF may be identified by either the starting address of the data section or by

the LDRF start address label that is introduced into the references file by the LDACT. Further,

because the size of the LDRF is known, the ending address of the LDRF also is known. These

considerations are of great importance within the simulator.

4.7 Compiler Analysis Tools

To ease the programmer’s decision-making process when assigning variables to the LDRF,

several analysis tools were developed. These tools collect information regarding the variables

used and in what capacity they are used. Many of the compiler analysis tools work in concert

with the simulator analysis tools to provide a comprehensive depiction of the variable.

Within the frontend, the name and data type of each variable is captured and output to a text

file. The name has obvious utility – it provides a mechanism to identify which variable is being

referenced. The data type provided is restricted to scalar, struct, or array and is used to help

guide the LDRF promotion process. Although each of these data types may be promoted to the

LDRF, arrays are often ideal candidates. This is because array elements are often accessed

sequentially, particularly within a loop, and this is the desired usage to apply the coalescing

optimization. Global scalars also are well suited for the LDRF; they are small and usually oft

referenced. They, however, do not lend themselves to coalescing as they are but a single

element. The third classification, structs, is the least amenable data type. Structs are often

large, such that they occupy an appreciable portion of the LDRF, but neither their reference

locality nor their temporal locality is assured. In addition, they do not lend themselves to the

coalescing optimization. They do more so than scalars, but to a lesser extent than arrays.

 36

CHAPTER 5

SIMULATOR ENHANCEMENTS

The SimpleScalar toolset was modified, as necessary, to accurately support the LDRF. The

toolset is designed to allow architectural enhancements to be easily incorporated into its many

simulators. Several of the notable modifications that affect all simulators include:

• Modification of the machine description, which is used by all simulators, to properly

decode and execute.

• Modification of the machine description to include “free” memory instructions. For

each memory instruction defined in the machine description, an analogous “free”

instruction was defined. In order to determine the performance impact of memory, as

depicted in Figure 1.1, the “free” memory instruction was substituted for the standard

memory instruction at runtime. The “free” memory instructions have the same

resource requirements and latency as the LDRF.

• Creation of a data structure to represent the LDRF as well as routines to interact with

the LDRF. The data structure is populated, at program load, with the initial LDRF

values. The routines perform such functions as reading from or writing to the LDRF.

Sanity checks also are performed, i.e., verification that the block access is no larger

than the maximum block size. Routines also were written to aid debugging, such as

a routine that dumps the contents of the LDRF.

• Inclusion of a new fault type to indicate that either the LDRF was accessed by a non-

LDRF instruction or to indicate that a LDRF instruction accessed something other

than the LDRF. This fault proved quite valuable to help identify bad code generated

by the compiler. In some situations, particular in the early development stages of the

LDRF implementation, the compiler would generate incorrect code whereby a LDRF

variable was not accessed with a LDRF instruction. By forcing the simulator to report

a fault, the offending instruction is easily identified and investigated.

 37

5.1 Sim-outorder

Sim-outorder required few specific changes to support the LDRF. This is a reflection of the

extensibility of the simulator. The majority of changes were made to accommodate statistical

needs or to accommodate analysis tools. With respect to statistics, many metrics were included,

within the simulator, so that the efficacy of the LDRF could be measured.

5.1.1 Analysis Tools

Sim-outorder was modified to collect various metrics regarding variable usage. The purpose

of the metrics is to provide a reasonable approximation of variable usage so that the program-

mer may more easily determine which variables to promote to the LDRF. Table 5.1 provides an

excerpt of the data collected within sim-outorder. In it, five global variables are listed. Two of

which, errno and environ, are system variables and are not candidates for the LDRF. It also

shows ldrf_fill, whose purpose is to occupy the unused portion of the LDRF. It is useful as a

check – it should never be accessed and its size, plus the cumulative sizes of LDRF variables,

should equal the total size of the LDRF. The remaining two variables, chair and table, are user

globals and should be considered for inclusion in the LDRF. The table provides the following

information:

• Base address – base address of the variable within the memory space.

• Type – Type of the variable. If a user variable, then either array, struct, or scalar will

be provided, which is supplied by the frontend. If it is not a user variable, then the

character corresponding to the data section in which the variable resides will be

provided. For example, ‘D’ refers to global initiated data; ‘S’ refers to global

uninitiated data.

• Name – name of the variable.

• Size – size of the variable in bytes.

• Number of uses – Number of accesses for this variable. For both scalar and

composite data structures, this is a cumulative count. It does not indicate which

portions – with elements of an array or fields of a struct – were accessed. This

information, though obtainable, is of limited usefulness, as the entire structure must

be placed in the LDRF. The number of accesses is quite obviously an important

metric when considering which variables to place within the LDRF.

 38

• Access density – Number of accesses divided by number of bytes. The access

density also is an important metric when considering which variables to include

within the LDRF. Because the LDRF is of a fixed size, and because it may be that

not all candidates will fit in the LDRF, is it desirable to first place those with high

access density in the LDRF.

• Average number of globals between accesses – Provides the number of global

references that occur between references to a given global. A smaller number of

intervening references are indicative of a higher temporal locality, which is

advantageous.

• External distance between globals – Refers to the average number of bytes between

the global of interest and the global that was accessed immediately prior to it. This is

a measure of spatial locality and those variables with high spatial locality are better

suited for the LDRF.

• Internal distance within the global – Refers to the average number of bytes between

accesses within a global variable; this metric is only applicable to composite

variables. It also is a measure of spatial locality and its consideration is more

important than the external distance. If a given global has a low internal distance,

then it implies that it accesses locations near each other, i.e., sequential locations,

are often referenced. A low internal distance, therefore, is suggestive of the

likelihood that coalescing is possible.

Considering the values within Table 5.1, chair would appear to be a better candidate than

table. Not only is it accessed more frequently, but it also is ten times smaller such that

access density is twenty times that of table. It also has a low internal distance, which

suggests that elements of the array are accessed sequentially.

Table 5.1 Sample Global Variable Behavior Data

Base
Address

Type Name Size
(bytes)

Num
Uses

Access
Density

Avg
Num

External
Distance

Internal
Distance

0x100011c0 D ldrf_fill 131072 0 0 0.00 0.00 0.00
0x100216f0 S errno 4 5 1.25 1512.8 234.2 0.00
0x100216f4 S environ 4 1 0.25 0.00 0.00 0.00
0x10021760 array chair 80 4000 50.00 0.50 40.00 3.8
0x100217b0 array table 800 2000 2.5 2.00 80.35 25.57

 39

5.2 Sim-profile

Sim-profile was modified so that it had an awareness of the LDRF. More specifically, the

LDRF was considered to be a region of memory. Doing so allowed the distribution of accesses

with the various segments of memory: LDRF, stack, heap, and data sections to be more easily

seen. This was useful when adding variables to the LDRF – the effect, from a memory access

standpoint, could therefore easily be seen. Sim-profile also was modified so that two sets of

statistics were maintained: one considering all instructions and one considering only VPO-

compiled instructions. Because only user variables may be placed within the LDRF, all LDRF

instructions will necessarily be VPO-compiled instructions and the benefits derived from using

the LDRF are most fairly evaluated by comparison without consideration of system routines,

which are not compiled by VPO. However, the VPO-code does not execute in a vacuum. To

have a well-rounded understanding of the usefulness of the LDRF, it is necessary to consider

how it impacts the performance of an application in its entirety. In other words, one must con-

sider Amdahl’s Law. For example, if the LDRF significantly speeds up the VPO-compiled portion

of an application, but that portion represents a small portion of the application as a whole, then

the usefulness of the LDRF – within the confines of that situation – must be questioned.

5.3 Sim-wattch

Sim-wattch was modified so that it had an awareness of the LDRF. Sim-wattch is an

implementation of sim-outorder that also provides power measurements based on the Wattch

power model [4]. Initially, sim-wattch was modified so that LDRF instructions could be handled

properly, much in the same way that sim-outorder was modified. Next, it was modified so that it

had a power awareness of the LDRF. The power model, for the LDRF, was modeled after that

of the traditional architected register file. The notable differences pertain to the ability LDRF

instructions to access blocks of registers. The power requirements of a LDRF access is

presented in Equation 5.1, which on face value is the same computation performed to calculate

the power consumption for a traditional register access. However, the power consumption for

the decoder occurs once per LDRF access. Power consumption from the other contributors

occurs once per LDRF register. The block LDRF accesses, therefore, save decoder power

when the block size is greater than one register.

Equation 5.1 LDRF Power Consumption per Access

power = decoder + wordline + bitline + senseamp;

 40

CHAPTER 6

EXPERIMENTAL TESTING

The experimental testing was performed within the experimental framework, which was pre-

sented in Chapter 3. The purpose of the testing was to (1) establish the viability of the LDRF, (2)

better quantify the behavior of a system that employs a LDRF, and (3) identify existing areas

that would benefit from additional work and to identify areas of new work. Some of the key

questions include:

• What is the optimal size of the LDRF? A larger LDRF, quite obviously, provides

increased storage capacity. However, it also consumes more power, more die area,

and – at some point – will increase the latency of the LDRF. The balance of the

larger size versus the costs associated with the larger size needs to be explored.

• How many candidate variables, for LDRF promotion, are there within a typical

application? Although the compiler framework was enhanced to allow most variables

to be promoted to the LDRF, restrictions remain. If there are few variables, per

application, which may be promoted to the LDRF, then its usefulness is diminished.

This question also serves to guide the question of LDRF size; a large LDRF is of no

additional consequence if a smaller one is large enough to support all candidate

LDRF variables.

• What is the impact of naively generated LDRF instructions? The LDRF is expected

to improve several areas of performance. It is instructive to quantify these improve-

ments.

• What is the impact of the optimized LDRF code? The optimized code should serve to

extend the performance benefits of the naïve code and create additional improve-

ments.

Select configuration parameters of the processor – without the LDRF – is provided in Table

6.1; the complete processor configuration is provided in Appendix A. Once the LDRF was

added, there were two adjustments to the processor configuration: (1) the LDRF was added;

although this seems trivial, it is relevant to the power measurements as the LDRF – just as any

 41

other architectural feature – consumes power even when not being accessed and (2) the data

level cache was reduced, by half, in size. This was done to provide a fairer playing field when

comparing a system with the LDRF to one without it. If the size of the data cache was not

reduced, one could argue that the results – for example, performance improvement – were as

much from having more data storage space available as opposed to the benefit of the LDRF

storage space, per se.

Table 6.1 Selected Processor Specifications

 Parameter Value

Machine Width 1

Load/Store Queue 8

Register Update Units 16

DL1 Cache Size 8K 4-way 2 cycle hit

IL1 Cache Size 8K 4-way 1 cycle hit

L2 Cache Size 1M 8-way 7 cycle hit

Memory Latency 150 cycles

With respect to the experimental setup, the following should be noted:

• The benchmarks were modified, by hand within the high-level source code, to

declare specific variables to reside in the LDRF.

• The benchmarks were further modified to retain semantic correctness. These

modifications were limited to the inclusion of the gpointer keyword within pointer

declarations.

• Other than the afore mentioned modifications, the benchmarks were not modified in

any way. In particular, the compiler was solely used to compile the benchmarks.

• The rolled, optimized code was used as the base case. Where appropriate, these

results are explicitly provided. In those cases where it is not provided, the results

given are with respect to the base case.

• Unless otherwise noted, the coalescing optimization was not applied.

 42

6.1 Experimental Results and Discussion

To measure the baseline efficacy of the LDRF, a representative benchmark from each of the

six categories of the MiBench suite was selected; six DSP kernels also were selected (see

Tables 3.1 and 3.2). Table 7.2 shows the category, associated benchmark selected from within

that category, as well as information pertaining to the variables eligible for promotion to the

LDRF. In all cases, the variables in question meet the criteria set forth for a variable to be a

good candidate for the LDRF. Furthermore, it should be noted that these variables would

otherwise, at best, reside in the data cache since they are either scalar globals or composite

data structures, neither of which is traditionally promoted to a register.

It is instructive to consider both the number of variables that are eligible as well as their total

size; the total size is reported as the number of bytes after the variables have been extended, if

necessary, to comply with the LDRF architectural conventions. Of the forty-seven variables that

were eligible for LDRF promotion, nine required type extension. This represents twenty percent

of the variables that were eligible and, on average, equates to a twenty-seven percent increase

in the minimum LDRF size to accommodate all variables within a given application.

With respect to the LDRF size, 4,971 bytes were needed – on average and on a per

benchmark basis – to accommodate all eligible variables. However, the average decreases to

1,638 bytes if a large array (40 Kbytes) with Dijkstra is excluded from consideration. This

suggests that a LDRF of 1,024 registers – or 4,096 bytes – will provide sufficient capacity to

contain nearly all eligible variables within a given benchmark. Also, note that although some

applications offered few variables that could be promoted, they did constitute an appreciable

size and, more importantly, constituted an appreciable reference count. For example,

Stringsearch had but two variables eligible for LDRF promotion. However, they occupied 2,048

bytes, which would consume a considerable portion of a typical data cache.

 43

Table 6.2 Benchmark Characteristics

Variables Eligible for
LDRF Promotion

Category Application Number
Total Extended

Size (bytes)

Automotive Bitcount 2 2,048

Consumer Jpeg 13 2,048

Network Dijkstra 6 40,816

Office Stringsearch 2 1,028

Security Blowfish 6 400

Telecomm Adpcm 3 2,420

DSP Kernel Conv45 2 496

DSP Kernel Fir 3 2,400

DSP Kernel Iir1 3 2,400

DSP Kernel Jpegdct 2 1,600

DSP Kernel Mac 3 2,400

DSP Kernel Vec_mpy 2 1,600

6.1.1 Execution Time Analysis

Figure 6.1 shows the performance improvement within the MiBench benchmarks as well as

the DSP kernels as a function of LDRF size. The improvements are primarily from more efficient

access, within the pipeline, to data. Recall that the data retrieved from the LDRF is available in

the execute stage, rather than the memory stage, because the LDRF instructions do not require

an offset calculation. For the MiBench benchmarks, there is an average performance gain – in

terms of the reduction of cycles – of 6.4%, 9.63%, and 10.11% when using a 128-register, 512-

register, and 1024-register LDRF, respectively. The results within a given benchmark are

reflective of the data signature for that benchmark. For example, Stringsearch, which has the

largest performance gain (12.45% in the worst case; 24.74% in the best case), utilizes – to near

exclusivity – globals and more over global arrays (76% of memory references are to the static

data segment). Jpeg, on the other hand, relies heavily on variables that occupy the stack and

heap segments (93% of memory references are to the stack or heap segments). This is not to

suggest that the LDRF is solely appropriate for applications with high use of globals/data

segment. Rather, the LDRF is most appropriate for applications with high global/array/struct

accesses. Blowfish is a good example of this – it has a 2.53% performance gain despite 0.01%

 44

data segment references. The savings are derived from local arrays in non-recursive functions,

which are promoted to the LDRF.

For the DSP kernels, there is an average performance gain – in terms of the reduction of

cycles – of 11.8%, 17.75%, and 21.11% when using a 128-register, 512-register, and 1024-

register LDRF, respectively. The loop- and array-oriented nature of DSP kernels is easily

exploited by the LDRF. In general, the benchmarks show the expected behavior whereby

performance gains increase as the size of the LDRF increases. Conv45 and Jpegdct are

apparent exceptions, as the performance improvement remains constant despite the larger

LDRF size. In the case of Conv45, it cannot exploit a LDRF larger than 128 registers. In the

case of Jpegdct, there are gains as the LDRF size is increased, but they too slight to be easily

discerned within the figure. The modest gains are due to low reference counts of the variables

that were added as the LDRF size increased. This does, however, underscore the importance of

variable-promotion selection – if the variables with low reference counts were promoted first,

there would be little performance gain and inaccurately suggest that the smaller LDRF was of

little benefit. IIR1 also is an apparent exception, as there is no apparent gain from a 512-register

LDRF when compared to a 256-register LDRF. In this case, the variables promoted to the LDRF

are sized such that they are not able to take advantage of the 512-register LDRF.

Figure 6.1 MiBench and DSP Performance Results

0%

5%

10%

15%

20%

25%

30%

35%

fir iir1

jpe
gd

ct
mac

ve
c_

mpy

co
nv

45

av
era

ge

dij
ks

tra

str
ing

se
arc

h

bit
co

un
t

blo
wfis

h

ad
pc

m
jpe

g

av
era

ge
 m

ibe
nc

h

Benchmark

Pe
rc

en
t P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

256 regs 512 regs 1024 regs

 45

6.1.2 Memory Instruction Count

Figure 6.2 shows the reduction in memory instructions. On average, the MiBench bench-

marks experienced a 35.55% reduction of memory instructions and the DSP Kernels

experienced an average reduction of 99.97%. Even in the case of the MiBench benchmarks, the

reduction is considerable. Note that – without coalescing – one LDRF instruction typically

replaces one memory instruction such that the total number of instructions will be nearly the

same. However, it is useful to consider the reduction of memory instructions, as these

instructions are higher cost than the LDRF. In fact, the pattern of performance gains, particularly

for the MiBench applications, closely mirrors the pattern of memory instruction reduction. For

example, Stringsearch and Jpeg have the highest, and lowest, reduction of memory

instructions, respectively. They also have the highest, and lowest, performance increase,

respectively. The LDRF instructions, to reiterate previous comments, provide data at a later

stage in the traditional pipeline and have a higher latency. In particular, if the memory instruction

requests data that is not on-chip, i.e., in either the data level one cache or the data level two

cache, then the latency will be interminable. When considering coalescing, the overall number

of instructions will decrease, as one LDRF instruction will replace two or more memory

instructions.

Figure 6.2 Reduction in Memory Instructions

0%

20%

40%

60%

80%

100%

fir iir1

jpe
gdc

t
mac

ve
c_

mpy

co
nv

45

av
era

ge
 D

SP

dij
ks

tra

str
ings

earc
h

bit
co

un
t

blo
wfis

h

ad
pc

m
jpe

g

av
era

ge
 M

iBen
ch

Benchmark

Pe
rc

en
t

Re
du

ct
io

n
of

 M
em

or
y

In
st

ru
ct

io
ns

256 regs 512 regs 1024 regs

 46

6.1.3 Data Cache Access Patterns

 Figure 6.3 shows the data cache access patterns for the MiBench applications. As

expected, the total number of accesses to the memory hierarchy – comprised of the level 1 data

cache, level 2 data cache, and memory accesses – decrease as data are moved from the

memory hierarchy into the LDRF. It is interesting to note, however, the number of misses within

the level 1 data cache increases when using the LDRF. This is due to the smaller sized cache

that is used in conjunction with the LDRF. However, despite the increased accesses to the level

2 data cache, these benchmarks still realize an overall performance gain due to the gains

associated with LDRF access.

6.1.4 Power Analysis

A system that employs the LDRF can reasonably be expected to consume less power than

one that does not, even while also incurring a performance benefit. The performance benefit

has been discussed and established for a system that uses the baseline LDRF. Power, often a

concern not only for embedded systems but for general-purpose systems as well, can be as

important a metric as performance. Figure 6.4 presents the total processor energy reduction

when using the LDRF. When using the 1,024-register LDRF, an average savings of 8.04% is

Figure 6.3 Data Cache Contention

0%

20%

40%

60%

80%

100%

dij
ks

tra

str
ing

se
arc

h

bit
co

un
t

blo
wfis

h

ap
dc

m
jpe

g

av
era

ge

MiBench Benchmark

A
cc

es
s

Fr
eq

ue
nc

y

L1 Hits L2 Hits L2 Misses

N
o

LD
R

F
25

6-
re

gs
51

2-
re

gs
1,

02
4-

re
gs

 47

realized for the MiBench applications, and an average of 20.14% is realized for the DSP

kernels. As with the performance gains, there is a direct correlation between the increase in the

number of LDRF instructions and the increase in the total energy savings. The LDRF

instructions, as previously discussed, are less expensive than a corresponding memory

instruction. It also should be noted that the energy reported is that of the processor; due to

constraints of the Wattch model, it does not include the energy required to retrieve data from off-

chip. Therefore, the energy savings presented in the figure may reasonably be considered

conservative. The LDRF will likely reduce the number of main memory accesses and thereby

realize even greater energy savings.

6.1.5 Coalescing Optimization

Although the benefits of the LDRF have been demonstrated, these benefits are derived from

unoptimized – with respect to the LDRF – code. More specifically, the code has been generated

without the benefit of the coalescing optimization, which has the potential to amplify the benefits

of the unoptimized code. Figures 6.5 shows the effect of coalescing when applied to the DSP

kernels. The figure shows the performance of four processor configurations – no LDRF, 256-

register LDRF, 512-regsiter LDRF, and 1,024 register LDRF – running the DSP kernels where

Figure 6.4 Percent Energy Reduction

0%

5%

10%

15%

20%

25%

30%

35%

fir iir1

jpe
gd

ct
mac

ve
c_

mpy

co
nv

45

av
era

ge

dij
ks

tra

str
ing

se
arc

h

bit
co

un
t

blo
wfis

h

ad
pc

m
jpe

g

av
era

ge
 m

ibe
nc

h

Benchmark

Pe
rc

en
t R

ed
uc

tio
n

of
 T

ot
al

 E
ne

rg
y

256 regs 512 regs 1024 regs

 48

the loop unroll factor (UR) has been increased by a power of two, such that it varies from a UR

= 1 (no unrolling) to a UR = 8. At the highest unroll factor, the average performance gains are

31%, 34%, and 34.5% for the three sizes of the LDRF; recall that the gains for the unoptimized

were 11.8%, 17.75%, 21.11% for the respective sizes. Note that loop unrolling itself provides

some performance benefit. This benefit can be most easily seen in the case where no LDRF is

used; the coalescing is responsible for the additional benefits.

Although coalescing opportunities do exist without loop unrolling, they are far more likely to

occur when loop unrolling has been applied: of the six DSP kernels, loop unrolling creates

sequential LDRF references that may be coalesced for all but Jpegdct. Although the unrolled

innermost loops of Jpegdct do create sequential LDRF references, loads and stores to the

same LDRF address are interspersed with one another such that coalescing would not retain

program correctness. Because there is little coalescing within Jpegdct, the loops within Jpegdct

have low iteration counts, and it cannot exploit a LDRF larger than 512-registers, its

performance increases are relatively constant with increasing LDRF size. The behavior of IIR1

is interesting as well. In contrast to the smaller sized LDRFs, the 1,024-register LDRF does not

appear to realize a performance gain when unrolling. IIR1 naturally has sequential LDRF

accesses; these accesses coalesce when the unroll factor equals one (or no unrolling). In the

case of the 1,024-register LDRF, the natural coalescing that occurs consumes the available

registers within the traditional register file. Unrolling, in this case, is not helpful. In fact, although

Figure 6.5 Coalescing and Performance

0%

10%

20%

30%

40%

50%

60%

co
nv

45 fir iir1

jpe
gd

ct
mac

ve
c_

mpy

av
era

ge

DSP Kernel

Pe
rc

en
t P

er
fo

rm
an

ce

Im
pr

ov
em

en
t

UR=1 UR=2 UR=4 UR=8

N
o

LD
R

F
25

6-
re

gs
51

2-
re

gs
1,

02
4-

re
gs

 49

the unrolling reduces the number of branch instructions thereby providing a performance boon,

it also adversely affects performance. Those LDRF instructions that are not coalesced, and

would have an offset, are necessarily represented as two instructions as discussed in

Chapter 4.5. The negative impact of the extra instruction, to calculate the effective address, is

small and remains faster than a traditional memory instruction by virtue of the lesser latency of

the LDRF.

 The energy benefits, as related to the coalescing optimization, are provided in Figure 6.6. In

general there is a decrease in the total energy consumed as the unroll factor increases. This is

to be expected as the number of cycles required to complete the benchmark is decreasing.

However, it also shows that a configuration with a LDRF – even the 1,024-register LDRF – and

a smaller cache is far more energy conscious than the configuration without the LDRF and the

larger cache. This is due in part to the performance improvement of a configuration with a

LDRF, but also due to the decreased energy requirements of the LDRF and half-cache when

compared to the full cache. The effects of increasing the LDRF size are most easily seen in

Conv45. Because it can only exploit a 128-register LDRF, the decrease in the energy reduction,

as the LDRF size increases, is an indicator of the additional energy required to power the

increasing LDRF size. For Conv45, there is less than one percent differential between the

energy consumed by the smallest, and largest, LDRFs.

Figure 6.6 Coalescing and Energy

0%

10%

20%

30%

40%

50%

60%

co
nv

45 fir iir1

jpe
gdc

t
mac

ve
c_

mpy

av
era

ge

DSP Kernel

P
er

ce
nt

 R
ed

uc
tio

n
To

ta
l E

ne
rg

y

UR=1 UR=2 UR=4 UR=8

N
o

LD
R

F
25

6-
re

gs
51

2-
re

gs
1,

02
4-

re
gs

 50

CHAPTER 7

RELATED WORK

Several approaches have been investigated to make use of a larger number of registers.

Unlike our method, these approaches enforce severe restrictions on how the registers are

accessed and/or can only be applied in a limited manner.

The register connection [14] method tolerates a high demand for architected registers by

adding a set of extended registers to the core register set. It also incorporates a set of

instructions to remap architected register specifiers into the extended set of physical registers.

The remapping between the architected register file and the extended register file is performed

one register at a time. This method is acceptable to avoid spill code for scalar registers that do

not fit in the architected register file, but requires an excessive overhead penalty for remapping

larger data, such as arrays.

The register queues [19] approach is an extension of the register connection method, in

which each architected register could be mapped to a set of extended registers with a FIFO

ordered queuing access pattern. The FIFO ordering of register queue accesses significantly

reduces the need to remap architected register space to access multiple extended registers, but

it also restricts the type of code than can automatically exploit this feature.

Rotating registers [7] have been used to facilitate software pipelining. After software

pipelining a loop, often a value that is produced in one loop iteration is used in a subsequent

iteration. Rotating registers facilitate access to these values without requiring registers to be

copied from one register to another. The rotating register approach restricts the manner in

which the extra registers are accessed and still has a one-to-one encoding of registers in the

instruction set architecture, limiting the number of additional registers that can be added without

a significant increase in instruction size.

Register windows have been used in processors, such as the SPARC architecture, to hold

values associated with a function’s activation [23]. Each time a function is invoked, a register

window pointer (RWP) is advanced to the next window. When a return from a function is

encountered, the RWP will be updated to point to the previous register window. Thus, windows

 51

are accessed in a LIFO manner, while registers within a window are accessed in an arbitrary

order. The main advantage of using multiple windows in this fashion has been to avoid saves

and restores of registers that normally occur at the entry and exit of a function, respectively. The

register stack engine (RSE) of the Itanium-64 employs a similar concept, except that the

number of registers allocated by each activation of a function is not constant [12]. Like conven-

tional register sets, register windows are used to hold scalar values and thus the total number of

registers that can be effectively exploited is relatively small.

The Stack Value File (SVF) [15] is implemented as a very large register file, is used to store

run-time stack data, and is implemented as a large circular buffer. The registers in the SVF are

indirectly accessed through conventional loads and store instructions. Instructions that

reference the run-time stack using a displacement of the stack pointer are morphed into

register-to-register moves after being fetched and decoded. Thus, most accesses to the SVF

occur earlier than accesses to the L1 cache, which reduces access latency. However, accesses

to the SVF still require conventional load/store instructions. In contrast, our approach removes

load/store instructions, avoids memory access to data not on the run-time stack, and allows

direct access to LDRF registers.

Scratchpad memories are small compiler managed storage structures that can be

overlapped or independent of memory addressing. Scratchpad memory is accessed in the same

manner as main memory, but since the allowable address space is much smaller, the entire

space can be placed in fast on-chip storage. This enables scratchpad memories to have access

latency similar to L1 cache hit times, while guaranteeing the data will reside in the memory. The

compiler generally decides which data is placed into scratchpad memories. There have been a

number of studies examining allocation strategies [2][21][1]; most perform static allocation of the

most heavily referenced data, while a few examine dynamic promotion of data from main

memory into the scratchpad. New instructions to access the scratchpad storage are typically not

required since the address space is shared with main memory. Advantages of using

scratchpads is that they consume less power than a conventional L1 data cache and they are

useful for ensuring that frequently referenced data can always be accessed in a single cycle.

However, access to data in a scratchpad memory is not as efficient as the LDRF since access

occurs later in the pipeline and only a single value can be accessed at a time.

The Smart Register File [17] modifies traditional register file access semantics to include an

indirect access mode, which provides support for aliased data items in registers. As a result, the

compiler can allocate data from a larger pool of candidates – such as composite data structures

– than in a conventional system. This modification lends expansion of the traditional register file

 52

into a larger structure because the compiler is now more likely to be able to take advantage of

the additional registers. CRegs [8] is another technique that solves the aliasing problem. How-

ever, access to data in both the Smart Register File and CRegs is less efficient when using the

LDRF architecture, as it does not support the access of multiple values.

Memory access coalescing [6] is a compiler optimization that coalesces multiple loads or

multiple stores into a single instruction. By combining multiple loads into a single coalesced

load, the movement of data from the cache can be handled more efficiently in the micro-

architecture. While coalescing reduces the number of load and store instructions, it does not

change the amount of data transferred from/to memory. Also, unlike our approach, memory

access coalescing requires that these larger memory references must be aligned on an address

that is an integer multiple of the data reference size. This alignment requirement is due to

accessing data from a cache, can restrict the number of opportunities for coalescing memory

references, and can require additional instructions be generated that performs checks to ensure

that addresses are aligned. In contrast, variables referenced in the LDRF are guaranteed to be

resident and sequential sets of these registers can be accessed without alignment restrictions.

 53

CHAPTER 8

FUTURE WORK

The work to date clearly establishes the viability of the LDRF. However, there are several

areas that merit additional work. Some future work is best viewed as a refinement of work

already undertaken and some is simply new work. All of the potential areas for additional work

serve to make the LDRF implementation more robust, more flexible, and more likely to be

strongly embraced by the research community. Several of the potential areas for future work are

discussed in the subsections that follow.

8.1 Automation of Variable Promotion to the LDRF

It is envisioned that allocation of variables to the LDRF will become an automated process

that is controlled by the compiler. Akin with the register keyword, the gregister keyword will

remain available to the programmer, but will become a suggestion to the compiler. Thus, the

compiler will be the final decision-maker and also will promote variables to the LDRF on its own

accord. This is seen as a natural progression of the research. One of the compiler’s

responsibilities – or, more generally, the computer for that matter – is to ease the burden of the

programmer. Although it is logical for programmers to be familiar with their programs, to the

extent that they may make educated variable promotions to the LDRF, that ultimate decision

should reside with the compiler. This is particularly true in a large application with many source

files, where it would be onerous for the programmer to be the sole decision-maker.

The initial infrastructure to support automated variable promotion is in-place. Recall the

analysis tools, which provide rudimentary recommendations to the programmer as to which

variables might be best suited for inclusion in the LDRF. If the initial infrastructure were

retained, then a multi-pass compilation/simulation would be required. This is necessarily so as

the simulator – not the compiler – provides the hit density, which is one of the most important

metrics to consider when allocating variables to the LDRF. In this paradigm, the application

would be compiled and executed in order to generate metrics, to be read in by the compiler, that

allow the compiler to determine which variable to promote to the LDRF. This approach has the

advantage that it directly builds on the existing infrastructure and, in addition, it uses dynamic

 54

counts on which it bases its decisions. The disadvantage, which likely outweighs the afore

mentioned positives, is that it requires not only a complete compilation but a complete execution

before it may allocate variables to the LDRF. Considering that an application may take several

minutes to compile, and several hours to execute, the time required may be prohibitive. As an

alternative, the compiler would be responsible for all analysis necessary for it to evaluate and

promote variables to the LDRF. A reasonable approach to achieve this end would be to retain

the compilation process as a multi-pass endeavor. The first pass would generate static count

estimates of the program variables which, when considered with their size, provides an estimate

of their hit density. This information, as well as the other criteria that may be collected by the

compiler, may then be used within the second pass to allocate variables to the LDRF. It would

be a matter of research as to how best implement the second pass; likely, it would begin with

the frontend. This would ensure that correct stack code would be produced for consumption by

the middleware and down the compiler toolchain. It would, however, increase the compile time

as the second pass would repeat the compiler sequence in its entirety. If it were deemed

desirable to constrain the second pass to the backend, it would necessarily have the added

complexity of not only extending the variables, placed into the LDRF, to integers but it also

would need to adjust the code to reflect the extension to integers. Further, it would be

responsible for actions that are normally performed by the frontend, such as type checking. As

an example, consider an array that is declared – by the compiler – to be a local static gregister.

It is subsequently passed, as a pointer argument, to a function. The backend must perform the

type check, normally performed by the frontend, to verify that the function parameter is declared

to be a gpointer.

8.2 Permit Promotion of Dynamically Allocated Variables to the LDRF

Currently, only variables whose sizes are known at compile time may be allocated to the

LDRF. A reasonable approach, to be sure, as it eliminates significant complexity by disallowing

dynamically allocated variables to be promoted to the LDRF. However, it also dramatically – for

some applications – reduces the number of opportunities for LDRF promotion.

In order to support promotion of dynamically allocated variables to the LDRF, allocation

routines would be evaluated and implemented. There are several well-established algorithms –

including first fit, best fit, buddy – for allocating dynamic memory. These algorithms would be

evaluated, in terms of use with the LDRF, to determine which is most appropriate. In addition, a

LDRF-compatible malloc() and free() would need to be created. These routines could be made

 55

available to the programmer, or they could overload the existing malloc() and free() routines so

that the LDRF versions are called as appropriate.

It also would be a matter of research as to what portion of the LDRF is available for dynamic

allocation. A simplistic approach would be to allocate some fixed portion of the LDRF to statics

and allow the remainder of the LDRF to be used for dynamic allocation. This approach would be

straightforward to implement and to establish the viability of dynamic allocation, but it is not

appropriate for a robust solution. Its failing lies in its simplicity – because it establishes the static

region as well as the dynamic region without first establishing the needs of the program, the

allocation may be less than ideal for the given program. It would a far better use of space to

allocate the statics, to the LDRF, and allow any remaining space to be used for dynamic

allocation. This ensures that no space will be wasted, per se, but it does not necessarily make

the best use of that space. For example, the statics that are allocated to the LDRF may have a

low access count, particularly when compared to the access count of a dynamically allocated

variable.

It is possible than dynamic allocation will exceed the available LDRF resources. Thought will

necessarily need to be given as to the best course of action when this occurs. Either a run-time

error, i.e., “Out of LDRF resources”, could occur or a portion of the LDR could be moved to a

different storage location. The former is simpler to implement but less flexible. The latter greatly

increases the flexibility, but also greatly increases the complexity. It may be appropriate to

consider dynamic allocation techniques that are employed in scratchpad memory systems [21],

which faces similar challenges. The difficulty lies in that the preferred method is not access

count, but access density, which necessarily cannot be determined at compile time for a

dynamically allocated variable. These considerations, and others, make promotion of

dynamically allocated variables challenging.

8.3 Alternative LDRF Architecture to Support Non-Contiguous Accesses

The LDRF architecture, as designed, permits block accesses where the blocks represent a

continuous range to be transferred to/from the LDRF from/to a continuous range within the

traditional register file. The coalescing optimization serves to coalesce the accesses into a

single instruction thereby creating the block access. However, in order for the optimization to be

successful, it must find an appropriately sized block of sequential registers. As the unroll factor

increases, the block that might be created typically increases. For example, an unroll factor of

eight lends itself to creation of a block of eight references. However, large sequential ranges of

registers are often not available. One alternative would be to perform extensive renaming,

 56

where even those registers that are identified as live within the register rename range would be

made available for renaming. This would add considerable complexity as the live registers, if

used for renaming, would necessarily require additional instructions to retain program

correctness. The value of the coalescing a greater number of instructions would then need to be

considered in context of the additional instructions. Likely, so long as the coalesced instruction

was executed in particular when compared to the added instructions, there would be an overall

performance improvement. However, this would be a matter of additional research. The second

alternative is to relax the constraint that the registers must be sequential. This would simplify the

renaming process as any n available registers could be used. However, it would increase the

complexity of the interaction between the LDRF and the VRF. The added complexity would

need to be evaluated from both a power and performance perspective. In particular, it would be

necessary to establish that the redesigned LDRF retains its low latency.

8.4 Extension of the Coalescing Optimization

The Coalescing Optimization is currently restricted to a single basic block. Although this is

sufficient to capture the majority of coalescing opportunities, it would be preferable to relax this

constraint. As a motivating example, consider Figure 8.1. The for-loop simply loops over a

Figure 8.1 Coalescing Across Blocks

gregister int a[1000];

for (i=0; i<1000; i++){
 if (a[i] > 0)
 count++;
}

(a) unrolled 2x (b) coalescing applied across blocks

L2
r[2]=G[(r[7]+0)];
PC=r[0]<r[2],L6;

L9
r[7]=r[7]+8;
PC=r[7]<r[4],L2;

L6
r[2]=G[(r[7]+4)];
PC=r[0]<r[2],L9;

r[16]=r[16]+1;

r[16]=r[16]+1;

L2
r[2..3]=G[(r[7]+0)..r[7]+4];
PC=r[0]<r[2],L6;

L9
r[7]=r[7]+8;
PC=r[7]<r[4],L2;

L6
PC=r[0]<r[3],L9;

r[16]=r[16]+1;

r[16]=r[16]+1;

L2
r[2]=G[(r[7]+0)];
PC=r[0]<r[2],L6;

L9
r[7]=r[7]+8;
PC=r[7]<r[4],L2;

L6
r[2]=G[(r[7]+4)];
PC=r[0]<r[2],L9;

r[16]=r[16]+1;r[16]=r[16]+1;

r[16]=r[16]+1;r[16]=r[16]+1;

L2
r[2..3]=G[(r[7]+0)..r[7]+4];
PC=r[0]<r[2],L6;

L9
r[7]=r[7]+8;
PC=r[7]<r[4],L2;

L6
PC=r[0]<r[3],L9;

r[16]=r[16]+1;r[16]=r[16]+1;

r[16]=r[16]+1;r[16]=r[16]+1;

 57

gregister array and tallies the number of positive values within the array. The RTLs within Figure

8.1(a) are those of the loop, which has been unrolled two times; those within Figure 8.1(b) show

the RTLs as they might appear after coalescing has occurred. In both cases, the control flow is

provided as well as the block boundaries. Because the LDRF access within the block labeled L6

is sequential with that of the LDRF reference labeled block L2, it is a candidate for coalescing

across blocks. However, there are a number of other considerations that must be evaluated

before the coalescing would be considered safe, including: (1) both LDRF accesses must be

executed on every iteration of the loop and (2) the basic block hierarchy must be evaluated –

both in terms of taken and not-taken branches – to verify that the coalescing is safe. The latter

aspect will require each block across which the access will be coalesced must be evaluated for

the myriad of conditions that invalidates a coalescing opportunity.

 58

CHAPTER 9

CONCLUSIONS

Because the gap between processor speed and memory speed has continually widened

over the years, the performance of the memory hierarchy has had an increasingly detrimental

effect on performance. Accordingly, alternative storage locations need to be identified;

particularly one which reduces the deleterious impact of the memory hierarchy. This thesis has

presented such an alternative, a large data register file. The LDRF acts as an alternative to the

data cache and retains many of the advantages of a small register file. It also provides

additional added value. In particular, the LDRF supports aliased data as well as composite data

structures, which typically are relegated to the first-level data cache, which provides slower

access times. In comparison to a data cache, data will be made available – within a traditional

5-stage pipeline – one stage earlier when placed in the LDRF. In addition, the size and structure

of the LDRF allow it to have a lower access time than a typical data cache.

Promotion of variables, to the LDRF, is currently the programmer’s responsibility. However,

several analysis tools are provided to ease the identification of candidate variables. In addition,

inclusion of but two reserved keywords to accommodate the LDRF, at the high-level source

code, makes promotion of variables to the LDRF rather simple. Robust and thorough compiler

enhancements were implemented to verify that the LDRF variables are being used properly,

and to generate both naïve and optimized code. Many of the optimizations that were put in-

place to support the coalescing of LDRF instructions are applicable to a wide variety of

situations, and are not solely applicable to the LDRF research.

Results show that the LDRF behaves as expected and confirms the thought that use of the

LDRF is advantageous. Even without use of the coalescing optimization, there is a significant

reduction of memory traffic, as oft-referenced variables are now located in the LDRF. The

reduction in memory traffic equates to a reduction in power, a reduction in contention for the

data cache – which can lead to fewer data cache misses, a reduction in the number of data TLB

accesses, and a reduction in the number of cycles to complete an application. The coalescing

optimization builds upon these results to further reduce the number of cycles to complete an

application, to further reduce the reduction in power, and to reduce the dynamic instruction

 59

count. The additive benefits of the coalescing optimization are a natural product of coalescing

several instructions into one. Considering that many applications – particularly numerically

intensive applications – spend the majority of time within tight loops, coalescing as few as two

LDRF instructions – within a tight loop – into one instruction can have an appreciable impact on

the performance of an application.

Without a fundamental shift in the methodology by which computing is performed, i.e., a

complete reimplementation of the memory hierarchy, it is likely that the gap between processor

speeds and memory speeds will continue to increase. Solutions to this pressing problem, such

as the LDRF, will therefore increase in value.

 60

APPENDIX A: SIMPLESCALAR CONFIGURATION

These values provided, below, represent the SimpleScalar configuration used for the experi-

mental testing.

Parameter Value
instruction fetch queue size (in insts) 4
extra branch misprediction latency 3
speed of frontend of machine relative to execution
core

1

branch predictor type bimodal
bimodal predictor configuration 2048
return address stack size 8
BTB configuration 512 sets; 4-way
instruction decode, issue, and commit bandwidth
(insts/cycle)

1

run pipeline with in-order issue False
issue instructions down wrong execution paths True
register update unit (RUU) size 16
load/store queue (LSQ) size 8
ldrf hit latency (in cycles) 1
l1 data cache configuration 64 lines; 32 byte blocks; 4-way;

LRU replacement policy
l1 data cache hit latency (in cycles) 2
l2 data cache configuration 1024 lines; 128 byte blocks;

4-way; LRU replacement policy
l2 data cache hit latency (in cycles) 7
l1 inst cache configuration 64 lines; 32 byte blocks; 4-way;

LRU replacement policy
l1 instruction cache hit latency (in cycles) 1
l2 instruction cache configuration Unified
flush caches on system calls False
convert 64-bit inst addresses to 32-bit inst
equivalents

True

memory access latency (in cycles)) 150 first chunk; 4 inter chunks
memory access bus width (in bytes) 8

 61

instruction TLB configuration 16 lines; 4K blocks; 4-way;
LRU replacement policy

data TLB configuration 32 lines; 4K blocks; 4-way;
LRU replacement policy

inst/data TLB miss latency (in cycles) 30
total number of integer ALUs 4
total number of integer multiplier/dividers available 1
total number of memory system ports available (to
CPU)

2

total number of floating point ALU's available 4
total number of floating point multiplier/dividers
available

1

 62

REFERENCES

[1] F. Angiolini, L. Benini, and A. Caprara, “Polynomial-time algorithm for on-chip scratchpad
memory partitioning”, Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, October 30-November 01, 2003, San
Jose, California, USA.

[2] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation scheme for scratch-
pad-based embedded systems”, ACM Transactions on Embedded Computing Systems
(TECS), v.1 n.1, p.6-26, November 2002.

[3] M. E. Benitez and J. W. Davidson. “A Portable Global Optimizer and Linker”. Proceedings
of the SIGPLAN'88 conference on Programming Language Design and Implementation,
pages 329-338. ACM Press, 1988.

[4] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A framework for Architectural-level power
analysis and optimizations”, Proceedings of the International Symposium on Computer
Architecture, pg 83-94, June 2000.

[5] D. Burger and T. Austin, “The Simplescalar Tool Set, Version 2.0,” Technical Report 1342,
Department of Computer Science, University of Wisconsin-Madison,1997.

[6] J. W. Davidson and S. Jinturkar, “Memory Access Coalescing: A Technique for Eliminating
Redundant Memory Accesses,“ Proceedings of the SIGPLAN ’94 Symposium on
Programming Language Design and Implementation, pg. 186-195, June 1994.

[7] J. Dehnert, P.Hsu, and J. Bratt, “Overlapped Loop Support in the Cydra 5,” Proceedings
for the Third International Conference on Architectural Support for Programming
Language and Operating Systems, pg. 26-38, April 1989.

[8] H. Dietz and C.-H. Chi. “CRegs: A New Kind of Memory for Referencing Arrays and
Pointers”, In Proceedings of Supercomputing '88: November 14-18, 1988, Orlando, FL, pp.
360-367, January 1988.

[9] C. W. Fraser and D. R. Hanson, A Retargetable C Compiler: Design and Implementation,
Addision-Wesley, 1995.

[10] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, R. Brown, “MiBench: A free,
Commercially Representative Embedded Benchmark Suite”, IEEE 4th Annual Workshop
on Workload Characterization, Austin, TX, December 2001.

[11] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel, "The
Microarchitecture of the Pentium 4 Processor," Intel Technology Journal, Q1 2001.

[12] Intel Literature Centers, IA-64 Application Developer’s Architecture Guide, Intel, Inc. 1999.

 63

[13] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers“, Proceedings of the 17th Annual
International Symposium on Computer Architecture, pg. 364-373, 1990.

[14] K. Kiyohara, S. Mahlke, W. Chen, R. Bringmann, R. Hank, S. Anik, and W. Hwu, “Register
Connection: A New Approach to Adding Register in Instruction Set Architectures.”
Proceedings of the International Symposium on Computer Architecture, pg. 247-256, May
1993.

[15] H. Lee, M. Smelyanski, C. Newburn, and G. Tyson, “Stack Value File: Custom
Microarchitecture for the Stack”. Proceedings of the International Symposium on High
Performance Computer Architecture”, pages 5-14. January 2001.

[16] MIPS Technologies, “MIPS32® Architecture for Programmers Volume II: The MIPS32®
Instruction Set”, Version 2.5, July 1, 2005.

[17] M. Postiff and T. Mudge, “Smart Register Files for High-Performance Microprocessors”,
CSE-TR-403-99, University of Michigan, June 28, 1999.

[18] E. Rotenberg, J. Smith, S. Bennett, "Trace Cache: a Low Latency Approach to High
Bandwidth Instruction Fetching," Proceedings for the 29th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-29), pg. 24, 1996.

[19] M. Smelyanskiy, G. Tyson, and E. Davidson, “Register Queues: A New
Hardware/Software Approach to Efficient Software Pipelining,“ International Conference
on Parallel Architectures and Compilation Techniques (PACT 2000), October 2000.

[20] D. Sweetman, See MIPS Run, Morgan Kaufmann Publishers, 1999.

[21] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory allocation for
scratch-pad based embedded systems”, Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, October 30-November
01, 2003, San Jose, California, USA.

[22] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms”, ACM Computing Surveys
(CSUR), Volume 32, Issue 2, pg. 174-199, June 2000.

[23] D. Weaver and T. Germond, “The SPARC Architecture Manual”, SPARC International,
Inc., Menlo Park, CA. 1994.

 64

BIOGRAPHICAL SKETCH

Mark C. Searles

Mark Searles received a Bachelors of Arts Degree, in chemistry, from Cornell University.

After several years in the working world, he realized his affinity for computing and elected to

pursue a graduate degree. In the Fall of 2006, he graduated from The Florida State University

with a Master of Science Degree in Computer Science. Upon graduation, he returned to the

working world, albeit to a career more to his liking. His main area of interest is compilers.

